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ABSTRACT The neuron is sometimes referred to as the ‘‘head’’ or ‘‘central’’ cell of the nervous system
since it has the ability to communicate with other neurons or cells via electrical impulses. The hardware
realization and simulation of these neurons are critical in neuromorphic engineering. In this paper, we made
a device that generates 4 different spiking patterns of the nervous system as a Spike Generator (SG)
using a hybrid approximation of the target model called the Piece-Wised Power-2 Based Izhikevich Model
(PWP2BIM). This proposedmodel works in a low-cost state to achieve a correct digital implementation of the
Izhikevich model, one of the main neuron models (i.e. decreasing hardware resources and enhancing speed
and accuracy). The proposed model successfully reproduces the behavioral traits of the initial neuron model.
To verify the results of the mathematical simulation, the proposed model was synthesized and implemented
on the Zynq XC7Z010 (3CLG400) reconfigurable board (FPGA). The findings of hardware synthesis and
applications of the suggested paradigm demonstrate that certain biological behaviors may be duplicated
more effectively and at a significantly lower cost. The suggested model’s frequency can be increased using
this technique (implemented on the Zynq board) at least by 3.6 times compared to the original model, and
power consumption can be decreased by 28%. High-frequency design of neuronal models with low-cost
attributes is required for application-based types of equipment in case of high-speed operations of these
components. Thus, using our approach, the desired goals of application-based features are to be fulfilled.
In addition, because the suggested model uses fewer hardware resources than the original model, it is feasible
to construct a significantly higher number of neurons (approximately 5 times) on a single Zynq board.

INDEX TERMS Izhikevich, FPGA, digital FPGA realization, neuron, hardware implementation, low-cost.

I. INTRODUCTION
Aspects of neuromorphic engineering have lately been
the focus of neuroscientists’ investigation. In this area of
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research, modeling and creating systems that are analogous
to the brain is essential to understanding how the brain
functions [1], [2], [3], [4]. As a result, it is important to
properly study the essential parts of the nervous system.
Axons and synaptic terminals link the neurons that make
up the brain. The dynamic activity of neuron networks is
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replicated by a variety of neuron models. The intricacy of
the mathematics and the biological veracity of these models
vary. The simplest method is I&F , which just results in a
simple spiking pattern [5]. A collection of simple equations
involving two connected variables that produce all spiking
patterns is provided by the Izhikevich model [6]. Differential
equations with an exponential term are used by the AdEx
biological model, [7] to produce spiking patterns. TheWilson
model [2] uses a third-order variable, two linked equations,
and a third-order variable. The cerebral thalamus ismonitored
via the Hindmarsh-Rose (HR) model [8], which includes
three connected variables with nonlinear internal functions.
To describe the onset and development of the squid’s
large axon action potential, Alan Hodgkin and Andrew
Huxley created the Hodgkin-Huxleymathematical model [9].
Condensed versions of the Hodgkin-Huxley (HH) model
are used in the FitzHugh-Nagumo (FHN) model, which
accurately depicts the deactivation and activation patterns
of spiking neurons [10]. The Ca2+ and K+ conductance-
related rhythmic patterns in the large barnacle muscle fiber
were accurately reconstructed by the Morris-Lecar model
(ML), which was designed by Catherine Morris and Harold
Lecar [11].

Two ways enable the implementation of mathematical
neuron models on hardware. In the analog case, a circuit that
reproduces the descriptive equation set of the neuron model
is built using CMOS circuits. These analog realizations take
a while to construct, while being rapid and efficient [12].
A different approach is a digital implementation. Digital
implementation offers several benefits, including increased
flexibility, quick development, low power supply sensitivity,
decreased thermal noise, and others. A significant chunk
of this technique uses FPGAs [13], [14], [15]. There are
different methods to implement FPGA neuronal models
such as PWL, Base-2, LUT, etc. [13], [14], [15]. Based on
nonlinear function formation and the target neuronal model,
one of these approximationmethods or a combination of them
can be applied for digital FPGA realization.

In the case of approximate calculations, there are some
methods. The neuron models and their nonlinear components
influence the choice of approximation techniques. Examples
include Piece-Wised Linear (PWL), fast dynamic reduction,
trigonometry, hyperbolic, power-2, LUT, etc. The total
overhead costs may be lower when utilizing the Piece-Wised
Linear (PWL) technique, but accuracy will also likely be less
as there will be some error levels. One or more differential
equations are eliminated using the fast-dynamic-reduced
method. Although the overhead costs are decreased in this
situation, accuracy may suffer as a result. Trigonometric
approximation may be advantageous because of its high
precision, but it may increase final FPGA resources and
costs. The exponential terms are first transformed to hyper-
bolic functions in the hyperbolic-based technique before
the exponential terms are then changed to power-2-based
functions, which might increase overhead expenses. The

phrases that can be transformed into shifters, however, have
been employed in power-2-based techniques. In this method,
all multiplications have been converted into low-cost digital
shifters and adders. With the benefits of PWL and precise,
low-cost trigonometric approximation, this technique is a
good example.

There are similar works in this field of research [1],
[16], [17], [18], [19]. The mentioned works use different
methods such as Piece-Wised Linear (PWL), hyperbolic-
based, COordinate Rotation Digital Computer (CORDIC),
and multiplier-based. In [1], the hyperbolic-based method
is used. This method is high-accurate and low-cost due
to high-matching attributes, but because of converting the
exponential terms to base-2 terms, it may reduce the final
matching and also, increase the final overhead costs. In [16],
the PWL method is applied. The method used in this article
can be improved due to its low accuracy (high error due
to piecewise linearity). The problem of this method in
hardware implementation is to reduce the matching due
to its piecewise linearity. In [17] and [18], the CORDIC
approach is applied. This method is highly high-accurate
and has low error, but also is high-cost and not suitable
for large-scale implementation. In [19], the multiplier-based
method is considered without any modifications. They have
implemented the original model of neurons without the use
of any approximation method. Thus, in their realization, the
overhead costs will be increased, and themaximum frequency
will be reduced, significantly and not suitable for large-
scale realization. Also, for recent research in this field [20],
[21], [22], [23], although they have acceptable accuracy, they
used more hardware resources, and thus are not suitable for
large-scale approaches. Finally, in our method, the base-2
approximation is applied. Indeed, using this method, both
low-cost implementation and high-accurate attributes are
considered suitable for large-scale digital implementation.
Finally, in our method, the base-2 approximation is applied.
This method is low-cost and high-accurate. Indeed, using
this method, both low-cost implementation and high-accurate
attributes are considered suitable for large-scale digital
implementation.

To achieve an effective digital implementation of the
Izhikevich neuron model by reducing hardware resources
and increasing speed and accuracy, this study proposes
a set of multiplierless mathematical equations using the
hybrid approximation method. The behavioral characteristics
of the original neuron model are successfully replicated
by this model, known as the Piece-Wised Power-2 Based
IzhikevichModel (PWP2BIM). Thanks to the methodology’s
streamlined form of term segments, all high implementation
cost operands, such as nonlinear equations, multiplications,
and divisions, are converted to the digital shift, addition,
and subtraction. The original equations are then implemented
digitally on the FPGA using these approximations in con-
junction with discretization. The implementation’s outcomes
show that the proposed model is very precise and closely
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TABLE 1. Neuronal parameters produce various spiking patterns.

reflects the workings of the original model. The suggested
models operate at least 3.6 times more frequently than the
original model did. In other words, in this approach, we have
used a combined method based on which the accuracy of the
system increases, and also considering that only one base-2
term is calculated at anymoment, the final speed of the design
will increase. Therefore, the two goals of precision and high
frequency are achieved.

This paper has the following format. Izhikevich original
neuron model is discussed in Section II, and Section III
introduces the proposed (PWP2BIM) model. Section IV
discusses the hardware implementation procedure. The
conclusion is given in Section V.

II. ORIGINAL IZHIKEVICH MODEL
To raise the voltage of biological neurons, Na+ ions enter
the cell. Na+ ions start pouring into the neuron at a specific
moment when the floodgates open. The neuron’s internal
voltage (spike) is triggered as a result. However, at this point,
theK+ gates open, allowing a large number ofK+ ions to exit
the neuron and generate a sharp voltage drop. The membrane
potential (V) is the voltage in this situation. The membrane
recovery variable (U) is K+ as well.

In 2003 [4], Izhikevich introduced a brand-new spiking
neuron model that simply makes use of two differential
equations. These equations use V to represent the neuron’s
membrane potential, I to represent the synaptic current, and
u to represent a membrane recovery parameter that provides
negative feedback to the voltage. This model is described by
the equations shown below [4]:

dV
dt
= 0.04V 2

+ 5V + 140− U + I
du
dt
= a(bV − U )

ifV ≥ 30mV , then

{
V ← c
U ← U + d

(1)

The 0.04V 2
+ 5V + 140 was created by modeling the spike

initiation dynamics of actual neurons, where V is measured

in mV and t is measured in milliseconds. The voltage at rest
ranges from −70 to −60 mV.

In the equation (1), the recovery variable U’s time scale
is described by a, the sensitivity of U to changes in V is
described by b, the value of V’s after-spike reset, which is
typically −65mV, is described by c, and d defines the usual
value of U’s after-spike reset, which is typically 2.
The four constants (a, b, c, and d) may all be changed

to almost all of the brain reactions observed in research
studies. As a result, the model is almost as thorough as the
Hodkin-Huxley model at a quarter of the calculation cost.
This model can reproduce all 20 spiking patterns of the
human brain. The mentioned parameter sets for generating
all spiking patterns in the Izhikevich neuronal model, Table 1
presents the required fixed parameters for this goal.

The Izhikevich neuron model’s nonlinear term, V 2, which
forces the original model’s realization to be high-cost
and low-frequency, poses the fundamental barrier to its
digital implementation. Indeed, to increase the speed-up and
decrease the overhead costs of FPGA design, this nonlinear
term must be modified with a digital-friendly one.

III. PROPOSED PWP2BIM EVALUATIONS
Amodified form of the original neuron model is presented in
this section. The PWP2BIM approach, which is based on the
4-segment power-2, may be used to approximate nonlinear
equations. Accuracy and implementation costs must be bal-
anced in each of the approaches. With this study, we wanted
to propose a hardware version of the Izhikevich neuronmodel
that was more accurate and tolerably complicated. Since the
selected model is built on transforming nonlinear functions to
base-2 functions, there are no multiplication operators in it.

To provide a complete understanding of the recommended
technique, we reformulate the voltage equation of the original
Izhikevich neuron model as follows:

dV
dt
= F(V )+ 5V + 140− u+ I (2)

where

F(V ) =


79× 2−0.027V − 100; −78 < V ≤ −20
79× 2−0.016V − 83; −20 < V ≤ 0
79× 20.016V − 83; 0 < V ≤ 20
79× 20.027V − 100; 20 < V ≤ 32

(3)

We can approximate the polynomial nonlinear term with a
base-2 function because of the symmetrical structure of this
function, which can be seen in Fig. 1(a). On the other hand,
considering that the range of voltage changes in Izhikevich’s
neuron model is between −78 and +32, we considered
the first part of Fig. 1 in this range to reach an accurate
approximation. Also, if we look at equation 3, we can see
this symmetry. In fact, the first and fourth rules as well as the
second and third rules are symmetrical and only the positive
and negative signs of their exponential function arguments
change. So, we have a symmetric approximation that can
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FIGURE 1. (a) Comparing the accuracy of the nonlinear terms of the
original and PWP2BIM. (b)-(d) Different spiking patterns of the models.

help reduce hardware costs during digital implementations.
This function significantly resembles a base-2 wave.We have
extracted optimum parameters based on equation (3) using
an exhaustive search method. The scaling parameters were
changed to produce a high degree of resemblance and
matching between the original polynomial term and the
suggested PWP2BIM that is shown in Fig. 1 (based on various
input triggers and other constants). Using this method,
we were able to create a new PWP2BIM that closely mirrored
the original Izhikevich model. On the other hand, utilizing
this approximation to easy-to-implement basic operators, all
multiplications in the main model can be approximated. The
hardware section has further information about this. A claim
that has to be looked into and verified is the presentation of
this suggested model. Digital shifts and add can be used to
create these fixed coefficients base-2 functions, eliminating
all multiplications and speeding up the proposed system. The
hardware implementation section goes into great depth on
how this works.

A. DYNAMICS AND ERROR
The correctness of the proposed model may be assessed
using both time domain simulation and dynamic assessment.
It is crucial to understand how the two nullclines equations
interact to understand how the resting mode becomes the
bifurcation mode [14] and [15]. In the nullclines equation,
crossings take place around points of equilibrium. This
strategy requires us to take into account a dynamic system
with two variables.

These points (equilibrium locations) are provided for
characterizing the connection of the V and U variables:

W =
dV
dt
= 0.04V 2

+ 5V + 140− U + I

Z =
dU
dt
= a(bV − U )

(4)

TABLE 2. Error values for Izhikevich neuron model.

The bifurcation analysis of the equilibrium locations requires
the Jacobian matrix and eigenvalues [14], [15]. The Jacobian
matrix is as follows:

J (V ,U ) =
[
A B
C D

]
(5)

where 
A =

∂W
∂V

, B =
∂W
∂U

C =
∂Z
∂V

, D =
∂Z
∂U

(6)

The shapes of the equilibrium points and phase portraits
demonstrate a high level of accuracy. These shapes for
different sets of triggers (a, b, c, d, and I) are shown in Fig. 2.
As can be seen in this figure, the dynamical behaviors of
original and proposedmodels are compared. In this approach,
for three basic patterns (tonic spiking, tonic bursting, and
phasic spiking) dynamical shapes and their stability points
positions are compared. Moreover, by removing the time
scale, phase portrait shapes also have been presented for three
mentioned spiking patterns. As can be seen, in these two
factors, our proposed model can follow the original model,
accurately.

B. ERROR ARITHMETIC
Fig. 1 and Fig. 2 show how well the provided model
reproduces the actions of the original model. Three key
methods–MAE (Mean Absolute Error), RMSE (Root Mean
Square Error), and Corr (Correlation)–were used to estimate
the numerical values of the error to assess the recommended
model’s soundness in this section [13], [14], [15]. The
numbers for the 3 faults listed for the Izhikevich neuron
model can be found in Table 2.

C. NETWORK BEHAVIOR
Another method for validating the accuracy of the proposed
model is a Raster plot for 1000 connected neurons. In this
method, neurons are randomly coupled to each other and are
classified as either excitatory or inhibitory, 4 to 1. We have
used the MRE error criterion to check and analyze the accu-
racy of the proposed model in this method. By calculating
and comparing the amount of this error in Raster Plot with
previous similar articles and works, it is quite clear that the
amount of this error is at a very good level and this is another
confirmation of the accuracy of the proposedmodel presented
in this article. The enhanced model is used at the network
scale by simulating a network with 1000 randomly linked
neurons. Fig. 3 displays the simulations’ raster graphs. There
are several structural parallels between the PWP2BIM and
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FIGURE 2. (a1)-(a4) Dynamics and phase portraits for tonic spiking (original and proposed PWP2BIM models).
(b1)-(b4) Dynamics and phase portraits for tonic bursting (original and proposed PWP2BIM models). (c1)-(c4) Dynamics
and phase portraits for phasic spiking (original and proposed PWP2BIM models).

FIGURE 3. Raster plot representation of the original and proposed
models. Blue corresponds to the original model and pink corresponds to
the proposed model (PWP2BIM).

the original network behaviors model. As can be depicted
in this figure, we have simulated 1000 randomly connected
original and proposed Izhikevich neuron, separately to test
the population behaviors. Indeed, in this test, neurons will
be desynchronized in time duration. Thus, this behavior
must be evaluated between original and proposed models
to validate the simulation of neuron network in low-error

states. The original and proposed network behavior models
are contrasted using Mean Relative Error (MRE). The value
of this error parameter is also shown in Fig. 3. Fig. 3’s error
levels and the behavior of the original and suggested models
at the network size are comparable, which provides further
evidence of the suggested model’s correctness.

IV. HARDWARE PROCEDURE
In this part, the Izhikevich neuronmodel is presented together
with a low-cost digital hardware architecture. We must first
choose the bit width for the digital implementation before we
can execute this idea. It is crucial to choose the bit width in
such a way as to prevent overflow with left and right shifts.
In the second stage, the differential equations are discretized
using the Euler technique, and the architectural diagram is
generated for every variable. Prior to being implemented
on the Zynq FPGA device, the scheduling diagrams must
first be evaluated using the Hardware Description Language
(HDL) in the third phase. The details of these acts are listed
below.

A. DISCRETE METHOD
To adapt the suggested model to the FPGA board, the
equations are discretized. The Euler method is used in this
discretization. With two typical variables (Y and J), the Euler
technique is:

dY
dt
= J (t) (7)
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FIGURE 4. Proposed model’s overall structure.

where

Y [i+ 1]− Y [i]
dt

= J (t) −→ Y [i+ 1] = Y [i]+ dtJ (t) (8)

It should be noted that dt (time step) in discretized
equations is equal to 1

128 , which can be digitally achievedwith
a 7-bit shift to the right.

B. SET THE BIT-WIDTH
We estimate the final bit-width in our suggested neuron
models to be 31 bits, with 10 bits for the integer, 20 bits for
the fraction, and 1 bit for the sign. Based on the biggest and
smallest constant values, the number of bits (as a function of
the greatest left and right shift), and the requirement to avoid
any overflow, this is done.

C. PWP2BIM OVERALL STRUCTURE
Fig. 4 shows the proposed model’s overall structure. This
structure is composed of different blocks which are con-
nected. As can be seen in Fig. 4, the first unit of this
structure is the Input Unit (IU). This unit is responsible for
generating the required parameters for all spiking patterns of
the Izhikevich model. This is the information storage part and
the required parameters of the proposed neuron model, which
are included in a memory along with the values of the spike
shape coefficients. This memory has 20 sections where the
corresponding coefficients of 20 spiking modes are stored.
We considered a counter for this memory that selects one of
the constant coefficient values at each moment and sends it
to a final temporary memory. The values of these 20 modes
of coefficients are included in our hardware code and stored

digitally so that we can select one of the parameter sets if
needed.

Moreover, the NeuronCalculationUnit (NCU) is presented
to calculate the final voltage signal based on the proposed
PWP2BIM equations. The main signals of our proposed
neuron are generated in this section. As seen in this section,
we have used four memories. Two memories are for the
original values of the neuron signals, and the other two
memories are for storing return signals (according to the
design of the pipeline, the signals are stored recursively to
increase the hardware execution speed). Also, we used logic
gates and multiplexers to control the conditional rule of the
neuron model.

On the other hand, the F(V) Calculation Unit (F(V) CU)
is designed to calculate the different values of the proposed
internal function, F(V). This has the task of providing the
internal signals and functions as well as the controller
for the proposed neuron model. In fact, according to the
approximation of non-linear functions in the proposedmodel,
the production of these functions and the required signals is
the responsibility of this department.

Finally, the voltage data is produced in the Output
Unit (OU) with DAC. This is responsible for producing
the final output on the oscilloscope. Our main signal in
the neuron model is the voltage, which we considered
a temporary memory for this signal. The output of this
memory is rationalized with an activation signal so that
we can control the generated output and send it to the
oscilloscope at the right time. Finally, using a digital-to-
analog converter (DAC), we can display the final information
required on the oscilloscope.
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It is noticeable that we have presented this architecture
based on approximate equations as well as pipeliningmethod.
Using this architecture, we write our Hardware Description
Language (HDL) code and observe the output signals after
digital synthesis using an analog-to-digital converter. Using
the pipeliningmethod increases the hardware execution speed
and thus increases the final frequency. Also, due to the use
of the base-2 method in approximation equations, in addition
to increasing the speed of implementation, the hardware
resources used are significantly reduced. Therefore, based on
the proposed architecture in Fig. 4 and the optimality of the
approximate equations, we can achieve a low-cost and high-
speed implementation.

D. RESULTS
The results of the Izhikevich neuron model’s hardware
digital implementation are shown in this section. On the
FPGA platform Zynq XC7Z010 (3CLG400), the proposed
PWP2BIM was developed. Due to the high processing power
and having a large number of hardware resources, we have
used the Zynq board to implement the proposed model
so that in addition to having a high frequency, we can
implement more neurons on a single FPGA (optimal digital
implementation). Verilog (Hardware Description Language)
was used to synthesize the models in the Xilinx ISE software.
In the part of the implementation, we have employed the
proposed approach for realizing a Spike Generator (SG)
based on the PWP2BIM which provides 4 basic spiking
patterns of the Izhikevich neuron model, as shown in
Fig. 5. A collection of hardware-based physical realizations
are shown in this picture. Significantly, the scales for
implementation (voltage and time) and simulation are the
same. The original model, as described above and shown
by equation (1), makes heavy use of nonlinear functions.
According to the hardware FPGA board used in our work,
we have provided four spiking patterns based on the 4 main
keys embedded on the board. In fact, our proposed model
can generate all spiking patterns. These phrases, which
are expensive to implement on hardware, have all been
replaced in the suggested model with functions that are
far more affordable to do so. By using this method, fewer
hardware resources were used, and the frequency of FPGA
operations increased (compared to the original model and any
other versions that could be offered). Table 3 compares the
suggested technique with the previously published studies
and displays the hardware resources needed, frequency,
power consumption, and Maximum Number of Neurons
that may be implemented on the Zynq board (denoted by
MNON). The comparison of resource usage provided in
the aforementioned table clearly shows how much fewer
hardware resources were used in the suggested model when
compared to the original model and other proposed models
that were offered. In this implementation, the results of
the implementation table are based on the production of
4 different spiking patterns simultaneously on the FPGA
board. According to the results of hardware synthesis and

model implementations, it is possible to duplicate many
biological behaviors more effectively and for significantly
less hardware cost. Additionally, this method can increase the
frequency of the suggested models by up to 3.6 times that of
the original model and reduce power consumption by about
28%when compared to earlier similar attempts. Additionally,
the proposed model’s reduced use of hardware resources
makes it possible to implement a significantly higher number
of neurons (5 times compared to the original model) on an
FPGA board. As a conclusion of the presented topic, we can
point out the important issue that the implementation of
biological neural networks and neural models on hardware
can be of great help in the field of studying diseases and
their treatment. In this field, there have been researches
that have focused on diseases, hardware implementation
with high accuracy, and neural networks [24], [25], [26],
[27], [28], [29]. Having practical and low-cost hardware,
which, of course, has a high operating speed, we can
examine neuro-brain diseases such as Epilepsy, Alzheimer’s,
Parkinson’s, etc., and provide practical solutions. The
resource level in one FPGA core determines the number of
neurons implemented. Indeed, this number can be limited
by a maximum number of FPGA resources for two original
and PWP2BIM models. Thus, the Resource Utilization
Percentage (RUP) factor is presented for each resource as:

RUP(percentage) =
Target Resources
Full Resources

(9)

In this case, theMaximumResourceUtilization Percentage
(MRUP) is given as:

MRUP = Maximum RUP in [FPGA Resources] (10)

By MRUP, the maximum number of original and
PWP2BIM can be calculated on one FPGA core. In this
approach, the FPGA Resources can be selected by the
maximum percentage of the basic resources of FPGA core
as Slices, FFs, LUTs, and DSPs. The parameter of maximum
neuron number is calculated using the Maximum Number of
Neurons (MNON) as the following equation:

MNON =
100

MRUP
(11)

These numbers for original and PWP2BIM for different
FPGA devices are presented in the last column of Table 3.
As data indicates, the number of PWP2BIM models that
could be implemented on FPGA is higher than that of other
similar models. As depicted in this table, in our proposed
model, the speed level (frequency) and also, the overhead
cost are in better condition compared with the original model.
It is noticeable that the parameter MNON is a basic factor
for scaling the number of implemented PWP2BIM on one
FPGA core. Indeed, multiplier modules increase the system
cost leading to the high-area network. In this case, in our
PWP2BIM model, all nonlinear and high-cost terms such as
multipliers and dividers are eliminated to have a high-speed
digital design. Indeed, multiplier-based realization causes
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FIGURE 5. Implementation set of PWP2BIM as physical SG.

TABLE 3. Comparison between proposed method and previously published works for the Izhikevich neuron model. The references that not reported the
value, is presented as N. R.

the low-speed and high-cost system for the original model
because of its large number of multipliers and dividers in
the internal functions. This leads to a low-frequency system
because of its long critical paths in the circuit implementation.

As presented in Table 3, our proposed model has been
compared with most similar articles and methods. We have
made the proposed model 3.6 times faster than the original
model, but at the same time, our proposed model is more
favorable than all previous similar works in terms of the
number of hardware resources consumed. On the other hand,
it is the issue of implementing the maximum number of
adapted neurons in a board, which has been improved for

our proposed model compared to the original model and all
previous models.

V. CONCLUSION
The Izhikevich neuron model is used in this work and is
digitally implemented without the need for multiplication.
This solution accurately and consistently reproduces the
biological behavior of the original models using an optimized
hybrid approximation technique. This improved method
may faithfully reproduce the nonlinear functions of various
neuron models, in which the conventional approximation
techniques (such as piecewise-linear, hyperbolic, etc.) may
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fail to perform as well. By eliminating the nonlinear functions
from the original model, we were able to get the estimated
model. High frequency and low hardware cost are two
features that may be attained with the right implementation.
Using only SHIFT, ADD, and SUB modules, we were
able to accomplish both of them when designing digital
hardware. The recommended models accurately mimic the
actual models’ various spiking patterns and dynamics. The
suggested model can increase frequency by at least up to
3.6 times in comparison to the previous model, according
to the findings of FPGA implementation, and lower power
consumption by roughly 28%. Additionally, the outcomes
demonstrate that the proposed models outperform earlier
implementations of related models in terms of maximum
frequency and FPGA resource use.
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