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ABSTRACT Gas recognition has beenwidely used inmany fields such as air qualitymonitoring in dangerous
areas. However, existing recognition methods suffer from two limitations: first, the recognition accuracy is
not high. Due to the stochastic nature of air turbulence, gas features are not steady. The global features
are sensitive to feature variations. Existing methods are based on global similarity, ignoring local similarity.
Samples may be dissimilar in respect of global similarity, but are similar in terms of local similarity; Second,
most existing recognitionmethods are based on the closed-set assumption that the gases categories in the train
and test set are same. However, in real world applications, the test set may have non-overlapping gas category
with the train set. To address above limitations, biclustering is used to extract local similarity. However,
original biclustering method is not suitable for extraction. Since original biclustering method is used to
find all kinds of biclusters, here we just want to find column nearly constant bicluster Therefore, a modified
biclustering method is proposed. The local similarity can be used to construct classifier to recognize gas with
adaboost. However, original adaboost cannot be used for open-set recognition. Thus a modified adaboost
that uses two thresholds is proposed to recognize the unknown gases. To assess the efficacy of the proposed
method, it is tested on public dataset. Experiment results demonstrate that the proposed method outperforms
several state-of-the-art methods in respect of several evaluation measures on both closed-set and open-set
cases.

INDEX TERMS Gas sensors, open-set recognition, local similarity, biclustering, ensemble learning,
adaboost.

I. INTRODUCTION
Gas recognition [1], [2], [3] has been widely employed
in many fields such as gas leakage detection [4], food
recognition [5] and so on. Gas recognition can be divided
into static gas recognition and mobile gas recognition [6].
The main difference between mobile gas recognition and
static recognition is that the recognition system hardware is
installed on mobile platform instead of being fixed. Mobile
gas recognition system can be used in larger space and
are more convenient. Compared with static gas recognition,
mobile gas recognition is more important.

The associate editor coordinating the review of this manuscript and

approving it for publication was Turgay Celik .

Mobile gas recognition system is composed of four parts:
mobile platform, gas sensor array, feature extraction and
recognition. The mobile platform can be one people, a robot
or other mobile devices. There are gas sensor array and other
edge computing devices on the mobile platform. When gas
meets gas sensor array, gas responses such as voltages or
currents can be obtained. Then gas features can be extracted
from gas responses. Finally, with recognition methods, the
category of gas can be predicted. The recognition methods
such as SVM, CNN and Transform are based on global
similarity between samples. In this study, a novel recognition
method based on local similarity is proposed. Recognition
is the core part of gas recognition system, the focus of the
methods in the literature mainly lies in recognition. When
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gases meet the mobile gas recognition system, gas label can
be predicted.

Many gas recognition methods have been proposed in the
literature. These methods can be grouped into two categories:
deep learning based recognition method and conventional
machine learning based recognition method. Deep learning
based methods usually transform gas sample to be an
matrix and then deals with the matrix with deep learning
methods [2], [7], [8]. Conventional machine learning based
method uses support vector machine, K-Nearest neighbor,
etc [9], [10] to recognize gas. These methods achieved
success to some extents. However, recognition accuracy
is not satisfying. In a review of existing gas recognition
methods, it can be found that these recognition methods are
based on gas global similarity(feature) instead of gas local
similarity(feature). Global feature means the whole features
of the gas feature vector. Local feature denotes partial features
of the gas feature vector. To improve recognition accuracy,
we propose a recognition model based on gas local feature.
Our model is guided by answering following questions:
(1).Why and how to use local features for mobile gas

recognition?
Because gas feature is produced by gas sensor’s response,

due to the stochastic nature of air turbulence, sensor responses
will change if the gas contact with the sensor unsteadily [12],
[13]. The final step of many existing recognition methods
is sorting the membership percentages of each class, finally
assign the class label that has the biggest percentage to the test
sample. When calculating the membership percentage, exist-
ing methods take the whole gas features into consideration,
ignoring much local information. The loss of local informa-
tionmay reduce recognition accuracy. Global features may be
redundant and may contain misleading information and fail
to capture finer semantic details [14], [15]. Therefore, in this
study local feature is used for recognition.

FIGURE 1. Bicluster type.

Biclustering [16], [17] can find much hidden local
information ignored by traditional clustering, we plan
to extract local information(local partial features) with
biclustering. Biclustering can simultaneously cluster from
both row(sample) dimension and column(feature) dimension,
generating many biclusters. The samples in biclusters are

similar with respect to partial features instead of the whole
features. One sample can be grouped into multiple biclusters.
With biclustering, much local information can be extracted
to improve recognition accuracy. Biclustering has been used
in many other fields such as recommendation system [18],
missing value prediction [19] and gene expression data
analysis [20]. Typical methods include greedy search based
methods [20], and model based methods [21]. As shown
in Fig. 1, bicluster can be divided into six types [22]:
constant bicluster, column constant bicluster, row constant
bicluster, additive bicluster, multiplicative bicluster and
coherent evolution bicluster. In this context, only column
constant bicluster is used because the samples in bicluster
are similar in respect of partial features. However, most
existing biclustering methods are designed for finding all
kinds of biclusters. Therefore, a novel column constant
bicluster mining method is proposed in this study. To the best
of our knowledge, biclustering is the first time to be used in
gas recognition.

Biclusters cannot be used to recognize gas directly. This
study intends to recognize gas with bicluster and adaboost
[23]. Biclusters can be converted to many weak classifiers.
Considering that ensemble learning can combine multiple
base classifiers to yield higher recognition accuracy than
single classifier, we plan to combine bicluster and adaboost
to achieve high accuracy. Adaboost is an ensemble learning
method that can recognize gas through combining the
recognition results of team members(two or more other
methods) to improve recognition accuracy. With adaboost,
the weak classifiers built by biclusters can be combined to
construct strong classifier to recognize gas.
(2).In real application, unknown gases may coexist with

known gases, how to recognize the known gases and reject
the unknown gases?

Existing methods are based on the closed-set assumption
that the gas categories in test set completely overlap with
that in the train set. However, in real applications the test
set may have non-overlapping gases with the train set. For
example, if there are only two kinds of gases (carbon dioxide
and oxygen) in the train dataset, in real application in the
air there must be nitrogen which does not exist in the train
dataset. Recognizing the new unknown gas as one of the
old known gases will greatly reduce recognition accuracy.
Even though open-set gas recognition has seldomly been
studied, in other internet of things fields related works have
been reported [24], [25]. Open-set recognition [26], [27] is
different from few-shot learning and zero-shot learning [28],
open-set recognition needs to recognize the known gases and
reject the unknown gases simultaneously. Suppose in train
set there are m kinds of gases, in test set there are n(n>m)
kinds of gases. Gases 1, 2, . . . ,m − 1,m are deemed as
known gases, and gases m + 1,m + 2,. . .n − 1,n are deemed
as unknown gases. Open-set recognition method should not
only accurately recognize the m known gases, but also reject
the n − m unknown gases. In the literature, the open-set
recognition in computer vision field is based on the similarity
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between test/train sample. If the biggest similarity is greater
than predefined threshold, the test sample is recognized as
known gas, otherwise rejected as unknown gas. Such strategy
effectively differentiates the known and unknown gases.
In this study, a modified adaboost is proposed for open-set
gas recognition. As shown in Eq. 1, the principle of adaboost
is as follows: if the value of SC(VSC ) is greater(less) than
zero, the test sample is assigned the label of +1(−1). The
larger absolute VSC is, we have more confidence in that the
predicted label is correct. In the literature the threshold for
determing sample’s label is 0, we think that 0 may not be the
optimal threshold, the optimal threshold should be changed.
Since adaboost is designed for binary classification, two
thresholds(positive threshold T+ and negative threshold T−)
should be designed. If VSC is larger than T+, corresponding
sample is more similar with positive sample, it is assigned
positive label, if VSC is less than T−, the sample is more
similar with negative sample, it is assigned negative label.
If T− ≤ VSC ≤ T+, the sample should be assigned neither
positive nor negative label, it is assigned the ‘‘unknown
label’’.

SC =

k∑
i=1

wi ∗WCi (1)

where k denotes the number of weak classifiers,WCi denotes
the ith weak classifier, wi is the weight of WCi.

In the proposed method, specifically, firstly the train
dataset is divided into many binary subsets that contains only
two kinds of gases. Thenmany biclusters aremined from each
subset to construct the binary strong classifier, each binary
classifier can output a label(negative, positive or unknown).
Combining the labels of the whole binary classifiers, the
support of each label can be obtained. Finally, majority voting
is adopted to the labels, the label that has biggest support is
assigned to the test sample. The contribution of the proposed
Gas Recognition with Biclustering and Adaboost(MGRBA)
method contains three parts:

• We early notice that due to the stochastic nature of air
turbulence, mobile gas features are not steady. Existing
methods are based on global similarity and are sensitive
to feature variation. Existing methods ignore local
information and are hard to achieve high recognition
accuracy. Besides, we early notice that the problem
of open-set mobile gas recognition has been seldomly
investigated in the literature.

• Motivated by that local similarity is insensitive to feature
variation, a biclustering and modified adaboost based
method is proposed to improve recognition accuracy.
A novel column nearly constant biclustering method
is proposed. The core motivation is that biclustering
can mine local features to construct weak classifiers,
adaboost can combine the weak classifiers to construct
strong classifiers to boost recognition accuracy. To solve
the open-set recognition problem, a modified adaboost
algorithm where two new thresholds T− and T+ instead

of single 0 are adopted to discriminate the known and
unknown gases is proposed.

• We implement the MGRBA framework and apply
it to gas dataset on embedded platform to validate
its performance. Experiment results demonstrate its
superiority to state-of-the-art methods in terms of three
evaluation measures on both closed-set and open-set
cases.

The remaining parts are organized as follows: Section II
describes the relatedwork, motivation and approach overview
are given in Section III and IV, the detailed description of the
proposedMGRBAmethod is shown in Section V, experiment
results are displayed in Section VI, conclusion are drawn in
Section VII.

II. RELATED WORK
In this section, related work is described. Firstly, closed-set
gas recognition methods are presented. Subsequently, open-
set recognition in other fields are given.

A. CLOSED-SET GAS RECOGNITION
Since in the literature, seldomly open-set gas recognition
is reported, only closed-set gas recognition related methods
are introduced. Closed-set gas recognition methods can be
grouped into three categories, namely classical machine
learning based gas recognition methods, Artificial neural
network(ANN) based gas recognition methods and Spiking
neural network(SNN) based gas recognition methods. Clas-
sical machine learning based methods include LDA(linear
discriminant analysis), DT(Decision tree), SVM(Support
Vector Machine), NB(Naive Bayesian) etc. ANN based
methods firstly transform each gas sample feature vector
into a gray image(row denotes sensor, column denote
feature), then deal with image with convolutional layer,
pooling layer, fully connected layer and softmax layer.
Spiking neural network (SNN) is proposed as a biologically
realistic algorithm with lower computing cost and is arguably
the only viable option at the neuronal description level.
Towards linking biologically plausible learning methods and
better recognition capability, a number of SNN-based gas
recognition algorithms have been developed [29]. Besides,
recognition with non sensor-based method also has been
proposed. For example, in [30] ultrasound is applied to
identify gases. Its recognition principle is that when different
gases meet the same ultrasonic, different ultrasonic effects
can be produced.

B. OPEN-SET RECOGNITION
Open-set recognition can also be divided into traditional
machine learning based methods ) [31] and deep learning
based methods [32], [33]. For example, traditional machine
learning based method CV(Class Verification) [31] stores all
training samples, compares the distances that are determined
in pairs of the selected test sample and each training sample,
sorts the distances, selects two nearest neighbors. If the two
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nearest neighbors share same class label, corresponding label
is assigned to test sample. If two nearest neighbors have
different class labels, test sample is assigned as unknown
label. CV can be deemed as the extension of conventional k-
Nearest-Neighbor(KNN) classification method. Deep learn-
ing based method ST(Softmax Threshold) [32]. In ST,
a threshold is added to the maximal probability of the softmax
layer. If maximal probability is smaller than the threshold,
corresponding sample is assigned the unknown label, other-
wise it is assigned the known label. The limitation of these
methods lies in that they take all features into account when
calculating sample similarity, ignoring local information.

FIGURE 2. An example for illustrating local similarity.

III. MOTIVATION
In this part, we conduct two experiments on a public
real-world gas dataset(batch 10 of GSADD [34]). Two
observations are analyzed to motivate the approach of
MGRBA.

A. OBSERVATION 1: IMPROVE RECOGNITION ACCURACY
WITH LOCAL SIMILARITY
To explain the use of local similarity instead of global
similarity for gas recognition, closed-set experiment is
conducted. Through observing the features of samples, it can
be found that some samples are different in terms of global
features, but alike in terms of partial features. For example,
as shown in Fig. 2, five gas samples are selected for
illustration. In Fig. 2, row denotes sample, column denotes
feature and label. Sample 2, 3 and 5 share identical label.
Sample 2 and sample 5 are similar with regards to the whole
features because their euclidean distance is small. Sample
2 and 3 are not similar with regards to the whole features.
However, they are similar in terms of the three green-marked
features(local features). Therefore, local similarity cannot
be ignored, biclustering should be used to calculate local
similarity in this study. To some extents, whole features can
be deemed as the subset of local features.

B. OBSERVATION 2: MODIFY THE THRESHOLD OF
ADABOOST FOR OPEN-SET RECOGNITION
To show the necessity of modifying adaboost for open-set gas
recognition, close-set experiment is conducted on For ease of
presentation, only two kinds of gases, Ethanol and Ethylene,
are used, adaboost is used to recognize the two gases. 80%
gases are used as train dataset, the remaining gases are
used as test dataset. Record the outputs of the binary strong
classifier, the minimum of positive outputs is 0.039 and the

maximum of negative outputs is -0.039. Among the 240 test
gas samples, 39 gas samples are wrongly recognized. Among
the 39 wrongly recognized samples, 20 of the 39 outputs fall
in the range of [-0.039 0.039]. This result demonstrates that
the larger the absolute value of strong binary classifier output,
the more possible the recognization result is.

Motivated by this result, we propose the modified adaboost
that incorporates positive threshold T+ and negative threshold
T− to improve recognition accuracy. If the output falls in the
range of [T−, T+], the sample may be unseen gas.

IV. APPROACH OVERVIEW
A. SYSTEM ARCHITECTURE
System architecture of MGRBA is displayed in Fig. 3.
Firstly, biclustering is applied to dataset to mine biclusters.
Subsequently, employ column average to the biclusters to
generate discrimination rules. Then the weak classifiers can
be built by combining the discrimination rules in pair. Finally,
with adaboost the weak classifiers can construct a strong
classifier to recognize gas.

B. APPLICATION SCENARIOS
MGRBA can be used in many scenarios where gases need
recognizing. For example, the common gas categories in the
air are known, a soldier can use this device to detect whether
the enemy released unknown poison gases on the battlefield.

V. METHOD
In this section, the three steps of MGRBA preprocessing,
training of MGRBA and test of MGRBA are introduced in
detail.

A. PREPROCESSING
Suppose there are Ctr kinds of gases in train datasetMtr , and
the number of gas samples is Ntr , there are Cts(Ctr ≤ Cts)
kinds of gases in the test dataset Mts, the number of gas
samples is Nts.

Because different features are in different scales, in order
to eliminate the scale influence between features, max-min
normalization is employed to each column of Mtr to map all
feature values in the range of [0, 1].

As discussed above, multiple classifier is divided into the
combination of many binary classifiers. In the train dataset,
there are Ctr kinds of gases. The normalized train dataset
Mn
tr is divided into Ctr subsets according to gas sample

label. Then combine the Ctr subsets in pairs to construct
Nbd (Nbd =

Ctr∗(Ctr−1)
2 ) new datasets D. In each new dataset,

there are only two kinds of gas samples. Following step
is to mine binary classifier from each new dataset Di(i ∈

1, 2, 3, . . . ,Nbd − 1,Nbd ).

B. TRAINNING OF MGRBA
1) BICLUSTER MINING
The frequent used bicluster quality measure is MSR(Mean
Square Residule) [20] that is used to mine additive bicluster,
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FIGURE 3. Architecture of MGRBA.

since this study aims to mine column nearly constant biclus-
ter, MMSR(modifiedMSR) is adopted. The modification lies
in that mean column variance is added to original MSR.
The mining of biclusters contains two parts: finding similar
clusters from each column and expanding the clusters. These
clusters are found with Gap [11]. The numbre of clusters
can be automatically determined. The elements in the mined
clusters are similiar, these clusters can be deemed as bicluster
seeds. After finding bicluster seeds, the size of the bicluster
is enlarged by adding remaining row/column to the clusters
iteratively untill MMSR of biclustr is less than predefined
threshold δB.

MSR(B) =

∑
i∈R,j∈C (bij − biC − bRj + bRC )2

|R| ∗ |C|
(2)

MMSR(B) = MSR(B) +
1
n

|C|∑
i=1

var(B(:, i)) (3)

biC =

∑
j∈C

bij

|C|
, bRj =

∑
i∈R

bij

|R|
, bRC =

∑
i∈R,j∈C

bij

|R| ∗ |C|
(4)

where biC is the average of the ith row in B, bRj is the average
of the jth column in B, bRC is the average of the whole
elements in B.

2) RULE CONSTRUCTION
Having mined many biclusters from above step, following
step is to transform these biclusters into discriminative rules.
A rule is composed of two parts: features(precondition) and
label(postcondition). The rule’s format is like this: if f1 is
0.15, f5 is 0.25, f47 is 0.75, f100 is 0.05, then sample label is
2. The precondition is constructed by averaging the columns
of bicluster, the post condition is constructed with majority
voting.

3) WEAK CLASSIFIER CONSTRUCTION
From above rule construction step, two kinds of rules can be
obtained. In this step, the rules mined from above step are
combined in pair to construct many weak classifiers whose
classification accuracy is not high. If there are p positive rules
and q negative rules, combination in pair can construct p ∗ q
weak classifiers. The principle of the weak classifier is that
if the euclidean distance between test sample and the positive
features is smaller than the euclidean distance between test

sample and the negative features in weak classifier, the test
sample is set the positive label, else set the negative label.
It is noted that when calculating the euclidean distance, only
partial features of the test sample is considered.

The working principle of weak classifier is shown in Fig.4.
If Dp, the distance between test sample and the positive rule,
is smaller than Dn, positive label is assigned to test sample,
else negative label is assigned to test sample.

FIGURE 4. Illustration of weak classifier’s working principle.

4) STRONG CLASSIFIER CONSTRUCTION
Generally, the classification accuracy of the weak classifiers
is not high. To boost accuracy, in this step, adaboost is
employed to combine these weak classifiers to build a strong
binary classifier SCi with Eq. 1.

For closed-set gas recognition, SC works as Eq.5. The
threshold is 0.

y =

{
−1 if SC ≤ 0
+1 if SC ≥ 0

}
(5)

As described above, for the open-set gas recognition, each
binary strong classifier should have two thresholds, T− and
T+. Input each train sample to binary strong classifier, then
separate the output values of binary classifiers into two parts:
negative part and positive part. Set the minimum of positive
part as T+ and set the maximum of negative part as T−. SC
works as Eq.6.

y =


−1 if SC ≤ T−

+1 if SC ≥ T+

unknown if T− ≤ SC ≤ T+

 (6)

C. TEST OF MGRBA
From above training step, Nbd binary strong classifiers and
2 ∗ Nbd thresholds have been available. The test dataset Mn

ts
contains two parts: known gases and unknown gases. During
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FIGURE 5. Recognition result of MGRBA with different values of δB.

test phase, each gas sample inMn
ts is input to each of the Nbd

binary strong classifiers. Each binary strong classifier can
output a value, if this value is larger(smaller) than T+(T−),
positive(negative) label is assigned to the sample, else unseen
label is assigned to the sample. Nbd weak classifiers can
outputNbd labels, finallymajority voting [35], [36] is adopted
to select the label that has the biggest support as the final label
of the sample. For example, if there are three kinds of gases
(labels are 1, 2 and 3) in train datasets, then 3 binary strong
classifiers can be obtained. One binary classifier can output
label 1, label 2 or label unknown. One binary classifier can
output label 1, label 3 or label unknown. One binary classifier
can output label 2, label 3 or label unknown. If a sample is
input to the three binary classifiers, corresponding labels are
unknown, 3 and 3, respectively, label 3 has maximal support,
label 3 assigned to the sample. If a sample is input to the three
binary classifiers, corresponding labels are unknown, 1 and
unknown, respectively, label unknown has maximal support,
label unknown is assigned to the sample.

D. SUMMARIZATION
During the train process, firstly the multiple-class dataset is
divided into many two-class subsets, multiple classifier is
divided into many binary classifiers. Subsequently, construct
binary classifiers from each binary subset with following
steps:biclustering, constructing discrimination rules, con-
structing weak classifiers and strong classifier. Finally, many
binary strong classifiers each of which has two thresholds
T+ and T− can be outputed. During test phase, each
test gas sample is input to these binary strong classifiers,
producing many outputs, each of which is compared with
T+ and T− to generate many labels. Finally, majority
voting is applied to the labels to generate final label(one
of the seen gas or unseen gas). When finding biclustets,
complexity is O(n) When building binary strong classi-
fiers, complexity is O(n2). Thus, the total complexity of
MGRBA is O(n2).

FIGURE 6. Ablation experiment result.

VI. EVALUATION
In this section, the performance of MGRBA is evaluated over
public dataset on one embedded platform under closed-set
and open-set cases.

A. EVALUATION SETUP
1) DATASET
We quantitatively evaluate the performance of the proposed
MGRBA on public gas dataset GSADD [34]. There are six
kinds of gases: Ethanol, Ethylene, Ammonia, Acetaldehyde,
Acetone and Toluene. GSADD is composed of ten batches,
there are totally 13910 gas samples, the detailed information
is shown in Fig.1. This gas dataset is collected with 16 metal-
oxide gas sensors(4 TGS2600, 4 TGS2602,4 TGS2610
and 4 TGS2620). From each sensor’s response(resistance
fluctuation) curve, 8 features(2 steady-state features and
6 transient features) are extracted. Each gas sample is
represented by a 1*128 dimension vector.

2) EVALUATION MEASURE
In closed-set recognition the performance evaluation mea-
sures used are Acc(Accuracy) and confusion matrix [37].
Confusion matrix is a common measure for visually evalu-
ating the performance of supervised learning algorithm, from
confusion matrix the recognition statistics of each category
can be seen in detail. The mathematical formulation of Acc is
shown in Eq. 7.

Acc =
Nck + Ncuk
Nk + Nuk

(7)

where Nk (Nuk ) denote the number of the whole known
(unknown) gas samples in test dataset, Nck (Ncuk ) denote the
number of the correctly recognized known(unknown) gas
samples. The higher Acc is, the better algorithm’s recognition
ability is.
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FIGURE 7. The closed-set recognition accuracy of the six closed-set classifiers on ten batches of GSADD.

FIGURE 8. Confusion matrixes of six methods on closed-set case under batch 3.

FIGURE 9. Closed-set gas recognition results under different Ctr .

For open-set recognition, two measures Acc and AUROC
[37] are used. AUROC is a calibration-free measurement that
is suitable for the open-set gas recognition. In the Receiver

Operating Characteristic (ROC) curve, the horizontal coor-
dinate of each point is the false positive rate (FPR, which
recognize the known classes as the unknown classes), and
the vertical coordinate is the true positive rate (TPR, which
recognize the known classes as the known classes).

3) MODELS IN COMPARISON
To demonstrate the superiority of MGRBA, it is compared
with several alternative state-of-the-art methods in closed-set
and open-set recognition fields. For closed-set recognition,
MGRBA is compared with three methods: SVM(Support
Vector Machine) [38], RGA-Net [39], NB(Naive Bayesian)
[40], DWCNN(Dynamic Wavelet Convolutional Neural Net-
work) [41], and ReliefF [42]. For open-set recognition,
MGRBA is compared with the following methods: CV (Class
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FIGURE 10. Acc and AUROC of six methods on open-set case.

FIGURE 11. Recognition results of six methods on batch 3 under different
Openess.

Verification) [31], OLTR(Open Long-Tailed Recognition)
[32] and ST(Softmax Threshold) [33], Opennet [43], EVM
[44]. All comparison methods recognize gas with global
similarity.

B. PARAMETER IMPACT
To determine the optimal values of parameters, grid search
is used on closed-set recognition over batch 3 of GSADD
dataset. For δB, five values(0.001, 0.005, 0.01, 0.02 and 0.03)
are empirically set. Different recognition results of MGRBA
with different δB is shown in Fig. 5. It can be found that
0.01 can generate highest recognition accuracy, therefore
δB is set as 0.01. The parameter values of the comparison
methods are set as default in the publications.

C. ABLATION STUDY
Since MGRBA is composed of biclustering and adaboost,
it is necessary to investigate the contribution of biclustering

and adaboost separately. Ablation study is conducted on
closed-set recognition over batch 3 of GSADD dataset.

1) IMPACT OF LOCAL SIMILARITY
To demonstrate the superiority of local similarity, MGRBA
is compared with k-means+adaboost(KM-Ada) under four
closed-set cases. The difference between MGRBA and
K-Ada only lies in that biclustering is replaced by k-means
to extract global similarity. The comparison result is shown
in the above subfigure of Fig.6. On the whole cases,
recognition accuracy of MGRBA is higher than that of KM-
Ada, demonstrating the positive contribution of biclustering
based local similarity.

2) IMPACT OF ADABOOST
Similarly, to investigate the contribution of adaboost, compar-
ison experiment between MGRBA and bicluster+fuzzy(Bic-
Fuzzy) under four closed-set cases. The result is shown in
the below subfigure of Fig.6. It can be found that MGRBA
greatly outperforms Bic-Fuzzy on all cases, the positive
contribution of adaboost is verified.

D. CLOSED-SET GAS RECOGNITION
For closed-set gas recognition, following experiments are
conducted: (1) Test on each of the ten batches. From each
batch, we randomly select 80% of each kind of gas samples
as train dataset, the remaining 20% are used for constructing
the test dataset. Experiment results(ACC) is displayed in
Fig. 7. It can be seen that MGRBA outperform SVM, LeNet-
5, NB, DWCNN and Relief in respect of ACC , improving
11% on average. The five comparison methods are based on
global similarity, from the experiment results the advantage
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TABLE 1. Detailed information of GSADD dataset.

of biclustering based local similarity is demonstrated. The
confusion matrixes of the six methods on batch 3 are shown
in Fig. 8. We can see that for the five kinds of gases, MGRBA
achieves higher accuracy than five comparison methods.
(2)Test the effect of the number of gas kinds(Ctr ) on batch 3 of
GASDD. The experiment result is shown in Fig. 9. We can
see MGRBA outperforms the five comparison methods on
all cases, demonstrating the robustness of MGRBA.

E. OPEN-SET GAS RECOGNITION
Openess is a measure for evaluating the difficulty in open-set
recognition field [45]. The definition of Openess is shown in
Eq. 8. The largerOpeness is, the less information is contained
in the train dataset, the more difficult it is to recognize the
unknown gases.

Openess = 1 −

√
2 ∗ Ctr
Ctr + Cts

(8)

Fig. 10 shows the Acc and AUROC on ten batches of GSADD
when there is only one unknown gas category in test dataset.
Openess of batch 3,4,5 is 0.0572(1 −

√
(2 ∗ 4)/(4 + 5))

and Openess of the remaining seven batches is 0.0465.
From Fig. 10 it can be found that on ten batches MGRBA
outperforms CV, ST, OLTR, Opennet and EVM, improving
over 10%(ACC) in terms of both ACC and AUROC .
To investigate the performance of MGRBA under different
Openess, open-set experiment on batch 3 is conducted. Ctr ,
Cts and corresponding openess is shown in Table. 2. Similar
with closed-set recognition, 80% of the known samples are
selected to construct train dataset, remaining 20% known
samples and the whole unknown samples are combined to
construct the test dataset. The open-set gas recognition results
of the six methods under three openesses are displayed in
Fig. 11. MGRBA outperforms the other five methods under
all openesses. With the increase of openess, the accuracy of
all methods decrease.

Take the following case as an example to describeMGRBA
in detail: training subset contains two kinds of gases(Ethanol
and Ethylene), test dataset contains the whole five kinds
of gases. 32 biclusters are outputed. When constructing
classification rules with column averaging and majority
voting, six rules are deleted because their label confidence is

TABLE 2. Openess under different Ctr and Cts.

less than predefined threshold. Finally, seven Ethylene rules
are found, 19 Ethanol rules are found. Two thresholds of
adaboost classifier are 0.0524(T+) and -0.0524(T−).

VII. CONCLUSION
In this paper, we early notice the open-set gas recognition
problem and propose a local similarity based ensemble
learning method MGRBA. Through reviewing the literature,
we find that existing gas recognition methods take the whole
features into account when calculating sample similarity,
ignoring local information. We extract partial features with
biclustering. We find adaboost’s limitation that 0 is not the
optimal threshold for determining sample’s label.We propose
a modified adaboost method with two thresholds. Combing
biclustering and adaboost can accurately determine the label
of gas sample. Experiment results demonstrate that MGRBA
outperformsmany state-of-the-art methods on both closed-set
and open-set gas recognition cases.

In this study, MGRBA is investigated in gas datasets,
we have confidence in that MGRBA works well in other
fields. One future work is to apply MGRBA to other fields
such as human activity recognition [46] to demonstrate its
generalization performance. Besides, the gas sensor drift
problem is a significant problem, MGRBA will be improved
to solve gas sensor drift problem in the future.
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