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ABSTRACT In this work, we designed an effective ultra-high-definition (UHD) aerial photo categorization
pipeline by designing an enhanced deep multi-clue matrix factorization (DMCMF). In detail, given a UHD
aerial photo, those visually salient ground objects are extracted in the first place. In order to explicitly encode
their spatial layout, multiple graphlets are constructed in each UHD aerial photo. Each is built by connecting
those spatially neighboring object patches. Afterward, we propose a new matrix factorization (MF) model
that intelligently uncover the underlying semantic features from graphlets. And multiple informative clues
are encoded into theMFmodel. Notably, our DMCMF is optimized progressively. Andwe can represent each
graphlet by a vector of binary hash codes. Lastly, each UHD aerial photograph can be effectively quantized
into a feature vector by a kernel machine for multi-label categorization. Experiments have shown that our
method is highly competitive in learning categorization model from imperfect labels at image-level.

INDEX TERMS Media analysis, aerial photo, multi-clue, matrix factorization.

I. INTRODUCTION
Thanks to the technology of delivering multiple satellites in a
single rocket launch, thousands of earth observation satellites
were sent into space recently. The satellites capture UHD
aerial photos (typical resolutions over 5K × 5K ) containing
ground objects with sophisticated spatial interactions, such
as reticular, star, and triangle. Semantically understanding
these ground objects and their spatial topologies is a useful
technique in many state-of-the-art intelligent systems. For
example, it is significant to fast recognize the complicated
street networks, e.g., star and tree geometries, to optimize
vehicle path planning (i.e., calculating the shortest path
between pairwise locations). Actually, it is feasible to
represent the above topologies using a small graph. Each edge
connects two adjacent streets.

In computer vision, dozens of shallow/deep visual catego-
rization/annotation models were designed to describe aerial
photos with regular resolutions (typically 800 × 800 ∼

2K × 2K ). Well-known models involves: 1) CNN (convolu-
tional neural network)-based object localization using weak
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labels [1], [2]; 2) graph models for semantically annotating
aerial photos [3], [4]; and 3) elaborately-developed deep
models for semantically understanding aerial images [5], [6],
[7]. Nevertheless, to our best knowledge, the current deep
models fail to satisfactorily characterize UHD aerial photos
because of the following reasons:

• Actually, a high-resolution aerial photo typically has
lots of objects distributed with various spatial configu-
rations. Accurately uncovering the underlying semantic
features is nontrivial. Possible challenges include: i)
computationally and spatially modeling the complicated
layout of the ground objects, and ii) formulating a
deep model converting the spatially modeled features
to fixed-length visual features. Moreover, spatially
transforming different layouts inside each UHD aerial
image into some traditional classification model [8] is a
true difficulty;

• The large number of objects within each UHD aerial
photo makes it labor-intensive to accurately annotate
all the ground objects. Because of the progresses in
weakly-labeled feature engineering, we solely require
image-level labels are required for calculating semantics
at region-level. Therefore, to exploit the regional-level
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FIGURE 1. The pipeline of our proposed noise-robust binary matrix
factorization (MF) framework for UHD aerial photo categorization.

visual semantics within a UHD aerial photo, it is
necessary to uncover the corresponding weak and user-
defined labels. Noticeably, the above user-defined labels
are subjectively defined in practice. And sometimes they
are noisy. In practice, establishing such a noise-tolerant
refinement mechanism is difficult;.

• To build a powerful UHD aerial photo categorization
framework, we have to model the inherent sample
distributions on manifold precisely. Practically, how-
ever, because of the contaminated user-defined labels,
our previously calculated sample distribution is usually
imperfect. Practically, what we need is a mathematical
model that adaptively learns the optimal sample inter-
action when refining the labels. Actually, formulating
a solvable and learnable framework requires domain
experiences.

In our work, we propose a deep multi-clue matrix fac-
torization (DMCMF) framework for multi-label UHD aerial
photo categorization. The core technique is an enhanced MF
which hierarchically converts the graphlets within a UHD
aerial photo to corresponding binary features. Herein, the
potentially noisy labels can be theoretically abandoned and
the data graph can be progressively optimized. The entire
pipeline of the proposed method is displayed in Fig. 1.
In detail, for massive-scale UHD aerial photos, each contains
user-defined labels that are potentially noisy, a succinct set
of object-guided image regions are extracted in the first
place. Thereafter, a rich set of object patches that spatially
neighboring are collected to build different graphlets. They
can accurately encode the various topologies inside multiple
UHD aerial images. Based on this, we build a matrix
factorization (MF) algorithm that is robust to label noises.
The MF can effectively convert graphlets to the binary
feature accordingly. Thereby, we can compare two graphlets
rapidly and mathematically. Our proposed MF can optimally

encode four descriptive visual clues. By leveraging the
binary vectors calculated from different graphlets, we convert
graphlets within a UHD aerial image to the kernel-induced
feature vector. In this way, an effective classifier is learned
to classify different aerial images into the corresponding
classes. Plenty of quantitative comparisons to the well-known
deep classification models indicated the competitiveness of
the learned classification model.

The main contributions can be summarized in the fol-
lowing: 1) a million-scale partially mislabeled UHD aerial
photos collected from 100 metropolises for validating the
superiority of our method, 2) a DMCMF that collaboratively
and seamlessly incorporates four clues to compute the hash
codes of each graphlet; and 3) a novel UHD aerial photo
categorization model that avoids noisy image-level labels and
adaptively updates the data distribution.

Organization of the remaining parts of article is given as
follows. In Sec II we review the published work closely
related to ours. Sec III delineates the proposed pipeline,
including graphlet construction, our enhanced MF, and the
kernel-induced feature learning. Experimental validation in
Sec IV tests the effectiveness of our method. The last section
concludes.

II. RELATED WORK
Dozens of computational visual models were developed to
analyze aerial photos.1 To semantically model the entire
image, Zhang et al. [9] constructed a novel topological feature
to model the inter-region connection inside each aerial photo.
And a kernel-induced vector is calculated as the image
representation for categorization. Xia et al. [10] formulated
a weak learning model that semantically labels HR aerial
photos at image-level. Akar [11] carefully combine the
so-called random forest and object-level feature extractor to
classify remote sensing images. Sameen et al. [12] developed
a hierarchical deep architecture to calculate the multiple
labels of HR aerial photos describing many downtown
areas. In [13], Cheng et al. utilized a pre-trained deep
CNN to classify high-resolution remote sensing images.
A domain-specific scenic picture set is leveraged to fine
tune the deep architecture. In [14], a cross-modality learning
framework is proposed to collaboratively learn five deep
models for categorizing aerial images, wherein pixel-level
and spatial-level features are exploited complementarily. The
authors [15] designed a novel inter-attentional algorithm to
learn the weights of aerial image features both horizontally
and vertically. In [16], Bazi et al. formulated a vision
transformer for aerial image classification, wherein the
long-term contextual dependencies among regions can be
intrinsically encoded.

For region-level modeling, Wang et al. [17] designed
a hierarchical deep architecture for discovering attractive
objects with different scales. In [18], a focal loss deep

1A more comprehensive survey of deep-learning-based aerial photo
understanding is illustrated in [23].
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architecture is proposed that optimally discovers vehicles
from aerial images. In [19], researchers developed a geo-
graphic object detectionmodel toward remote sensing images
by intelligently extracting intersections as well as streets.
In [20], Yu et al. integrated feature enhancement and soft
label assignment into an anchor-independent object detector
toward aerial images. In [21], Wang et al. proposed a
deep rotation-invariant detector that effectively estimates the
angles of multi-scale objects inside aerial images. In [22],
Chalavadi et al. proposed a parallel deep model called
mSODANet that hierarchically learns contextual features
from multi-scale and multi-FoV (field-of-views) ground
objects. Notably, different from the above methods, our
approach is bionic-inspired and accurately mimics human
gaze behavior.

III. OUR PROPOSED METHOD
A. TOPOLOGICAL FEATURE ENGINEERING
Nowadays, in each UHD aerial image, we can observe tens of
multi-scale ground objects. Based on the psychological pro-
gresses [24] in the past decade, human observers practically
attend to the foreground objects that are visually or semanti-
cally prominent when they perceiving the world. Specifically,
if humans tend to understand a UHD aerial photo, their
visual and cognition subsystem will perceive visually or
semantically salient ground objects firstly, e.g., an aircraft
and its components. Meanwhile, it is observable that those
background regions are nearly neglected. Obviously, it is
necessary to encode the visually/semantically perceptual
experience when building a UHD aerial image classification
pipeline. Herein, a rapid object patches generation as well as a
manifold-guided active feature selection are adopted to obtain
the ground salient image patches describing different objects.

In our implementation, the well-knownBING [25] descrip-
tor is deployed to capture different ground objects because
of its following superiorities: 1) achieving a sufficiently high
object discovery precision and speed; 2) obtaining multiple
highly descriptive and representative object-level patches
that effectively simulate how human perceiving different
UHD aerial images; and 3) is capable to be generalized
to new UHD aerial photo classes. Therefore, the trained
categorization algorithm can be transferred onto different
data sets. Noticeably, by adopting the aforementioned BING,
we still observe too many object-level patches within the
UHD aerial images. Actually, we observe that during human
visual perception, typically < 10 objects are perceived in
each UHD aerial image. To mimic this, a powerful active
learning [26] algorithm is utilized to select K descriptive
object-level patches from a UHD aerial photo. The algorithm
integrates two features: 1) the spatial configurations to each
image and 2) visual semantics from image-level labels.

Based on these K patches, we can build a graphlet by
the random walking algorithm [27]. The random walk is
conducted on multiple neighboring patches. As shown in
Fig. 2, we first construct a multi-layer spatial pyramid, based

FIGURE 2. An example elaborating pairwise object patches that are
adjacent spatially. Herein, the red object patch is spatially adjacent with
the green one and blue one respectively. The coordinate denotes the
position of each object patch in the multi-layer spatial pyramid.

on which two patches are treated as spatially adjacent if the
corresponding cells are neighboring. Afterward, we randomly
choose an initial patch. Next, we jump to a spatially adjacent
object patch. Such jumping operation step if the graphlet size
reaches our pre-defined upper bound. Afterward, we collect
these adjacent patches (along the path of random walk) to
form a graphlet. Herein, we present an example of how to
build graphlet with three vertices is Fig. 2.

Based on graph theory, the inherent patches associated
with the spatial distribution collaboratively determine the
visual appearance. In our implementation, for a graphlet,
it can be naturally represented by a matrix A = [A1,A2],
where A1 denotes a matrix whose size is K × 137. Herein,
the 137 dimensions are obtained by concatenating a 9-
dimensional color moment [28] and a 128-dimensional
HOG [29]. A2 denotes a matrix whose size is K × K .
In detail, when the i-th and j-th patches are spatially adjacent,
then we set A2(i, j) to one, and otherwise we set A2(i, j) to
zero. In order to receive a conventional feature, we row-wise
condense matrix A into a long vector x.

B. OUR DMCMF
In our work, the have to efficiently and effectively calculate
the distance between graphlets from two UHD aerial
image, whose image labels might be contaminated. Herein,
we formulate a multi-component MF technique optimally
handling noises from image labels. Noticeably, our MF
can keep the highly informative integer feature encoded in
the binary matrix. In theory, the above operation can be
represented as:

min
Q,R

H(U,QRT ) + 1(R,Q), s.t., Q ∈ {−1, 1}, (1)

where R ∈ Rc×t and Q ∈ Rn×t are respectively the image
labels as well as aerial images distributed in the hidden
space. J calculate the error during the MF and 2(·) denotes
some pre-defined regularizer to avoid overfitting. In practice,
we notice that image labels T are usually noisy. Obviously,
label noises will cause unsatisfactory MF operation. In order
to optimally tackle this problem, we proposed to derive
a noise-free image label matrix M from the potentially
noisy label matrix. Theoretically, by inspecting the label
matrix construction, element Mij denotes a binary indicator

VOLUME 12, 2024 12055



J. Zhou et al.: UHD Aerial Photo Categorization by an Enhanced MF Algorithm

reflecting the correlation between the labels associated with
pairwise aerial images. Thereby, an upgraded optimized task
obtained:

min
M,Q,R

H(M,QRT ) +Hl(M,U) + 2(R,Q),

s.t. M ∈ {−1, 1}, Q ∈ {−1, 1}, (2)

where Hl denotes the error of constructing these noise-free
label matrix using the potentially noisy one.

It the graphlet hashing stage, we generally believe
the significance of maintaining the local sample distribu-
tion [26], e.g., the spatial relationships among spatially neigh-
boring graphlets in the feature space. Meanwhile, we can
derive the the hash function accordingly. Such hash function
allows pairwise graphlets comparison highly scalable. Such
hash function is employed to calculate different binary hash
codes, that is, i = sgn(g(x)B). In summary, the below
optimization can be obtained:

min
I,B,g

β

n∑
i=1

H(ii, f (yi)B) +
δ

2

n∑
i=1

n∑
j=1

Nij||ci − cj||,

s.t. I ∈ {−1, 1}n×M , (3)

(3) can be updated into the corresponding matrix form, i.e.,

min
I,B,g

βH(I, g(YB)) + δtr(ITLI),

s.t. I ∈ {−1, 1}n×M , (4)

Herein, γ and δ denote two positive parameters reflecting the
significance of the two terms accordingly.M is the Hamming
space’s dimension. L ∈ Rn×n represents the Laplacian
matrix derived based on L = C − L. Herein, C denotes a
diagonal matrix wherein each diagonal entity is calculated as
Cii =

∑n
j=1Nij. As the formulation in (4), the hash codes

corresponding to aerial images as well as the hash function
can be jointly calculated.

To obtain sufficiently compatible MF and the correspond-
ing hash codes, it is naturally to assume that the inherent
geometry revealed by our designed MF and the hashing
have a shared feature space. In this way, the constructed
latent space by our designed MF is the same to the
aforementioned Hamming space. In this way, the potential
semantics uncovered by the formulated MF with noise-free
image labels is utilized to enhance the hashing model.
Theoretically, we can set I = Q and M = t . Therefore,
we can obtain the below formulation as:

min
M,R,I,B,g

H(M, IRT ) +Hl(M,U) + βH(I, f (YB))

+
δ

2
tr(ITLI),

s.t. M ∈ {−1, 1}n×S , H ∈ {−1, 1}n×L , (5)

Herein, S denotes the category number of the UHD aerial
images.

Notably, the optimizing task formulated above aims to
drive the hash function as well as the binary codes by

leveraging the pre-constructed sample graph. Such graph is
built upon the potentially contaminated image labels. This
pre-constructed sample graph maintains intact in the learning
stage. This is practically sub-optimal. Actually, we have to
progressively adjust the sample graph in the hash codes
learning. To this end, the sample graph updating module
is also integrated into the learning model. Mathematically,
to refine the possibly contaminated image labels, we expect
the sample graph N can be progressively updated during
model learning. In the model, the similarities between each
graphlet and the entire different ones sum to one, andNii = 0.
Thus, the mathematical formulation in (5) is reorganized as:

min
M,R,I,B,N,g

H(M, IRT ) +Hl(M,U) + βH(N,N0)

+ γH(I, g(Y)B) +
δ

2
tr(ITLI) + 2(R,B),

s.t. M ∈ {−1, 1}n×S , I ∈ {−1, 1}n×M ,
∑n

j=1
Nij = 1,

(6)

During hash codes learning, the updating of the Laplacian
matrix is L = A(N + NT )/2. Herein, in the model
initialization, N0 is computed by leveraging U. And this
objective function optimally incorporates hash codes calcula-
tion, semantic feature learning, and sample graph adjustment
into an effective model.

To tackle (6), it is necessary to explicitly defineH,Hl and
2. In our implementation, we employ the least square loss
H(a, b) =

1
2 (a − b)2. In order to maximally eliminate the

noisy image labels, we have ⟨l(c, d) = µ|c − d |. To obtain
the regularization terms, it is common to have 2(U,V) =
λ
2 ||U||

2
F +

η
2 ||V||

2
F . Totally, we can upgrade (6) as follows:

min
M,R,I,B,N

1
2
||M − IRT

|| + ν||M − U||1 +
β

2
||N − N0||

2
F

+
γ

2
||I − f (Y)B||

2
F +

δ

2
tr(ITLI) +

µ

2
||R||

2
F

+
θ

2
||B||

2
F

s.t. M ∈ {−1, 1}n×S , I ∈ {−1, 1}n×M ,
∑n

j=1
Nij = 1,

(7)

Obviously, (7) is a non-convex optimization. In our imple-
mentation, we propose to iteratively solve this objective
function. The specific solutions are presented in the following
link.2 Moreover, following [30], we extend (7) into a deep
learning architecture containing F layers.

C. KERNEL MACHINE FOR MULTI-LABEL UHD AERIAL
PHOTO CATEGORIZATION
As aforementioned, many graphlets are extracted from
each UHD aerial photo and are subsequently converted
into binary hash codes. We observe that: 1) the graphlet
numbers from different UHD aerial photos are generally

2https://drive.google.com/file/d/1r6-b-mPKAcIuU6SAaAXyOneqvQIhF
9W6/view?usp=sharing
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inconsistent; 2) the dimensionalities of binary hash codes
calculated from graphlets with different vertices are different.
Therefore, we cannot directly send them to a standard
support vector machine (SVM) for visual categorization.
In our implementation, a kernel-based quantizing method
is deployed to calculate the feature at image-level, i.e.,
fixed-length feature vector corresponding to a UHD aerial
photo. For each UHD aerial photo, the BING [25]-based
object patches are extracted to build graphlets, which are
subsequently converted into binary hash codes using our
DMCMF. Finally, graphlets within each UHD aerial photo
are accumulated into vector u = {u1, u2, · · · , uA}, where
A counts the training UHD aerial photos. Mathematically,
we can calculate feature vector u’s entity is computed as:

ui ∝ exp(−
1
AA′

∑A

a=1

∑A′

b=1
dist(ha,hb)), (8)

where A and A′ count the equally-sized graphlets from
two UHD aerial photos respectively; dist(·, ·) computes the
Jaccard similarity between binary hash codes.

By leveraging the vector quantized using (8), we train
a SVM classifier for multi-label classification. In theory,
to train an SVM distinguishing UHD aerial photos belonging
to two different classes, the SVM can be mathematically
represented in the following:

max
c∈RNab

κ(c) =

∑Nab

i=1
ci −

1
2

∑Nab

i=1

∑Nab

j=1
didjtitjk(vi, vj)

s.t. 0 ≤ di ≤ D,
∑Nab

i=1
diti = 0, (9)

where vi denotes the calculated vector from each UHD aerial
photo during training; ti labels the i-th UHD aerial image;
κ denotes the hyperplane separating samples from different
categories; D > 0 trades the machine complexity off those
mislabeled samples; and Nab denotes the number of samples
from the all the categories.

By calculating a quantized vector u corresponding to a
testing UHD aerial image, we can obtain the image labels is
obtained as:

sgn(
∑Nab

j=1
ditik(ui,u∗) + η), (10)

Herein, η = 1 −
∑Nab

i=1 ditik(ui,uk ). Besides, uk represents
the support vector corresponding to category label ‘+1’.
In testing, we assign u∗ to the label set receiving the
maximum number of votes.

IV. EXPERIMENTAL EVALUATIONS
Herein, we evaluate the performance of our UHD aerial photo
categorization using three experiments.We first introduce our
self-compiled data set, which includes 2.3millionUHD aerial
images crawled from 100 well-known metropolises from
different countries. Based on this, our algorithm is compared
with 17 carefully-desinged visual categorization models
from three perspectives: accuracy and stability. Meanwhile,
we carefully explain the high performance advantage of
our classification model. Then, we carefully evaluate each

key module during UHD aerial image categorization. Lastly,
we report our categorization accuracy of our method under
different parameters. Based this, the optimal parameter
settings are suggested.

After collecting the million-scale UHD aerial photos,
we have to annotate them to obtain the corresponding image-
level labels. Herein, 82 volunteers3 first manually annotate
14.7% UHD aerial photos in each metropolitan city, wherein
a total of 47 different image-level labels were utilized.
Afterward, we train a multi-label SVM and employ it to
annotate the image-level labels of the rest UHD aerial images.
Then, the same 82 volunteers manually correct the labels
calculated by SVM. It is noticeable that multiple image-level
labels are associated with intolerably small number of UHD
aerial photos. This makes it infeasible to train a generalizable
categorization model corresponding to these image-level
labels. In our implementation, if the the number of UHD
aerial photos corresponding to an image-level label is smaller
than 200,000, Then we abandon this label. In this way,
we finally obtain 18 different image-level labels. Thereafter,
we notice that 99.973% UHD aerial photos have fewer than
four image-level labels, while the rest very few UHD aerial
photos have larger numbers of image-level labels (from five
to 13). These UHD aerial photos usually contain a rich set of
small regions (< 200 × 200) that are possibly contaminated.
Thus we simply abandon these UHD aerial photos. Lastly,
we order the entire UHD aerial photos by their file names.
For each category, we use the first half UHD aerial photos
for training while the rest samples are for testing.

In retrospect, one key advantage of our method is to
robustly learn a categorization model from noisy image-level
labels. To acquire the noisy labels for experimentation, for
each category, we randomly use 60% UHD aerial photos to
construct a training set. Based on this, we learn a multi-label
categorization model, which is further leveraged to calculate
the labels of the entire UHD aerial photos. In total, there are
11.3% mislabeled UHD aerial photos. They are combined
with those correctly labeled ones to constitute our data set.

We observe that each UHD aerial photo in our data
set typically takes up 200MB of storage space. Therefore,
our 2.3 million UHD aerial photos will require a total of
460TB storage space. To optimally store such million-scale
UHD aerial photos for fast I/O interface, we employ the
Supermicro server solutions.4 More specifically, we adopt
the 4U double-sided super storage platform. The platform is
installed with 36 Toshiba HDD drivers, each of which has a
20TB storage space. Totally, the entire storage space of our
platform is 720TB and it works in RAID 0 mode. Based on
this, the average sequential data reading and writing speeds
are respectively 1467MB/s and 862MB/s on our storage
platform. That means on average, it takes 0.137s and 0.232s
to load and update each UHD aerial photo respectively.

3They are graduate students from our computer science department. They
are aged between 24 and 31 and are experienced in image processing and
pattern recognition. There are 51 males and 31 females in total.

4www.supermicro.com
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TABLE 1. Accuracies with standard errors of the 18 categorization models. (We repeat each experiment 20 times and report the average accuracies and
each bold number represents the best result.)

1) ACCURACY COMPARISON
In this section, we evaluate our UHD aerial photo cate-
gorization framework by comparing its effectiveness and
efficiency with a rich set of baseline recognition algorithms.
We first test our algorithm by comparing it with deep aerial
image classification models. Thereafter, we employ state-
of-the-art deep generic visual categorization algorithms for
comparison.

First of all, we compare our method with seven deep
visual categorization models [31], [32], [33], [34], [35],
[36], [37] that intrinsically incorporate some prior knowledge
of different categories of aerial photos. We notice that the
source codes of [31], [32], [35], and [36] are publicly
available. Based on this, we conduct comparative study
wherein the parameter settings are set as default. For
[33], [34], and [37], we implement them since the source
codes are unavailable. We have tried our best to make the
re-implemented categorization models perform similarly to
the results reported in their publications.

Meanwhile, many recent deep generic visual recognition
models perform impressively on categorizing aerial images.
Herein, we first compare our method with ten deep generic
object classification algorithms. Moreover, since UHD aerial
photo categorization can be considered as a sub-topic of
scenery classification, we further conduct a comparative
study between our method and three recently published scene
classification models [38], [39], [40]. For the categorization
models implemented by us, the experimental setups can
be summarized in the following. For [33], we utilize the

ResDep-128 [41] to function as the backbone. This is further
updated into the multi-label variant. Different from the
fully-connected layer (unit number is set to 19), the rest deep
layers are fixed by the above ResDep-128 [42]. The ResNet-
108 [41] is employed as the backbone and the stochastic
gradient descent optimizes the entire network. The learning
ratio as well as the decay are respectively fixed to 0.001 and
0.05. The network loss is calculated by the mean squared
error. For [38], we retrain the object bank [43] by leveraging
our refined 18 UHD aerial photo categories, wherein the
average-pooling strategy is applied. We employ the liblinear
as the solution to the linear classifier, wherein the 7-fold cross
evaluation is applied.

For the above 18 compared object/scene recognition algo-
rithms, we repeatedly test each model 20 times. Accordingly,
the averaged accuracies are displayed in Table 1. To quantify
the stability of these categorization models, we report
their standard errors simultaneously. We observe that the
per-category standard errors produced by our method are
significantly and consistently lower than its competitors. This
demonstrated that our method is the most stable. In summary,
the following conclusions can be made:

• Our method outperforms the other seven aerial photo
categorization models remarkably due to three reasons.
First, these compared methods typically characterize
low/medium resolution aerial photos. To facilitate
deep model training, they generally resize the original
aerial photo to a fixed and much smaller size (e.g.
224 × 224) for the subsequent deep modeling. This
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operation is negative to learning an effective UHD
aerial photo categorization model since those tiny but
discriminative visual details will be lost. Second, expect
for our method, none of the seven counterparts can
implicitly correct the noisy image-level labels, which
will inevitably hurt the categorization model training.
Third, only our method uses graphlets to explicitly
capture the complicated spatial layouts of each UHD
aerial photo.They are further incorporated by a deep
hashing algorithm for calculating the discriminative
image kernel. Comparatively, the seven counterparts
only globally/locally characterize each UHD aerial
photo, wherein the informative spatial layouts among
multiple aerial photo regions are neglected.

• The seven generic object recognition algorithms per-
form inferiorly than our method because of three
reasons. First, these generic recognition models gener-
ally handle medium sized images typically containing
under ten million pixels. They can hardly discover
the tiny but discriminative regions from the hundreds
of object components inside an UHD aerial photo
with over 100 million pixels. This case is particularly
worse when the image-level labels are contaminated.
Second, our method can conveniently incorporate some
prior knowledge of UHD aerial photo set, e.g., the
maximum graphlet size and the category-specific object
patches. Contrastively, the seven generic object recog-
nition models cannot encode the domain knowledge
reflecting UHD aerial photos. Third, by leveraging
our noise-tolerant hashing algorithm, only our method
allows a fast and accurate comparison of many dis-
criminative object parts between UHD aerial photos.
Nevertheless, the seven generic object recognition
models simply convert each UHD aerial photo into a
long feature vector for deep classification. They cannot
achieve such precise region-to-region comparison like
ours.

• The three scene categorization models perform unsat-
isfactorily on UHD aerial photos. This is because
they deeply and implicitly learn a descriptive set of
scene-aware semantic categories, such as ‘‘birds’’ and
‘‘tables’’, which usually infrequently appear in our UHD
aerial photo set. Moreover, the three categorization
methods can successfully handle sceneries captured at
horizontal view angles. But our UHD aerial photos are
captured at overhead view angles. Apparently, such view
angle gap will largely hurt the categorization accuracy.

A. ABLATION STUDY
The two key modules in our work are the DMCMF and
kernel-induced feature quantization. Herein, the effectiveness
of the two modules are evaluated in our designed catego-
rization pipeline. Each module is changed into a degraded
and the performances are recorded accordingly. Meanwhile,
insights are provided to elaborate the underlying reasons for
the received results.

TABLE 2. Categorization accuracy drop (‘‘−’’) and improvement (‘‘+’’) in
our ablation study.

First of all, we test our key theoretical contribution, the pro-
posed DMCMF. Specifically, we analyze the four functional
components as formulated in (7). The label noise refinement
component is first abandoned (S11). Mathematically, the
term ν||M − U||1 is removed and we update L into T.
Afterward, the data graph updating term β

2 ||N − N0||
2
F ) is

abandoned, wherein the remaining components keep intact
(S12). Then, the binary hash codes constraint is removed and
we maintain the rest terms unchanged (S13). Last but not
least, the hierarchical feature engineering term is reduced to
a flat one (S24) by setting F = 1. The results in Table 2
have shown that, label noise refinement and hierarchical
feature learning models play the most important roles. This is
because removing each will cause an > 6.4% classification
accuracy drop.Moreover, abandoning the limitation of binary
codes will bring a 4.522% accuracy decrement. Even worse,
the time consumed at the test stage significantly increased
by over seven times. This clearly shows the effectiveness
and efficiency of adopting binary codes to characterize UHD
aerial photos.

Lastly, to demonstrate the usefulness of the kernel-based
quantized vector calculated from each UHD aerial photo,
the following experimental setups are applied. We first
use the aggregation-based deep network that accumulates
the predicted category labels corresponding to the entire
graphlets within an UHD aerial photo. These labels are
subsequently combined into the final image-level category
label (S31). Thereafter, we replace our adopted linear kernel
by polynomial kernel (S32) and Gaussian radial basis
function (RBF) (S33) respectively. As shown in Table 2,
aggregating the graphlet-level category label severely hurts
the categorization accuracy. This is because calculating the
category label at graphlet-level is sometimes obscure and
misleading. In practice, each graphlet occupies very few
regions within each UHD aerial photo, and some regions
correspond to the background areas irrelevant to a particular
category. Besides, both polynomial and RBF kernels perform
inferiorly than our linear kernel. This observation demon-
strates that projecting the quantized vectors onto a linear
space can better separate UHD aerial photos from different
categories.

B. PERFORMANCE BY VARYING PARAMETERS
In our work, we have multiple tunable parameters that will
be evaluated. The first set denotes the weights balancing
different clues in the DMCMF framework. The second set
contains parameters influencing deep topological feature
engineering. In this experiment, we test the UHD aerial image
classification accuracy using different parameter settings.
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FIGURE 3. UHD aerial photo categorization accuracies by varying the six
parameters in the first set.

FIGURE 4. Recognition accuracies by varying L (top) and F (bottom)
respectively.

To analyze the first parameter set, the default values
of ν, β, γ , δ, µ and θ are set to to 0.2, 0.3, 0.1,
0.15, 0.3, 0.3 respectively. In our implementation, the
default values are determined by 10-fold cross validation.
Herein, the validation set contains 18000 samples, which
is constituted by selecting 1000 UHD aerial photos from
each category. More specifically, we tune each parameter
from 0.05 to one with a step of 0.05. And all the possible
parameter combinations are enumeratively employed to test
the UHD aerial photo categorization accuracy. The parameter
combination receiving the highest categorization accuracy is
preserved as the default values. Based on this, we adjust one
of the five parameters while keep the others unchanged. Each
parameter is increased from 0.05 to one with step of 0.01,
wherein the corresponding performance is reported. As the
six curves displayed in Fig. 3, the six parameters consistently
increase stably and then peak. Afterward, they all decrease
to a low level. Such monotonicity properties indicate the
feasibility to tune the six parameters toward an optimal level
in practice.

Next, we evaluate the UHD aerial photo categorization
by changing the L (maximum size of graphlet) and F (deep

layer number). For both L and F , we tune them from one to
ten and record the corresponding recognition performance.
In Fig. 4, when increasing L, the categorization accuracy
increases shapely if L ∈ [1, 5] and then keeps stable when
L > 5. Meanwhile, we notice that when L goes up, the time
and storage costs increase dramatically since more graphlets
will be generated. Toward an efficient and effective UHD
aerial photo categorization system, we set L = 5. Moreover,
we observe that the highest categorization accuracy is
achieved when there are four deep layers. To our best
knowledge, too few deep layers will make the deeply-learned
binary hash codes insufficiently discriminative. Meanwhile,
too many deep layers will increase the number of deep model
parameters, which inevitably causes deep model overfitting.

V. CONCLUSION
Aerial image understanding is an indispensable technique in
pattern recognition [44], [45], [46], [47], [48]. We propose a
novel deep matrix factorization that optimally fuzes multiple
clues into a solvable optimization for multi-label UHD aerial
photo categorization. We first extract the BING [25]-based
patches describing objects or their parts. Then, multiple
graphlets are built to capture the spatial configurations of the
ground salient objects that are visually/semantically salient.
Afterward, we propose a so-called DMCMF that effectively
encodes image labels to improve our binary hashing. Lastly,
the binary feature vectors are integrated into a kernel SVM
to label each UHD aerial image to multiple categories.
Comprehensive experiments on the collected UHD aerial
image set reflected the our algorithm’s advantage.
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