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ABSTRACT Coral reefs are among the most biologically diverse and economically valuable ecosystems
on Earth, but they are threatened by climate change. Understanding how reefs developed over geological
timescales can provide important information about past environmental changes and their impacts on reef
systems. Significant effort and capital have been invested in drilling and analyzing reef cores. Recognizing
coral and sediment patterns visually from fossil reefs is a laborious task that demands domain expertise.
In this paper, we present a machine learning-based framework that utilizes clustering and classification
methods to fuse multiple sources of data for the segmentation and annotation of reef cores. The framework
produces an annotated image of a reef core with six lithologies identified; massive corals, encrusted
corals, coralline algae, microbialite, sand, and silt. We utilize reef cores recovered from Expedition 325 of
the International Ocean Discovery Program (IODP) to the Great Barrier Reef. We use reef core image
data and physical properties data to segment reef cores. We evaluate the framework using selected
clustering and classification models. The results show that Gaussian mixture models can provide accurate
segmentation of reef core image data, with a clear visual distinction between two major classes: massive
corals and stromatolitic microbialites. Furthermore, we find that the random forest classifier provides the
best annotations for the segmented reef core image data with an accuracy of 96%.

INDEX TERMS Clustering, segmentation, multi-source data, classification, reef core analysis, Gaussian
mixture models.

I. INTRODUCTION
Coral reefs are biosystems and significantly contribute to the
social and economic sustenance of coastal communities [1],
[2], [3]. Coastal regions and reefs are the source of many
livelihoods and support a diverse range of marine life [4],
[5], [6]. The ecology and environment associated with past
reef development are inferred from the fossil records, with
the prevalence or absence of specific reef lithologies and
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coral assemblages corresponding to particular environmental
conditions [7]. Studies in reef development are limited to the
amount of surface data and drill cores available [8]. Drill
cores from these reefs provide great insights into the dynam-
ics of coral growth. Marshall and Davies [9] used six drill
cores fromOne Tree Island in the SouthernGreat Barrier Reef
(GBR) to model vertical accretion of the reef post-Holocene.
Sanborn et al. [10] used 12 cores drilled along three
transects from One Tree Reef across various geomorphic
and hydrodynamic environments to document three distinct
stages of Holocene reef development. The authors conducted

12164


 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0000-0003-3801-8612
https://orcid.org/0000-0001-6095-7689
https://orcid.org/0000-0001-6353-1464
https://orcid.org/0000-0003-2124-6803


R. Deo et al.: ReefCoreSeg: A Clustering-Based Framework for Multi-Source Data Fusion

a manual classification of paleoecological assemblages that
included coral, coralline algae, and associated biota. They
also used extensive radiometric dating to identify three
distinct phases of reef development. Advances in reef drilling
and underwater imaging have seen unprecedented growth
in data availability and quality, but given limited resources
for manual analyses, novel and automated approaches are
required [8], [11], [12], [13], [14].

Computer vision and machine learning methods have
been prominent for studying environmental change and
restoration [15], [16], and effective for coastal reef studies
via remote sensing [17]. Satellite image-based classification
models have shown good performance in estimating coral
cover and mapping of various coral reef systems around the
world [18]. Deep learning methods such as convolutional
neural networks (CNNs) reported good performance in the
classification of algae, hard corals, and soft corals [19].
Gonzalez-Rivero et al. [19] used CNNs for automated point
annotation of benthic images from the XL Catlin Seaview
Survey.1 Lyons et al. [20] developed a framework thatmapped
coral reef habitats at the individual reefs to vast ocean reef
levels. They produced 10 maps with up to 78% accuracy
in classifying reef habitats in the GBR and other reefs in
the South West Pacific. Kennedy et al. [21] enhanced the
framework and developed a reef classification tool calledReef
Cover to map coral reef habitat by fusing remote sensing
data (surface reflectance, bathymetry, and wave modeling)
with field data (benthic imagery, surface morphology, and
geological data). Their model has been successfully used
for supporting management and conservation efforts in
the Cairns Management region and the Mariana Islands.
Mogstad et al. [22] used the support vector machine for
classifying coralline algae and other invertebrates from
underwater hyperspectral images. Hence, there is potential
for machine learning models to study and automate reef
drill-core data processing.

Lithology and lithofacies identification is an important
part of analyzing fossil reef cores. This has traditionally
been done by analyzing cores and drilling cuttings, as well
as interpreting well-log data through visualizations [10],
[23]. There have been successful attempts to automate
lithology and lithofacies prediction using computer vision
and supervisedmachine learningmodels. Alzubaidi et al. [24]
used residual networks for predicting four classes of rocks in
drill cores. Galdamesh et al. [25] used region-based CNNs,
for the segmentation of rock instances from 230 images.
Thomas et al. [26] used a nearest neighbor classifier to
identify and predict sand, shale, and carbonate cement from
drill core photographs. Dawson et al. [27] used CNNs with
transfer learning to classify carbonate rocks from drill core
images on varying dataset sizes. They explored the limits of
machine learning models on classifying datasets smaller than
100,000 points. Baraboshkin et al. [28] compared five deep
learning models for classification of rock lithologies using

1https://www.catlinseaviewsurvey.com/

20,000 images of drill cores from oil and gas fields, where the
GoogLeNet model reported impressive performance accu-
racy. Insua et al. [29] created a labelled six-class dataset of all
the reef cores obtained from International Ocean Discovery
Program (IODP) Expedition 325 and developed multiclass
classification of lithologies using physical properties data.
In summary, the processing of drill-core data works well
with supervised machine learning models for classification;
however, generating the ground truth labels for these drill
cores is a highly laborious and time-consuming process.
Hence, there is a need to develop unsupervised and hybrid
machine learning frameworks that can facilitate efficient drill
core analysis and classification.

Clustering is an unsupervised machine learning method
used for grouping samples in a given dataset based on
a similarity index [30]. We can model the distribution of
multi-class data with methods such as k-means clustering
[31] making them suited for unlabeled data [32]. Clustering
has been used for image segmentation that partitions an
image into spatially adjoining and homogeneous regions
(segments) [33], [34], [35]. Segmentation methods rely on
three key criteria When clustering pixels into groups, which
include the homogeneity within each segment, differentiation
from neighboring segments, and shape consistency [36].
There are some key applications of segmentation based on
clustering in the area of coral reef analyses. Song et al. [37]
showed good performance on semantic segmentation of
single-channel images of modern corals. Chiriyath and
Instrella [38] devised a robust technique for segmenting
coral reefs utilizing airborne fluid lensing information
by implementing a naive Bayes maximum a posteriori
estimation scheme. Wang et al. [39] developed a color
gradient method to segment the pores in the coral reef
borehole images. Steinberg et al. [40] used the Bayesian non-
parametric Dirichlet process for clustering large quantities
of seafloor imagery in the O’Hara Marine Protected Area in
Tasmania, Australia.

There is an abundance of reef core data available from
the GBR and reefs globally for automating reef core
analysis. However, we still lack a specific framework that
incorporates unsupervised machine learning for the analysis
of reef core data. In this paper, we present a novel
framework that utilizes different clustering methods to fuse
multiple sources (formats) of data for the segmentation
and annotation of reef drill cores. The framework produces
a classification scheme for labelling the reef drill core,
with segments annotated based on the type of lithologies
present in the drill core. We utilize reef cores selected from
the Hydrographers Passage in the Central GBR. In our
analysis, we combine image data and physical properties data
such as bulk density (gamma-ray attenuation), porosity, and
electrical resistivity. Then, we evaluate the potential of three
key clustering methods including k-means clustering [31],
agglomerative hierarchical clustering [41] and Gaussian
mixture models [42] on segmenting the data. The primary
source of data is based on the image data that embeds
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TABLE 1. Physical properties data description showing the range of
values for each of physical properties. There are 3852 measurements
taken for each property across all the cores from Exp 325.

information from the color and texture. However, to further
distinguish the classes, we also use data from physical
properties measurements taken by a multi-sensor core logger
on the same core. We follow this by evaluating four selected
classification methods for annotating the segmented image
that includes support vector machines, multilayer perceptron,
random forests, and k-nearest neighbors.

We structure the remainder of the paper in the following
manner. Section II provides an overview of the data, and
Section II-C presents our clustering framework. Section III
presents the results, Section IV presents the discussion and
finally, Section V provides the conclusions.

II. METHODOLOGY
A. STUDY AREA
We utilize reef drill-cores from the IODP Exp 325.2 The
coring (drilling) was done on board the research vessel, the
Greatship Maya. The vessel was equipped with a dynamic
positioning system which was used to drill cores offshore at
the reef shelf edge. The drill site is located east of Townsville,
as shown in Figure 1. The team drilled 34 boreholes across
17 sites, varying in depth from 42.27 to 211.70 meters below
sea level. The drill holes ranged from 1.40 to 46 meters in
length, starting at the sea floor. Most of the cores had a
recovery rate over 26%, however, there were core recovery
rates between 1.4 to 40%.

B. DATASET DESCRIPTION
We use two types of data from Expedition 325, core
physical properties data, and core image data. In our study,
we have only selected physical properties data that were
measured using a multi-sensor core logger (MSCL). These
data include measurements of bulk density, porosity, and
resistivity. The MSCL used an array of sensors to measure
the physical properties of individual drill core sections
onboard the drilling vessel. Table 1, shows the different
values for each property, and it was worth noting that a
total of 3852 measurements were taken across all the cores.
Insua et al. [29] used this data for all the cores from the
expedition and did a visual analysis of the core samples into
six different lithologies shown in Figure 3a, which created a
labelled six-class classification dataset. Figure 3b shows the
distribution of the six lithologies in the dataset.

2website: http://publications.iodp.org/proceedings/325/325title.htm

It is evident that there is a high imbalance in the data,
as the distribution of data across different classes is not
equal [43]. In other words, the amount of sand present in
the dataset overwhelms all the other classes. The number of
samples of corals, microbialites, and algae is much smaller
and this is problematic for machine learning models since are
biased towards the majority class (which in our case is sand).
Consequently, these models can also ignore the minority
classes as there is fewer data samples to learn which presents
the challenge as the minority classes (coral, microbialite, and
aglae) are of more significance in our dataset since we are
interested in classifying all the components of the drill cores
instead of just labelling sand.

Core 33-A-16R from Exp 325 was used for this study
which comes from hole 33-A of transect HYD-01C given
in Figure 1. Core 33-A was drilled 32.9 meters below the
sea floor with a radius of 0.066 meters. The drilling process
resulted in a collection of 13.41 meters of cores, which were
obtained in 23 runs. Figure 2 shows the core 33-A-16R which
means that this core section comes from the 16th drill run
of hole 33-A. This section of the core was selected for our
study since Insua et al. [29] studied the classification of six
carbonates lithologies in this core using supervised machine
learning. Additionally, this core had one of the highest rates
of coral recovery at 40.9%, thus making it an ideal candidate
for the annotation of multiple carbonate types. Figure 2 also
shows five out of the six lithologies present in the dataset.

C. FRAMEWORK
We present the ReefCoreSeg framework that fuses clustering
and classification techniques on different formats of data
to automatically annotate carbonates present in the cores
as shown in Figure 4. The framework is divided into three
independent modules; 1.) Clustering (segmentation of the
cores is achieved using this module), 2.) Classification, and
3.) Annotation.

In the framework, we first execute the clustering module
using the image data and the physical properties data.
We restrict the image data to drill core 33-A-16R as
a benchmark for the study. Firstly, we take the image
and downscale its resolution to ensure efficient clustering.
We reduced the dimensions by a factor of 0.95 as this worked
best with the clustering modules in our initial experimental
runs. This was selected over the flattening of the image
colors into grayscale as the colors are a major distinguishing
feature in the corals. In the clustering module labelled as 1
(Figure 4), we also add the physical properties data for core
33-A-16R and create a stacking of the two formats of data.
Next, we present the stacked image and physical properties
data to the three clustering methods that are discussed in
detail in the next section. We enable each of the models to
segment the data and produce a cluster label for each pixel
of the image data. In order to identify the most optimal
clustering method, we employ a comprehensive evaluation
process that takes into account several factors. Firstly, we use
the Silhouette score, which measures the distance between
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FIGURE 1. A. IODP drilling sites for Exp 325 located along the NE Australian shelf. B. Shelf edge bathymetric profile and location of drilling
holes at the Hydrographer’s Passage transect HYD-01C of which we use Core 33-A. C. Drill rig used to extract the reef cores offshore from
onboard the ship and the IODP core classification scheme.

clusters and determines the quality of the clusters based on
how well each observation fits within its assigned cluster.
We also utilize the Calinski Harabasz score, which takes into
account the size and dispersion of the clusters. Additionally,
we take a human visual analysis approach, where experts in
the field manually inspect and evaluate the clusters to ensure
that they make sense from a business perspective.

Furthermore, we also perform a control experiment, where
we evaluate the clustering performance of models that solely
use image data. This allows us to compare and contrast the
results of the control group with those of the other groups,
which in turn enables us to determine the effectiveness of the
clustering methods that we are evaluating. By taking these
multiple factors into consideration, we can confidently select
the best clustering method that will yield the most accurate
and reliable results.

Figure 4 shows the classification module, where we only
use the physical properties dataset. We apply standard data
pre-processing which includes min-max normalization of
the features, and one hot encoding of the carbonate class
labels. Our dataset was found to be highly imbalanced,
and initial experiments showed that oversampling did not
improve the classification of minority classes. To address
this, we used the neighborhood cleaning rule to implement
undersampling and obtained a balanced dataset. We chose
to undersample the data since the majority class was sand.
We give less importance to the classification of sand since
we are more interested in improving the prediction of the
minority classes, such as encrusted corals. Initial experiments

showed better performance via undersampling. In order to
finish the pre-processing, we separated the data into distinct
training and testing sets. We assigned 33% of the data for
testing and the remaining portion for training. In this study,
we did not use a validation set, since we are comparing the
classification performance to Insua et al. [29] and we are not
implementing early stopping of training via the validation
set. Then, as shown in Figure 4, we pass the balanced
data to four machine learning models for classification
(classifiers), namely the support vector machines, random
forests, simple neural networks (multilayer perceptron), and
k-nearest neighbors. We note that support vector machines
and random forests have been used in a previous study
[29] and other models and have also been used in related
literature [27], [44]. We provided each of the classifiers with
the same training and testing data to ensure fair comparison
and tuned their hyperparameters empirically.

The classification module in the ReefCoreSeg framework
(Figure 4) accounts for the missing labels in the drill-core
data. In order to obtain data on the physical properties
of larger rock samples within the cores from Exp 325,
we relied on the results of a previous study. In this study,
Insua et al. [29] meticulously analyzed and labeled each
piece of material present in the drill core section. They then
mapped this information onto the physical properties data
obtained from the MSCL. The resulting dataset is shown
in Figure 3b.. This dataset was sufficient for classification;
however, it was incomplete for annotating the core section
in our study (core 33-A-16R). There were 75 observations

VOLUME 12, 2024 12167



R. Deo et al.: ReefCoreSeg: A Clustering-Based Framework for Multi-Source Data Fusion

FIGURE 2. Core 33-A-16R used in this study with all the lithologies and facies identified on
the left. The legend on the right gives the age of the core sections in the last thousand years
(ka) as well as the dating technique used to estimate the age. Uranium/Thorium (U/Th) and
radiocarbon (14C-AMS) were used in dating the core. The figure is adapted from [29].

of physical properties taken from core 33-A-16R at 10-
centimeter intervals using the MSCL; however, only 6 of
these readings had amapping to the class of carbonate present
at that interval. This led to having labels for only 8 percent
of the core section in our study (core 33-A-16R). We used
the classification methods in the ReefCoreSeg framework to
predict the labels for the remainder of the data (90 percent),
which we then used to annotate the clustered image.

Finally, we execute the annotation of clustered images
as the final phase of the ReefCoreSeg framework as
shown by the automatic annotation module of Figure 4.
We use the clustered image from the clustering module
as the base for annotation. We then extract the physical
properties data for stacking in the clustering module and
then use the classification module to get the predicted
labels. Furthermore, we stack the clustered image along-
side the classifications to get the annotations of the reef

drill-core data. We finally validate the quality of the
annotation qualitatively with consultation from a domain reef
scientist (Jody Webster from the University of Sydney) and
present the final annotated core image.

D. CLUSTERING MODULE
We provide details about the three clustering methods in
the ReefCoreSeg framework. As noted earlier, clustering
methods divide data into groups based on the distance
or similarity between the observations in the dataset. The
distance metric is used to capture the topology of the data
sample for identifying clusters of specific shapes [31].

1) K-MEANS CLUSTERING
K-means clustering is a highly effective algorithm because
it can handle a vast number of features [31] and has
been applied to several domains that include image
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FIGURE 3. The classification dataset generated by visual inspection of the
individual core samples, adapted from Insua et al. [29]. (a) Images of the
six lithologies found in the drill cores. The lithologies can be
distinguished by color and texture. (b) The number of instances of each
lithology present in the dataset with high imbalance.

segmentation [45]. K-means clustering uses k clusters (cen-
troids) and assigns every data point to the nearest centroid.
The centroid shifts towards the mean of all the assigned data
points, and this cycle continues until a specific level of error
is achieved. One significant constraint of the algorithm is that
it needs the number of centroids, i.e. k to be predetermined.
Furthermore, k-means clustering is highly reliant on the
initial placement of centroids in the data space. To address
this, multiple random assignments of centroid location can be
utilized and the clusters obtained can be averaged out [46].
The number of clusters needs to be informed by expert
advice or determined empirically. In the study, we use the
evidence lower bound (ELBO) [47] method for determining
the number of clusters or centroids in the given data. We use
the distortion measured via the average of the squared
Euclidean distance as the primary comparison metric for the
clusters. Figure 5 displays the ELBO results for the target

drill-core data. It is evident from the plot that the optimal
number of clusters is 4, represented by k = 4, i.e. ‘‘elbow’’
of the plot that refers to the region after which the distortion
starts decreasing linearly.

2) AGGLOMERATIVE HIERARCHICAL CLUSTERING
Agglomerative hierarchical clustering (AHC) [41] builds a
cluster hierarchy by recursively merging pairs of clusters
of sample data using linkage distance. AHC is known as
a ‘‘bottom-up’’ approach, where each observation begins
with its own cluster. As one moves up the hierarchy (level)
of AHC, the clusters are merged in pairs. Hence, it is
important to identify which elements should be merged in a
cluster. Usually, it is customary to select the two elements
that are closest to each other based on the chosen distance
measurement. The approach allows having up to n clusters,
where n is one less than the number of data points. A
dendrogram is a tree-like structure that is produced as the
result of AHC where the child nodes of the dendrogram
represent each data point and the clusters are shown as
parents. We can cut across the tree at any level to have
the desired number of clusters. By default, the dendrogram
features all the available clusters; however, we can specify
how many parents (clusters) to retain, which will affect
the number of clusters formed. However, for comparisons
between the different clustering methods in the module
shown in Figure 4, we also provide the number of parents
(clusters) to AHC. The limitation of AHC is that it is very
inefficient and has issues with scaling to large datasets [48],
[49], [50].

3) GAUSSIAN MIXTURE MODEL
The Gaussian mixture model(GMM) [42] features a mixture
of Gaussian distributions to map out the clusters in the data.
The ability to use multiple Gaussian allows the segmentation
to allow some level of uncertainty at the class boundaries
in the prediction. Maximum a posteriori estimation [51] can
map out the rigid boundaries of the classes in the data. GMM
has been applied to a wide range of clustering and image
segmentation problems that include reef habitat mapping.
We need to implement a grid search using the Bayesian
information criterion (BIC) plot to determine the optimal
number of clusters in the data. This will help identify the
minimum number of classes with low compactness, which
can be used for further hyperparameter tuning in the GMM.
BIC penalizes models that have a high number of clusters
to prevent over-fitting. The most suitable number of k is
determined by selecting the smallest cluster with a low
change in gradient. This helps to minimize the cost of running
the GMM model. Figure 5b shows the BIC analysis of the
GMM model over different numbers of clusters k. We select
the optimal k similarly to the ELBO method in k-means
and there is an extra hyperparameter in GMM that requires
manual tuning - the initial state of the Gaussian. In our trial
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FIGURE 4. ReefCoreSeg framework showing three independent modules; 1.) Clustering, 2.) Classification, and 3.) Annotation.

experiments, we found that setting the initial state to 10 is
optimal.

E. CLUSTERING EVALUATION METRICS
We need a commonmetric to compare the clustering methods
although each clustering method features a metric for the
quality of clusters. Firstly, we look at the numerical stats
such as the Silhouette score [52] and the Calinski score [53]
which measure the compactness and separability between
clusters. The silhouette score measures an object’s proximity
to its assigned cluster compared to neighboring clusters and
ranges from -1 to 1. The higher the silhouette score, the better
the alignment between the object and its designated cluster,
and the more dissimilar it is from adjacent clusters. Scores
close to 1 indicate highly effective clustering outcomes,
while scores nearing -1 suggest that the object should be
reassigned to a different cluster. The Calinki score (Calinski-
Harabasz index) considers both inter-cluster separation and
intra-cluster cohesion to derive the ratio of between-cluster
variance to within-cluster variance. It incorporates the
number of clusters in the numerical formulation for a nuanced
quantitative measure of clustering quality. Elevated Calinski
scores indicate well-defined and distinct clusters. We also
compare the models based on visual analyses by plotting the
clustering results as images using unique colour mapping for
individual clusters. We then do a side-by-side comparison
of the plots to identify the tightness and separation of the
clustered segments. The clearer andmore distinct each cluster
is, the better the performance.

F. CLASSIFICATION MODULE
We compare four supervised machine learning models for
the classification module in the ReefCoreSeg framework.
We extend the idea of using a classification model proposed
by Insua et al. [29]; however, we use only three input
features from Table 1 and ignore the magnetic susceptibility
feature used in the original experiments. We implement this
since there are not enough measurements for the magnetic
susceptibility in core 33-A-16R; therefore, we cannot use it
for our annotation module.

The support vector classifier (SVC) [54], [55] is an
extension of the perceptronmodel that distinguishes between
two classes of data. The SVC creates a hyperplane to separate
the different classes and to extend classification to multiple
classes, we can use either the one-versus-one or the one-
versus-all approach. The classification of new instances is
mapped to either each class or a collection of the other classes
treated as one class. We use the one-versus-all approach as
it is computationally more efficient than its counterpart. The
success of SVC is based on the choice of kernel and we use
the most simplistic kernel, i.e. the linear kernel to prioritize
efficiency. We determine the best combination of the other
hyperparameters, including regularization, by a grid search.

The random forest classifier (RFC) [56] is an ensemble-
based machine learning model for classification that features
a group of decision trees. Each decision tree uses a subset
of the original data containing features and labels to develop
a set of rules for making predictions where the predictions
get combined either by averaging or voting depending on the
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TABLE 2. Comparison of the three clustering methods with 1.) image data, and 2.) image data combined with physical properties data. The physical
properties data did not have any significant contribution towards improving the clustering performance. We see that K-means provided the highest
silhouette and Calinski score, while GMM underperformed. Therefore, we conducted a visual analysis to verify the results.

type of problem. Hence, RFC combinesmultiple uncorrelated
models (decision trees) that perform much better as a group
than they do alone. In the case of classification, each
randomly selected tree gives a classification and the majority
‘‘vote’’ is selected as the class label. RFC are well suited for
multi-class classification and are resistant to noise [57] and
also demonstrated effective for class-imbalance datasets and
have been prominent in machine learning competitions [29].

The multilayer perceptron (MLP) is a machine learning
model inspired by biological learning systems for classifi-
cation and regression problems. MLP consists of a series
of layers featuring nodes (neurons) with interconnections
(synapses) that are trained based on data and a training
algorithm; hence, also referred to as neural networks.
Although MLP models have been used in a wide range of
applications, we review selected applications to coral reefs
and geoscientific minerology. Awalludin et al. [58] created a
model for the classification of coral reef components using
color and texture features from drill core imagery. Zhong
et.al [59] performed a classification of tectonic settings using
data from bulk basaltic rocks and basaltic volcanic glasses.
MLP forms the basis of deep learning models that are
prominent for various applications in health, Earth sciences,
and multimedia applications [60], [61], [62], [63]. In our
implementation, we train our MLP with the adaptive moment
estimation (ADAM) optimizer [64] and determined model
hyperparameters using grid search.

K-nearest neighbors (KNN) [65] is a supervised learning
method that relies on sample proximity to classify the

grouping of a data point. We select KNN for this specific
reason as our data has a high correlation to the distance
of measurement as physical properties on a single coral at
10-centimeter intervals yield the same lithology. KNNs use
a majority vote approach to assign class labels. We use
Euclidean distance as a measure of proximity in the KNN
approach. KNNs have been successfully applied to a wide
range of Earth science and reef studies such as classifying
seismic-volcanic signals, classifying corals in underwater
coral reef images, and reef benthic habitat mapping with
object-based image analysis [44], [66], [67].

We compare the respective classification models using the
classification accuracy given in Equation 1 as well as the F1
score given in Equation 4 for each class label. We also use
confusionmatrices [68] to show the classification per-class as
the data features a high-class imbalance that are prominently
used in the multi-class classification literature [69], [70],
[71]. We select the best model using the reciever operating
characteristic (ROC) curves and the area under the curve
(AUC) score. We also report the macro-averaged AUC score
of all the individual classes, which is also consistent with the
literature.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(1)

Precision =
TP

TP+ FP
(2)

Recall =
TP

TP+ FN
(3)
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FIGURE 5. Grid search for the optimal number of segments in clustering.
[a] ELBO plot for distortions over a possible number of clusters k. [b] We
use the Bayesian information criterion (BIC) to search for the optimal
number of components in GMM with four different kernels (spherical,
tied, diagonal, and full).

F1 =
2 ∗ Precision ∗ Recall
Precision+ Recall

=
2 ∗ TP

2 ∗ TP+ FP+ FN
(4)

where the true negative (TN) reflects the number of negative
examples correctly classified, and true positive (TP) indicates
the number of positive examples correctly classified. The
false positive (FP) represents the number of actual negative
examples classified as positive and false negative (FN)
represents the number of positive examples classified as
negative.

G. QUALITATIVE ANNOTATION MODULE
The final stage of our framework creates an annotated image
of drill core data by selecting and combining the best models

FIGURE 6. Classification performance for the respective models on Core
33-A-16R. Each model can identify some of the classes present in the
data; however, KNN and RFC identify the most number of classes.
We observe that KNN is over-predicting the presence of Coralline Algae,
and RFC has the best prediction compared to the expert-labelled image
by visual inspection.

from the clustering and classification modules. This is the
stage of the framework where we use a human expert for
visual analysis of the clustered images to select the model
that has the highest degree of separation within the clusters.
The selected model results are then stacked against the
classification of the best-performing classifier, which is only
fed the selected core data and the annotations are then drawn
visually. We note that several papers in the literature have
used similar expert-based qualitative annotations [10], [72],
[73], [74]. However, these papers do not have any labelled
physical properties data for supervised machine learning.
Their datasets are very small with respect to the number
of labelled images of each class of coral; therefore, we can
not directly use them. It would also require a lot of time
to manually annotate any physical properties data associated
with these datasets. We only use core 33-A-16R to test the
performance of the framework, which could then be applied
to the other datasets for validation.

III. RESULTS
A. CLUSTERING MODULE
We first evaluate the performance of the clustering methods
(k-means, HAC, and GMM) used in the study. We present
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FIGURE 7. Clustering performance with k = 6 for k-means, HAC, and GMM. A. Clustering on
the core section, showing little distinction between the models. B. Within-class
segmentation performance on massive corals, showing that GMM has the best performance.

the results for the standalone image data and the physical
properties data combined with the image data. Table 2
shows results for a grid search for the optimal number
of clusters within the data. The silhouette and Calinski
scores are given to demonstrate the performance of each
of these models. K-means had the highest scores for both
the Shilouette and Calinksi scores. There is no significant
change in performance for K-means and AHC after adding
physical properties information as shown in Table 2. The
only exception is GMM, where we see a slight increase in
performance at larger values of k . We also observe that GMM
has a significantly lower silhouette score with both types of
data. We later provide a visual analysis (Figure 7) of the
clustered cores to further analyze the performance of the three
clustering methods, since in image-based clustering a higher
Shilouette and Calinski score do not necessarily imply better
clustering performance.

Figure 7 shows the clustering performance of the models
on the core image. We only show the results for k = 6 as
they are a good proxy for all other cases. Each cluster of
images has the performance of the three algorithms side-
by-side. The images include the clustering performance of
k-means, HAC, and GMM, respectively. We specifically
show the performance for 6 clusters as we are working with
physical properties data that were annotated into 6 different
lithologies. Figure 7–A shows that GMM is doing a much
better job at clustering the larger corals. This is evident
from looking at Figure 7–B which shows a close-up of the
clustering of a massive coral section within the core. The top

two images are k-means and HAC results, and we can see
that these two models are trying to take the larger corals and
cluster within them by separating all the smaller holes within
the coral. We observe that the GMM is better at identifying
the boundaries of the massive coral segment and treating it as
a single object with some minor imperfections.

B. CLASSIFICATION MODULE
The next present the classification performance on the phys-
ical properties data. Table 4 shows the average classification
accuracy of the respective methods for the test dataset.
We observe that RFC gives the best overall accuracy followed
by MLP and KNN and SVC has the worst performance.
We further review the per-class classification performance
in Table 3 and observe that RFC is the best for individual
class classification. KNN is also close to the RFC; however,
it struggled at classifying encrusted corals. Furthermore,
we observe that the respective methods have difficulty in
classifying the encrusted corals and coralline algae. The
confusion matrix given in Figure 8 shows a breakdown of
the misclassification. Moreover, we can observe in Figure 8d
that RFC has the lowest misclassification rate for most of
the classes, and SVC has the worst performance. SVC could
not predict any of the coralline algae or the encrusted corals
properly.MLP andKNN have similar performances as shown
in Figure 8c and 8b; therefore, we use the ROC curves
and the AUC score to select the best classifier. Figure 9
shows the RFC with a score of 0.95 beating out all the other
classifiers.
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FIGURE 8. Confusion matrix for a typical experimental run by the respective classifiers (SVC, KNN, MLP, RFC), where RFC has the best
classification across all the classes.

C. EXPERT-BASED QUALITATIVE EVALUATION
We present the final set of results in Figure 6 which shows
the predictions of each of the trained classifiers on predicting
the classes of data present in core 33-A-16R. This result is
then used for the qualitative annotation for further evaluation
by our domain expert, Jody Webster from the University of
Sydney, who is also a coauthor in this study. The qualitative
analysis is done by comparing model performance by sight
and the expert-labelled image given in Insua et al. [29]
is used as the benchmark for comparison in our study.
As expected, SVC had the worst performance as it only
managed to find three classes. The MLP in Figure 6 is only
marginally better than the SVC since it found four of the five
classes present in the data. The KNN and RFC did well and
found all five classes of data. However, RFC gives the best
classification performance, both in terms of accuracy score,
and expert-based visual analysis as shown in Figure 10. This
is also consistent with the performance measured by the AUC
score, where RFC has the highest score.

Figure 10 shows the output of the ReefCoreSeg framework
highlighting the classification of the core segments with

GMM and RFC. The legend shows that the framework
can clearly segment the image into six distinct segments;
however, the classifier can only find five classes of data.
We notice the misclassification of the coralline algae
and sand; however, the model did exceptionally well at
identifying the massive corals as well as the stromatolitic
microbialites. A small section of encrusted coral has been
annotated correctly.

IV. DISCUSSION
In general, we find that ReefCoreSeg successfully automates
the annotation of coral core images into six lithologies by
combining unsupervised (clustering) and supervised learning
(classification). We find that GMM clustering gives the
best performance out of all the clustering methods tested,
since it managed to properly identify the boundaries of the
different classes present in the data. The visual analysis
done by coral reef geologists consists of distinguishing
distinct boundaries between corals. This is a specifically
challenging task due to the muted colors and textures within
the core image. The hard boundaries between larger pieces
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FIGURE 9. ROC curve for the respective classifiers (SVC, KNN, MLP, RFC). The macro-averaged AUC (Macro AUC) score shows that the RFC has the
best overall classification performance.

of corals, microbialites, and other classes have been well
identified by all the clustering methods; however, the soft
boundaries within a lithology (such as the textures within
a massive coral) or more complex structures (such as
encrusted corals) have been difficult to segment. GMM-based
clustering identified the major segments of the drill-core
data and was able to distinguish between skeletal textures
within a single coral fragment better than the other clustering
techniques. We also find that stacking physical properties
data with the image allowed a small improvement in the
clustering performance compared to only using image data.
The similarities within the corals are much better captured by
the multi-sensor core logger, as the physical properties were
approximately the same for a single piece of the core segment.
This could have contributed to the slight improvement in
performance.

The classification performance of the four methods shows
great promise in terms of classification accuracy; however,
the performance of the models on Core 33-A-16R shows the
importance of visual analysis and expert intervention in the
ReefCoreSeg framework. Although the respective models
have high classification accuracy, only the RFC properly
identified the various components within the core. RFC had
the best overall classification in terms of the ROC curves
as shown in Figure 9. The performance in classifying the
mass coral class was better on the given drill core, since it
was the second most abundant class within our dataset. RFC
has some drawbacks in terms of the misclassification of sand
and coralline algae as shown in Figure 10 with green labels.
We attribute this to the high class imbalance within the data.
Balancing the data improves the performance, giving a better
score than the previous classification approach [29]; however,
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FIGURE 10. Annotated image of Core 33-A-16R with GMM-based clustering and classification by RFC.

the example of core 33-A-16R shows that there is scope for
improvement in classifying the minority classes.

We note that multi-class classification on an imbalanced
dataset is a challenging task. We found that the random forest
model managed to give a good predictive performance on the
data as compared to the other tested models. However, the
minority classes are still underrepresented, and the majority
class remains overrepresented. This shows the importance
of expert intervention in the ReefCoreSeg module as we
want to select the best classifier for the annotation via expert
visual analysis. This hybrid framework shows promising
annotation performance and sets up a clear platform for
further enhancements. Further work can focus on uncertainty
quantification in the annotation framework. This can be done
with methods such as Bayesian neural networks for model

based uncertainty to the classification module. There is also
scope for connecting the framework with one-dimensional
reef evolution models such as pyReef-core and its counterpart
known as Bayesreef that employed Bayesian inference
for model parameter estimation representing environmental
conditions that affect reef growth over thousands of years.
The class imbalance within the framework could also be
addressed with more robust adversarial learning sampling
techniques and their combination with resemble models.
Furthermore, we also need to understand the decision-making
process; since we have mostly used black-box models, it is
not clear how the decision has been made. This can be
addressed by extracting if-then rules from the random forest
model and from novel methods in the field of explainable
artificial intelligence (XAI).
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TABLE 3. Classification performance for the physical properties data
where RFC has the best overall accuracy as well as F1 scores for per-class
classification. We note that SVC has not been able to predict the coralline
algae, encrusted corals, and silt.

TABLE 4. Average classification accuracy over 10 experimental runs with
different initial weights and biases. ’-’ indicates the method not being
used.

Furthermore, with reef drill cores, we are presented with
a limited data problem as we have limited expert annotated
core images for testing the robustness of the framework. The
annotations that do exist for such datasets, cannot be directly
used by machine learning as they are stored in formats
that need to be manually transformed into labelled training
datasets. Finally, there is scope to use the ReefCoreSeg on
other drill core data such as ice cores from glaciers and
ice sheets, rock cores from mineral exploration, and oil
exploration that have been studied and annotated to improve
and validate the framework.

V. CONCLUSION
Fossil reef drill-core represent valuable archives that can
be used to reconstruct paleoenvironmental changes over
thousands of years, yet their description and classification
remain challenging. Hence, we presented a framework that
utilized reef-core data with a combination of unsupervised
and supervised learning to identify and annotate coral
assemblages given as lithologies.We found that there are a lot
of muted colors and textures in the core image. This coupled
with soft transition boundaries within corals made it a very
challenging task for clustering techniques to distinguish the

different features of lithologies present in the drill-core data.
The GMM-based clustering distinguished the boundaries
well and identified larger corals whilst avoiding the problem
of segmenting within one coral lithology. This was further
verified by qualitative evaluation of the results.We also found
that adding physical properties data to image data slightly
impacts clustering performance. Hence, stacking more data
types, such as hyperspectral and computed tomography
scan (CT scan) data could further enhance the clustering
performance.
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