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ABSTRACT Data analysis is a scientific endeavor of bottom-up data-driven engineering nature. This
nature requires all employed conceptual criteria and algorithmic computations equipped with scientific
interpretability. It must be free from top-down modeling via man-made structures and assumptions.
We demonstrate data analysis of such nature on a critical disease in the real world. In the context of the
Alzheimer’s Disease Neuroimaging Initiative (ADNI), we analyze time-to-event data transiting from mild
cognitive impairment (MCI) to Alzheimer’s disease (AD) diagnosis. We first address issues related to non-
informative censoring using conditional-vs-marginal entropies and the Redistribute-to-the-right algorithm.
By employing Categorical Exploratory Data Analysis (CEDA) with 16 covariate variables, we identify a
set of key factors, including the Mean of Composite Cognitive Score for Memory (V9) and 13-item-AD
Assessment Scale-Cognitive Subscale at baseline (V8). For comparison purposes, this heavily censored data
set is also analyzed using Cox’s proportional hazard (PH) modeling and partial likelihood-based approach.
Due to complicated structural dependency among covariate features on a global scale, important factors, like
V8, are missed in PH results. To further compare PH and CEDA results on locality scales, we subdivide the
entire collection of 903 subjects respectively with respect to the four categories of V9 and V8 as a measure
of handling induced heterogeneity. Through graphic displays featured with conditional entropy expansions,
CEDA is seen to uncover and select more multi-scale informative feature-factors than PH results in all 8 sub-
collections when accommodating covariate’s structural dependencies and heterogeneity.

INDEX TERMS Alzheimer’s disease neuroimaging initiative (ADNI), association, categorical exploratory,
conditional entropy, survival analysis.

I. INTRODUCTION
Besides the pressing global climate issues, our humanity
is facing another pressing issue: human aging. On October
1st, 2022 World Health Organization (WHO) released news
regarding populations of elderly in the world quoted as:

‘‘ By 2030, 1 in 6 people in the world will be aged 60 years
or over. At this time the share of the population aged 60 years
and over will increase from 1 billion in 2020 to 1.4 billion.
By 2050, the world’s population of people aged 60 years
and older will double (2.1 billion). The number of persons
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aged 80 years or older is expected to triple between 2020 and
2050 to reach 426 million.’’ To be more specific, a mentioned
example in the news release is: ‘‘Japan 30% of the population
is already over 60 years old.’’ That is, any common
health issue related to aging would be one on a global
scale.

In particular, as population aging is coming fast, so is
human brain aging [1], [2]. Here, brain aging primarily means
changes in cognitive functions [3]. When such changes go
toward the dad directions, such as Alzheimer’s disease, which
is the focal example employed in this study among many
other diseases, the pressing health issue of human aging
zooms really big.
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To properly and effectively address this pressing issue, the
whole world would need truly scientific research results, not
shaky ones. Since data analysis definitely plays a critical
role in almost all scientific research. Therefore, any real
scientific advance on such a big issue can only come if data
analysis on its database is carried out with scientific rigor and
validity. This requirement amounts to requiring all science-
oriented data analysis to be conducted free from any man-
made structures and assumptions, and more importantly, such
scientific data analysis needs to be conducted and guided by
a computing paradigm of bottom-up data-driven engineering
nature. However, such scientific data analysis hasn’t yet
existed in the literature so far.

In strikingly sharp contrast with what scientific data
analysis must be, nowadays, the majority of data analysis
reported in all health-related literature, including the health
of human aging, is conducted based on ‘‘Modeling on data’’,
which is a top-down protocol built upon man-made structures
and assumptions coupled with many aspects of ad hoc
choices. This way of analyzing data is called ‘‘statistical
analysis’’. As such statistical analysis is ubiquitously carried
out, its ad hoc nature together with unrealistic man-made
structures and assumptions indeed poses a wide spectrum of
risks of hidden misinformation contaminating all research
results. The bottom line is that ‘‘All models are wrong’’.
It is logical that real scientific advances are hardly likely
to result from wrong models. In this paper, we demonstrate
the contrasting differences between statistical analysis and
scientific data analysis through their applications on a
database devoted to Alzheimer’s disease.

As quoted from the home page of the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) website:(https://adni.
loni.usc.edu), ‘‘Alzheimer’s disease (AD) is an irreversible
neurodegenerative disease that results in a loss of mental
function caused by the deterioration of brain tissue. It is the
most common cause of dementia among people over the age
of 65, affecting an estimated 5.5 million Americans, yet no
prevention methods or cures have been discovered. For more
information about Alzheimer’s disease, visit the Alzheimer’s
Association.’’

The Alzheimer’s Disease Neuroimaging Initiative (ADNI)
is a longitudinal multicenter study designed to develop
clinical, imaging, genetic, and biochemical biomarkers for
the early detection and tracking of Alzheimer’s disease (AD).
Since its launchmore than a decade ago, the landmark public-
private partnership has made major contributions to AD
research, enabling the sharing of data between researchers
around the world. See the detailed Goals and Study design
of the ADNI website at (http://www.adni-info.org.).

The goal of this study is to demonstrate how scientific data
analysis can better align with andmore likely achieve ADNI’s
first overarching goal: To detect AD at the earliest possible
stage (pre-dementia) and identify ways to track the disease’s
progression with biomarkers, than the popularly employed
statistical analysis on time-to-event or so-called survival
data.

So far studies using ADNI cross-sectional and longitudinal
data from multiple modalities have reported two particularly
relevant pieces of information: 1) AD pathology is already
present in people with no outward sign of memory loss
and these cognitively person without disability may already
have subtle brain atrophy; 2) Both the Cognitively Normal
(CN) and Mild Cognitive Impairment (MCI) groups are
pathologically heterogeneous. Some people show no signs
of AD, some show signs of progressing to AD quickly, and
others show signs of progressing to dementias other than AD.
These relevant pieces of information indicate multi-faces of
complexity being widely encoded in ADNI data. Hence, any
suitable data analysis approaches must be equipped with the
capability of accommodating such complexity. Nonetheless,
no such suitable data analysis has been seen in the literature.

Many cross-sectional studies on tracking progressions
of AD with biomarkers using data collected from the
ADNI database have reported applying the well-known Cox
Proportional Hazard Regression model for the time-to-event
data: from CN to MCI or from MCI to AD, and its well-
studied partial likelihood approach as studies’ chief inferen-
tial apparatus for selecting so-called significant biomarkers.
However, this popular methodology of Survival analysis in
Statistics indeed assumes homogeneity across all involving
subjects. This homogeneity assumption is at odds with a
series of fundamental questions when dealing with real-world
data. When analyzing data from the ADNI database, not
surprisingly, these essential questions, as listed below, are left
unanswered in all studies found in literatures [4], [5], [6],
and [7]:

Q1: Does the Cox PH modeling assumptions on non-
informative censoring mechanism violate the pat-
tern information embedded within data?

Q2: Does the data support the linearity-based additive
effects of covariate features assumed by the Cox PH
modeling structure?

Q3: Given that heterogeneity among subjects is intrinsic
in ADNI data, could Cox PH provide reliable
results, in particular when facing heavy censoring
rates on the global and local scales and potentially
complex interacting relations and effects among
covariate features?

Q4: Is the partial likelihood based inferential approach
valid?

Q5: If both the Cox PH model and the partial likelihood
approach fail fundamentally, what are potential
resolutions to achieve the overreaching goal of
ADNI in this complex disease AD?

Q6: After all, how do we compute and identify pertinent
perspectives of heterogeneity in cross-sectional
ADNI data?

Q7: With the computed presence of heterogeneity, how
to display the information contained in full?

Our data analysis developments would address Q1 through
Q5 to a great extent, but only partially touch on Q6 and
Q7 in this paper. Along the developing process, comparisons
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with results derived from the Cox PH model are also made
and discussed. Detailed and full discussions of the last two
questions are deferred to Part-II. Here, we briefly explain
why this series of questions is critical from a scientific
perspective.

Testing whether the censoring scheme is non-informative
or not in Q1 is the starter of data analysis applying
methodologies in Survival Analysis, such as Cox PH
modeling. However, this testing has not been carried out in
the ADNI-associated literature. The reason might be that
there is no simple testing statistic available in the Survival
Analysis literature. As for Q2, the linearity-based additivity
of covariate effects obviously doesn’t work for categorical
covariate variables, which is a common data type, such as
sex and education. Even for quantitative variables, the sum
of measurements of very distinct metric units is rather hard
to explain literately and convincingly. With the presence
of heterogeneity among subjects, Cox PH becomes rather
limited with respect to forefronts of difficulties, like heavy
censoring rates and unknown functional forms and high
ordersof interaction. The overall censoring rate is already
high. It is more than 60% in this cross-sectional study. The
censoring rates can reach more than 90% in some sub-
collections of subjects defined by the potential perspective of
heterogeneity. Though, multiple reports depicting interacting
effects in AD literature [8], [9], [10], such real-world
interacting relations among covariate variables in general are
hardly known priori regarding their orders of effects and
their explicit functional forms. Thus, any functional forms of
interacting effects of any orders among covariate variables
deem unrealistic and dangerous to subject matter science
because of misinformation.

For Q4: the partial likelihood approach is strictly based on
the correlation for evaluating associative relations between
the time-to-event response variable and covariate features.
This fact can be easily seen from the score equations derived
from the partial likelihood, which involves T(i) minus its
conditional expectation within the risk set. This format of
partial likelihood score equations points to one strict and
fundamental associative concept: correlation. It is known
that the correlation concept is strictly designed for one
quantitative variable against another quantitative variable, not
for categorical ones. It is not valid for evaluating 1-to-2 or
2-to-k associative relations. This limit is consequential for
the following reason. When facing an informative censoring
scheme, the response and censoring variables are dependent.
Then, the proper response variable must be 2D bivariate
(Ti,Ci). Under such a setting, the partial likelihood approach
would not work. This fact again points to the critical role
of Q1.

This paper proposes the Categorical Exploratory Data
Analysis (CEDA) paradigm to algorithmically resolve all
issues raised from Q1 through Q5 and partially Q6 and Q7
[11], [12], [13], [14]. In CEDA, we apply Shannon condi-
tional entropy to evaluate associative relation, and mutual
information to select so-called major factors underlying the

dynamics of the response variable in relation to all covariate
feature variables. When using two key Theoretical Infor-
mation measurements for all its algorithmic developments,
the CEDA naturally adopts the contingency table as its
basic computational platform. Consequently, CEDA not only
works for all data types, including the categorical one but
also is capable of evaluating k − to− k ′ associative relations
for all integers k and k ′. Since k categorized or categorical
variable can be fused into one categorical variable via their
contingency k-dim hypercubes. When facing censored data
disregarding the censoring rate, we apply the re-distribution-
to-the-right algorithm [15] to build all contingency tables.
For this simple reason, CEDA is capable of handling even
100% censoring rates in any locality. We also can build the
contingency table for categorized Ti and Ci to resolve the
Q1 formally. This is a new resolution. And because CEDA
is able to identify major factors of varying orders, the task of
identifying pertinent perspectives of heterogeneity in Q6 is
resolved to a great extent. We also develop a display called
conditional-entropy-expansion to unravel the effects of all
chosen perspectives of heterogeneity.

The organization of this paper is given as follows.
In Section II, we describe the cross-sectional ADNI data
by providing brief descriptions for all variables: response,
censoring, and 16 covariate features. In Section III, we first
review Theoretical Information measurements and rationales
for major factor selection under independent and dependent
covariate settings and illustrate how the Redistribution-to-
the-right algorithm precisely works. In Section IV, we con-
duct three simulated experiments with varying censoring
rates to showcase information relevant to Q1-Q5. The
ADNI data is thoroughly analyzed in the lengthy Section V
with two perspectives of heterogeneity being studied and
presented. In the last section of the Conclusion, we discuss
the contributions of this Part-I paper, and briefly lay out
computational tasks in Part-II. We hope this paper will help
scientists to advance their research on Alzheimer’s Disease
and we are thankful to ADNI for making such an important
database available to us. Given that the CEDA paradigm
can handle complex survival data analysis as discussed here,
it can algorithmically resolve awide spectrum of data analysis
topics and issues by accommodating all data types.

II. ADNI DATA DESCRIPTION
Data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (https://adni.loni.usc.edu). The ADNI was launched
in 2003 as a public-private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary goal of
ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression
of mild cognitive impairment (MCI) and early Alzheimer’s
disease (AD).
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We accessed the data file on June 9, 2022. It included
15,941 records from 1,094 participants. By removing any
subjects with missing data, we ended up with the records
of 903 subjects with a baseline diagnosis of Mild Cognitive
Impairment (MCI) and at least one follow-up diagnosis.
There are 346 subjects (211 males; 135 females) whose
diagnosis progressed to Dementia (AD) and their time-to-
even Ti’s observed. During the follow-up, 557 individuals
(328 males; 229 females) remained MCI, and their last
scheduled exam times are observed as censoring time Cis.
Therefore, we observe Yi = (Ti∧Ci), the minimum of Ti and
Ci, and the censoring status δi = 1[Ti≤Ci] for each of these
903 subjects.

Data feature descriptions are given as follows. The
16 covariate features used here are coming from three
categories: 4 demographic features (V1−V4), 1 MRI-related
feature (V5), and 11 clinical features (V6 − V16). The
features’ abbreviation and definition are provided in Table 1
followed by detailed descriptions of 11 clinical features.

TABLE 1. Covariate features as biomarkers in the ADNI data analysis.
‘‘std’’: the standard deviation.

Some further pieces of information regarding three clinical
features: CDR-SB (V6) [16] indicates the sum of scores for
the following six domains of functioning: memory, orien-
tation, judgment and problem-solving, community affairs,
home, and hobbies, and personal care. The CDR-SB ranges
from 0 (no impairment) to 18 (severe impairment in all six
domains); FAQ (V7) measures activities of daily living and
ranges from 0 to 30 with higher scores reflecting greater
cognitive impairment [17]; ThemodifiedADAS-Cog 13-item
scale (ADAS13(V8)) [18] is a modified evaluation by adding
a number cancellation task and a delayed free recall task to the
11-item ADAS-Cog (ADAS11). The higher scores suggest
greater impairment.

In addition to the clinical features aforementioned, we con-
sider four composite cognitive scores of 4 domains, including
memory, executive functioning, language, and visuospatial
functioning [19]. The scores are developed and calibrated
by using the ADNI Neuropsychological batteries. During
each available follow-up, the four composite cognitive scores
are updated accordingly and thus they are time-varying.
To extract information and characteristics for consideration,
we make use of the mean and standard deviation of the
composite cognitive score for each category until the event
(i.e., AD or the last time point if censored) as two new

features to describe the overall characteristics of each score.
Therefore, we have eight total new features to represent the
four composite cognitive scores which are shown in Table 1
(V9 − V16). With such construction of time-varying scores
of these 4 domains, we expect each subject to have the mean
and standard deviation of the composite cognitive scores at
every exam time. Missing values of the composite cognitive
scores at partial exam time points are found due to the
intrinsic incomplete data (e.g., participant refusal to complete
the study or the item was not administered due to the time
limit) and this can be fixed by taking the average of available
scores correspondingly. We remove subjects with no scores
available across all exam time points as there is not enough
useful information provided.

III. CEDA METHODOLOGIES
In this section, we first briefly review computational algo-
rithmic developments for CEDA’s major factor selection
protocol. This protocol is entirely based on Theoretical Infor-
mation Measurements: marginal and conditional entropies
and mutual information. Since we work only with categorical
or categorized variables in CEDA. Therefore, the only
version of entropy used here is Shannon entropy. Secondly,
we illustrate the ‘‘Redistribution-to-the right’’ algorithm for
building a contingency table with the presence of the right
censored data. Since all CEDA computing is performed upon
the contingency table platform. Thus, this algorithm indeed
plays a critical role in this paper.

A. CEDA’S MAJOR FACTOR SELECTION PROTOCOL
In this subsection, we briefly review the concept and comput-
ing of conditional entropy and mutual information as two key
Theoretical Information Measurements used throughout this
paper. Detailed derivations of related formulas of these two
measurements are referred to previous works [11], [12], [13],
[14]. We employ these two entropy-based measurements to
evaluate potentially nonlinear directional association from a
generic covariate feature variable denoted as X to a generic
response variable denoted as Y , and the nondirectional
association between two covariate feature variables, say
X1 and X2.

Since we exclusively work on categorical or categorized
variables in this paper. That is, any variable of continuous
or discrete measurements is categorized with respect to a
chosen version of the variable’s histogram. For instance,
the time-to-event T , the mean and standard deviation of
test scores, and age are to be categorized. Further, any set
of multiple categorical variables can be fused into a new
categorical variable by redefining each distinct multiple-
dimensional categorical vector as a category of the newly
defined categorical variable. For instance, a bivariate vector
(X1,X2) would be taken and treated as a categorical variable.
That is, the categorical variable, such as gender (V2), and
the categorized variable, such as MEM-mean (V9), can be
fused into a new categorical variable. Therefore, any set of
covariate feature categorical or categorized variables, say A,
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is also taken as a categorical variable with the same name A.
So A’s directional association to Y is evaluated in the same
way as evaluating the directional association of any member
of A to a categorical response variable Y .
Consider A or B as two different categorical covariate vari-

ables standing for two sets of covariate features. We evaluate
the directional association of A to Y upon their contingency
table C[A − vs − Y] with categories of A and Y being
arranged along the row- and column-axes, respectively, as a
conventional format used throughout this paper. Along the
row-axis, each row of cell counts in C[Y−vs−A] is taken to
define a conditional multinomial random variable, which is
specified by its row-sum and the row-vector of proportions.
For instance, a conditional (Shannon) entropy (CE) of Y at
the a-th row of C[A− vs− Y] is calculated and denoted as:

H [Y|A = a]

= (−1)
∑

y∈{y1,..,yr }

p̂[Y = y|A = a] log p̂[Y = y|A = a] (1)

with (p̂[Y = y1|A = a], .., p̂[Y = yr |A = a]) as the
a-th row’s vector of proportions. This quantity of H [Y|A =

a] indicates the amount of uncertainty about Y given the
information of A = a being known.

In contrast, the overall amount of uncertainty aboutY given
the information of A with a ∈ {a1, .., ah} is evaluated as the
weighted average and denoted as:

H [Y|A] =

∑
a∈{a1,..,ah}

na
n
H [Y|A = a],

with na being a-th row sum and the total sample size n =∑
a∈{a1,..,ah} na. Further, the entropies of marginal column-

wise vector of proportions (
ny1
n , . . . ,

nyr
n ) and row-wise vector

of proportions (
na1
n , . . . ,

nah
n ) are denoted as H [Y] and H [A],

respectively.
It is known that the conditional entropy (CE) H [Y|A]

conveys the expected amount of remaining uncertainty in
Y after knowing A. Likewise, H [A|Y] conveys the expected
amount of remaining uncertainty in A after seeingY . The two
conditional entropy drops, i.e. differences H [Y ] − H [Y|A]
and H [A]−H [A|Y], indicate the shared amount information
between A and Y:

H [Y] − H [Y|A] = H [A] − H [A|Y]
= H [A] + H [Y ] − H [A,Y]
= I [Y;A] (2)

where I [Y;A] denotes the mutual information between Y
and A.
Further, the conditional mutual information between the

bivariate variable (A,B) given Y is evaluated as:

I [A;B|Y] = H [A|Y] + H [B|Y] − H [(A,B)|Y].

Therefore, the mutual information I [Y; (A,B)] can be
estimated and decomposed as follows:

H [Y] − H [Y|(A,B)]

= H [(A,B)] − H [(A,B)|Y]
= H [A] + H [B] − I [A;B]

− {H [A|Y] + H [B|Y] − I [A;B|Y]}
= {H [Y] − H [Y|A] + H [Y] − H [Y|B]}

+ {I [A;B|Y] − I [A;B]} (3)

where the first two terms are individual CE-drops attributed
to A and B and the third term is the difference of conditional
and marginal mutual information of A and B. In particular,
we term A and B achieve their ecological effect if this term:
{I [A;B|Y]− I [A;B]}, is positive. This positiveness indicates
the potential for A and B being concurrently present within
the dynamics underlying Y . The essence of achieving the
ecological effect is that A and B have the potential of being
conditional dependent under Y disregarding whether they are
marginal dependent or not.

However, the above decomposition precisely conveys the
interpretable meaning of conditional mutual information
when I [A;B] = 0 as the two involving feature setsA andB are
marginally independent. Thus, if I [A;B|Y] is significantly
larger than min{H [Y] − H [Y|A],H [Y] − H [Y|B]}, then we
are certain that A and B achieve a significant interacting effect
in reducing the uncertainty of Y . Therefore, we particularly
evaluate the so-called successive conditional entropy (SCE)
drop as:

H [Y] − H [Y|(A,B)]

− max{H [Y] − H [Y|A],H [Y] − H [Y|B]}.

The task of identifying any realistic interacting effect is
always essential in any real-world data analysis because
such effects could provide a critical understanding of the
system under study. Thus, this SCE-drop would be reported
in all tables. Its merit also includes checking whether A and
B achieve their ecological effect, which is required before
considering whether they have an interacting effect or not.
On the other hand, if A and B are indeed highly associated

in the marginal sense via certain unknown dependency, then
I [A;B] > 0. That is, the term {I [A;B|Y] − I [A;B]}, could
be negative. Hence, when A and B are associated, we face
two chief difficulties. The first difficulty is that it is hard
to determine whether the minimum CE-drop: min{H [Y] −

H [Y|A],H [Y] − H [Y|B]}, due to either A or B is indeed
significant or not. That is since their ecological effect has
failed to be seen, we cannot be sure whether A and B are
concurrently present within the dynamics underlying Y . The
second difficulty is that, even {I [A;B|Y]−I [A;B]} is positive
with a moderate, not large enough size, then it becomes
difficult to assess whether the A and B have a significant
interacting effect or not.
In order to resolve these two difficulties, a de-associating

procedure is proposed [13] by simply subdividing the entire
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data set with respect to a target covariate variable’s categories.
For instance, A is the target covariate variable, and the entire
data set is divided into h sub-collections with respect to
{a1, .., ah}. That is, A is a constant within each sub-collection.
Hence, the association between B and A within each of these
h sub-collection disappears. Overall, all covariate variables
are less associated with each sub-collection. The merit of
the de-associating procedure is evidently seen in Section V
of ADNI data analysis. In fact, the most critical merit
of this de-associating procedure indeed rests on the fact
that A’s perspective of heterogeneity embedded within the
dynamics underlying Y can be much more easily discovered.
As such we can discover two versions of heterogeneity
from the perspectives of A and B and compare these
two versions of heterogeneity. By doing so, we discover
authentic heterogeneity-based pattern information hidden in
data. Ideally, if we could identify all relevant perspectives of
heterogeneity, then collectively we can have the data’s full
information content. This is termed the ideal scenario in data
analysis.

By summarizing all aforementioned developments in
this subsection, we arrive at the CEDA’s Major Factor
Selection (MFS) protocol under two settings. The first
setting is developed [11] to deal with independent or slightly
dependent covariate feature variables only, while the second
set is developed [13] to deal with the heavily dependent
covariate setting. Nonetheless, by adopting the de-associating
procedure within any heavily dependent setting, the MFS
protocol originally built under an independent setting is
indeed applied within the sub-collection levels, at which
all heavily dependent covariate features indeed become
much less dependent. As such, we discover which covariate
features or feature sets can indeed provide extra amounts
of information beyond which targeted covariate features or
feature sets. This computational capability is essential in any
real data analysis. Since the goal of data analysis is aimed at
the ideal scenario: data’s full information content.

It is worth reiterating that, with the potential presence of
heterogeneity, the goal of MFS protocol is not set to create
one ultimate collection of major factors of various orders that
can collectively and concurrently reduce the uncertainty of
Y to the lowest level. The goal of the MFS protocol is to
precisely explore and extract pattern information pertaining
to perspective-specific heterogeneity. By exploring many
perspectives of heterogeneity, we hope we can get much
closer to the data’s full information content.

B. REDISTRIBUTION-TO-THE-RIGHT
Evaluations of association between two categorical or
categorized variables are performed on the contingency
table platform. Without involving censored data points, the
construction of a contingency table is straightforward by
counting the number of data points falling into each cell
defined by one category from each of the two variables.
Nonetheless, when censoring is involved with one variable
such as the response survival time variable T , then construct-

ing a contingency table of any covariate variable X against T
is not a straightforward computing task. We illustrate how to
achieve such a task in this subsection.

Denote the contingency table to be built as C[X − vs− T ]
with T being censored by C . In this subsection, we first
consider the variables T and C being measured at their
original time scale before being categorized. Recall that the
possibly right-censored survival time data set is denoted as
{(Yi, δi,Xi|i = 1, .., n} with Yi = (Ti ∧ Ci) as the minimum
of Ti and Ci and δi = 1[Ti≤Ci] indicating the binary censoring
status: 0 for being censored and 1 for being uncensored.
Let nc = n −

∑n
i=1 δi = n − nu denote the number of

censored data points and nc/n the censoring rate of this data
set. For simplicity, we assume all {Yi} are distinct and its order
statistics is denoted as {Y(i)}. The K -dim covariate vector
Xi = (X1i,X2i, ..,XKi) records themeasurements ofK feature
variables {Xk |k = 1, ..,K }.

The Kaplan-Meier estimation [20] of survival function
S(t) = Pr[Ti > t] of Ti based only on {(Yi, δi)|i = 1, .., n},
as if without knowledge of {Xi|i = 1, .., n}, is built as [21]:

Ŝ(t) =

∏
i:Y(i)≤t

(1 −
1

n− i+ 1
)δ(i) .

It is evident that this empirical distribution Ŝ(t) has all
its jumps at uncensored time points {(Yi, δi)|δi = 1}
with possibly unequal jump-sizes. This phenomenon is
characterized as so-called ‘‘redistribution-to-the-right’’ [15],
that is, the empirical weight 1

n of any censored data point is
equally redistributed to all data points: uncensored as well
as censored, found on its right-hand side. A weight received
by any censored data point is likewise re-distributed to all
data points on its right. In Table 2, we specifically illustrate
this redistributing algorithm for the 3rd ordered survival time
Y(3), which is censored (δ(3) = 0) among 10(= n) data points
with the 6th and 8th being censored as well. For expositional
simplicity, we denote and mark these three ordered censored
time points as Y c(3), Y

c
(6), and Y

c
(8).

It is noted that not only Y c(3) is subject to such redistribution-
the-right algorithm in constructing the empirical survival dis-
tribution Ŝ(t), but also all covariate measurements {Xk(3)|k =

1, ..,K } are subject to the same redistribution when we
construct contingency table C[Xk −vs−T ]. It is because that
we only observe (Xk(3),Y c(3)), not the unobserved (Xk(3),T

c
(3)).

And the unobserved T c(3) is indeed larger than Y c(3). Since
there are two more censored survival time points beyond
Y c(3). The entire redistribution algorithm takes three steps to
finish. In Table 3, we show the results of the redistribution of
empirical weights pertaining to the three censored data points.

TABLE 2. A censored data point’s (X3) step-by-step
redistribution-to-the-right at three ordered censored time points Y c

(3),
Y c

(6) and Y c
(8) along the axis. All row-sums of weights are equal to 1.
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TABLE 3. Redistribution-to-the-right of three censored data points
among 7 uncensored ones along the ordered survival time axis. All
row-sums of weights are equal to 1.

Upon the entire data set {(Yi, δi,Xi|i = 1, .., n}, a
n × n weight-redistribution matrix is constructed and fixed
according to the layout of n order statistics’ {(Y(i), δ(i))}
censoring statuses. Denote this weight-redistribution matrix
as W as shown in Table 3. It is noted that all columns
according to all censored survival times {Y(i)|δ(i) = 0}
are n-dim zero-vectors in W . Thus, when the uncensored
survival times are categorized by a specific way of grouping
on {T(i′)|δ(i′) = 1, i′ = 1, .., nu}, then W will be subject
to the same grouping along its column axis. Consequently,
the weights contributed to each bin by any k-th covariate
measurement of i-th individual is specified. In this fashion,
we are able to construct contingency tablesC[Xk−vs−T ] for
evaluating associations between Xk and T . We can likewise
construct a contingency table C[(Xk1 , ..,Xkl ) − vs− T ] for a
feature-set {Xk1 , ..,Xkl } and T .

IV. COMPUTER EXPERIMENTS WITH INCREASING RIGHT
CENSORING RATES
In this section, we report a simple computational study by
applying methodologies proposed in the previous section
on three simulated right-censored survival time data sets.
These three data sets are generated by the same functional
structures but have distinct censoring rates: 10%, 20%,
and 30%. We hope to demonstrate the stably evolving
conditional entropy evaluations and at the same time to show
correct selections of major factors across these three different
censoring rates.

We employ an integral equation, which has been proposed
and studied [22], to generate survival time T as the time of
using up the unobserved reserve value U with respect to an
exhausting rate specified by e{V1+sin(2π(V2+V3))+V7

2
}λ0(t).

The term λ0(t) is taken as the baseline hazard rate. The
integral equation is given as follows:

U =

∫ T

0
e{V1+sin(2π(V2+V3))+V7

2
}λ0(t)dt.

Here the term sin(2π(V2 + V3)) in the exponent of the
integrand is designed to have an interacting relational effect
of variables V2 and V3 through a sine function. This simple
functional form signals the nonlinearity, on one hand, and
the departure from the classic product format of interacting
effect, on the other.

Denote the hazard rates of U and T as λU (·) = 3′
U (·)

and λT (·) = 3′
T (·), respectively. Their relationships are

characterized as follows [22]:

e−3T (t) = Pr[T > t]

= Pr[
∫ T

0
e{V1+sin(2π(V2+V3))+V7

2
}λ0(s)dts

>

∫ t

0
e{V1+sin(2π(V2+V3))+V7

2
}λ0(s)ds]

= Pr[U >

∫ t

0
e{V1+sin(2π(V2+V3))+V7

2
}λ0(s)ds]

= e−3U (
∫ t
0 e

{V1+sin(2π(V2+V3))+V72}λ0(s)ds) (4)

Therefore, we have the cumulative hazard rate and hazard
rate of T being specified as follows:

3T (t) = 3U (
∫ t

0
e{V1+sin(2π(V2+V3))+V7

2
}λ0(s)ds);

λT (t) = λU (
∫ t

0
e{V1+sin(2π(V2+V3))+V7

2
}λ0(s)ds)

· e{V1+sin(2π(V2+V3))+V7
2
}λ0(t).

That is, if λU (·) is a constant function, that is, U Exp(.), then
we have:

λT (t) = e{V1+sin(2π(V2+V3))+V7
2
}λ0(t),

which is in a format of Cox’s proportional hazard setting.
To simulate three experimental data sets, for simplicity,

we use the Weibull baseline hazard function λ0(t) =

ktk−1 with k = 1.5 and Exponential distributed reserve
function, U ∼ Exp(1.5). There are 10 mutually independent
covariate variables {V1, ..,V10}. They are all randomly
sampled from Uniform[0, 1] distribution. The three right
censoring variables are also Exponentially distributed with
three different chosen rates to create preset censoring rates.
For CEs calculation, all covariates are categorized into
10 uniformed bins, and the response variable T is also
categorized into 10 bins as well based on their Kaplan-Meier
estimates. Each simulated data set is 10,000 (= n) in size.
[Experiment-: 10% censoring rate] We report our CE

evaluations in Table 4. The row-wise CEs are ranked from
the top-to-bottom in the three feature settings, respectively.
In the 1-feature setting, we see only V1 and V7 having
significant SCE-drops. So they are individual order-1 major
factor candidates. The CEs of V2 and V3 are even as low as
that of those random noise features.

The interacting effect of V2 and V3 are visible in the 2-
feature setting by having a SCE-drop being many times of
CEs of either V2 or V3. That is, feature-pair (V2, V3) is an
order-2 major factor candidate. The SCE-drop of the feature-
pair (V1, V7) is larger than V7’s SCE-drop. This ecological
effect indicates that V1 and V7 are currently present in the
dynamics of response. So they are likely to be the order-1
major factors together. It is noted that CEs and SCE-drops of
all the feature pairs of random noise provide the baseline of
comparison. In the 3-feature setting, the feature triplets (V1,
V2, V3) and (V2, V3, V7) achieve the lowest CEs and their
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SCE-drops indicate the ecological effects being achieved.
That is, these three major factors: (V2, V3), V1, and V7,
are concurrently present within the dynamics of T . Despite
increasing uncertainty along with increasing censoring rates,
exactly the same conclusions of major factors can be drawn
from Table 5 and Table 6 based on the two simulated data sets
with 20% and 30% censoring rates, respectively.

As for the Cox PH results, V1 and V7 are significant
across the three experiments, while in contrast the two
features: V2 and V3, are never seen as simultaneously
significant in the three experiments. We only observe that V3
is somehow significant in experiment-1, V2 in experiment-
2. But both features are insignificant in experiment-3. These
experimental results converge to the fact that any interacting
effect with non-product format is likely ignored by Cox PH
results, especially when the censoring is high.

TABLE 4. Experiment-1 (censoring rate is 10%): Ranked conditional
entropies (CE) and successive CE-drop for selected feature-sets; ‘‘SCE-dp’’
short for ‘‘SCE-drop’’; ‘‘p-value(PH)’’ for the fitted Cox PH model.

V. ADNI DATA ANALYSIS
For the CEDA paradigm, the scheme of data categorization
for all quantitative variables is given as follows. Measure-
ments of each quantitative covariate feature are grouped into
4 equal-spaced bins. As we only have 903 subjects in total,
4 bins would be an appropriate choice to conduct the CEDA
analysis to avoid the effect of the curse of dimensionality.
There are 2 binary categorical features, GENDER (V2) and
FLDSTRENG-bl (V5). As for the Ti and Ci which have their
ranges within [6, 162] (month). It is noted that the maximum

TABLE 5. Experiment-2 (censoring rate is 20%): Ranked conditional
entropies (CE) and successive CE-drop for selected feature-sets; ‘‘SCE-dp’’
short for ‘‘SCE-drop’’; ‘‘p-value(PH)’’ for the fitted Cox PH model.

observed Ti is 138 and the observed Ci is 162. We opt to
obtain time bins by the following scheme: dividing [6, 162]
into 4 bins: [6, 46), [46, 85), [85, 139), [139, 163) so that all
observed Ti are included in the first three bins. In this way,
we are able to clearly learn the structure and characteristics
between the observed time (Ti) and censoring time (Ci).

Denote the right censoringADNI data set as {(Yi,Vi, δi)|i=
1, .., n} with Yi = (Ti ∧ Ci), Vi = {V1i, ..,V16i}, δi the
censoring status and sample size n = 903. If the ith subject
is uncensored, δi = 1, then Yi = Ti(< Ci) is its observed
survival time, while if the ith subject is censored, δi = 0, then
Yi = Ci(< Ti) is the censoring time defined as the exam date
of first no-show. The total number of uncensored data points
is no =

∑903
i=1 δi = 346, while the total number of censored

data points is nc = n−no = 557. So, this data set’s censoring
rate is over 61%.

Consider the two ensembles of observed censoring and
survival times: {Ci|δi = 0, i = 1, .., 557} and {Ti|δi =

1, i = 1, .., 346}. It is noted the largest Ci among the
censored data point is max{Ci|δi = 0, i = 1, . . . , 557} =

162, while the largest Ti among the uncensored data point
is max{Ti|δi = 0, i = 1, . . . , 346} = 138. Therefore,
we have to take the convention that the largest censored
data is taken as an uncensored one as usually done within
many computational operations in Survival Analysis, for
instance, in constructing Kaplan-Meier estimation of the
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TABLE 6. Experiment-3 (censoring rate is 30%): Ranked conditional
entropies (CE) and successive CE-drop for selected feature-sets; ‘‘SCE-dp’’
short for ‘‘SCE-drop’’; ‘‘p-value(PH)’’ for the fitted Cox PH model.

survival function [20]. We make use of this convention
because the redistribution-to-the-right algorithm developed
by B. Efron [15] is heavily applied in this paper. With respect
to these two ensembles, we report their histograms with
respect to four bins: [6, 46), [46, 85), [85, 139), [139, 163),
in Figure 1.

FIGURE 1. Histograms of 557 Ci (censoring time) (in dark blue color bars)
and 346 observed Ti (in light-blue bars).

Since each individual subject’s potential Ti and Ci are to
be realized and observed at a common setting: a scheduled
examination date, it becomes not at all obvious whether
the Ti is indeed stochastically independent of Ci. Needed
rigorous testing is constructed and conducted in the next

subsection. The efforts invested in confirming this answer
are essential because either positive or negative answers to
this required fundamental assumption are expected to have
significant impacts on the validity of any applications of
the Cox Proportional Hazard model, which will be briefly
reviewed below.

The Cox Proportional Hazard model, which was proposed
by D.R. Cox in his 1972 landmark paper [23], is the
most fundamental and the most popular modeling structure
employed in the statistical topic of Survival Analysis. It is
also widely used in analyzing data derived from ADNI as
well. The classic version of the Cox proportional hazard
(PH) model on the right censored data set is described as
follows. Given {(Yi,Vi, δi)|i = 1, .., n} and assuming Ti being
stochastically independent of Ci, the hazard rate function
λT̃i

(t) of T̃i is specified as:

λTi (t) = λ0(t)e
∑16

k=1 βkVki ,

for all i = 1, .., n. The assumed structural linearity and
additivity are designed to accommodate all effects of the
16 covariate variables. The exponent of λTi (t) certainly can
involve interacting effects among the 16 covariate features
effects. Nevertheless, given no prior knowledge of which
forms of interacting effects pertain to which pairs or triplets
of features, the inclusion of interacting effects would result in
an unrealistic and complex model.

Under the PH model structures and non-informative
censoring assumption, the partial likelihood approach pro-
posed [23] is still the most widely used inference methodol-
ogy in Survival Analysis. Nevertheless, it is worth reiterating
that the global structure embraced by this PH model indeed
is built upon an assumed homogeneity across the entire
population contained in ADNI. From a rigorous standpoint,
this homogeneous assumption is neither natural nor scientific.
Though it might be practical, it is just parsimonious at best.
This data set from ADNI is subject to two characteristics that
could significantly impact results derived from the Cox pro-
portional hazard model structure. These two characteristics
are: 1) the presence of heavy censoring; and 2) the hidden
heterogeneity among subjects. Both characteristics likely
violate the validity regarding the global structures. In the last
three subsections of this section, the partial likelihood results
of the Cox proportional hazard model are compared with
results derived based on our major factor selections on two
scales: global and local.

A. REDISTRIBUTE-TO-THE-RIGHT WEIGHT MATRIX
In this data analysis, all computations are primarily per-
formed on the platform of the contingency table. This
platform explicitly and correctly facilitates all calculations of
measurements of conditional entropy, as such, we evaluate
directed or indirect associations between the survival time
Ti and any other covariate variables. When building a
contingency table for such association involving variable Ti,
we need to adopt a convention in Survival Analysis: the
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censored subject having its censoring time being equal to
max{Cj|δj = 0, j = 1, . . . , 557} = 162 is converted
into an uncensored subject because this censoring time
is beyond max{Ti|δi = 1, i = 1, . . . , 346} = 138.
With this convention, we illustrate how to build a 903 ×

347 weight-matrix by applying the [Redistribution-to-the-
right] algorithm discussed in Section III in this subsection.
This weight matrix would be the basis for building a
contingency table pertaining to any covariate features or
feature sets against variable Ti.
For illustrative purposes, we build a 903 × 347 matrix

lattice for distributed weights pertaining to the variable {Yi}
against the variable {Ti}. By breaking all ties, we make all
values of {Yi|i = 1, .., 903} distinct, and then ordered and
arranged them from bottom-to-top along this matrix’s row-
axis, while all observed {Ti′ |δi′ = 1, i′ = 1, .., 347} are made
distinct, ordered and arranged from left-to-right along this
matrix’s column-axis. It is noted again here that the largest
uncensored T(347) = 162, which is originally censored.

Upon this 903 × 347 matrix lattice, each of its rows is
constructed in the following fashion:

• δ(i) = 1: If the i-th ranked Y(i) is uncensored (δ(i) = 1),
then the weight 1 goes to the i′-th column of T(i′) = Y(i),
which is color-marked as a red-dot in Figure 2;

• δ(i) = 0: If the i-th ranked Y(i) is censored (δ(i) = 0),
then the weight 1 would be re-distributed to all columns
of T(i′) > Y(i) according to the [Redistribution-to-the
right] algorithm, are represented by in changing-color-
segment in Figure 2.

Let this matrix of distributed weights be denoted by
W[Y ,T ], which is displayed in Figure 2.

FIGURE 2. Matrix of distributed weights of individual 903 ranked Yi
against 347 (= 346+1) observed survival time Ti ; two color bars indicate
the corresponding 4 divided time bins.

This weight matrix W[Y ,T ] would play a very funda-
mental role in all our applications of major factor selection
protocol throughout this data analysis from here on. Since we
can replace this feature of time variable Yi with any one of the
16 features or feature-sets. That means each row ofW[Y ,T ]
is identified via the subject’s ID and its censoring status δi.
As such, a weight matrixW[Vk,T ] is obtained by permuting
the rows according to the increasing orders with respect to
ordered values of Vk .

For any k = 1, .., 16, on the column-axis of W[Vk,T ],
the values {T(i′)|δ(i′) = 1, i′ = 1, .., 347} are grouped
into four bins: [6, 46), [46, 85), [85, 139), [139, 163). It is
noted that the bin [139, 163] contains only censored data
points. Likewise, upon the row-axis ofW[Vk,T ], the values
{Vk(i) |i = 1, .., 903} are also grouped into the four bins, which
can be determined with respect to a histogram of Vk .

B. TESTING NON-INFORMATIVE CENSORING
ASSUMPTION
For testing the non-informative censoring assumption,
we need to explore the associative relation between survival
time (Ti) and censoring time (Ci). However, we only observed
Yi == (Ti ∧ Ci) as the minimum Ti and Ci. That is, when
δi = 0, Ti is censored by Ci. But when δi = 1, Ci is censored
by Ti. The dual roles of Ti and Ci make this missing-data
mechanism symmetric. Therefore, when δi = 0 and observed
Ci, we figure out where the missing bivariate (Ci,Ti) could
potentially located by using the [Redistribution-to-the-right]
algorithm. The 557 × 347 matrix of distributed weights,
denoted asW[C,T ]δi=0, is reported in panel (a) of Figure 3.
This weight matrix is indeed obtained simply by deleting the
346 rows ofW[Y ,T ] corresponding to δi = 1.

In contrast, when δi = 1 and observed Ti, we figure
out where the missing bivariate (Ci,Ti) could potentially be
located by using the [Redistribution-to-the-right] algorithm.
The 346 × 557 matrix of distributed weights, denoted as
W[T ,C|]δi=1, is reported in panel (b) of Figure 3.

FIGURE 3. (a) Matrix of distributed weights of individual 557 ranked Ci
against 347 (= 346+1) observed survival time Ti and (b) matrix of
distributed weights of individual 346 ranked Ti against 557 observed
censored time Ci ; color bars indicate the corresponding 4 divided time
bins.

By applying the binning-scheme with respect to the
four interval regions: [6, 46), [46, 85), [85, 139), [139, 163),
on both axes of W[C,T ]δi=0 and transposed matrix
WT [T ,C|]δi=1, we obtain two 4 × 4 contingency tables,
as reported in 4 × 4tableCT. The contingency table C[C,T ]
denotes the sum of these two 4 × 4 contingency tables.
This contingency table C[C,T ] reported in Table 7

indeed manifests the multiple aspects of associative relations
between the censoring time Ci and survival time Ti. From
the row- and column-wise aspects, we calculate the row-
wise and column-wise Shannon conditional entropies and re-
scale them by Shannon entropies of vectors of proportions
of column-sums and row-sums, accordingly. Hypothetically,
if a row-wise re-scaled CE is close to 1, then we know the
information about Ci not helping us in predicting Ti, while a
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TABLE 7. Contingency table C[C, T ]: the sum of the 4 × 4 contingency
table derived from 557 × 347 weight matrix W[C, T ]δi =0 (upper half) and
the 4 × 4 contingency table derived from 346 × 557 weight matrix
WT [T , C |]δi =1 (lower half).

column-wise re-scaled CE is away from 1 and smaller than 1,
then we know the information of Ti indeed helping us in
predicting Ci.
Our testing results from row-aspect are displayed in

Figure 4 and testing results from column-aspect are displayed
in Figure 5. Based on the Multinomial random mechanism,
we simulate four row-wise alternative distributions against
the null distribution based on the vector of column-sums as
displayed in Figure 4. All five distributions heavily overlap.
Therefore, the sum of Type-I and Type-II errors is large.
Likewise, as displayed in Figure 5, similar results are found
through the four column-wise alternative distributions against
the null distribution based on the vector of row-sums. Thus,
we conclude that associative relations between the censoring
time Ci and survival time Ti are not evident. The non-
informative censoring assumption stands.

FIGURE 4. Four row-wise simulated alternative distributions marked with
vertical lines at observed re-scaled CEs {1.0109, 0.9778, 0.9883, 1.0167}
against one simulated null distribution marked with one vertical line at
1.00. The entropy of the vector of column-sum proportions is 1.2979.

The critical implication derived from the confirmation
of the noninformative censoring scheme is regarding which
response variables, either Ti or (Ti,Ci), are legitimate and
should be used in Survival analysis. Since Ti is stochastically
independent of Ci, we are not required to use (Ti,Ci) as the
legitimate 2D response variable, or to use the categorical
variable defined by the 16 categories in Table 7. That, we only
need to use the categorized variable of Ti defined by the 4D
vector of column-sums in Table 7 throughout the categorical
exploratory data analysis (CEDA) carried out in this paper.

FIGURE 5. Four column-wise simulated alternative distributions marked
with vertical lines at observed re-scaled CEs {1.0184, 1.0053, 0.9894,
0.9693} against one simulated null distribution marked with one vertical
line at 1.00. The entropy of the vector of row-sum proportions is 1.2111.

C. USING δI AS A RESPONSE VARIABLE
After confirming the fundamental assumption of non-
informative censoring, we first look into the issue of whether
the observed data of censoring status {δi|i = 1, .., n} could
indeed shed light on the dynamics of Ti. The rationale
is that δi = 1[Ti≤Ci] = 1 − 1[Ti>Ci] is categorical
transformation of Ti. Since Ti is stochastically independent of
Ci, this transformed data logically should still carry relevant
information. So, as the first step of our categorical exploratory
data analysis (CEDA), we seek for any covariate variables
{V1, ..,V16} that is highly associated with δi. We perform
our CE computations by employing δi as a binary response
variable and all covariate variables are categorized to have
4 bins based on their individual histograms. The relevant CEs
are reported in Table 8.

TABLE 8. Conditional entropies (CE) of 16 features with censoring status
δi as a response variable.

From Table 8, we see that δi is apparently associ-
ated with V9 (MEM-mean) and V8 (ADAS13.bl), both
of which achieve about 23% and 13% reductions of
δi’s uncertainty, respectively. This result implies that the
directed association from Ti to the 16 covariate features
surely would be much stronger than the results reported
strongly.
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D. COMPUTING MAJOR FACTORS
Before exploring the directed association of all 16 covariate
variables {V1, ..,V16} to response variable Ti, we display
mutual association among these 16 covariate features via a
16 × 16 heatmap and a network of 16 nodes in the two
panels of Figure 6. From panel (a), we see two highly
associated feature-pairs: {V9, V8} and {V15, V16}, two
moderately associated feature-pairs:{V6, V7}, {V11, V13},
and moderately associated feature-triplet:{V10, V12, V14}.
These feature-sets are also mutually associated with varying
degrees. In contrast, panel (b) reveals a global picture of the
association among these 16 features with respect to a chosen
threshold.

It is worth reiterating that, as mentioned in Section IV
and previous work [13], any highly associative relationships
among features would require extra computational efforts
for explicitly clarifying and evaluating their joint conditional
dependency or interacting effects much harder. We demon-
strate why such required efforts are needed in this subsection
by implementing our major factor selection protocol facil-
itated by contingency-table-based CE computations within
this ADNI data set. Nonetheless, as would be discussed in the
two subsections after this one, such efforts are indeed needed
for exploring heterogeneity within data.

FIGURE 6. Heatmap (a) and network (b) of 16 covariate features in terms
of Mutual Conditional Entropy (MCE). The threshold of the linkage is 0.97.

The first step of the major factor selection protocol is
performed by calculating the conditional entropies (CEs) of
all possible feature-sets of the collection of 16 covariate
features from the 1-feature setting up to the 3-feature setting.
Our CEs computations end at the 3-feature setting is a
necessary choice for reflecting the uncensored sample size
346. All CEs of the 1-feature setting are reported in Table 9
coupled with results derived from Cox PH models on an
individual feature basis. Specifically, we also report p-values
of partial likelihood estimates of {β1, .., β16} parameters.
As for CEs of 2-feature and 3-feature settings, we only select
and report 12 primary top-ranked pairs and triplets in Table 10
due to the large numbers of feature-pairs and feature-triplets.

Before comparingCEs andCox’s PH results, it is necessary
to keep in mind that each CE pertains to one individual
feature, while a p-value of covariate feature is evaluated
under a global PH modeling structure. Therefore, these
16 parameter estimates are correlated, and so are their

TABLE 9. Conditional entropies (CE) of 16 features with T as response
variable, along with p-values of features via Cox Partial likelihood
approach.

p-values. From Table 9, we observe that feature: MEM-
mean (V9), achieves the lowest CE, while ADAS13.bl
(V8) is ranked 2nd. Both are potential order-1 major factor
candidates, though they are not likely concurrently present
when interpreting the reduction of marginal uncertainty of Ti.
That is, they could potentially join together in reducing the
uncertainty of Ti under conditional settings, as would be seen
in the last two subsections regarding heterogeneity from both
V9 and V8 perspectives. This possibility is in sharp contrast
with PH results, which indicate V9 is more essential by
having a p-value nearly zero than V8 with a p-value 0.5007.
In other words, the act of dismissing the importance of V8
could come with the cost of ignoring important information
of heterogeneity via V8 perspective, as would be seen in the
last subsection of this section.

The EXF-mean(V11), FAQ (V7), CDRSB.bl (V6), LAN-
mean (V13) and APOE4 (V4) are ranked from the 3rd to
the 7th. Though these four features’ individual CE-drops are
significantly less than the CE-drops of the top two, their CE-
drops are still significantly larger than CE-drops of the rest of
the 10 features. Therefore, it is still possible for the individual
features of {V6, V7, V11, V13, V4 } to be a candidate of
stand-alone order-1 major factors. We also know the fact that
{V6, V7} and {V11, V13} are moderately associated, while
V4 is less associative with members of these two pairs. Thus,
it is less likely that both V6 and V7 are concurrently present
as two separate order-1 major factors, as are V11 and V13.
On one hand, according to the PH results, V11 has a near
zero p-value, but V13 has a p-value larger than 0.50. From
the aspect of feature-pair {V11, V13}, the CEDA and PH
results are coherent. On the other hand, both V6 and V7 have
p-values near zeros. This PH result is not coherent with
entropy-based CEDA results regarding the presence of order-
1 major factors. The feature V4 has a p-value 0.0013 from
the PH results. This computed PH result is not strongly
incoherent from the CEDA perspective.

Behind these top 7 ranked features, the CE-drops of the
rest of the 9 features are more or less falling into 2 tiers:
{MEM-std (V10), VSP-mean (V15), FLDSTRENG.bl (V5),
VSP-std (V16), EXF-std (V12), LAN-std (V14), AGE (V1)}
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for tier-1; {PTEDUCAT (V3), PTGENDER (V2)} for tier-2.
From the CEDA perspective, feature members of these two
tiers are increasingly less likely to be stand-alone order-1
major factors. But each one of them can couple with other
features to become a potential candidate of order-2 major
factor. In contrast, from the PH perspective, V14, V12, and
V3 are highly significant by having p-values equal to or less
than 0.01. In Table 9, from the CEDA perspective, these
features only achieve 0.9%, 0.8% and 0.2% of uncertainty
reduction on Ti. Thus, the degrees of incoherence between
PH and CEDA results are somehow evident.

Next, we turn the comparison to CEDA results of 2-feature
or 3-feature settings in Table 10 with a focus on interacting
effects among feature-pairs and feature-triplets. Some of the
above conflicting results between CEDA-based major factor
selection and Cox PH could be reconciled, but not all.

Before specifically discussing potential interacting effects
in the 2-feature and 3-feature settings in Table 10, it is worth
reiterating that an interacting effect of two or three features
is referred to the confirmed presence of their conditional
dependency given the response variable Y . Based on a
relatively loose criterion in terms of SCE-drops, we identify
and see how much extra uncertainty of response variable Ti is
reduced by including a less potential feature variable relative
to 3 or more times this feature’s individual CE-drop, see
details in previous work [11], [13]. A more strict criterion
will be based on a criterion constructed based on the dominant
feature. This strict version of the interacting effect is not used
here. Further, the explicit form of interacting effect is left
unknown when applying this criterion, it is somehow visible
through the contingency table against the response variable
T . In comparison, the task of confirming any conditional
dependency of multiple orders is not at all simple under an
assumed global structural model, such as Cox’s PH model.
In this paper, we explicitly demonstrate how to resolve this
task.

Though the feature-set {V7, V9} achieves the lowest CE
under the 2-feature setting, this pair’s SCE-drop (0.0294) is
less than the CE-drop (0.0559) of V7. This fact indicates that
the conditional mutual information I [V7,V9|T ] is less than
the marginal mutual information I [V7,V9]. That is, we can’t
confirm whether the feature-set {V7, V9} gives rise to a
significant interacting effect or not. To confirm or dispute
this fact. we either explicitly evaluate the mutual information
I [V7,V9], or evaluate how much extra information can V7
provide going beyond V9. We take the latter approach in the
next subsection. Since we face the same issue for feature-sets
{V6, V9}, {V9, V11}, {V8, V9} and {V4, V9}, which are
the top-ranked 5 feature-pairs.

As for feature-set {V9, V10}, we know that V9 and
V10 are marginally independent, so their marginal mutual
information I [V9,V10] = 0. And the SCE-drop (0.0148) of
V10 is larger than its CE-drop (0.0099) under the 1-feature
setting. Therefore, their conditional mutual information
I [V9,V10|Y ] ≈ 0.0049 is barely positive. Thus, according
to the above criterion for confirming the interacting effect,

the feature-set {V9, V10} has a very slight chance of being
conditionally dependent given Y . However, the V10 could
still play the role of assisting the order-1 major factor V9 in
facilitating the information content of this ADNI data set or
any predictive decision-making locally, as discussed in the
next subsection.

In contrast, the three feature-sets: {V2, V9}, {V2, V8}
and {V3, V8} have their SCE-drops being be almost three
times of V2 and V3’s individual CE-drops or more. All
involving CE-drops are confirmed to pass the reliability
check. Therefore, we confirm the interacting effects of V2
and V3 with V8 at least. In fact, V1, V2 and V3 apparently
have interacting effects with many features: V6, V7, V10,
V11, V12, V15 and V16 as well. It is worth mentioning that
some of the aforementioned interacting effects are indeed
clinically confirmed and reported [8], [9], [10].

TABLE 10. Ranked conditional entropies (CE) and successive CE-drop for
selected feature-sets.

In the 3-feature setting, we see that V9 is present in all the
top-ranked feature-triplets. Its most often companion feature
is either V7 or V11. There is a range of features for the third
member of the triplet. Because of the marginal dependency
of V9 on other features, the reliable pattern information
becomes harder to confirm or dispute.

This phenomenon would be resolved to a great extent
by subdividing the entire data collection with respect to
categories of V9, which is called ‘‘de-associating’’ [13].
As reported in the four tables given in the next subsection in
the next subsection, by applying this simple computational
procedure, we can take away or significantly reduce all
covariate features’ associations with V9. Overall, the rest of
the 15 covariate features become less associative within each
sub-collection of study subjects defined by the 4 categories of
V9, respectively. Another functional merit of de-associating
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is that this computing procedure allows us to figure out
which feature variables can provide extra information beyond
V9 while holding V9 constant. Therefore, this procedure
is an effective way of discovering heterogeneity from the
perspective of V9. We do the same heterogeneity exploration
from the V8 perspective, as well as in the last subsection.

E. HETEROGENEITY W.R.T V9 (MEM-MEAN)
1) {V9 = 1}: 199(NO) − VS − 67(NC )
Upon the sub-collection: {V9 = 1}, of 266 subjects having
the lowest ordinal category of MEM-mean (V9 = 1), we see
the drastic ranking changes among the 14 covariate features in
Table 11. The highest-ranked feature is V7, which is ranked
4th on the overall CE-drop in Table 9. The 2nd ranked one
is V6, which is ranked 4th in Table 9, while the originally
ranked 11th V16 is now ranked 4th. The V8 is ranked 3rd
here, while it was ranked 2nd in Table 9. However, significant
ranking drops are seen on features: V13, V4, and V5, which
were previously ranked 6th to 8th. Now they are ranked 10th,
13th, and 15th here.

For reliability check on CE calculations, we generate a
random U [0, 1] noise feature, denoted as V0, repeat this
200 times, and calculate CEs: H [Y |V0]. The simulated null
distribution for the 1-feature setting is given on the left of
Figure 7. The top 6 ranked 1-features all have very small p-
values. That is, their CEs are significant and real. The V1
has the p-value on the borderline. As for the 2-feature setting,
as shown in the right of Figure 7, we found that only the top
3 feature-pairs have only borderline p-values. Nonetheless,
we still carry out the task of identifying potential interacting
effects as follows.

The most significant result observed from CEs of 1-feature
and 2-feature is that the majority of feature-pairs achieve
the ecological effect, except the feature-pair {V6, V7}. This
is a strong indication that all involving features are much
less associated due to the de-associating procedure. Further,
as listed below, we see many feature-pairs just like these
three pairs: {V7, V15}, {V7, V13}, {V7, V3} and {V12,
V14}, achieve SCE-drops that are at least three times of V15,
V13, andV3’s individual CE-drops. These results collectively
suggest the following collection of 16 candidates of order-2
major factors:

{{V7,V3}, {V7,V4}, {V7,V13}, {V7,V15}, {V8,V3},

{V8,V4}, {V11,V4}, {V16,V2}, {V14,V12}{V1,V4},

{V10,V4}, {V12,V3}, {V12,V4}, {V12,V13},

{V2,V4}, {V13,V3}}.

Such results strongly indicate that not only members of
{V7, V8, V11, V16, V1, V10} are concurrent candidates of
order-1 major factor, but also they are coupled with members
of {V4, V3, V2, V13, V15} to be candidates of order-2
major factors. That is, these feature-pairs indeed provide extra
information beyond what V9 can provide at least in this sub-
collection. This fact is the strongest evidence of heterogeneity
that goes far beyond 2-feature setting of Table 11.

Next, it is also worth mentioning one sharp contrasting
result: the feature-pair {V7, V8} achieves the ecological
effect. So, V8 indeed can be concurrently present with V7
in reducing the uncertainty of Ti under the sub-collection
{V9 = 1}. This result is indeed rather significant because V8
is an important feature in AD literature. It is also interesting
that the feature V16 (VSP-std), which doesn’t demonstrate
a significant role in the overall setting at all in Table 9
and Table 10, surprisingly joins V7 and V8 in reducing
the uncertainty of the response variable Y within this sub-
collection of {V9 = 1}. This is the second piece of evidence
of heterogeneity embedded within ADNI data.

The third piece of evidence of heterogeneity is collec-
tively provided by the ranking changes pertaining to the
originally lowest-ranked three features in Table 9: V1(Age),
V3(PTEDUCAT), and V2(PTGENDER). They are now
ranked 6th, 11th, and 12th, while V4’s ranking changed from
7th to 10th.

When comparing CEDA and PH results, we clearly notice
a few conflicting results observed from PH results reported
in the 3rd column of Table 11. Given that feature-pair {V7,
V6} doesn’t achieve the ecological effect, their concurrent
presence is not confirmed in CEDA analysis. However,
PH results strongly indicate both features are significant
simultaneously. While {V7, V8} achieves the ecological
effect in CEDA analysis, on the contrary, the PH results
indicate V8 is insignificant by having a p-value 0.1209.
Further, results based on the PH model indicate features:
{V11, V16, V1}, have p-values less than 0.05 and V14 has
a p-value between 0.05 and 0.1, while the rest of the features
are not significant. That is, PH results have completely
missed all potential interacting effects like the 16 feature-
pairs identified by our major factor selection protocol. This
is a chief difference between CEDA and PH results.

FIGURE 7. Null distributions for reliability checks for 1-feature and
2-feature settings: Left: simulated CEs of H[T |V 0]; Right: simulated CEs of
H[T |(V 0, V 7)] in sub-collection {V9 = 1} based on 200 simulated U [0, 1]
based features.

What are the potential consequences that could be derived
from the identified collection of 16 candidates of order-
2 major factors? How these consequences of many faced
heterogeneity embedded within data would impact our
understanding of the dynamics of progression from MCI to
AD? The full discussions of these two essential questions
will be deferred to the ongoing Part-II of this study. Here,
we only briefly mention some clues leading toward the to-
be-proposed resolutions.
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TABLE 11. {V9 = 1}: Top 15 ranked conditional entropies (CE) and
successive CE-drop under 1-feature and 2-feature settings. n = 266 with
199 uncensored data points.

FIGURE 8. Contingency table of C [V 7 − vs − T ] within sub-collection
V 9 = 1.

Consider the contingency table C[V7 − vs− T |V9 = 1]
shown in Figure 8 as a way of precisely revealing the first
layer of heterogeneity with respect to V7 within the sub-
collection {V9 = 1}. We see relatively distinct 4 rows.
In particular on the 2nd, 3rd and 4th rows, we intuitively
predict Ti falling the category-1 of T if V7 is in categories {2,
3, 4}. This predictive decision-making is correct with varying
correct rates and surely subject to some varying error rates
across these three categories. In contrast, when V7 is seen in
category {1}, then the correct rate goes down and the error
rate goes up. Would the interacting effect of {V7, V3} help?

The contingency table C[(V3,V7) − vs − T |V9 = 1]
is shown in Figure 9. Each category of V7 is divided into
3 or 4 bivariate-categories with respect to the four categories

FIGURE 9. Contingency table of C [(V 3, V 7) − vs − T ] within the
sub-collection V 9 = 1.

of V3. To precisely see which rows of V7 are being improved
by bivariate-categories, we present the re-scaled CEs with
respect to marginal CE of T within sub-collection {V9 = 1}
in Figure 11: re-scaled CEs pertaining to categories of V7
(in blue dots), re-scaled CEs pertaining to categories of (V3,
V7) (in orange dots). It is noted that there are overlapping
dots at zeros in bivariate-categories: (2, 3), (4, 3), (2, 4),
and (4,4). We propose to encode those subjects falling into
these bivariate categories as, for example, V9-1-V7-3-V3-
2-T1, V9-1-V7-3-V3-4-T1, V9-1-V7-4-V3-2-T1, and V9-1-
V7-4-V3-4-T1. Such new code-ID indicates when a subject
can be identified without the uncertainty of categories of T .
If we relax the coding criterion just slightly to allow a small
positive CE, such as 0.05, then we will also include subjects
falling into bivariate-categories (3,3). The 12 subjects will be
encoded with code-ID: V9-1-V7-3-V3-3-T1.

Further, even though feature-pair {V7, V6} doesn’t achieve
the ecological effects and just ranked above feature-pair
{V7, V3}, we still can see many of their bivariate-categories
achieving rather low or even zero CEs in Figure 10.
Subjects falling into those bivariate-categories are qualified
for short code-IDs. See also Figure 11, where there are many
overlapping dots at or very near zero CEs.

FIGURE 10. Contingency table of C [(V 6, V 7) − vs − T ] within the
sub-collection V 9 = 1.

2) {V9 = 2}: 141(NO) − VS − 332(NC )
The sub-collection {V9= 2} involves a heavy censoring rate.
It is more than 2

3 . Our CE computations reported in Table 12
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FIGURE 11. Heterogeneity of CE-expansions (V 9 = 1): V7-vs-T (blue dots);
(V7, V6)-vs-T (red dots); (V7, V3)-vs-T (orange dots); (V7, V11)-vs-T (green
dots). The CE of T in sub-collection {V9 = 1} is equal to 0.6545. There are
overlapping dots at and near zero.

reveal very distinct ranking among 1-feature and 2-feature
settings from that found on the sub-collection: {V9= 1}. This
distinction is an indication of a large-scale heterogeneity.

In the 1-feature setting, the lowest CE is surprisingly
achieved by the feature: V4, and the 2nd and 3rd-ranked CEs
are achieved by V6 and V7, respectively. Unlike in {V9 =

1}, V10 (MEM-std) rises to the 4th, which is ranked ahead
of V11 and V8. V8 is ranked 3rd in in {V9 = 1}. We also
had significant ranking drops for V16 and V1: 5th to 9th
for V16; and 7th to 14th for V1. These ranking drops would
significantly impact the CEs of feature-pairs as seen in the
2-feature setting.

Also, for reliability check on CE calculations, we simulate
a random U [0, 1] noise feature, denoted as V0, repeat this
200 times, and calculate CEs: H [Y |V0] as shown in the left
of Figure 12. We see that, due to having more uncensored
data points in this sub-collection {V9= 2}, manymore single
features have very small p-values. As for the 2-feature setting,
the middle and right of Figure 12 show the null distributions
of simulated CEs of H [T |(V0,V4)] and H [T |(V0,V6)],
respectively. Via panel (a), even the 14th ranked feature-pair
(V4, V8) has a relatively smaller p-value, while via panel
(b), the 15 ranked feature-pair (V7, V10) has a very small
p-value. Again, we accordingly carry out the task of
identifying potential interacting effects as follows.

For the 2-feature setting, the most striking pattern is that
all

(5
2

)
(= 10) feature-pairs of the top 5 ranked features: V4,

V6, V7, V10, and V11, appear in the top 15 list and achieve
the ecological effects. This computational fact indicates that
the two members of each pair can be concurrently present as
order-1 major factors. Such a phenomenon is made possible
by the de-associating procedure, which makes the features
less associated or even independent by taking off their
association with V9. Further, the 17th ranked pair: {V3,
V11}, demonstrates a strong interacting effect by having the
SCE-drop of adding V3 being more than 5 times V3’s CE-
drop. Similar interacting effects with less strength are also
seen, such as {V1, V6}, {V7, V13}, just to list a few.

These aforementioned order-1 features and order-2
feature-pairs are potential candidates for building their
contingency tables against T in order to map out the
heterogeneity within this sub-collection {V9 = 2}. However,

TABLE 12. {V9 = 2}: Top 15 ranked conditional entropies (CE) and
successive CE-drop under 1-feature and 2-feature settings. n = 473 with
141 uncensored data points.

FIGURE 12. Null distributions for reliability checks at 2-feature settings:
Left: simulated CEs of H[T |(V 0, V 4)]; Middle: simulated CEs of
H[T |(V 0, V 6)]; Right: simulated CEs of H[T |(V 0, V 6)], in sub-collection
{V9 = 2} based 200 simulated U [0, 1] based features.

this mapping out would not yield very decisive or precise
predictions because these features and feature-sets can’t
achieve significant uncertainty reductions. For instance, even
the top-ranked feature-pair {V6, V11} can only achieve less
than 5% reduction of uncertainty of T , which is calculated as

0.0348+0.0253
0.0348+0.0253+1.2582 . Details of this overall conclusion in this
sub-collection {V9 = 2} can be seen through three figures:
Figure 13 for contingency table C[(V6,V11) − vs − T ];
Figure 14 for contingency table ofC[(V4,V12)−vs−T ] and
Figure 15 for CE-expansion plots pertaining to contingency
tables C[(V6,V11) − vs − T ] and C[(V4,V12) − vs − T ].
Based on these three figures, we see only a few bivariate-
categories can receive short code-IDs. We can make the same
conclusion through the plots of CE-expansions pertaining
to feature-pairs {V6, V11} and {V4, V12} presented in
Figure 15.
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FIGURE 13. Contingency table of C [(V 6, V 11) − vs − T ] within the
sub-collection V 9 = 2.

FIGURE 14. Contingency table of C [(V 4, V 12) − vs − T ] within the
sub-collection V 9 = 2.

FIGURE 15. Heterogeneity of CE-expansion (V 9 = 2) of V6-vs-T (blue
dots) and V4-vs-T (green dots) and and (V6, V11)-vs-T (red dots) and (V4,
V12)-vs-T (orange dots). The CE of T in sub-collection {V9 = 2} is equal to
1.3183.

Therefore, we can conclude that subjects in this sub-
collection {V9 = 2} need different perspectives to look
through them and analyze their data. For instance, we need to
use different features or feature-sets to define sub-collections.
We perform a different set of sub-collections defined by V8
in the next subsection.

For comparing the above CEDA results with the PH
results, which are reported in the third column of Table 12,
we see incoherent results from the aspects of {V10, V12,
V15, V14, V3}. V10 is ranked 5th in CEDA results, but it
is insignificant in PH results. While features: {V12, V15,
V14, V3} are ranked 7th, 8th, 11th, and 12th, respectively,

they are all significant in PH results. Further, PH results
indicate that the 4th ranked V11 has a p-value much larger
than the 12th ranked V3’s, even though feature-pair {V3,
V11} seems to have an interacting effect according to CEDA
results. Nonetheless, the uncertainty reduction achieved by
{V3, V11} is rather low. By summarizing these incoherent
comparisons between CEDA and PH results, we suspect
that PH results could be rather unreliable because of the
presence of heavy censoring in this sub-collection {V9 = 2}.
We further see its unreliability turning into incapability in the
next sub-collections: {V9 = 3} and {V9 = 4}.

3) {V9 = 3}: 4(NO) − VS − 147(NC )
In the sub-collection {V9 = 3}, there are only 4 uncensored
and 147 censored data points. The PH hazard regression
model becomes completely incapable of extracting any
reliable information from data pertaining to this sub-
collection. In sharp contrast, our contingency-table-based
CEDA computations are not affected. Based on Table 13,
the CE of T is about one-third of CE of T in sub-collection
{V9= 2} and one-half of CE ofT in sub-collection {V9= 1}.
Further, some of the rest of the 15 features still offer
reasonable amounts of information beyond the information of
{V9 = 3}. This is one striking aspect of heterogeneity with
respect to V9 and CEDA computations.

Based on Table 13, the top two ranked features are V7
and V6, respectively. So, the presences of V7 and V6 are
among the top three ranked features across sub-collections:
from {V9 = 1} to {V9 = 3}. This result strongly indicates
that either V7 or V6 could provide extra information beyond
V9 at least within these three sub-collections. The evidence
of V7 is seen in Figure 16 having two rows with relatively
low CEs: the 3rd and 4th. Furthermore, based on results of
1-feature setting in Table 13, the fact that V10 is ranked 4th
is unseen in the sub-collections:{V9 = 1} and {V9 = 2}.

FIGURE 16. Contingency table of C [V 7 − vs − T ] within sub-collection
V 9 = 3.

For the reliability check on CE calculations, we use the
same simulation plan and calculate CEs: H [Y |V0] as shown
in the left of Figure 17. In sharp contrast, due to having a very
small number of uncensored data points in this sub-collection
{V9 = 3}, we see only V7 and V6 have very small p-values.
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TABLE 13. {V9 = 3}: Top 15 ranked conditional entropies (CE) and
successive CE-drop under 1-feature and 2-feature settings. n = 147 with
5 uncensored data points.

FIGURE 17. Null distributions for reliability checks for 1-feature and
2-feature settings: Left: simulated CEs of H[T |V 0]; Right: simulated CEs of
H[T |(V 0, V 7)] in sub-collection {V9 = 3} based on 200 simulated U [0, 1]
based features.

As for the 2-feature setting, we see that no feature-pairs have
small p-values according to the right of Figure 17 of the null
distributions of simulated CEs of H [T |(V0,V7)]. However,
we still accordingly carry out the task of identifying potential
interacting effects for the continuum of our discussion across
all sub-collection as follows.

4) {V9 = 4}: 1(NO) − VS − 16(NC )
In the sub-collection {V9 = 4}, there is only one data point
out of 17 uncensored. From Table 14, the CE of T is the
smallest among the four sub-collection. Based on CEs of
1-feature and 2-feature settings reported in the table, the rest
of the 15 features still offer some extra information beyond
the information of {V9 = 4}. This is another striking aspect

FIGURE 18. Heterogeneity of CE-expansion (V 9 = 3): V7-vs-T (blown
dots), V6-vs-T (blue dots), (V6, V10)-vs-T (orange dots), (V7, V10)-vs-T (red
dots) and (V7, V11)-vs-T (green dots). The CE of T in sub-collection {V9 =

3} is equal to 0.5380.

of heterogeneity with respect to V9. In sharp contrast, the
PH regression model simply doesn’t provide any meaningful
result.

Based on the results of 1-feature in Table 14, the two facts:
1) the top two ranked features are {V12, V14}; 2) V7 is
ranked at the bottom, are totally new by being totally different
from the previous three sub-collections. From Figure 19, the
contingency table C[V12 − vs− T ] shows the 2nd row with
relatively low CEs.

Nonetheless, for the reliability check on CE calculations,
we use the same simulation plan and calculate CEs:H [Y |V0]
as shown in the right of Figure 20. Due to having only
one uncensored data point out of 17 in this sub-collection
{V9 = 4}, we see that only V12 has a p-value at the
borderline of being significant. As for the 2-feature setting,
all feature-pairs have rather big p-values according to the
left of Figure 20 of the null distributions of simulated CEs
of H [T |(V0,V12)]. For the continuum of our discussion on
interacting effects, we still briefly interpret 2-feature results
as follows.

As for the 2-feature results, the feature-pair {V12, V14}
achieves the ecological effect, so they can be concurrently
present as order-1 major factors. To see the result of such
concurrent presence of features V12 and V14, based on
Figure 21, their contingency table of C[(V12,V14) − vs −

T ] show 4 rows having relatively low CEs out of 6 non-
zero rows. More detailed CEs results are presented in the
CE-expansion plots shown in Figure 22. Based on these
results, we see several univariate- and bivariate categories are
qualified for short code-IDs.

Further, we also see feature-pairs: {V11, V12} and {V11,
V14}, achieve interacting effects. Thus, if we are to choose
a collection of major factors within this sub-collection, the
collection of 2-order major factors {{V11, V12}, {V11,
V14}} is one reasonable choice. This collection is rather
distinct from the three collections chosen in the previous three
sub-collection.

a: OVERALL RESULTS OF ADNI DATA ANALYSIS FROM V9
PERSPECTIVE
Among the sub-collections: from {V9 = 1} to {V9 = 4},
we see their global distinctions as indicated from the

VOLUME 12, 2024 3309



S. Liao, F. Hsieh: Unraveling Heterogeneity of ADNI’s Time-to-Event Data

TABLE 14. {V9 = 4}: Top 15 ranked conditional entropies (CE) and
successive CE-drop under 1-feature and 2-feature settings. n = 17 with
1 uncensored data point.

FIGURE 19. Contingency table of C [V 12 − vs − T ] within sub-collection
V 9 = 4.

FIGURE 20. Null distributions for reliability checks for 1-feature and
2-feature settings: Left: simulated CEs of H[T |V 0]; Right: simulated CEs of
H[T |(V 0, V 12)] in sub-collection {V9 = 4} based on 200 simulated U [0, 1]
based features.

CEDA results derived from using the censoring status as a
response variable in Section V. The feature V9 is shown to

FIGURE 21. Contingency table of C [(V 12, V 14) − vs − T ] within
sub-collection V 9 = 4.

FIGURE 22. Heterogeneity of CE-expansions (V 9 = 4): V12-vs-T (green
dots); V14-vs-T (blue dots); (V12, V14)-vs-T (orange dots); (V6, V14)-vs-T
(red dots). The CE of T in sub-collection {V9 = 4} is equal to 0.3767.

achieve the highest CE-drop as having the largest mutual
information with the response variable δi. With V9 as one
of the natural perspectives for exploring heterogeneity in
ADNI data, the first evident heterogeneous pattern is seen
from the significant variations of four conditional entropies
of T : {0.6545, 1.3183, 0.5380, 0.3767} across the four
sub-collections. This evidence reveals structural distinctions
among the four compositions of subjects belonging to the four
sub-collections. That is, the V9 indeed provides significant
amounts of information in sub-collections {V9 = 1},
{V9 = 3} and {V9 = 4}, but not in sub-collection
{V9= 2}. Such varying results further point to further needed
investigations of finding which features or feature-sets can
assist V9 to further reduce the uncertainty of T .

The second global heterogeneous pattern is the varying
compositions of the top 5 ranked individual features and
the four sets of feature-pairs having interacting effects.
In particular, the 1st ranked individual features across the
four sub-collections are all different. Features V7 and V6
respectively appear as individual 1st ranked features in
{V9 = 1} and {V9 = 3}. Both features also appear in the
top three ranked features across {V9 = 1} to {V9 = 3}.
That is, V7 or V6 indeed can individually provide some
essential amounts of extra information beyond V9, but not
both together because this feature-pair doesn’t achieve the
ecological effect. V4 is ranked 1st in {V9 = 2}, while V12 is
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ranked 1st in {V9 = 4}. In contrast, both features are ranked
rather low in {V9 = 1} and {V9 = 3}.
It is interesting to note also that the V11 plays a different

role across the four sub-collections. It plays the role of
candidate of order-1 major factor in {V9 = 1} and {V9 = 2},
while uniquely plays the supporting role of having an
interacting effect with order-1 major factors in {V9 = 3}
and {V9 = 4}. To a great extent, V10 also plays more or
less the same roles as V11 across these four sub-collections.
It is worth mentioning that V3 and V7 reveal their interacting
effect in {V9= 1}, not in the rest of the three sub-collections.
As for V8, it is a known important feature variable in AD.

However, one significant and consistent pattern coming out of
our CEDA results is: ‘‘V8 is never an obvious order-1 major
factor’’. This observation seemingly means that V8 indeed
doesn’t provide essential amounts of information about T
beyond V9. Is this implication solid? We will see some clues
in the next subsection.

Such heterogeneous patterns of global and sub-collection
scales are evidently authentic because no man-made assump-
tions or structures are involved. After recognizing the fact
that heterogeneity is inherent in this data set, its implied
consequence is also recognized as collected manifestations,
each of which rests on all those categories receiving very
short code-IDs via one specific perspective. Therefore, the
ideal scenario is that all subjects receive a spectrum of
short code-IDs derived from many distinct perspectives. This
scenario is the topic studied in the Part-II of this paper.

At the end of this section, we conclude that no homoge-
neous modeling structures could be suitable for this ADNI
data set. Its inadequacy demonstrated through the Cox’s PH
hazard regression model on two scales: overall and the four
sub-collections is clear and intuitive. Such intuition is surely
not new. It is understood that human aging-related diseases
are too complex to be captured by any homogeneity-based
modeling structures. Here we further extend our intuition to
express that complexity embraced into individual person’s
disease dynamics can be revealed and presented via the above
heterogeneity’s manifestation to a great extent as depicted in
our ideal scenario.

F. HETEROGENEITY W.R.T V8 (ADAS13-BL)
We choose to look into heterogeneity through the V9
perspective in the previous section. It is natural to look
through V8 as well because V8 ranked 2nd in reducing
the uncertainty of δi in Section V-C. On the other hand,
the associative relation between V8 and V9 is indeed
complicated from their contingency table C[V9 − vs −

V8] as shown in Figure 23. All cells under the diagonal
of 4 × 4 matrix lattice are zeros, while all entry counts
on the diagonal are much smaller than entry counts right
above the diagonal, which decreases sharply along the
other diagonal direction. Such patterns signal multiple non-
linear constraints embraced in this contingency table going
beyond the simple observation: V9’s ordinal categories are
arranged in the reverse order of V8’s ordinal categories. So it

becomes curious to ask whether V8 generates heterogeneity
that mirrors heterogeneity pertaining to V9 in the previous
subsection.

FIGURE 23. Contingency table of V9-vs-V8.

The heterogeneity pertaining to V8 will be explored in this
subsection with respect to four sub-collections:{V8 = 1},
{V8 = 2}, {V8 = 3} and {V8 = 4}. It is striking to note
that the sub-collection {V8 = 4} consists of subjects whose
survival time from MCI to AD all fall in the category of
T = 1. This fact is consistent with the fact that higher
scores of V8(ADAS13.bl) strongly indicate the likelihood of
progressing into a more severe disease [5]. Hence, the CE of
T is zero, and so are all conditional CEs with respect to all
covariate features. This is one striking aspect of heterogeneity
that we haven’t seen within V9’s sub-collections. Therefore,
it is worthwhile exploring further the rest of the three sub-
collections.

1) {V8 = 1}
According to the computed CEs reported in Table 15 for the
1-feature setting of sub-collection {V8 = 1}, V9 is the most
dominant covariate feature by achieving a CE-drop that is
twice of the CE-drop of the 2nd ranked feature V11. And it is
unusual to see V15 ranked 7th, which is lowly ranked across
the four sub-collections with respect to V9.

As for the 2-feature setting, feature-pair {V9, V10} is
ranked 1st. We know that V9 and V10 are marginally
independent. They indeed become conditional dependent
given T by achieving the ecological effect. In fact, all
10 feature-pairs of the top 5 ranked features are on the top
15 list and they all achieve ecological effects. Thus, they are
natural candidates for order-1 major factors. We also observe
the feature-pair: {V3, V6}, achieving the interacting effect.

Hence, if we are to choose a potential collection of major
factors, then this collection should be {V7, V9, V10, V11,
V4, {V3, V6}}, within this sub-collection {V8 = 1}.

2) {V8 = 2}
Within the sub-collection {V8 = 2}, the entropy of T here
is much higher than the entropy of T in sub-collection
{V8 = 1}. Based on CEs of 1-feature setting in Table 16,
the feature V9 is still a dominant factor by having a CE-drop
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TABLE 15. {V8 = 1}: Top 15 ranked conditional entropies (CE) and
successive CE-drop under 1-feature and 2-feature settings.

almost twice as large as the CE-drop of the 2nd ranked V7.
Even though all involving features are less associated than
they are marginal, the number of feature-pairs achieving the
ecological effect is much smaller than that in sub-collection
{V8 = 1}. We only find feature-pairs {V9, V10}, {V4, V9}
and {V4, V10} achieve the ecological effects. Thus, if we
need to conclude with a potential collection of major factors,
then this collection is {V9, V4, V10}.

TABLE 16. {V8 = 2}: Top 15 ranked conditional entropies (CE) and
successive CE-drop under 1-feature and 2-feature settings.

3) {V8 = 3}
Based on Table 17 for the sub-collection {V8 = 3},
V11 is ranked the 1st. That is, the 2nd-ranked V9 is no
longer a dominant feature in terms of CE-drop. The most
striking observation is that 14 out of the top 15 feature-
pairs are having ecological effects, except {V9, V11}. This
phenomenal pattern is almost entirely opposite of that of the
top 15 feature-pairs observed in the sub-collection {V8 = 2}.
On top of this specific observation, there is only one out of the
15 pairs having interacting effects:{V1, V11}. We conclude
that if we are to choose a collection of major factors, this
collection is: {{V1, V11}, V7, V6, V4, V14, V3}, which is
very distinct to the selected collection in the sub-collections
{V8 = 1} and {V8 = 2}. This is an evident perspective of
heterogeneity contained in this data set.

TABLE 17. {V8 = 3}: Top 15 ranked conditional entropies (CE) and
successive CE-drop under 1-feature and 2-feature settings.

a: OVERALL RESULTS OF ADNI DATA ANALYSIS FROM V8
PERSPECTIVE
Across the four sub-collections, the four CEs of T vary
significantly: {0.9869, 1.2586, 0.8355, 0.0000}. This is the
first evidence of heterogeneity. The feature V9 is the top-
ranked in sub-collections: {V8 = 1} and {V8 = 2}, but
ranked 2nd in {V8 = 3}. This is the second piece of
evidence. The three collections of feature-pairs that achieve
the ecological effect or interacting effect in the sense of
becoming conditional dependents are very distinct. This is
the third piece of evidence. Thus, we conclude that V8 is also
a legitimate perspective for heterogeneity in this ADNI data
set.

These pieces of evidence of heterogeneity echo the
suggestion provided in the review paper [5]: the original
ADAS-Cog is not an optimal outcome measure for pre-
dementia studies. It needed modification. It went on to
suggest that the most beneficial modification of ADAS-Cog
is tests of memory. As it turns out to be V9 in this study. Since,
across the first three sub-collections, V9 consistently reveals
to offer extra information beyond V8.

Here we reiterate that the particular valuable piece of
information offered by V8 is the zero CE in {V8 = 4}.
That is, the 22 subjects’ status of being in {V8 = 4} can
precisely point to one and only one category #1 of T .
From the same perspective of having very low CEs, the two
pieces of information of being {V9 = 3} and {V9 = 4},
respectively, are also critical for the 147 and 17 subjects
in the two sub-collections. In sharp contrast, this is not the
case for the 189 subjects in sub-collection {V8 = 3}. These
pieces of information are parts of the collective heterogeneity
embedded within the information content of this ADNI data.

In summary, information pieces are indeed scattered
among various perspectives of heterogeneity. This is the
reality at least in this ADNI data set. These valuable
fragmenting pieces of information need to be collected and
systemized. Therefore, no matter whether the data analyzing
goal is focused on an understanding of the complex system
under study or just for predictive decision-making, such
systemizing information pieces is a critical task. For instance,
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the critical issue facing the 189 subjects in sub-collection
{V8 = 3} is how to more precisely describe these subjects
by incorporating which feature variables? That is the chief
purpose of suggesting a collection of major factors within
sub-collections, with which improvements in describing
subjects’ characteristics can be potentially derived.

VI. CONCLUSION AND DISCUSSIONS
In the previous two subsections, we have demonstrated two
perspectives of heterogeneity embedded within this data set.
There are many other perspectives to be explored to build the
data’s information content more fully. A version of the data’s
full information content can be described in the ideal scenario
as mentioned in the conclusion of the subsection devoted
to heterogeneity from the V9 perspective. In this ideal
scenario, each subject is attached to a spectrum of code-IDs
from explored different perspectives of heterogeneity. These
Code-IDs would tell what are relevant pieces of information
pertaining to this subject: some pieces say which features
or feature-sets would shed clear light on which category of
this subject’s T would fall into with short coding lengths
and very low uncertainty, while in contrast, some pieces
say which features or feature-sets can only support potential
categories of T with high uncertainty. Both kinds of pieces
of information and the spectrum of code-IDs would help
facilitate a better understanding of AD as a complex disease.
At this stage, making such a manifestation of heterogeneity-
based full information content is studied and deferred to Part-
II of this study.

In this paper as Part-I of this CEDA study on ADNI
database, when combining results of heterogeneity derived
from the V9 and V8 perspectives, we clearly see that V9
provides extra information beyond V8, while V8 doesn’t
provide extra information beyond V9. However, the results
of heterogeneity derived from the four sub-collections via the
V8 perspective surely offer pieces of distinctive information
beyond the results of heterogeneity from the four sub-
collections via the V9 perspective. Such a discrepancy
between information and entropy indeed points to a very
important direction for extracting information from data: all
relevant perspectives of heterogeneity are worth exploring.
Different relevant perspectives of heterogeneity pertaining
to different features or feature-sets mount to offer distinct
pieces of information with distinct implications. Therefore,
the immediate and critical issue for building the ideal
scenario is how to exhaustively search for all potentially
relevant perspectives of heterogeneity. Explicit resolutions to
this issue would need further computational developments,
which are also referred to the Part-II. Further, another
critical issue arises: after knowing what important pattern
information should be harvested from each perspective of
heterogeneity, we need to address how to effectively display
and systemize valuable, but fragmented information pieces
to build a scientific understanding of the AD’s prognosis
dynamics.

In this paper, we adopt the CEDA paradigm to analyze
this ADNI data set of time-to-event: from MCI to event of
AD diagnosis. We first propose a formal testing protocol
for checking whether the censoring mechanism is indepen-
dent of the targeted time-to-event. This contingency-table-
based approach is a rather straightforward application of
the Re-distribution-to-the-right algorithm. However, to our
knowledge, this simple approach has not yet been reported
in Survival Analysis literature. After confirming the non-
informative censoring mechanism, we compare CEDA
results with Cox’s PH results on two scales: global and
sub-collection. Due to heavy censoring rates, all PH results
on both scales are deemed to be unreliable. Therefore,
heterogeneity becomes an urgent and critical issue in
Survival analysis. The immediate impact of the presence
of heterogeneity in time-to-event data is that any modeling
construct with a global structure, such as the linearity-
based structural PH model, has slim chances of producing
scientifically valid results. This comparison indeed nicely
illuminates the essence of differences between scientific data
analysis and statistical analysis.

Further, as we have already acknowledged, a complex
disease, such as AD, indeed retains very little chance to
be fitted well by any global model due to its existential
heterogeneity. The whole disease progressing process doesn’t
likely sustain any man-made additive effects from different
features and feature sets as typically assumed in statistical
modeling. Furthermore, any interacting effects due to any sets
of conditional dependent features of various order cannot be
regressed into any fixed functional forms preferred just for
implementing mathematical or statistical operations. Thus,
it is a conservative, robust, and realistic way of approaching
data analysis by simply admitting that data analysts have
acquired no knowledge regarding complex formats of effects
of features or feature-sets on global as well as local scales.
This thinking of scientific data analysis is the philosophic
basis of the CEDA paradigm.
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