
Received 17 October 2023, accepted 22 November 2023, date of publication 12 December 2023,
date of current version 5 January 2024.

Digital Object Identifier 10.1109/ACCESS.2023.3341491

Hydra-RAN Perceptual Networks Architecture:
Dual-Functional Communications and Sensing
Networks for 6G and Beyond
RAFID I. ABD 1, (Member, IEEE), DANIEL J. FINDLEY 2, (Senior Member, IEEE),
AND KWANG SOON KIM1, (Senior Member, IEEE)
1School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, South Korea
2Department of CCEE, North Carolina State University Centennial Campus, Raleigh, NC 27695, USA

Corresponding author: Kwang Soon Kim (ks.kim@yonsei.ac.kr)

This work was supported in part by the Institute of Information and Communications Technology Planning and Evaluation (IITP) under
Grant 2021-0-02208, and in part by the National Research Foundation of Korea (NRF) funded by the Korean Government [Ministry of
Science and ICT (MSIT)] under Grant 2022R1A5A1027646.

ABSTRACT After researchers devoted considerable efforts to developing 5G standards, their passion began
to focus on establishing the basics for the standardization of 6G and beyond. The utilization of millimeter
wave (MMW) and terahertz (THz) frequency bands, combined with sensors and artificial intelligence (AI),
has gained significant attention in the research community for the development of the next generation of
sensory and radio access networks (NG-SRANs). Leveraging the advantages of communication and sensor
systems’ common characteristics will open horizons for merging the two networks, thereby creating a unified
perceptive and intelligence network. Overall, while using MMW and THz frequencies is certainly valuable,
the ability to gather and transmit data in real-time makes sensors extremely effective in communication
networks. In contrast, AI, machine learning (ML), and deep learning (DL) have become predominant
methods for solving data analysis problems across a wide range of domains, such as analyzing large
amounts of different sensor data, decision-making, channel estimation, self-organization, and self-healing.
This paper proposes a novel design for a potential 6G network and beyond called the Hydra radio access
network (H-RAN) perceptual networks architecture, which is designed based on NG-SRAN. From a design
perspective, H-RAN aims to merge communication and sensing networks into a single network in which
two functionalities are attempted to mutually complement each other, namely communication-aided sensing
and sensing-aided communications networks. However, such a network provides an adequate platform for
a wide range of AL/ML algorithms, such as real-time decision-making, self-organization, and self-healing.
As a result, H-RAN perceptual networks architecture is expected to be more efficient, reliable, and secure
than existing conventional networks, and is likely to play a critical role in a wide range of applications,
including but not limited to mobile broadband, sensing systems, smart cities, autonomous vehicles, the
internet of things (IoT) connectivity, vehicle-to-everything (V2X) communication, etc. This study gives
a detailed overview of how H-RAN will revolutionize conventional future sensors and cellular networks
through a comprehensive analysis of H-RAN architectural components and functionalities.

INDEX TERMS 6G networks and beyond, integration of sensor and communications networks, dual-
functional networks, broad exploitation of AI/ML engines, perceptive networks, sensing/radio access
networks (SRANs), self-organization/self-healing/IoT.

The associate editor coordinating the review of this manuscript and

approving it for publication was Xujie Li .

I. INTRODUCTION
Among the many assumptions regarding the future vision
of 6G networks and beyond, there are a variety of theories,
but a common theme among them is that higher frequency
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bands, sensors, artificial intelligence (AI), machine learning
(ML), and the Internet-of-Things (IoT) will have a more
crucial role in the next generation of sensory and radio access
networks (NG-SRANs) than any previous networks [1], [2],
[3], [4]. A speculative study trend indicates that future
radio access networks (RANs) will incorporate millimeter
wave (MMW)/terahertz (THz) frequency bands, sensing
functionality, and AI/ML engines in the upcoming network
that can automatically adapt to changes in their environment
with the vision of creating self-adaptive and self-healing
networks [5], [6], [7]. Moreover, NG-SRANs hold significant
potential to enable novel applications and use cases through
perceptive networks. To this end, it seems that NG-SRANs
will gain significant advantages through the integration of
information from several sensor functions. Also, it will allow
the efficient use of dense network infrastructure deployment
to create intelligent and observable RANs. As a result, recent
developments in the open radio access network (O-RAN) [8],
[9], [10], [11], [12], [13], [14], [15] coupled withmulti-sensor
data fusion, and extensive use of AIL/ML workflows, are
capable of generating perceptive networks, thereby enabling
real-time decision-making, automated network management,
and self-learning capabilities.

However, the current cellular protocol stack architecture
in RANs has limitations in overall network state visibility
and awareness of the underlying conditions [16], [17], [18],
[19]. Without a comprehensive understanding of the overall
network state, individual layers may struggle to adapt dynam-
ically to changing conditions [18], [19], [20]. For example,
if the physical layer detects a significant change in channel
conditions, it may not be effectively communicated to higher-
layer protocols, leading to inefficiencies in resource alloca-
tion and suboptimal performance [23], [24], [25]. Limited
awareness of the actual network state can hinder the ability
to dynamically adapt and optimize network responses in real-
time [24], [25], [26], [27]. To address these limitations, there
are ongoing research and development efforts in the field
of network architecture and protocol design. These efforts
aim to introduce more flexibility in cross-layer coordination,
such as network slicing [28], software-defined networking
(SDN) [29], and network function virtualization (NFV) [29].
Therefore, to supplement current solutions, we introduce
NG-SRANs as cognitive networks to be more intelligent
and adaptable, with the capability of automatically detecting
and responding to changes in network conditions. Overall,
future cognitive networks are expected to extensively employ
AI/ML workflows throughout the network components to
continuously learn from network data and user behavior,
allowing real-time decisions and adapting to changing
conditions.

AI has the potential to revolutionize future RANs by
making them more intelligent, adaptive, and efficient.
It enables networks to cope with the expected growth in
complexity and increasing demand for future applications.
For example, ML allows systems to learn and improve

automatically from their experience without being explicitly
programmed. It also performs complex functions such
as signal classification [30], blockage prediction [31],
waveform design [32], spectrum sensing [33], etc. Among
the various ML techniques, DL is one of the most popular
ML methods designed to automatically learn and extract
hierarchical representations of data, enabling them to
recognize patterns and make predictions with high accuracy,
such as capturing high-dimensional spectrum representa-
tions [34], and determining the optimal beam orientation
between nodes [35]. In addition, the challenges imposed
by ultra-massive access applications and use cases in terms
of energy consumption can be mitigated by utilizing AI-
/ML-based strategies. Furthermore, sophisticated intelligent
mobility management and resource allocation will ensure
service dependability, ultra-reliability, and low-latency
applications [5].

Indeed, emerging media technologies, such as holographic
communications, involve transmitting three-dimensional
(3D) holographic scenes in real-time, which demand
extremely high data rates and significantly higher trans-
mission speeds, up to terabits per second, compared to
augmented reality (AR) and virtual reality (VR) applications.
Thus, it seems 5G networks are far frommeeting the demands
of these applications, which require large-scale communi-
cation systems, super-massive access, ultra-broadband, and
faster and more reliable communication [5]. However, due
to the limitations of perceiving the surrounding environment,
O-RAN based on MMW/THz frequency bands may not
be able to provide real-time environment information in
a continuous stream of the surrounding environment [23],
[24], [25]. Thereupon, MMW/THz O-RAN networks, ini-
tial access, beam tracking, handover, blockage avoidance,
predicting and avoiding faults, environmental perception,
etc., may face various challenges that deserve further
research [24], [25], [26], [27]. In addition to this setback
is the fact that conventional beam training methods, such
as exhaustive beam sweeps (EBS) [36], or feedback-based
techniques [37], can be time-consuming and computationally
intensive [25], [38]. As a result, it seems that the current
conventional network design may have limitations when it
comes to operating in the MMW/THZ frequency bands.
These limitations primarily stem from an unawareness
of the surrounding environment, deployment challenges,
protocol stack considerations, beam management, and self-
organization/self-healing capabilities, among others.

Given the extensive challenges, in addition to the future
vision of what next-generation communications networks
will look like, 6G networks and beyond require novel futur-
istic designs tailored to the characteristics of the MMW/THZ
bands and future use cases and applications. To highlight
the potential vision for the basic standardization of the 6G
network and beyond, we propose a novel H-RAN employing
the state-of-the-art concepts of integrated communications
and sensing networks (communication-aided sensing and
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sensing-aided communications networks), with high-scale
exploitation of AI/ML workflows. H-RAN architecture aims
to provide edge computing by enabling data processing to
occur closer to the source of data, reducing latency, and
improving real-time processing capabilities, which could
provide an effective starting point for being poised to rev-
olutionize the telecom and sensor ecosystem. Additionally,
H-RANnetwork slicing allows telecom and sensor ecosystem
providers to create multi-function virtual networks within a
single physical infrastructure, each customized for specific
applications or user groups, more than any other existing
network. This technology will support diverse services,
such as autonomous vehicles, augmented reality, security
enhancements, etc. Moreover, the H-RAN vision aims to
drastically change the design, deployment, and operations
of future cellular networks, ultimately enabling embedded
intelligence decisions and real-time analytics. In addition to
creating cognitive communication networks built by incor-
porating cognitive NG-SRAN technology, which enables
networks and devices to dynamically sense and adapt to
make intelligent decisions in response to changing network
conditions. Last but not least, future heterogeneous H-RAN
networks can be much more intelligent and perceptive by
combining real-time/historical sensory data and extensive
AI/ML capabilities. In such networks, the surrounding
environment can be sensed everywhere, supporting a wide
range of IoT services and applications in the future, as well as
providing various solutions to address many of the challenges
imposed by the MMW/THz frequency bands.

A. RELATED WORK
Thanks to a recent surge in AI/ML and sensor technologies,
AI/ML workflows and high-dimensional sensor information
are becoming increasingly accessible and are being applied
across a wide range of essential applications [1]. Researchers
have demonstrated that context information obtained from
infrastructure sensors in conjunction with AI/ML algorithms
can significantly enhance MMW/THZ 6G wireless in a
variety of functions, and address several challenges related
to MMW/THZ bands [2], [3]. 6G networks powered by
AI/ML are considered a fundamental enabler to provide
more powerful and intelligent capabilities to emerging
services and applications [4], [5]. The authors of [4] claimed
AI/ML techniques have gained significant attention for beam
management frameworks in MMW/THz bands due to their
capability of extracting and tracking nonlinear environmental
characteristics. Therefore, there is a strong need for protocols
and standardization activities for an enhanced AI/ML-based
beam management platform. The researchers of [5] focused
on some solutions for applying AI/ML models to 6G
networking and resource management optimization, as well
as channel estimation and spectrum management. Various
AI/ML algorithms have been introduced to 6G resource
allocation techniques (e.g., channels, bandwidth, computing
resources, memory, processing power, etc.) to cope with
the sophisticated optimization of decision-making by 6G’s

dynamics, multidimensionality, and random uncertainty. The
study in [6] claimed that there could be no truly intelligent
system without integrating AI/ML techniques. Hence, the
study discussed the next-generation smart grid that leverages
revolutionary technologies, such as AI/ML, sensors, and IoT
to achieve robust reliability, resilience, and overall system
performance. The study indicates that the next-generation
smart grid includes unique features including microgrids,
smart transmission lines, smart feeders and substations,
programmable sensors (AI sensors), and AI-controlled grid
management centers, among others. The study in [7] proposes
that cognitive radio can be integrated into the current power
grid to enable smart communication and decision-making.
This study has shown that most power utility establishments
around the globe would not only want to make their
network smart for easy and convenient data logging and
monitoring but would also like to reduce their operating costs.
Zhang et al. [39] showed that by slightly modifying current
cellular networks, joint communication, and radar/radio
sensing capability networks may become more perceptive.
Reference [40] asserted that integrating sensing into IoT
devices andwireless networks could be accomplished quickly
and inexpensively by reusing synchronization and reference
signals for sensing patterns. Moving forward, a mechanism
for integrating sensing and communication for individual IoT
devices and categorizing extensions over existing devices into
four aspects, namely time, frequency, space, and protocol
has been proposed in [41]. The article in [42] introduces an
integrated communications and sensing framework for IoT
solutions that establish deep reinforcement learning for the
decision process without requiring complete knowledge of
the surrounding environment. On the other hand, sensors
and DL algorithms have been proposed to address several
challenges associated with MMW system actuation in many
studies. For instance, studies in [43], [44], and [45] have
designed efficient DL methods that leverage radar sensory
data to direct MMW beam prediction while greatly reducing
beam training overhead. For the same reason, the authors
of [46] and [47] used prior information extracted from
LIDAR sensory data to remarkably reduce beam training
overhead by implementing deep neural networks (DNNs).
These approaches maximize throughput with reasonable
overhead and computational costs. Koda et al. [48] propose
a proactive framework wherein handover timings, camera
images, and deep reinforcement learning are used to deter-
mine the handover timing. To address the sensitivity of
MMW/THZ systems to blockages, the researchers in [49],
[50], and [51] utilize sensors to provide sensing information
about the surrounding environment. To reduce the search
overhead of iterative beam discovery procedures, the authors
of [52] and [53] used contextual information from sensors
and deep neural networks (DNNs) that improve classification
accuracy for beam selection. Moreover, sensory data and DL
architecture to address challenges related to MMW beam
alignment, beamforming, and beam tracking are considered
in [54], [55], and [56], respectively. On the concept of
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intelligence and learning in O-RAN, Bonati et al. [57]
claimed that the O-RAN paradigm will drastically change
the design, deployment, and operations of future cellular
networks, thereby enabling embedded intelligence and real-
time analytics. The study in [58] proposes an intelligent
model for traffic congestion and radio resource management.
The authors of [59] propose the open RAN closed-loop con-
trol on programmable experimental platforms (ColO-RAN),
a pipeline for the design, training, and evaluation of
DRL-based control loops in O-RAN.

B. CONTRIBUTION
This paper introduces a concept of H-RAN architec-
ture that integrates communication and sensing network
functionality into a single network and uses the compre-
hensive and independent distribution of AI/ML engines
for self-optimizing and self-healing strategies based on
a perceptive dual-functional wireless network. The main
contributions can be summarized as follows. We propose
an H-RAN architecture integrating disaggregated sensing
and communication systems into four H-RAN components:
sensing and radio units (SRUs), Hydra distributed units
(H-DU), Hydra central units (H-CU), and Hydra RAN
intelligent controllers (H-RICs). Augmented with sensing
and extensive AI/ML functionality, future heterogeneous
H-RANs’ ‘‘open eyes’’ are designed to be more intelligent
and perceptive. Such networks, which can sense and perceive
the surrounding environment ubiquitously, could serve as the
backbone for revolutionizing the communications ecosystem.

II. SYSTEM MODEL
A. IDEOLOGY AND PRINCIPLE
Although MMW/THZ technologies offer many desirable
features such as high data rates and capacity [46], [47],
[48], their unique characteristics come with their own set
of limitations. These limitations include but are not limited
to, low penetration efficiency, easy blockage, high path
loss, limited communication range, frequent misalignment,
etc. [24], [25], [38]. These challenges (among others) restrict
MMW/THZ networks’ ability to efficiently support mobile
applications over 200m away from the source in harsh
environments [60], [61]. Therefore, the dense deployment
of MMW/THZ networks in cities, such as rooftops, tow-
ers, or streetlights is recommended to mitigate some of
these challenges [60]. Accordingly, in the real world, the
widespread deployment of sub-6 GHz networks in cities
is indeed observed. It can be seen in various structures as
illustrated in Fig. 1-(a), (b), (c), and (e). However, while
current sub-6 GHz network deployment can address some
challenges, it also comes with several disadvantages that
need to be carefully considered. For instance, as shown
in Fig. 1-(a), a large number of antennas are located at
one location, thus this may reduce the network’s ability to
perceive the surrounding environment, increase interference,
limit coverage range, reduce the probability of line-of-
sight (LOS), power consumption, etc. Meanwhile, while

strolling through cities, a clear sense of reality sinks in the
presence of densely deployed sensing networks throughout
various areas as seen in Fig. 1-(b), (c), (d), (e), and (f).
This network consists of a multitude of sensors strategically
placed to monitor and collect data across different parts
of the city. Fig. 1-(b), (c), (d), (e), and (f) illustrate a
real-world widespread sensor network installation in Seoul
city. They appear omnipresent by monitoring parks, streets,
alleys, subways, universities, shopping malls, etc. Sensors
can collect real-time data on various parameters, which can
be analyzed to gain insight into desired evolutionary patterns.
Indeed, communication and sensor networks play a vital
role in enabling connectivity, monitoring, and managing
various aspects of the modern world. Still, the separate
deployment of both networks in the same geographical area
has several disadvantages associated with their coexistence
at the same location. For instance, these disadvantages can
include 1) the dense and chaotic deployment of cables and
devices, 2) cable lines visually pollute the area where they
are installed, 3) pollution caused by an increase in the
number of power and data transmission cables, 4) high costs
associated with establishing and maintaining both networks
separately, 5) overlapping frequencies and interference, and
6) managing both networks independently can come with
complexity, among others. Added to these drawbacks is the
fact that communication and sensing networks are deployed
side-by-side in the real world, as observed in Fig. 1-(b), (c),
and (e). Thus, setting up and maintaining the two networks
independently is not practical and economical. However,
the is common in current deployments which result in
infrastructure costs that are almost doubled due to separate
deployment and maintenance of both networks.

Therefore, to address these disadvantages, and enhance the
efficiency and performance of communication and sensing
networks, as well as open horizons for developing future
applications, we propose to establish a joint cooperative
network by merging sensing and communication networks
into a single network. This proposal derives its strength
from the fact that the increasing trend of sensor and com-
munications systems toward exploiting MMW/THZ bands
has given them common characteristics [1]. This includes
decoupling and matching a miniaturized antenna array,
using multiple antenna arrays, leveraging similarities in the
azimuth power spectrum, and monitoring with performance
measurement metrics. As a result, channel characteristics,
signal processing, and hardware components are highly
similar between the two systems [42], [43], [44], [45], [46],
[47], [48].Moreover, theMMW/THZ system is only effective
in short or medium transmission within a range of roughly
100-200m [60], [61]. This is similar to sensor capability
in cities (e.g., radars, cameras, Lidars, lasers, etc.). These
sensors are expected to cover short or medium distances of
about 100-200m due to the abundance of alleys and street
intersections. The fact that most sensing and communications
devices are placed side-by-side in the real world, as indicated
by Fig. 1-(b), (c), (d), (e), and (f), can be used as an
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FIGURE 1. An illustrative example of the deployment of sensing and communications networks in Seoul, South Korea.

advantage. Consequently, merging advantage merging the
two networks will be more efficient, cost-effective, and
less complex. Indeed, recent developments in sensors,
AI/ML algorithms, computer vision, and fusion technology
in conjunction with the crucial imperative of line-of-sight
LOS links in MMW/THZ systems significantly motivate the
trend towards sensor-aided wireless communication. Since
a communication network involves exchanging information
using specially tailored signals and retrieving it in noisy
environments, a sensor network gathers and derives data
from noisy and FOV observations. Thus, by pursuing direct
trade-offs between both networks, the H-RAN vision might
unify these two processes and maximize mutual performance
gains.

B. ARCHITECTURE DESCRIPTION
The proposed H-RAN perceptual network architecture has
been designed to supplement the existing O-RAN architec-
ture [8]. This can be accomplished by adding additional
hardware, layers, protocols, algorithms, interfaces, and
widespread utilization of AI/ML engines, which attempt to
mutually complement each other. The intended objective
is achieved by utilizing the dense infrastructure of sensor
and communication networks. This is done by building an

interconnected and collaborative perception network that
uses AI/ML techniques for learning, problem-solving,
decision-making, and perception. We are also pursuing the
integration of the two network functionalities through a com-
mon infrastructure and developing an intelligent network that
enables future applications. As depicted in Fig. 2, we aim to
broadly exploit AI/ML workflow capabilities in the proposed
H-RAN architecture, which enables software applications
to become more accurate at predicting outcomes without
requiring explicit programming. By doing so, H-RAN
will move beyond traditional communication networks and
provide ubiquitous sensing and communication services
through a combination of visual observations and AI/ML
engines. H-RAN networks offer an exciting opportunity for
6G networks and beyond to implement communication by
leveraging the MMW/THZ bands. Such networks observe
the surrounding environment continuously, offering various
service applications, including but not limited to real-time
monitoring and optimization, predicting, and avoiding faults,
intelligent network planning, self-optimizing/self-healing,
meteorological observations, surveillance, security, detecting
human activity, IoT applications, etc. The H-RAN vision is
expected to unlock innovative applications and use cases in
the future. By embracing O-RAN specifications into H-RAN
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FIGURE 2. The disaggregated architecture of H-RAN perceptual networks distributes the deployment of functional units on cloud platforms
in a virtualized network spanning from the edge to virtualization platforms. Augmented with sensing and extensive AI/ML functionality,
future heterogeneous H-RANs’ ‘‘open eyes’’ are designed to be more intelligent and perceptive. Such networks, which can sense and
perceive the surrounding environment ubiquitously, could serve as the backbone for revolutionizing the communications ecosystem.

specifications, expanded horizons for future development can
be explored. The goal of intelligent networks is to create a
full self-learning network that will be adaptive, responsive,
self-healing, fully autonomous, and cost-effective. Future
directions and opportunities to develop advanced intelligent
networks are predicated on revolutions in AI/ML-based
techniques, programmable/intelligent sensors, and IoT pro-
cessing capabilities [6].

Fig. 2 illustrates H-RAN disaggregation split into three
components (cloud, edge, and cell sites) with extensive
use of sensor data and AI/ML workflow for different
functional units, which effectively embraces and extends the
functional disaggregation paradigm for NG-SRAN. In terms
of edge and cell sites, H-RAN disaggregation splits the
conventional NR next-generation node base station (gNB)
into sensors and radio unit (SRU), Hydra-distributed unit
(H-DU), and Hydra-central unit (H-CU). The SRU is a

logical node located in cell sites that hosts sensing and
communication components integral to its function within
the H-RAN architecture with limited signal processing
capabilities, so deployment is simple and cost-effective. The
Fronthaul (FH) interface [10] is the data communication link
between the SRUs and H-DU. As shown in Fig. 1, H-DU is
a logical node hosting sensing and communication layers in
addition to AI/ML D-engines based on a functional split and
is deployed at the edge of the network. The management and
orchestration (SMO) [62], [63] is responsible for controlling
and managing SRUs, H-DUs, and H-CUs. AI/ML D-engines
are designed to make intelligent decisions by utilizing both
communication parameters and sensor data. As a result,
the H-DU can make intelligent decisions that adapt to
changing network conditions and user requirements. The
interface F1 [14] is used as a communication link between
H-DUs and H-CU. The H-CU is typically located at the
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edge cloud or co-located with H-DUs and can oversee the
control andmanagement of multiple H-DUs. TheH-CU gains
a comprehensive understanding of network conditions and
user behavior by combining communication parameters that
encompass various metrics and sensor data. This enables
H-CU to make intelligent decisions that enhance network
performance. The E2 interface [15] is an open interface
between the near-real-time RAN intelligent controllers (near-
RT RICs) and the H-DUs, along with H-CUs. The other
interface that connects RAN intelligent controllers with RAN
nodes is the O1 interface [10].

As described in Fig. 2, the H-RAN architecture includes
two RAN intelligent controllers (RICs) that perform man-
agement and control of the network in the near-RT, namely
H-near-RT RIC and the non-real-time, namely H-non-RT
RIC. Differing from the traditional RICs-based O-RAN spec-
ifications, the H-RIC controllers in H-RAN architecture are
designed to make intelligent decisions using various inputs,
including communication key performance measurements
(KPMs) metrics, sensor data extracted from cell sites of
the RAN, and user reports, among others. H-RICs can
be defined as a collection of computing resources and
virtualization infrastructure located in a single or multiple
physical data centers [8]. In general, H-RICs typically employ
AI/ML-based policy and control capabilities for handling
real-time/historical communication parameters and sensor
features.

C. SENSING AND RADIO UNIT (SRU) ARCHITECTURE
In H-RAN terminology, the SRU is a logical node hosting
various components integral to its function within the H-RAN
architecture to transmit and capture communication and
sensor signals with limited processing capabilities. More
specifically, the SRU is designed to merge communication
and sensing units into a single unit.

The SRU architecture’s modular and disaggregated
approach allows for interoperability between equipment from
different vendors, potentially leading to increased innovation
and cost-effectiveness in the deployment and management of
sensory and radio access networks. As shown in Fig. 3, the
SRU hosts three main units, which are the communication
unit, the sensing unit, and the FH transport unit. The
communication unit is composed of data transmission and
receiving components, while the sensing unit consists of
sensor data collection and preprocessing components, and
both the communication unit and sensing unit are interfaced
through the FH transport unit.

Indeed, the functions of an SRU can vary depending on the
specific implementation and deployment scenario. According
to the H-RAN specifications, most of the baseband and
sensing processing for the cluster of SRUs is performed
and centralized in H-DU, which are connected through
high-speed FH interfaces [10]. This permits more refined
signal processing and load balancing while saving expenses.
Fig. 3, illustrates the distribution of signal processing and
sensor physical layers within a SRU. Typically, the SRU

sits at the cell sites of a network, hosting sensors and radio
antennas, from which it performs various sensing and radio-
related functions.

Sensors typically receive their primary inputs from phys-
ical parameters or phenomena of interest (e.g., RF signal,
light signal, emitted, reflected, refracted, or scattered from
the environment), and typical outputs with appropriate
signal processing include angles, distance, velocity, location,
motion, direction, identification, and many others. For
instance, the input to the MMW radar sensor is electro-
magnetic waves, which generate and transmit signals in
the form of continuous waves or pulsed signals. As the
transmitted signals interact with objects in the sensor’s field
of view, they reflect back toward the sensor. Reflected
signals provide information about objects, such as their
distance, velocity, size, and angle. Similarly, other sensors
(e.g., GPS, cameras, radars, lidars, etc.) capture data from
the environment in a variety of formats and modalities, such
as (visual, radio, thermal, depth data, etc.). As shown in
Fig. 2, data pre-processing (DPP) is performed on various
sensor data to ensure consistency and compatibility for
preparing the data for further analysis. This can involve many
processes (calibration, synchronization, resampling, filtering,
dimensionality reduction, feature extraction, data splitting,
etc.), to account for differences in sensor characteristics,
data formats, or sampling rates. In the DPP, adjusting the
synchronization between the communication signals and
the sensing signals flowing into SRU is performed to
ensure that data from sensors and communication devices
are consistently timestamped. This accuracy is crucial for
correlating events, making decisions, and analyzing data.
In addition, time synchronization protocols can provide
high-precision time synchronization for SRU in the network.
Next, once the data is pre-processed, a possible next step is to
fuse data from different sensors. A simple data fusion based
on AI/ML algorithms can be applied in an SRU to combine
features from multiple sensor data elements at an early stage
to create a single integrated feature vector that represents a
unified multiple modalities representation of the environment
or objects of interest.

As for the interfaces, an SRU adheres to standardized inter-
faces to enable interoperability between different H-RAN
components, from edge control to virtualization, such as
RICs, H-CUs, and H-DUs as illustrated in Fig. 2. In addition
to the C/U/M/S planes of the current O-RAN FU [15], H-
RAN FH protocol also features additional planes that have
been developed for sensing data delivery in a synchronized
manner with IQ sample data in the user plane, while the
control and management planes are extended to include
the sensing portion, namely a perception plane (P-plane)
and an internet of things-plane (IoT-plane). However, the
P-plane is used for the transport of data, in addition to
sensor layer control commands, to have a comprehensive
understanding of the network’s real-time status and evolving
conditions. This enables operators to anticipate changes in
network demand, plan for future expansions, and proactively
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FIGURE 3. Sensing and Radio Unit (SRU) architecture.

address potential issues. Furthermore, the IoT-plane plays
a crucial role in enabling users and systems to interact
with and control IoT devices and networks. These interfaces
facilitate data exchange, remotemonitoring, andmanagement
of IoT-connected objects and growing ecosystems.

D. HYDRA DISTRIBUTED UNIT (H-DU) ARCHITECTURE
The H-DU is a logical node that hosts various network func-
tions related to sensing and RAN functionalities, typically
located at the edge of the network. It plays a crucial role
in the overall network architecture by allowing a cluster
of SRUs to be configured and controlled in accordance
with network requirements and policies. As demonstrated
in Fig. 4-(a), (b), in a similar manner to the modularity of
the SRU architecture, the H-DU architecture is composed
of communication layers and sensory layers, as well as
H-DU interfaces and AI/ML D-engines. Unlike traditional
monolithic O-DU architectures, H-DU is designed to control
and manage sensor data and communication parameters
simultaneously derived from a cluster of SRUs with broad
AI/ML capabilities. The H-DU architecture is intended
to achieve several goals, including perception, artificial
intelligence, openness, virtualization, and disaggregation.
As demonstrated in Fig. 4-(a), (b), in addition to conventional
O-RAN layers of the wireless protocol stack, radio link
control (RLC), medium access control (MAC), and high-
PHY [11], H-DU architecture is designed to further host
new innovative. The new innovative layers enabled by the
H-DU architecture can be incorporated in conjunction with
traditional layers to supplement and implement common and
innovation functions, which include feature extraction and
decision-making (FEDM), status estimation and decision-
making (SEDM), as well as control and adaptive mechanisms
(CAM). Here are some major H-DU protocols and functions:

1) FEATURE EXTRACTION AND DECISIONS-MAKING (FEDM)
The FEDM layer is responsible for collecting the data fusion
set from a group of SRUs, completing feature selection
and extraction, classification, decision level fusion, and
decision-making, which represents the process of extracting
sensory relevant features and information from a cluster
of SRUs for further analysis. However, the specific FEDM
architecture design and implementation may vary among

different vendors, deployments, and technologies employed,
but generally, FEDM is a sensing data processing method.
Here’s a general overview of the steps involved as depicted
in Fig. 4(b): assuming the output fusion dataset of the cluster
of SRUs is an input to the FEDM layer. Next, feature
selection and extraction in FEDM is used to choose a subset
of the most relevant features from the fused dataset while
discarding irrelevant or redundant features. This subset of
features should capture the essential information needed for
analysis, classification, and modeling tasks. Let us assume
that we have feature sets extracted from the fused dataset
and measured simultaneously, where each feature set consists
of an array of samples. The uni-modal feature selection and
extraction of each sensor modality are used in FEDM as
data representation, with each mode capturing a different
aspect of the environment. When dealing with fused data
from multiple sensors, the feature selection and extraction
unit becomes a critical component of the data processing
pipeline. High-dimensional data, especially when fused from
multiple sensors, can result in an increase in computational
complexity. Therefore, the feature selection and extraction
unit reduce dimensionality by selecting a subset of features
that are most relevant to the task at hand and extracting
valuable information from the combined sensor data. After-
ward, classifiers in multi-source data fusion are used to assign
higher weights to classifiers with high accuracy, and then
combine multiple classifiers with a weighted combination to
obtain a strong classifier with high precision. Next, decision-
level fusion is a process where decisions or outputs from
multiple sensors are combined to make a final decision.
This approach is often used when multiple sensors provide
complementary information, and combining their outputs can
lead to a more accurate and robust decision. Indeed, the
fusion of different modes provides a means of compensating
for incomplete or inaccurate information. As indicated in
Fig. 4(b) AI/ML D-engines for FEDM can make decisions
based on a set of algorithms that are trained to automatically
analyze and interpret data, make predictions, estimate the
status, detect patterns, and uncover trends discovered in
the data. AI/ML D-engines can continuously learn and
adapt to changing conditions and environments based on
real-time feature extraction. This can include methods
(e.g., object detection, tracking, classification, segmentation,
etc.) to identify and extract meaningful features or objects
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FIGURE 4. Hydra Distributed Unit (H-DU) architecture.

from the combined fused data. Once the features have
been extracted, the next step of AI/ML D-engines is to
fuse them to create a comprehensive representation of the
scene or objects. The fused and extracted features can
then be used in decision-making for various applications
(e.g., beam management (BM), advanced driver assistance
systems (ADAS), autonomous driving (AD), surveillance,
environmental monitoring, situational awareness, pattern
recognition tasks, IoT applications, etc.). Finally, a decision-
making module based on AI/ML D- engines controls a set
of decisions and takes responsibility for several functions,
including:

• Location: AI/ML D-engines can process sensor data to
extract meaningful information related to object location
and predict the next position by combining data from
multiple sensors.

• Recognition: ML algorithms categorize objects based
on their features, such as size, shape, and texture. This
can help distinguish between various types of users (e.g.,
cars, bicycles, pedestrians, etc.).

• Velocity: By tracking an object’s movement over
time, it is possible to estimate its velocity. This can
be accomplished using various available sensors, for
instance, by analyzing the Doppler shift in radar signals,
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comparing successive images captured by a camera,
or tracking how the distance to an object change between
consecutive lidar measurements.

• Direction: Multi-sensor data fusion can help estimate
the direction of an object by analyzing the relative
positions of the sensors and the object. This can
be further refined using machine learning algorithms
that recognize patterns of movement associated with
different directions.

• Acceleration:An object’s acceleration can be estimated
by measuring its speed changes over time. The process
can be carried out using sensors (e.g., accelerometers,
radar signals, Doppler shift changes, analyzing camera
visual data, lidar, etc.).

• Target tracking: H-DU can use data fusion with
overlapping fields of view ofmulti-sensors installed on a
cluster of associated SRUs along with advanced AI/ML,
to track targets’ movement in real-time. Tracking targets
using sensors involves continuously monitoring and
estimating the position, velocity, and other relevant
attributes of objects or entities of interest over time.

2) SENSING AND COMMUNICATION-BASED AI/ML
D-ENGINS DECISION MAKING (SCEDM)
As seen in Fig. 4(b) SCEDM interfaces with communication
layers and sensing layers jointly to perform several functions
related to beam management and network adjustment. With
H-DUs, network operators are able to programmatically
control and configure various aspects of the RAN through an
AI/ML D-engine model. AI/ML D-engines in SCEDM can
dynamically adapt to communication parameters and sensor
data and make real-time decisions to optimize, and respond
to changing conditions, leading to improved efficiency and
performance [6]. Listed below are some of the functions that
SCEDM is able to provide.

• Beam alignment: Object detection in sensing systems
is logically analogous to localization and location infor-
mation estimation in communication systems [45], [46].
Sensor fusion data can provide information about chan-
nel conditions (e.g., device status, signal strength, phase,
directionality, etc.) [1], [2], [3]. The radio unit collects
the radio channel’s characteristics matrixes between the
SRU and the UE (e.g., channel state information (CSI),
MIMO channel, signal-to-interference-plus-noise ratio
(SINR), beamforming, path loss, delay spread, doppler
shift, etc.) [11]. AI/ML D-engines can process this
data in real-time to automatically estimate the optimal
beam alignment parameters, (e.g., beam direction, beam
width, beamforming weights, etc.). This can be achieved
using techniques such as reinforcement learning [64],
where the AI/ML D-engines learn from the sensor data
and adjust the beam alignment parameters to reduce
the beam search space and adapt to changing channel
conditions and user mobility [52].

• Beam selection: Once the beam search space is
minimized and adjusted, AI/ML D-engines can select
the optimal beam pairs [46]. Sensor data and commu-
nication KPM metrics (e.g., channel conditions, user
locations, environmental factors, etc.) can be trained by
AI/ML D-engines to make intelligent beam selection
decisions. Contextual information from sensors (e.g.,
user mobility patterns, network congestion levels, etc.)
can also be used by AI/ML D-engines to make
context-aware beam selection decisions.

• Beam tracking: Similar to object detection methods,
object tracking in sensing systems is logically equivalent
to beam tracking in communication systems [56].
Sensors provide information to communication systems
by capturing visual information about the surrounding
environment. The radio unit can provide several com-
munication KPM metrics that need to be considered
and monitored in real-time to dynamically adjust the
beamforming direction. AI/ML D-engines are capable
of processing and extracting relevant information from
communication parameters and sensing observation
(e.g., beamforming weighting coefficients, received
signal strength (RSS), CSI, round-trip time (RTT),
Doppler frequency shift, receiver’s position, speed,
acceleration, orientation, etc.). This can help predict
the antenna direction and adjust the beam direction
accordingly.

• Beam switch: Sensor data (e.g., UE location, velocity,
orientation, etc.) can provide valuable information
about the environment and wireless channel conditions.
In addition, continuous monitoring of KPM metrics is
available through the communication system. Therefore,
the combination of this information can be trained by
AI/ML D-engines to predict the optimal beam direction
and switch between SRUs within the same cluster
in real-time to maintain a strong and stable wireless
connection. Specifically, this can be achieved by imple-
menting interaction between AI/ML D-engines and the
MAC layers based on radio conditions measurements.

• Blockage prediction: These techniques typically
involve multiple sensors to detect obstacles and predict
when communication beams might be blocked [50],
[51]. Sensors can provide real-time data on obstacle
location, distance, size, and shape. Based on this
information, AI/ML D-engines can be used to analyze
sensor data and make predictions about when and
where obstacles might obstruct communication beams.
This is done by taking proactive measures to avoid
or mitigate beam blockages [50]. Based on these
predictions, the communication system can proactively
adjust beamforming parameters, routing, or transmit
power.

• Environmental adjustment: Sensors can provide infor-
mation about environmental conditions that may affect
radio frequency (RF) beam performance (e.g., rain,
fog, interference from other sources, etc.). These
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performance issues can be identified by the com-
munication system’s continuous monitoring of KPIs,
including link quality metrics. Cooperation between
sensory and communication systems in H-DU, H-CU,
and RICs can use this information to dynamically
adjust beam parameters, such as beam direction or
transmit power, to optimize the communication link and
facilitate smooth handover decisions. For example, if a
beam is experiencing high interference due to weather
conditions, a handover can be triggered to transition to
a less congested beam by H-CU. The synergy between
continuous monitoring of environmental conditions
and KPIs empowers communication systems with the
intelligence to adapt and optimize RF beam performance
in real time.

3) CONTROL AND ADAPTIVE MECHANISMS (CAM)
Indeed, H-RANs introduce a significant trend in the evolution
of future networks by merging various technologies and
bringing them together (e.g., communication networks,
sensor networks, IoT networks, and possibly other emerging
technologies). Furthermore, a single H-DU is designed to
control and coordinate the functions of a larger group of SRUs
than a traditional O-DU, thus covering a larger area. As a
result, this design requires the H-DU to include additional
components and functions to meet the requirements of an
extensive heterogeneous network. As depicted in Fig. 4(b),
the CAM layer in H-DU interfaces with the communica-
tion and sensing layers simultaneously to perform several
functions in response to sensor inputs and communication
parameters. In addition, the CAM serves as an intermediate
point, facilitating communication between different H-RAN
components, such as H-CUs and H-RICs. Specifically, it can
perform the following functions in conjunction with other
H-RAN components:

• Coordinate and control signaling (CCS): The CCS
in CAM is responsible for overseeing the flow of
control signaling messages between the SRUs, the
H-DU, the H-CU, and the core network. Sensory
and communication networks can collect real-time and
historical data related to users’ status (e.g., mobility,
movement history, position, velocity, QoS monitoring,
etc.). Different AI/ML algorithms can be utilized locally
in various H-RAN components, such as RICs, H-CU,
and H-DU for subsequent analysis of various aspects
of the network. Therefore, the H-DU architecture can
achieve a higher level of adaptability to RLC, MAC, and
High-PHY functions. This contributes to the overall goal
of creating a more intelligent and responsive wireless
RAN, which makes it well-suited to address diverse
requirements.
It’s crucial to note that H-DU functions, such as
connection management, QoS management, traffic
management, and resource allocation management are
a collaborative effort involving multiple components

in the H-RAN architecture. Therefore, the H-DU,
in conjunction with the H-CU and other core network
functions, contributes to optimizing the H-DU compo-
nents’ functions.
Integrating real-time and historical sensory data with
RLC layer decision-making processes might enable
more intelligent and context-aware management to
prioritize RLC layer processing to ensure low-latency
communication. Moreover, at the MAC layer, the
combination of real-time and historical sensory data,
and communication parameters can provide insights into
current network conditions, including signal strength,
interference levels, user mobility, user density, etc.
Users’ quality of service (QoS) requirements may vary
based on their mobility and location, among other fac-
tors. Sensory data can be used to differentiate QoS levels
for different user groups or locations. For instance, users
in fast-moving vehicles may require low-latency con-
nections, while stationary users may have different QoS
needs. QoS parameters can be dynamically adjusted to
optimize traffic flow within each group. Additionally,
the high-PHY layer is capable of optimizing signal
transmission and reception by utilizing real-time and
historical sensor data. For example, sensor data, such as
location, speed, and direction, can be used to optimize
beamforming strategies. This information enables the
high-PHY layer to adjust transmission beam direction
for enhanced signal strength and reliability.

• Performance monitoring and management (PMM):
The PMM in CAM is responsible for monitoring and
analyzing performance data from the cluster of SRUs
to optimize the RAN for maximum performance within
its designated area of responsibility by cooperating with
H-CU, and the core network. It collects performance
sensing data and key performance indicators (KPIs)
from SRUs within its domain. Based on the collected
data, the CAMmay make local decisions in cooperation
with higher layers of the protocol stack to optimize the
SRAN within its coverage area.

• IoT platforms: IoT platforms provide edge computing
to manage and analyze data from connected devices
in collaboration and coordination with other H-RAN
components.

E. HYDRA CENTER UNIT (H-CU)
The H-CU is a logical node in the H-RAN architecture
that provides support for the higher layers of the protocol
stack and typically has responsibility for functions (e.g.,
radio resource management, connection management, data
plane processing, sensor decision management, to name a
few). At a high level, the H-CU oversees the connection
between the core network and the edge and cell sites of the
H-RAN. It provides a centralized point of control for the
RAN by being accountable for coordinating the functions
of the H-DUs and SRUs to ensure intelligent and reliable
operation within a specific geographical area. In addition to
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FIGURE 5. Hydra Center Unit (H-CU) architecture.

the connection management specified by the conventional
open central unit (O-CU) specifications [8], [9], the H-CU
also performs a variety of innovative functions in support
of AI/ML C-engines, sensing layers, and higher layers of
the protocol stack. As depicted in Fig. 5-(a), (b), in addition
to hosting conventional O-RAN components such as radio
resource control (RRC), packet data convergence protocol
(PDCP), and service data adaptation protocol (SDAP) [12],
the H-CU has developed new intelligent components, which
enable more sophisticated and intelligent cognitive networks
that are capable of supporting a wide range of use cases
and applications, namely sub-decision fusion level protocol
(SFLP), intelligent decision management protocol (IDMP),

and self-optimizing and healing protocol (SOHP). H-CU
interfaces with H-DUs, which perform distributed baseband
processing functions. This interface facilitates communica-
tion and coordination between the centralized and distributed
components of the H-RAN architecture. In contrast to the
conventional O-CU architecture, the H-CU architecture is
split into three logical components. In addition to the con-
ventional control plane (C-plane)/user plane (U-plane) [8],
H-CU invented an additional plane, called the P-plane.
This logical split provides different functionalities to be
deployed on various hardware platforms across the network.
As demonstrated in Fig. 5-(a), (b), the H-CU-user plane
(H-CU-UP) runs SDAP and PDCP-U, the H-CU-control
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plane (H-CU-CP) runs RRC and PDCP-C, while the H-CU-
perception plane (H-CU-PP) runs SFLP, IDMP, and SOHP.
H-CU is designed to support interfaces defined by theO-RAN
interfaces Alliance for communication and coordination
with other network components (e.g., E1, E2, O1, F1-C,
F1-U, etc.) [14], as well as introducing additional interfaces,
namely (F1-P and F1-IoT). Specifically, F1-P is an interface
between the H-CU-PP and the H-DU. F1-P is primarily
responsible for handling error reporting, recovery procedures,
and control plane sensing messages between the H-CU
and H-DU. These control messages are used for network
management, configuration, control, and coordination. F1-P
may also carry sensing and communication synchronization-
related signaling, ensuring that the H-DU is synchronized
with the network’s timing and frequency references. F1-IoT
is a potential networking interface for IoT applications that
require real-time or near-real-time communication. Thanks
to this connectivity, devices can transmit data and receive
instructions. Here’s a breakdown of key points of the main
functions of the H-CU-PP components. Here’s a breakdown
of the main potential functions of the H-CU-PP components.

1) SUB-DECISION FUSION LEVEL PROTOCOL (SFLP)
SFLP performs multiple sub-decision fusions and final
decision-making. Multiple sub-decision fusion refers to the
integration process where different sources of sub-decision
information are combined into one representational for-
mat [65]. SDLF is used to combine inputs from several
sub-decisions coming from different H-DUs connected to a
single H-CU at the H-CU final decision level to yield the
final or higher decision that can be used to take several
actions. In this scenario, decision-level fusion information
relies on reasoning and inference while handling uncertainty,
which increases confidence. Additionally, it is possible
to enhance accuracy by integrating multiple sub-decisions
into the final decision-making process [66]. According
to the H-RAN design architecture, the cluster of SRUs
is connected to one or more H-DUs, and the cluster of
H-DUs is connected to one or more H-CUs. Considering
the distribution manner of cooperative SRU deployment,
we consider a scenario in which the UE exists simultaneously
in the field of view (FOV) of multiple SRUs. Therefore,
each SRU operates independently, detecting and classifying
objects simultaneously. The UE can be detected and located
within the area of interest based on multiple SRU cooperative
detection technology, in which the UE’s information is
extracted from multi-SRUs overlapping FOVs in real-time.
Due to the centralized control andmanagement of theH-RAN
network, all associated SRUs collaborate to transfer target
information to the H-DU, and all H-DUs transfer target
information to the correspondingH-CU. For instance, assume
the scenario in which the UE is located between two SRUs
connected to different H-DUs simultaneously. As a result,
the UE’s information extracted from each SRU is transferred
to the associated H-DUs, which are then combined into the

associated H-CU. Sharing this information is essential in
many applications, including but not limited to beam tracking
and intelligent handover.

2) INTELLIGENT DECISION MANAGEMENT PROTOCOL
(IDMP)
IDMP is interfaced with sensor layers and communication
layers simultaneously, and it is responsible for several
functions related to analyzing and training the integration of
sensing data and communication parameters (e.g., location
management (LM), handover preparation (HP), handover
management (HM), centralized orchestration (CO), to name
a few). It collects and analyzes sensing data from H-DUs to
decide whether a handover is necessary. It also coordinates
the transfer of ongoing communication sessions from the
old cell to the updated cell. In general, H-RAN perception
networks can provide additional context and real-time infor-
mation about the network environment. To maintain seamless
communication while moving about, AI/ML C-engines can
use this data to predict user trajectories and proactively
prompt handover decisions [48]. Particularly, if a user rapidly
moves in a specific direction, a handover can be triggered
to preemptively switch to a beam that aligns with the
user’s movement direction. A summary of IDMP’s potential
functions and operations is as follows:

First, after SFLP has reached a final decision, it provides
information about the physical environment and conditions.
The LM in IDMP is designed to detect the user’s status,
which is essential for predicting the user’s trajectory and
making handover decisions. Mobility pattern information can
be extracted from SFLP, including user location, velocity,
direction, and acceleration. Afterward, the HP is used for
handover pre-processing, which involves gathering informa-
tion from sensing and communication layers and training
that information by AI/ML C-engines to identify patterns,
trends, and potential handover scenarios. Sensor data along
with ongoing communication characteristics can be used to
predict when a handover is needed. This can be done by
analyzing user movement patterns and trends and estimating
their trajectory. AI/ML algorithms can then be applied to
process this sensor data, along with other information (e.g.,
network conditions, traffic load, user preferences, etc.). The
proactive handover decision-based H-RAN can be designed
based on a tradeoff between probabilities of link blockage,
and coverage. Following that, the HM is used to manage
the handover decision through interfaces between H-CU
and other components in the H-RAN architecture, such as
the H-DU, RICs, and higher-layer controllers, collaborating
to make handover decisions that are grounded in real-time
data and intelligent algorithms, considering all aspects, such
as handover triggers, resource allocation, fault tolerance,
load balancing, etc. Without disrupting the user experience,
HM is also responsible for feedback loops (FL) which
are used to continuously monitor communication system
performance and adjust parameters based on feedback. This
allows for real-time optimization and adaptation to changing
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communication conditions. In summary, the combination
of H-CU-UP, H-CU-CP, and H-CU-IP functions can allow
for dynamic control and optimization of beam handover by
proactively triggering beam handover decisions and sending
these decisions to H-DUs. Thus, the adjacent H-DUs will
be fully aware of the UE’s movement, allowing them to
make handover decisions proactively. Next, CO is used for
a centralized orchestration function of AI/ML engines that
can be used to manage and coordinate RICs, H-CUs, and
H-DUs functions in the H-RAN [62]. This function can
provide a unified view of the network and ensure that the
RICs, H-CUs, and H-DUs are configured and operated in
a coordinated and efficient manner by leveraging advanced
analytics, automation, and intelligent decision-making.

3) SELF-CONFIGURATION AND SELF-HEALING PROTOCOL
(SOHP)
This protocol enables H-CUs to adjust dynamically, make
decisions, and self-heal by cooperating with other H-RAN
components, such as RICs and H-DUs to maintain reli-
able and efficient operations at the network edge by
simultaneously connecting to sensors and communication
layers. For instance, when perceptual network failures or
anomalies are detected through monitoring and analysis,
the H-CU can use communication parameters along with
real-time/historical sensory data and AI/ML C-engines to
autonomously configure its parameters or settings to adapt to
changing conditions. This can involve several functions (e.g.,
rerouting traffic, reconfiguring network elements, activating
backup links or nodes to restore network connectivity and
performance, switching to an alternate frequency band,
dynamically adjusting transmission power, etc.). Below is an
overview of SOHP’s responsibilities and functions.

• Environment monitoring and analytics (EMA): The
EMA in AI/ML C-engines and environmental adjust-
ment in AI/ML D-engines cooperate with management
and orchestration in RICs for monitoring and analyzing
network performance in real-time in response to changes
in the climate environment. For example, when H-DUs
detect climate-related changes that could affect signal
propagation, they report this information to the H-CU.
The H-CU, with its centralized view and access to
weather data by Management and Orchestration to
RICs, can make informed decisions about adjusting
transmit power levels. For example, in anticipation of
heavy rain that might attenuate signals, the H-CU in
cooperation with RICs can proactively increase transmit
power in affected areas to maintain service. EMA might
adjust transmit power levels, implement load balancing,
take preventative measures in anticipation of adverse
environmental conditions, etc. Indeed, this protocol is
crucial due to the fact that the promisingMMW/THz fre-
quency bands are adversely affected by climate change.
Using sensor data, user device reports, and network
logs, the EMA can help operators identify patterns and

anomalies in the network environment. For instance,
sensors (e.g., lidar, temperature, humidity, pollution
levels, RF sensors, visual monitoring sensors, etc.)
are capable of continuously collecting data from their
respective environments, along with communication
parameters (e.g., network traffic load, cell utilization,
device statistics, etc.). This integration provides a
comprehensive view of the network’s performance
concerning its environment.

• Self-healing and fault management (SHFM): AI/ML
engines can continuously monitor real-time/historical
sensory data, communication parameters, and feedback
to detect anomalies or network faults. AI/ML models in
H-DUs, H-CU, and RICs can be collaboratively based
on managing and orchestrating virtualized resources in
the network to identify irregular patterns or unexpected
changes in data. For example, a sudden drop in signal
strength or a significant increase in latency might
indicate a problem. Once an anomaly is detected,
AI/ML algorithms can perform root cause analysis to
determine the source of the issue. This could be due
to equipment malfunction, interference, environmental
factors, or other network conditions. Depending on
the severity of the issue, AI/ML C-engines can trigger
automated responses or re-report the issue to the core
network.

• Adaptive and self-learning (ASL): As part of H-RAN
cognitive and intelligent networks, ASL is crucial for the
evolution of conventional wireless networks, especially
in the context of 6G and beyond. It takes responsibility
for adapting and learning based on real-time/historical
data and feedback without human intervention, making
the network more intelligent and adaptive over time.
ASL, along with H-DUs and core networks jointly and
cooperatively, operates to recognize patterns, predict
future network behavior, and make informed deci-
sions to optimize communication parameters. These
adaptability and self-learning capabilities enable the
network to continuously improve its ability to meet the
diverse requirements of emerging applications and use
cases.

• Intelligent traffic steering and quality of service
(QoS) optimization (ITQSO): In the H-RAN archi-
tecture, QoS optimization in O-RAN networks is
a collaborative effort involving multiple components
and technologies (e.g., RICs, H-CU, H-DU, KPM
metrics, sensors, AI/ML engines). These components
work together to monitor network conditions, allocate
resources, enforce policies, and make real-time adjust-
ments to meet the QoS needs of different services and
users. Indeed, the ITQSO in H-CU plays a central
role in managing and controlling QoS, by continuously
monitoring and analyzing real-time KPM metrics and
sensor data in addition to overseeing the orchestration
and control of traffic steeringwithin the network. AI/ML
engines in H-CU and H-DU can dynamically steer
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traffic to optimal paths, prioritize critical services, and
dynamically adjust QoS parameters.

F. HYDRA RAN INTELLIGENT CONTROLLERS (H-RICS)
According to the O-RAN specifications [15], The near-RT
RIC serves as the core of control and optimization of the
RAN, which collects communication data from the lower
layers. In addition, the near-RT RIC enables management
and control of the network in near-real-time (10 ms to
1 s) and comprises various applications supporting custom
logic, known as xApps [59]. Meanwhile, the non-RT RIC
is a part of the SMO [65] framework and operates on
a time scale longer than 1 s, supplementing the near-RT
RIC for intelligent optimization and operation. The non-RT
RIC provides custom logic rApps applications to offer
value-added services to support and facilitate RAN opti-
mization and operations [19]. Unlike conventional RICs,
Fig. 6 demonstrates the distributed architecture of H-RICs
computing resources, with sensing and communication data
exchange over open interfaces through internet-based cloud
platforms, expanding the application of AI/ML engines
on networks. The H-RAN perception incorporates two
logical controllers with a centralized and abstract point of
view on the overall network, namely (H-near-RT RIC and
H-non-RT RIC) applications, and access to open interfaces
for collecting, managing, classifying, and monitoring data.
H-near-RTRICs interact with H-DUs and H-CUs using direct
interface termination /citec9 to implement software control.
H-RAN’s unique characteristics enable the collection and
analysis of data from various data sources, including KPM
metrics, sensors, user devices, feedback, etc., to monitor
network conditions continuously. Therefore, in this view, the
proposed H-near-RT RIC platform introduces an additional
component, called a near real time-sensor data collection and
processing center (N-SCPC) as depicted in Fig. 6, which
supplements the main components of the traditional near-RT
RIC platform. The N-SCPC is developed to coordinate and
cooperate with the rest of the H-near-RT RIC components
to implement several applications and functions for contin-
uous network monitoring. More specifically, the H-near-RT
RIC is designed to work collaboratively with multiple
H-RAN components within the network. These components
provide sensing, radio access, and connectivity functions.
Therefore, the H-Near-RT RIC operates in a closed-loop
control fashion, which continuously monitors network con-
ditions, gathers fine-grained data from the lower layers,
and adjusts parameters based on predefined policies and
objectives.

Meanwhile, the H-non-RT RIC manages and controls
AI/ML workflow operations, model training, control infer-
ences, and rApps updates [15]. In addition to collecting
historical data on KPM metrics, user activity reports,
and measurement reports defined by conventional non-RT
RICs [19]. H-non-RT RICs also collect and analyze historical
sensor data from the network. Therefore, the non-RT RIC
incorporates an additional component, called the historical

sensor data collection and processing center (H-SCPC) as
depicted in Fig. 6, which supplements the main components
of the traditional non-RT RIC platform. The H-SCPC
can leverage historical data for trend analysis and pattern
recognition. By understanding past users’ and network
behavior, the RIC can make more informed decisions
regarding resource planning, capacity optimization, and
network expansion. The policy and strategy engine are the
core components of the H-non-RT RIC. It defines and
manages network policies, strategies, and objectives. These
policies guide network behavior and decision-making within
the RAN. Therefore, H-non-RT RIC can use offline telemetry
data to monitor network performance and identify areas
where optimization is needed. Moreover, it utilizes historical
sensor data and other sources of information to provide
enrichment information for the H-near-RT RIC. The H-non-
RT RIC can dynamically reconfigure the group of beams to
optimize network performance and improve service quality
for end-users (e.g., RAN sharing, service level agreement
(SLA), antenna parameters, frequency planning, interference
management, etc.).

III. H-RAN FRAMEWORK
A. MULTI-SENSOR DATA FUSION-BASED METHOD
Leveraging the prior information provided by a single
sensor (e.g., GPS, GNSS, radar, lidar, cameras, etc.) is not
always sufficient to cope with complex and challenging
environments [65], [66], [67]. This is attributed to the fact
that single-sensor systems cannot always efficiently cope
with complex and challenging environmental conditions. For
instance, radio sensing has relatively high distance accuracy,
while its directional accuracy is lower in terms of azimuth
and elevation [44], [45], [67]. In contrast, a camera provides
high spatial resolution but is less accurate at estimating
distances [54], [67]. The other trade-off to be observed
is that radar detection accuracy is inferior to a camera
and cannot accurately reflect the precise distribution of the
surrounding scatters [67], while the camera is more sensitive
to lighting and weather conditions. It can be observed from
the tradeoff that radar and vision sensors complement each
other [65]. The fusion of sensing data can take advantage
of various sensors’ information and characteristics, thus
reducing missed detection rates under adverse environmental
conditions [66]. The proposed H-RAN can be adapted to the
fusion of various types of sensors (e.g., GNSS, radar, lidar,
cameras, etc.). Each sensor offers a distinct perspective and
captures specific aspects of the environment. By combining
data frommultiple sensors, a more comprehensive perception
of the surroundings can be achieved. This allows for a richer
understanding of the environment and enhances situational
awareness.

1) H-RAN-BASED BEAMFORMING
The H-RAN architecture is capable of supporting five
different beamforming solutions: 1) Predefined beamforming
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FIGURE 6. H-RAN Intelligent Controllers (RICs) architecture.

(P-BF) [19]: P-BF refers to the use of fixed beamforming
vectors that are pre-configured and advertised by the SRUs
to the H-DU during startup. 2) Attribute-based beamforming
(A-BF) [19]: A-BF is a technique in which the H-DU selects
beamforming vectors according to specific attributes, such as
azimuth and elevation angles. 3) Weight-based beamforming
(W-BF) [19]: W-BF is a technique in which the H-DU
specifies the weights for generic time and/or frequency
domain beamforming vectors. 4) Channel-information-based
beamforming (CSI-BF) [19]: CSI-BF is a technique in which
the H-DU needs to estimate CSI for each user based on the
received signal and feedback information. Finally, Sensor
fusion and AI/ML engines-based beamforming, namely (H-
BF): H-BF is an innovative emerging technology that can
help to overcome the limitations of traditional beamforming
techniques, which may be unable to adapt to complex and
dynamic channel conditions in real-time. Moreover, H-RAN
has the potential to open up horizons for innovation as well
as the development of beamforming technologies tailored to
H-RAN’s unique characteristics.

B. H-AI/ML WORKFLOWS
AI/ML has emerged as a fundamental paradigm to orchestrate
communication and information networks from cloud, edge,
and cell sites. For instance, supervised learning (SL) is a
type of ML where the algorithm is trained on a labeled
dataset, meaning it learns from input-output pairs bymapping
input data to the correct output. Fig. 7, illustrates a model
of the proposed AI/ML D-engines, AI/ML C-engines, and
H-RICs engines in H-DU, H-CU, and H-RICs of the H-RAN
platform, respectively. In contrast to conventional AI/ML
engines in O-RAN, which gather communication data,
H-AI/ML engines in H-RAN architecture are in the position
of gathering sensor data, communication information, user
reports, and other sources of information from cluster SRUs.
The H-RAN specifications consider preliminary data pre-
processing and, in this step, data for both sensors and
communications layers are merged, shaped, and formatted
according to the input size of the specific H-AI/ML engine
models. The SMO framework can be used to manage all
orchestration, management, and automation procedures to

VOLUME 12, 2024 2177



R. I. Abd et al.: Hydra-RAN Perceptual Networks Architecture

FIGURE 7. H-AI/ML Workflows Architecture.

monitor, and control RAN components from cloud to cell
sites for different pieces of equipment [62]. Thus, SMO
can enable H-DU, H-CU, and H-RICs to collect all data
being produced, including relevant AI/ML pre-processing
operations. Additionally, the H-DU and H-CU can influence
the SMO framework, which gives the H-DU and H-CU
the ability to indirectly control and manage all the SRUs
connected to the SMO. The NFV in the H-RAN architecture
can be deployed in several locations depending on the
specific network design and requirements including H-DU,
H-CU, cloud data centers, edge computing nodes, etc.
Indeed, the widespread usage of AI/ML engines within
H-RAN components contributes to adapting the network
to rapidly changing network conditions and user behavior
by continuously assessing both real-time and historical
data. AI/ML-based resource allocation is capable of accom-
modating the complexity of modern networks, including
large-scale deployments, and heterogeneous devices [5].
In contrast, conventional networks often rely on standardized
configurations (e.g., static, or predefined configurations) that
may not fully alignwith rapidly changing network conditions.
For the sake of illustration and clarity, this section gives a
brief overview of the operational procedures that regulate the
AI/ML workflow based on online and offline training for the
H-RAN platform, as follows:

• Data collection and pre-processing: The proposed
H-RAN cognitive architecture aims to exploit AI/ML
solutions broadly, and as a result, different types of
interfaces are used for sensors and communication data
collection (e.g., O1, A1, E2, FH, ML, etc.) [15]. Data
collections are stored in various datasets of H-RAN

components (e.g., H-DU datasets, H-CU datasets,
H-RICs datasets, collection data lake centralized repos-
itories, etc.) where it can be extracted upon request.
The H-RAN specifications accommodate a preliminary
phase of the data pre-processing stage. At this stage,
data is shaped and structured to match the input size
of the particular AI/ML model under evaluation for
both training data and online inference data. Data
preparation might require autoencoders for dimension-
ality reduction, in addition to standard AI/ML data
processing techniques including scaling, reshaping, and
standardization [9].

• Online training: In this model, AI/ML models can
utilize online training techniques to fine-tune and update
their parameters based on real-time sensor data and
ongoing communication parameters. This approach
involves continuously updating the model’s parameters
using new data as it becomes available, as opposed to tra-
ditional offline training (batch training) where the model
is trained on a fixed dataset [9]. The pre-trained model
provides a starting point for online training, as new
sensor data and communication parameters become
available. The model then updates its parameters using
online training algorithms. The model learns from the
updated data and adapts its predictions or decisions
based on the latest information. The updated model’s
performance is evaluated using evaluation metrics or
system feedback. This evaluation helps assess the
effectiveness of online training. The online training
process is iterative and ongoing, continuously updating
the model’s parameters as new data arrives. This allows
the model to adapt to changing conditions, evolving
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user behavior, and varying communication parameters.
As observed in Fig. 7. Once models are trained, they
pass through a validation phase to ensure their reliability
and effectiveness. After models are deployed, they
are fed with data to perform diverse online inference
executions (e.g., classification, prediction, management,
and control, to name a few).

• Offline training: In this model, AI/ML models can
be fine-tuned through offline training, also known as
batch training, based on sensor data and communication
parameters [9]. The offline training process involves
training the model on a fixed pre-collection dataset,
followed by applying the trained model for inference or
prediction on new data [10]. In dataset preparation, the
collected data is split into two parts: a training dataset
and a validation dataset [11]. The training dataset is used
for model training, while the validation dataset is used
to assess model performance during training. During the
training process of the AI/ML model, the model learns
to generalize patterns and interactions between the input
data e.g., key performance measurements, sensor data,
user reports, and the desired output. As a similar process
to online training, the fine-tuned model is evaluated
on the validation dataset to assess its performance
and generalization. This evaluation helps determine the
model’s accuracy, precision, recall, or other relevant
metrics. Finally, after successful training and evaluation,
the fine-tuned model can be deployed for inference or
prediction of new unseen data. It can make predictions
or decisions based on the latest sensor data and
communication parameters.

• Continuous online/offline training operations: As
indicated in Fig. 7, the AI/ML online/offline model
has the capability to monitor and analyze the model
deployed across networks to verify that the network’s
performance is not adversely affected by AI/ML
models’ inference outputs. Continuous operation is an
essential component of the AI/ML workflow for analyz-
ing and monitoring intelligence deployment throughout
the network and verifying that AI/MLmodels are precise
and successful [9].

C. DEPLOYMENT SCENARIOS FOR H-RAN NETWORKS
In H-RAN network deployment scenarios, choosing an
architecture that accommodates both communication and
sensor elements is crucial for minimizing complexity and
expense. As an example, dense deployments of sensor
and communication networks in urban areas already exist.
Therefore, realizing the concept of blending sensors and
communication networks into a single cohesive network
interconnected through open interfaces to construct SRUs
reduces both capital and operational expenses. Through
this feature, the H-RAN paradigm derives its strength from
revolutionizing not only future RANs, but also sensing
networks by drastically changing conventional network

design, functions, operations, and deployment. Therefore,
to reduce latency and bandwidth usage, SRU is designed to
use edge computing to process sensor data locally before
transmitting it to the central network. In addition, it must
ensure that sensors and communication equipment adhere to
standard protocols and data formats for seamless integration.

D. H-RAN PARADIGM FUTURE RESEARCH DIRECTIONS
O-RAN Alliance has identified several use cases and appli-
cations for AI/ML workflows to control RAN behavior [14].
However, each of these use cases and applications has its
own unique requirements and challenges. A key objective of
the H-RAN architecture is the provision of additional com-
ponents for managing and optimizing network infrastructure
and operations, spanning from edge systems to virtualization
platforms incorporating real-time/historical sensory data,
broadening the surface of AI/ML automated decision-
making, and computing components that seek to enhance
use cases and applications and improve overall network
performance. In this section, we discuss the advantages and
characteristics of H-RAN architecture and boost the surface
dimension of AI/ML engines to improve network efficiency
by demonstrating potential improvements, functionalities,
and novel applications. In addition, we show some of the
key distinctions between the proposed H-RAN and the
existing O-RAN as listed in Table 1. Finally, we briefly
summarize the future research directions and solutions that
the H-RAN vision intends to achieve and document the
details for future research and studies. It is anticipated that
the H-RAN vision will serve as a major source of inspiration
for researchers in searching for feasible solutions to various
challenges associated with O-RAN implementation [22],
[23]. In addition, H-RAN will open the horizons to a wide
range of innovative use cases and applications. Theoretically,
as indicated in Fig. 8, several areas can be identified as areas
of interest, which are outlined below.

• Beamforming and beam selection/tracking: Multi-
sensor data fusion can provide a wealth of useful
features, and when combined with communication
parameters, AI/ML engines can train models to adjust
beamforming, beam selection, and beam tracking based
on changing network conditions.

• Handover management: Diverse sensors can contin-
uously monitor users’ position and movement while
providing real-time feedback to AI/ML engines. The
combination of sensor feedback and communication
parameters can train AI/ML models to accurately track
the user’s location and predict its future movement.
Predicting future user movements allows the engine
to initiate handovers proactively before signal quality
deteriorates.

• Blockage prediction and avoidance: Real-time sensor
data fusion and ongoing communication sessions can
train AI/ML algorithms to build perceptive and predic-
tive networks that anticipate blocking incidents. AI/ML
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TABLE 1. Below are some of the key distinctions between the proposed H-RAN and the existing O-RAN.

FIGURE 8. H-RAN future research directions and use cases.

algorithms can be used to analyze a mixture of data
to identify patterns and anomalies that may indicate
blockages, obstructions, or deteriorating link conditions
on the communication link.

• Ultra-reliable and low-latency communications
(URLLC): The integration of multi-sensor data fusion
with AI/ML engines represents a powerful approach to
optimize networks, predict potential issues, and ensure

ultra-reliable performance across various applications.
This adaptive and proactive strategy aligns with the
demands of modern communication systems that
require resiliency, low latency, and efficient use of
resources.

• Network automation and optimization (NAO): The
merging of real-time/historical sensory data and com-
munication parameters can play a significant role in
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aiding NAO by providing real-time/ near real-time
intelligent decision-making along with using SDN and
NFV. The network can analyze performance and usage
patterns to dynamically optimize resources for improved
efficiency.

• Dynamic spectrum sharing: Network operators can
create accurate spectrum maps and identify areas
where spectrum resources are underutilized based
on sensor data from a variety of sources, such as
spectrum analyzers and other network sensors. For
instance, if sensors detect a sudden increase in inter-
ference in a specific frequency range, the network
can dynamically shift communication to less congested
bands.

• Sensor and radio access networks (SRANs) sharing:
Dual-functional communication and sensor networks
have the potential to enable different operators or appli-
cations to share common infrastructure and standards,
including telecommunication operators, sensor network
providers, IoT applications providers, security networks,
automated driving services, etc. Such sharing between
multiple network operators includes devices, towers,
data, spectrum, protocols, core networks, backhaul,
power, management, control, maintenance, etc. Indeed,
such collaboration among different network operators
and service providers improves network coverage and
increases network capacity.

• Mobile edge computing (MEC): H-RAN-based MEC
can bring computing resources closer to the end
user and support a variety of use cases, including
content caching, real-time analytics, augmented and
virtual reality, mission-critical applications, etc. AI/ML
algorithms can personalize content recommendations
and reduce content delivery times.

• Congestion management: With the incorporation of
sensor data, and communication sessions, operators
can create more comprehensive network diagrams, and
identify areas in which network resources are most
needed. For instance, network operators can take a
data-driven approach along with historical data to plan
infrastructure upgrades and expansions in areas prone to
congestion.

• Self-optimizing and self-healing networks: In the
H-RAN vision, self-optimization involves dynami-
cally adjusting network parameters and configurations
through AI/ML engines by analyzing real-time and
historical data, predicting future network behavior,
and making intelligent decisions. Once a fault is
detected, self-healing networks can autonomously apply
corrective actions. This reduces the reliance on manual
interventions and speeds up the recovery process.

• Smart cities: The power of H-RAN architecture lies
in its ability to collect vast amounts of data from
the physical world. AI/ML engines can then turn this
data into actionable insights. H-RAN architecture can
optimize smart city applications by collecting data

from a variety of sensors deployed throughout the
city.

• Internet of Things (IoT): IoT devices process the data
and transmit it to a centralized platform for further
analysis by H-RAN. Data processing involves real-time
analytics, machine learning, and other algorithms to
derive insights. H-RAN-based edge computing, on the
other hand, involves processing data near IoT devices.
This reduces latency and enhances real-time processing
capabilities.

• Virtual and augmented reality: By leveraging sensor
data from various sources, network operators can create
more immersive and interactive VR/AR experiences.

• Auto-driving vehicles: The design of H-RAN archi-
tecture based on the concept of a perceptive and
dual-functional network includes several use cases and
functions that could benefit the auto-driving domain.
For instance, sensors could be used to define relevant
parameters (e.g., location, speed, direction, acceleration,
classification, etc.). AI/ML algorithms are used to fuse
and interpret this data to create a comprehensive under-
standing of the vehicle’s environment. For instance,
AI/ML algorithms consider multiple factors, such as
sensor data, traffic rules, navigation maps, and real-time
traffic conditions, to plan the vehicle’s path and make
driving decisions.

• Construction and maintenance cost savings: Dual-
functional communication and sensor networks can
potentially reduce construction and maintenance costs
compared to traditional separate networks (e.g., shared
infrastructure, reduced installation effort, streamlined
maintenance, shared power and connectivity, intelligent
monitoring/predictive maintenance, network planning,
etc.).

IV. NUMERICAL EVALUATIONS AND SIMULATIONS
The H-RAN paradigm represents a comprehensive revolution
in both communications and sensing networks simultane-
ously. Therefore, we anticipate significant improvements in
overall network performance in addition to new features to
be available as a result of the H-RAN vision. However,
this section shows only some examples of the performance
enhancements that the H-RAN architecture can provide
while leaving further performance improvement analysis and
additional feature extraction evaluation for future research
efforts.

A. DATASET
This section describes the datasets that were used to assess
the H-RAN network. The proposed H-RAN architecture
requires adequate and relevant datasets for machine learning
and computer vision. Simulating scenarios is intended to
collect data from the same scene as that captured by sensors,
and communication channels. The ViWi dataset [68] was
utilized to achieve this goal, which is the foundation of several
cutting-edge approaches. Simulations for H-RAN’s vision
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FIGURE 9. Simulation results.

begin with determining the physical study setting in which
the problem occurs. Such a learning environment, however,
must incorporate real-world components such as buildings,
curbs, streets, automobiles, people, trees, etc. As soon as the
targeted research environment is created, sensors andwireless
data channel propagation should be gathered and evaluated
based on the same simulated scenarios. Blender [69], was
used to collect the sensing scenario samples, while the
wireless InSite ray-tracing program [70] was employed
to build a wireless raw dataset and integrate the channel
quality of distinct beam pairings. Visual and wireless raw
datasets were run separately to achieve distinct dataset
settings.

B. NUMERICAL EVALUATIONS
Among the many analytical comparisons that can be obtained
through simulating scenarios, we have selected only a few
numerical comparisons for this study, which are normalized
mean square error (MSE), spectral efficiency, and signal-
to-interference-plus-noise ratio (SINR) as demonstrated in
Fig. 9-(a), (b), and (c). The numerical results for the proposed
H-RAN architecture are provided in comparison with the
conventional O-RAN architecture. Fig. 9(a), shows that
the MSE of the accuracy channel estimate is significantly
reduced compared with conventional training designs. This
is due to the fact that sensing-aided communications can
contribute to reducing the MSE of the channel estimate
through the following: (1) Incorporating sensing information
into the channel estimation process, to mitigate interference
effects and improve the accuracy of the estimated channel.
(2) Sensing information can provide insights into the
dynamic nature of the communication channel, such as
variations in multipath propagation, fading, or shadowing.
By adapting channel estimation algorithms based on these
dynamic characteristics, H-RAN architecture can achieve
more accurate estimates, reducing the MSE. (3) Sensing
techniques can provide information about the environment
surrounding the communication system, such as signal
propagation characteristics, noise levels, or the presence of
obstacles. This environmental awareness can be used to
optimize the channel estimation process, considering specific

conditions, and reducing estimation errors. Fig. 9(b) illus-
trates the spectral efficiency of the schemes involved in the
comparisons against the number of beams. Specifically, when
comparing different schemes against the number of beams,
it is generally observed that the spectral efficiency of the
system increases gradually as the number of beams increases.
This is mainly attributed to the increase in beamforming gain.
Beamforming allows for focused transmission and reception
in specific directions, thereby improving signal quality and
reducing interference. However, the proposed sensing-aided
communications system offers a significant advantage by
achieving higher spectral efficiency evenwith a small number
of beams. This means that the system can achieve comparable
or even better spectral efficiency compared to traditional
schemes that require a larger number of beams. The proposed
H-RAN matches optimal performance and achieves a value
of 6.61 with only 5 beams, which significantly outperforms
conventional methods. Finally, the cumulative distribution
function (CDF) of the downlink SINR metric is used to
evaluate the performance of a network. It provides insights
into the probability distribution of SINR values and indicates
how different algorithms or systems affect overall SINR
performance. The evaluation of SINR using the CDF plot
in Fig. 9(c) highlights the superiority of the envisioned
H-RAN architecture compared to conventional architecture.
The higher SINR values achieved by the proposed system
indicate improved signal quality, reduced interference, and
better overall network performance. From Fig. 9(c) we can
note that the proposed method obtains a 93.5 % probability
that the SINR is larger than 20dB, which indicates a small
estimation error of predicted angles.

C. DISCUSSION AND FURTHER WORKS
The H-RAN architecture has been developed with a
forward-looking approach to accommodate future technolo-
gies and advancements. It considers the evolving needs
of 6G and beyond, including emerging communication
technologies, massive IoT deployments, URLLC, immersive
user experiences, etc. H-RAN vision provides a foundation
for integrating these technologies and facilitates seamless
integration by incorporating dynamic network optimization
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mechanisms to adapt to changing user demands and net-
work requirements. These mechanisms continuously monitor
network performance, identify bottlenecks, and optimize
network parameters to ensure efficient resource allocation
and meet user requirements. In general, H-RAN is designed
to harness the power of sensing networks to enhance
communication performance and leverage communication
capabilities to enhance sensing functionalities. Therefore,
H-RAN serves as a dual-functional perceptive network
capable of interpreting and understanding the surrounding
environment. This perceptive nature allows the network
to adapt and respond to varying conditions and optimize
performance. In this paper, the foundational principles and
main specifications of H-RAN have been briefly outlined.
However, there are still many issues open to debate about
development, protocols, design, standardization, etc. The
first phase of future H-RAN research aims to investigate
the functions listed in Fig. 8. H-RAN supports a dual-
functional network, this paper briefly discusses some of
the main functions performed and only related to the
communications network, while leaving the discussion open
to future studies to innovate new functions and specifi-
cations for sensing networks, and IoT applications. The
H-RAN paradigm represents a comprehensive revolution in
both communications and sensing networks simultaneously.
Therefore, we anticipate significant improvements in overall
network efficiency, as well as creating novel applications
commensurate with the H-RAN network’s capabilities.
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