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ABSTRACT We introduce a novel 3 degrees-of-freedom based robotic colonoscopy system that performs the
necessary movements for colonoscopy while working within the movement range of a flexible colonoscope
(FC). In addition, we have developed deep learning models to generate motor control signals directly from
input images without the need for motor control signal labels. The first presented model comprises a deep
learning algorithm for predicting steering points and an image-based visual servo control (IBVS) algorithm
for generating the motor control signal. The experiments showed that the proposed model’s cecal intubation
time (CIT) and rate (CIR) are comparable to those of human operators, despite requiring a shorter training
time. Furthermore, we propose a model that replaces the IBVS algorithm with a deep learning algorithm that
does not rely on rotation angles. The second model showed similar CIT (165s) and CIR (92%) compared to
the first model. Finally, the last model, which solely comprises a single deep learning algorithm, demonstrates
a reduction in CIT (127s) and an increase in CIR (96%), resulting in reduced physical demand for operators,
improved safety, and shorter patient recovery time.

INDEX TERMS Autonomous system, deep learning, robotic colonoscopy, visual servo control.

I. INTRODUCTION
The prevalence of colorectal cancers (CRC), the third leading
cause of cancer death [1], is increasing among middle-aged
and elderly individuals and is expected to rise in the future
[2]. Early detection and monitoring of potential cancers
through colonoscopy procedures significantly increase the
5-year survival rate by around 90% [3] and are essen-
tial for avoiding hospitalization. However, the growing rate
of patients diagnosed with CRC places a heavy workload
on medical staff, potentially leading to doctor fatigue and
more unsafe incidents during procedures [4]. Manipulating a
colonoscope accurately is challenging due to the combination
of various movements such as pushing, pulling, rotating,
and steering motions [5]. Therefore, substantial efforts have
been focused on new developments which are aimed to
improve the effectiveness and efficiency of CRC diagnosis
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while alleviating physical burdens that endoscopists may
experience, such as operator fatigue and musculoskeletal
injuries.

Various mechanical innovations, such as a conventional
colonoscope’s knob [6], and user-friendly joysticks [7], [8],
have been studied to develop new devices that are eas-
ier to use than traditional FCs and help reduce surgeons’
workload. Additionally, several master-slave systems [9] and
haptic devices [10] have been developed to assist opera-
tors in precisely controlling the device, leading to reduced
operator effort and improved safety. Furthermore, the fur-
ther development of semi-autonomous or autonomous control
systems has emerged as a potential strategy. Recent studies
on autonomous, magnetic navigation-based capsules have
shown promising progress towards enhancing and ensur-
ing patient safety. These magnetic capsule endoscopes are
designed with movements controlled by a robot arm [11],
[12], [13]. By using external and internal magnetic capsules,
endoscopists can manipulate the capsule with less friction,
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reducing patient discomfort, and resulting in efficient and
smooth diagnoses.

Despite remarkable progress in mechanism, naviga-
tion or autonomous operation design in the field of
colonoscopy, there are still technical challenges that require
attention. These challenges include inadequate mobility
in assisted-robot colonoscopy [6], [7], [8], unreliable
approaches for lumen detection and navigation [14], [15],
[16], [17], [18], [19], [20], lengthy intubation times [13],
[22], [23], low success rates [11], [13], and inadequately
developed autonomous systems [11], [13], [22]. Addition-
ally, magnetic-based systems have the drawback of requiring
a more prolonged intubation time, potentially leading to
increased patient discomfort or pain. Moreover, unstable or
fluctuating magnetic forces and electromagnetic interference
can cause control inaccuracies.

FIGURE 1. The overview of an autonomous robotic colonoscopy system.

To address these shortcomings, we proposed the
Autonomous Robotic Colonoscopy System (ARCS), as illus-
trated in Figure 1. The ARCS has a 3 degrees-of-freedom-
based robotic colonoscopy system (3)-RCS), allowing the
colonoscope to steer up-down/right-left and advance for-
ward/backward. The ARCS operates autonomously within
a Colonoscopy Training Simulator (CTS) using a control
algorithm and a deep learning model. A pair of joysticks
is utilized to collect data for training the model. Further-
more, we proposed several deep learning-based approaches
to enhance the performance of the autonomous robotic
colonoscopy system in terms of intubation time and intuba-
tion rate in CTS.

A summary of our contributions contained within this
paper is as follows:

• We designed the 3-RCS to perform up-down, right-left,
insertion motions for colonoscopy procedures, while
maintaining the range of movement of the conven-
tional FC. Additionally, the 3-RCS can be adjusted to
accommodate different FC diameters. To demonstrate
the reliability of the system, we conducted a hysteresis
experiment.

• We also conducted in-vitro experiments to validate the
feasibility of the autonomous 3-RCS by combining the
IBVS algorithm with a deep learning model.

• We recorded and compared the intubation time of
human operators using joysticks with the ARCS using
the IBVS algorithm.

• Finally, we suggested a deep learning model to produce
all control signals simultaneously, leading to reduced
computational time, lower CIT, and increased CIR.

II. ROBOT SYSTEM AND IMAGE-BASED VISUAL SERVO
The overall system is illustrated in Figure 2. The 3-RCS
comprises a feeding mechanism (FM) for insertion/retraction
motion, and a steering mechanism (SM) for 2-directional
steering (up/down and right/left) motions.

FIGURE 2. The detailed design of the robotic colonoscopy
system (3)-RCS). (a) Feeding mechanism. (b) Steering mechanism.

A. THE FEEDING MECHANISM
The FM, as shown in Figure 2(a), consists of motor 3, driving
rollers (1, 2), pulleys (1, 2), and driven rollers (3, 4). When
motor 3 drives roller 1, since pulley 1 is connected to pul-
ley 2 by a gear belt, rollers 1 and 2 can rotate (φ) at the
same direction and speed. The distance between the driving
rollers and driven rollers can be adjusted with a bolt. Thus,
the 3-RCS not only allows the operator to modify the normal
force generated between the rollers and the colonoscope’s
body, but also makes the system compatible with different
conventional FC diameters. With 4 rollers, the feeding mech-
anism is considered flat, ensuring the smooth and stable
movement of the colonoscope’s body. A compression spring
is used to adjust the contact damping between the rollers
and the colonoscope. At a fixed feeding velocity (20mm/s
[10]), and feeding motor torque of TFeedingMotor = 0.11 N.m,
manual adjustment of the compression spring and bolt limits
the insertion force to less than 15 N, preventing damage
to the colon wall [24]. It is worth noting that all motors
are dynamixel motors (XM430-W350-T) which can be con-
trolled in torque/position/speed modes with high accuracy
and precision. This precise modulation allows the algorithms
to easily limit force/torque values, ensuring system safety.

B. STEERING MECHANISM
As shown in Figure 2(b), the SM can steer the colonoscope’s
head in both the left/right (L/R) and up/down (U/D) directions
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by using two motors: motor 1 and motor 2. The SM is
designed to ensure that the FC (Olympus, Japan) can reach
its maximum bending angle.

C. EVALUATION OF FEEDING AND STEERING MECHANISM
1) EXPERIMENTAL SETUP
Although conventional FCs have been widely used and are
considered reliable, it is essential to evaluate the left/right
bending angle (ψLR), up/down bending angle (ψUD), and
insertion motion displacement (F). This evaluation is nec-
essary because a reliable robotic system is a fundamental
prerequisite for building a successful autonomous system
using advanced deep learning algorithms.

FIGURE 3. Experimental setup for validating the steering and insertion
motion. (a) Experimental configuration for the steering motion.
(b) Experimental configuration for the insertion motion.

Particularly, hysteresis experiments that measured the syn-
chronized response of the steering/insertion motion with
respect to motor control inputs were performed. As shown in
Figure 2(b) and Figure 3(a), θ1M and θ2M present the motor
positions used to measure the bending angle ψLR and ψUD,
respectively. Motors 1 and 2 are controlled to rotate from 00

to 900 to obtain expected values of (ψLR, ψUD), which range
from 00 to 1600. At the same time, a change of 00 to −900

in motor input (θ1M , θ2M ) results in a bending angle of (ψLR,
ψUD), which ranges from 00 to −1600.
For the insertion motion, an input of 100 mm is used to cre-

ate repeated forward/backward movements of the insertion
tube, and then the displacement F of the tracking point on the
colonoscope’s body is measured, as shown in Figure 3(b).

2) RESULTS AND DISCUSSION OF THE ROBOT SYSTEM
Figure 4(a) illustrates the hysteresis profiles of both the
L/R and U/D steering angles which are relatively symmet-
ric for the loading and unloading phases. Like the previous
study [10], the hysteresis profiles are due to inherent cable
slip, component deformation, friction, or nonuniform move-
ment within the tendon-driven mechanism. However, the
proposed mechanism shows a smaller backlash (around 80

at the maximum steering angle) compared to Huang’s mech-
anism [10] (around 200) or Ott’s [25] (around 100). This is
mainly because the head of the colonoscope in the proposed

mechanism has a lighter weight camera (XD-V31105LH-
158). Huang’s mechanism contains other surgical instru-
ments, which can make the mechanism more susceptible to
tendon twists and other tension variations. Additionally, due
to the difference in angulation range between L/R and U/D
motion in the conventional FC, there is a slight difference in
the shape of ψLR and ψUD.

FIGURE 4. The hysteresis profiles. (a) L/R and U/D motions. (b) Insertion
motion.

Figure 4(b) shows the measured displacement of the track-
ing point during the insertionmotion. Themeasured displace-
ment of the insertion motion (F = 99.3±0.6 mm) indicates
that the feed mechanism enables the colonoscope to move
forward/backward accurately since two pairs of rollers are
employed. This contrasts with a previous study [26] where
slip occurred because only one pair of rollers was used, which
made the feeding velocity inconsistent or less predictable.

FIGURE 5. Diagrammatic representation of IBVS for 3-RCS.

D. IMAGE-BASED VISUAL VERVO CONTROL SCHEMATIC
Recently, the Image-Based Visual Servo (IBVS) [27] control
algorithm, which relies on visual feedback from the colono-
scope’s camera, has become a favorable method for tracking
and guidance in autonomous systems. In our system, the
IBVS algorithm is applied to produce steering signals that
control the colonoscope’s head. Figure 5 displays the correla-
tion between the rotation angle of the pulleys (actuator space),
backbone (configuration space), and the bending angle of
the colonoscope’s head (task space). Particularly, a mapping
from the actuator space (P =

[
θ1 θ2

]T ) to configuration
space (C =

[
∅ γ

]T ) can be described by the transformation
matrix J1, as shown in (1). The transformation matrix J2
is used to map the configuration space to the task space
(T =

[
vT ωT

]T ), as shown in (2).

Ċ = J1Ṗ (1)
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T = J2Ċ (2)

where the matrix J1, as shown in (3), is the inverse kine-
matic of continum robotic colonoscope and actuators. J2
describes the relationship between the configuration space
and end-efector of robot [25], as shown in (4). Rp, D, and
di represent the radius of the pulleys, the diameter of the
colonoscopy’s body (cross-section), and length distribution
of wires, while α1 and α2 are the rotation angle of the pul-
leys 1 and 2, respectively. The angle values of ∅ and γ are
caculated based on (6) and (7).

J1 =

 −
α2

α21+α
2
2

α1
α21+α

2
2

2Rp
D

α1√
α21+α

2
2

2Rp
D

α2√
α21+α

2
2

 (3)

J2 =



−
Lfe
ψ
s∅ (1 − cψ)− Lris∅sψ

Lfe
β
c∅ (1 − cψ)+ Lric∅

Lfe
ψ
c∅ (1 − cψ)+ Lric∅sψ

Lfe
β
s∅ (1 − cψ)+ Lris∅

0 Lfe
β

(
1 −

sψ
ψ

)
−c∅sψ
−s∅sψ
−1+cψ

−s∅
c∅
0


(4)

di = Rpαi, i = 1, 2 (5)

∅ =

{
0 if α1 = α2 = 0
atan2(−α2,−α1) Otherwise

(6)

γ =
2Rp
D

√
α21 + α22 (7)

Additionally, by employing IBVS control theory [27], the
mapping between the task space and the image space can be
obtained using (8), which involves the Image Jacobian matrix
J3, as described in (9).

Q̇ = J3T (8)

J3 =

 −
f
z 0 u

z
uv
f

−f 2−u
2

f v

0 −
f
z

v
z
f 2+v

2

f −
uv
f −u

 (9)

Next, we get the relationship between the motor’s velocity
and image feature by combining (1), (2) and (8), as shown
in (10). Finally, the steering signals for the ARCS in method
A can be calculated by using (11) if the steering point (Q)
is given. The symbols and its desription/values of (11) are
summarised in Table 1.

Q̇2×2
= J2×6

3 J6×2
2 J2×2

1 Ṗ2×2 (10)[
θ̇1 θ̇2

]T
= εJ−1

1 J−1
2 J−1

3 1Q (11)

E. FEEDING SPEED, CONTROL ALGORITHM
Apart from the steering signals (ω = Ṗ), which are calculated
based on the IBVS above for controlling the colonoscope’s
head in left/right/up/down directions, control of the insertion
speed of the colonoscope’s body is also required for fully
autonomous operation. In this paper, we used one deep learn-
ing model (Model 1) to create a steering point Q and collision

TABLE 1. The symbols and its description of variables.

probability (col) by calculating input from a colonoscopic
image. The collision probability classifies the colonoscopic
image as ‘‘wall’’ or ‘‘non-wall’’ during the operation, ensur-
ing precautions are taken to avoid perforation. The structure
of model 1 will be presented in the description of our deep
learning approach below.

1) FEDDING SPEED
For safety, the feeding speed (Vfe) or insertion speed of the
colonoscope’s body is computed based on (12), where the col-
lision probability (col) is given from Model 1, and the maxi-
mum velocity Vm is chosen at 20 mm/s [10]. The idea is that
if the col is between 0 to 0.6, it means that the robot clearly
knows the path ahead, and therefore the Vfe is set close to the
Vm. Otherwise, Vfe is set to zero to avoid hitting the colon,
potentially causing colon perforations.

Vfe =

{
(1 − col)Vm 0 ≤ col ≤ 0.6
0 Otherwise

(12)

FIGURE 6. Schematic of control algorithm.

2) CONTROL ALGORITHM
When the system has steering signals (ω), collision proba-
bility (col), and insertion velocity (Vfe), we can control the
ARCS with a proposed control algorithm (CA), as shown in
Figure 6. We found that when the col is bigger than 0.6, Vfe is
set to zero and the colonoscope does not advance anymore. To

VOLUME 12, 2024 1283



V. S. Nguyen et al.: End-to-End Learning-Based Control Signal Prediction for Autonomous Robotic Colonoscopy

enable the colonoscope to continue its autonomous operation,
a control algorithm is employed. The working principle of
CA is as follows: The system starts, and CA always obtains
col values provided by model 1 (Hz =30). If there are K=80
successive frames classified as ‘‘wall’’ (a frame with col >
0.6 is classified as a ‘‘wall’’), that situation will be defined
as ‘‘collision’’. In the collision state, the colonoscope must
move back until the colbecomes lower than ε = 0.02. After
col is less than ε, the system can resume. By doing so, the
colonoscope never hits the colon wall forcefully, ensuring
safety for patients.

III. PROPOSED DEEP LEARNING APPROACHES
In this section, we will examine three deep learning-based
approaches: Method A, Method B, and Method C. Each
of these methods includes a set of deep learning models,
specifically Model 1, Model 2, and Model End-to-End. We
will describe how these models and methods are connected
to each other and how we designed the models and trained
them. Additionally, we will provide a description of the data
generation process used to train these models and clarify our
methodology for model selection.

A. OVERVIEW OF METHODS
Method A involves using a convolutional neural network
(CNN) model, referred to as Model 1, to process the colono-
scopic images captured by a camera on the colonoscope’s
head (Figure 7(a)). Model 1 generates a steering point,
Q = (Qx , Qy), and a collision probability (col). The IBVS
algorithm utilizes the steering point along with the actual
angles of the pulleys to generate steering signals (ω), allowing
the colonoscope to move in the up/down or left/right direc-
tions. As mentioned above, the collision probability is used
to determine the colonoscope’s body speed (Vfe – the feeding
speed). Both (ω) and Vfe are inserted in CA to enable the
autonomous manipulation of robot system.

InMethodA, the utilization of the IBVS algorithm requires
feedback signals, such as the actual angles of the pulleys,
to generate steering signals (ω). However, this approach using
feedback signals can potentially lead to issues with accu-
racy and stability. To address these limitations, we introduce
Method B, which involves the use of Model 2, as depicted
in Figure 7(b). Model 2 is designed to predict the steering
signals based on the steering points provided by Model 1,
eliminating the need for real-time pulley angle calculations
required in the IBVS algorithm. This helps enhance the accu-
racy and stability of the system.

Finally, we introduced end-to-end, learning-based control
signal prediction algorithm, enabling the 3-RCS to func-
tion autonomously with just one model, which is referred
to as model E2E (Figure 7(c)). Model E2E has the capa-
bility to produce all the necessary control signals for
autonomous 3-RCS operation, including steering signals,
collision probability, and feeding speed. This approach sig-
nificantly reduces the computational load and operational
time while maintaining high performance, making it a

FIGURE 7. This schematic diagram illustrates three methods and provides
a description of the data generation process for Dataset 2 and Dataset 3.
(a) Method A - Model 1 and IBVS. (b) Method B - Model 1 and Model 2.
(c) Method C - Model End-to-End (E2E).

promising alternative for theARCS. This system is denoted as
‘Method C.’

To assess the performance ofMethods A, B, and C, we con-
ducted 50 experiments for each of the three methods, mea-
suring both the CIT and CIR. Furthermore, we performed the
CIT/CIR measurement while a human operator manipulated
the colonoscope using a joystick, and these results will be
compared to the three aforementioned methods.

B. DATASET GENERATION
Each method includes deep learning models that need to be
trained with data. In this section we discuss how to create
these datasets. We manually labeled Dataset 1, as described
in the following paragraph, and subsequently created Dataset
2 and 3 based on Method A as shown in Figure 7(a) and 8.
The datasets of three models were collected as follows.

For dataset 1, which was trained for model 1 of method A,
we manually manipulated the 3-RCS using a pair of joysticks
on CTS to move the colonoscope from the rectum to the

1284 VOLUME 12, 2024



V. S. Nguyen et al.: End-to-End Learning-Based Control Signal Prediction for Autonomous Robotic Colonoscopy

FIGURE 8. Data generation of dataset 2 and dataset 3.

cecum, as shown in Figure 1. We then collected 27 exper-
iments consisting of a total of 52771 images. While it is
possible to obtain the steering point by detecting the cen-
troid of the darkest pixels in the images, the accuracy of
determining the steering point is significantly affected by the
application of lubricating oil during colonoscopy. Therefore,
we chose to assign the steering point for each colonoscopic
image in this study. Each image was annotated with a steering
point (represented by a white dot) and assigned a class (either
class 0 or class 1) based on the opinion of a colonoscopist,
as shown in Figure 9. Class 1 represents a ‘‘wall’’ that indi-
cates the colonoscope should not proceed further to prevent
intestinal perforation, while class 0 represents ‘‘not a wall’’,
meaning that the colonoscope can continue to move forward
or steer.

FIGURE 9. Annotated images of dataset 1.

Figure 7(a) shows the process of generating dataset 2 and
dataset 3, which are used in Method B and Method C,
respectively. After completing the training and selecting the
best setup for model 1, we conducted 12 autonomous experi-
ments using method A on the CTS. As a result, we generated
dataset 2, which was used to train the proposed model 2 of
Method B. This dataset was created by recording the inputs
(steering points:Qx , Qy) and outputs (steering signals (ω): θ̇1,
θ̇2) of the IBVS (blue round dot line).
To create dataset 3, which was trained for model E2E

of method C, we followed a similar approach to creating
dataset 2. We conducted 30 autonomous experiments using
method A and saved the inputs (colonoscopic images) and
outputs (steering signals, collision probability (col) and feed-
ing speed (Vfe)), as shown in Figure 7(a) (orange round dot
line).

To speed up convergence, all collected images, steering
points (Qx , Qy), and control signals (θ̇1, θ̇2, col, Vfe) were
normalized in the range of [0:1]. Additionally, we divided all
datasets into a training set (80%) and a validation set (20%)
during model training.

C. MODEL ARCHITECTURES
This section presents the architectures of Model 1, Model 2,
and Model E2E, which are trained on Dataset 1, Dataset 2,
and Dataset 3, respectively, and implemented in Method A,
Method B, and Method C.

FIGURE 10. The architecture of models. (a) Model 1. (b) Model 2.

Model 1: Four pre-trained models (ResNet-18 [29],
ResNet-34, MobileNet-v2 [30], DenseNet-121 [31]) are
trained to determine the best version of model 1. An input
image with size of 224 × 224 × 3 is passed to the feature
extraction layer, followed by a flattened layer, a dropout layer
(0.5), and a dense (fully-connected) layer with 128 units. The
output tensors are fed to ReLU activation and to the dense
layer with 3 units. Two units are responsible for a regression
task of finding Qx and Qy, while the third unit is used for a
classification task of finding ‘‘wall’’ or ‘‘non-wall’’ image,
as shown in Figure 10(a).

The combination of a mean square error (MSE) loss (LM)
and binary cross-entropy (BCE) loss (LB) was used to cal-
culate a total loss (LT) during training to reduce complexity
and processing time. A constant loss weight (k) was also used
to optimize the training performance [32]. The total loss is
calculated by (13), where n represents the number of samples,
and (Qr

x, Q
r
y, col

r) and (Qp
x, Q

p
y, colp) refer to the real and

predicted values of steering point and collision probability,
respectively.

LT = LM +kLB (13)

LM =
1
n

n∑
i=0

(
(Qxri − Qxpi )

2
+ (Qyri − Qypi )

2
)

(14)

LB = −
1
n

n∑
i=0

(
colri log(col

p
i ) + (1 − colri ) log(1 − colpi )

)
(15)

Model 2: This article proposed a One-Dimensional
Convolutional Neural Network - Long Short-Term Mem-
ory (1DCNN-LSTM) model (Model 2) to handle the
one-dimensional input and output data in the autonomous
colonoscopy procedure. The proposed model was trained
and compared to other architectures that have shown
good performance in other tasks such as 1D-CNN
[33], 1DCNN-EncoderDecoder [34], LSTM [35], DCNN-
LSTM [36], Bidirectional-LSTM (Bi-LSTM) [37], and
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1DCNN-BiLSTM [38]. To adapt these models to the problem
at hand, all the feature extraction layers are retained, and
a dense layer with two units is added at the end. The pro-
posed Model 2 uses a 1D-convolutional layer with 16 filters,
a kernel size of 7, a stride of 1, and a LeakyReLU activation
function (0.1). This is followed by batch normalization,
an LSTM layer with 256 units and a Tanh activation function,
a Dropout layer (0.5), and a Dense layer with 2 units and a
linear activation function. The overall architecture is shown
in Figure 10(b).
Model E2E: The proposed model E2E follows a similar

approach to model 1, using the pre-trained backbones of
ResNet-18, ResNet-34, MobileNet-v2, and DenseNet-121 to
generate a feature map. After the flattened data is extracted
from the feature extraction layer, it passes through a dropout
layer (0.5) and a dense layer (256). The output of this layer
then passes through another dropout layer (0.5) before being
fed to the final dense layer with 4 units. These units are
responsible for predicting the values of θ̇1, θ̇2, col, and Vfe.

D. HYPERPARAMETER AND TRAINING
To determine the optimal model for each of the three models
(1, 2, and E2E), various learning rates and batch sizes were
used. Both model 1 and model E2E are similar, so they
were trained using the same set of parameters: learning
rates [10−4,10−5], batch sizes [8,16,32,64], and 30 epochs.
Model 2 was trained on the same learning rates, but with a
different set of batch sizes (64,128,256), and epochs (100).
A time step (k=40) was chosen for model 2. The cost func-
tions for regression tasks (model 2 and E2E)wereMSE,while
model 1 used (15) above. Additionally, the Adam optimizer
was set for all models during training. To increase dataset
size, data augmentation techniques such as rotation, scale,
and flipping were employed for input images.

IV. EVALUATION AND MODEL SELECTION
To quantitatively evaluate the models, the primary factor used
to determine the best model is the loss value. Specifically,
the model with the smallest loss value on the validation set is
considered to be the best-trained model.

Model 1, the Resnet34-based model, achieved the smallest
loss value (LT = 0.028) when trained on the batch size of
64 and learning rate of 10−5. The classification result of
the best model 1 is shown in Figure 11(a), where F1-score
and accuracy on the validation set are 0.9927 and 0.9866,
respectively. According to Figure 11(b), when the colono-
scopic image is classified as ‘‘non-wall’’, model 1 provides
the good predicted (green) steering points that match the
ground-truth values (white). On the other hand, when colono-
scopic images are predicted as ‘‘wall’’, or the collision prob-
ability is higher than 0.6, we cannot determine the direction
for the next advancement.

Next, the proposed Model 2 has the same lowest loss
value as the model Bi-LSTM (MSE = 0.0144). How-
ever, the average processing time (0.02732 s/image) of the

FIGURE 11. The prediction result of the best model 1. (a) Confusion
matrix. (b) Predicted steering points and collision probability.

proposed model B is lower than that of model Bi-LSTM
(0.02814 s/image). Therefore, the best model B is selected
as the proposed model 2. Figure 12(a) shows that predicted
steering signals closely follow the ground truth produced by
the best model 2 (without using the angle of the pulley’s data).

FIGURE 12. The prediction results. (a) Model 2. (b) Model E2E.

The best Model E2E, having the smallest loss value
(MSE = 0.051), is the MobileV2-based model, trained on
a batch size of 8 and learning rate of 10−4. We employed
the best model E2E on the validation set and see that the
model E2E can produce control signals well, as shown in
Figure 12(b). Obviously, the steering velocities generated
by model 2 are better than those created by model E2E
since model E2E must share weights to learn the behaviors
of col and Vfe. However, using a single model reduces the
complexity and computation time of the system, as compared
to using 2 models (model 1 and model 2).
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V. EXPERIMENTAL SETUP, RESULT AND DISCUSSION
The experiment setup, evaluation criteria, results, and discus-
sion of human operator and deep learning-based autonomous
manipulation of robotic systems are provided in this section.

A. EXPERIMENT SETUP
Fig. 1 shows an autonomous robotic colonoscopy, where
the colonoscope autonomously advances from the rectum to
the cecum. The experiments were conducted 50 times each,
in the sequence of methods A, B, C, and back to A, for a
total of 150 experiments. The experiment is considered a
success if the CIT is less than 20 minutes [39], and there
is no elongation of the colon. The elongation of the colon,
or an ‘elongation’ state, is determined when the input image
is classified as ‘non-wall’ and the colonoscope keeps moving
forward while the head of the colonoscope remains stuck in
a specific position for over 5 seconds.

Figure 13 shows images of elongation cases during the
experiments. The yellow dot represents the position where
the colonoscope’s head is stuck, and the dashed oval indicates
the elongated colon position. We found that elongation of the
colon can cause patient discomfort or even perforation, and
therefore needs to be classified as a failure case.

FIGURE 13. The experiment failed due to elongation.

Alongside the autonomous robotic colonoscopy experi-
ments mentioned above, we conducted an experiment to
compare the intubation time of ARCS and a human operator.
The experiment involved 5 participants (aged from 25 to
32 years) who had no prior experience in manipulating a
colonoscope [40]. The participants were tasked with moving
the colonoscope from the rectum to the cecum 10 times
using a pair of joysticks, and their intubation times/rate were
recorded. Prior to the experiment, participants were given
5 minutes [7] of practice time with the assistance and advice
of experts during the practice.

B. RESULTS AND DISCUSSION
The purpose of these experiments was to compare the CIT
and CIR of different methods. Overall, the average CIT for
the three methods and human operator was approximately
2min 46 seconds (s), and the CIRwas above 92%, as shown in
Table 2. There were some failed experiments due to elongated
colons, especially in the transverse and ascending sections
where the colon has more acute bends. As the colonoscope
goes deeper into the colon, controlling it becomes more dif-
ficult due to cable slip, tension loss, and friction forces of the

colonoscope. Additionally, the presence of tightly curved sec-
tions, folds, and visibility problems due to lubrication caused
directional errors, resulting in potential kinematic errors and
inaccurate control signals. As expected, these failed cases
occurred in the same experiments for all methods, indicating
that the colon’s configuration also plays an important role in
the success/failure of the experiments.

TABLE 2. Experimental results of Participants, methods A, B, and C.

We found that the rectosigmoid region poses a significant
challenge during colonoscopy, despite its relatively shorter
length compared to other parts of the colon. Participants find
it more difficult to advance through the rectosigmoid, which
has higher mean (M)± standard deviation (SD) of 83 ±

38 seconds (s), than other sections, such as the descend-
ing (35 ± 15 s), transverse (24 ± 10 s), and ascending
(25 ± 10 s) segments. The reason for this difficulty is the
presence of numerous folds and sharp-angled turns in the rec-
tosigmoid section, whereas straight paths aremostly observed
in the other sections.

Like human operators, the ARCS takes longer to traverse
through this rectosigmoid region, with an average time of
76 s, than the descending and ascending parts which take
around 27 s, and the transverse part, which takes around
38s. This finding highlights the technical difficulties asso-
ciated with navigating through the rectosigmoid, despite its
smaller size, and underscores the importance of developing
effective control strategies to ensure accurate and efficient
colonoscopy procedures.

Comparing the results of human operators with Method A,
it is evident that the CIR of participants (100%) is higher
than the IR of Method A (92%). This is because human
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operators are aware of and can effectively handle situations
where elongated colons occur by moving the colonoscope
back and using the colonoscope’s head to expand the colon.
However, it is challenging for the ARCS to recognize elonga-
tion scenarios. Specifically, when the colonoscope’s head gets
trapped in a corner of the colon or folded part of the colon,
the provided colonoscopic image occasionally shows a ‘‘non-
wall’’ classification. In such situations, the system continues
to feed the colonoscope forward since the feeding velocity is
determined by the collision probability derived from the given
image. This leads to the occurrence of elongation phenomena.

For the entire colon, the CIT of human operators (166 ±

53 seconds) is comparable to that ofMethod A (165± 73 sec-
onds). However, in the case of the rectosigmoid, the CIT in
human operators (83± 38 s) is slightly higher than inMethod
A (76 ± 66 s). This disparity arises because participants,
who are non-expert colonoscopists, initially lack awareness
of how to navigate when encountering folded colons and
sharp-angled turns.

FIGURE 14. The colonoscopic images during the autonomous operation.

In method A, the robot can see various kinds of images,
as shown in Fig 14. Several previous studies have achieved
good results by using the centroid of the darkest pix-
els in the images as a steering point [13], [16]. How-
ever, this approach can be problematic for colonoscopy. In
Figure 14(a), we observe that the darkest points (represented
by black dots) are located near the human-labeled points (rep-
resented by white dots). However, in Figure 14(b), the darkest
points are located far away from the human-labeled points.
Therefore, using the darkest point can cause the colonoscope
to get stuck in a corner or go the wrong direction, poten-
tially leading to an increase in intubation and elongation.
Similarly, threshold segmentation algorithms and edge-based
methods [18], [19], [20] were sometimes unreliable because

their accuracy is affected by image variations such as noise,
uneven illumination, or varying contrast, as can be seen
in Figure 14(c). Conversely, Method A, which incorporates
qualitative annotations based on the endoscopist’s experi-
ence, offers more stability and accuracy, making colonoscopy
more reliable and safer.

Next, we observed that the CITs of methods A and B
are similar for each section. However, for a complete colon
examination, method B exhibited slightly better performance
(CIT = 164±54 s and CIR = 94%), compared to method
A (CIT = 165±73 s, CIR = 92%). The lower CIT and
higher CIR of method B can be attributed to the absence of
feedback signals, which are typically required for IBVS. In
other words, by not relying on these feedback signals, method
B experiences reduced impact from feedback signal errors,
thereby resulting in improved overall performance.

The results of the experiment demonstrated that method C
outperforms method B in terms of CIT and CIR for all
sections of the colon, including the full colon. Specifically,
the mean CIT of method C (127s) is 23% less than that of
method B (164s) for the full colon. This improvement in
speed (7.1 mm/s) is noteworthy and comparable to previous
studies [11] [13], [22], [23], and is accompanied by a better
CIR [11], [13]. Furthermore, method C shows greater stabil-
ity than method B, as evidenced by a smaller max/min value
(245/75s) and lower SD (46s) compared to method B which
has max/min value of 316/88s and SD of 54s.

The superior performance of method C can be attributed to
its use of model E2E, which is trained on 30 successful exper-
iments of autonomous robotic colonoscopy. By leveraging
the knowledge gained from previous successful experiments,
method C is better equipped to complete new experiments
successfully. This is reflected in its higher CIR compared to
both methods B and A. Overall, the results of this experi-
ment indicated that method C is a more effective approach
to autonomous robotic colonoscopy than methods A, B and
human operators, with improved CIT, CIR, and stability.

VI. CONCLUSION
In this paper, we present a reliable 3-RCS designed to provide
steering and feeding motions for colonoscopy procedures.
We conducted hysteresis experiments, and the results demon-
strate that our steering and feeding mechanism enables the
dependable operation of the colonoscope, making it suit-
able for autonomous colonoscopy. To achieve successful
autonomous operation within the Colonoscopy Training Sim-
ulator, we employed various deep learning-based approaches.
For Method A, Model 1 was utilized to detect steering points
and collision probabilities using a CNN model accurately
and comprehensively. This enhanced accuracy helps prevent
interaction forces with the colon wall, avoiding perfora-
tions. Additionally, instead of using IBVS to control the
autonomously operated colonoscope, we proposed Model 2
which is based on 1DCNN-LSTM model, which gener-
ates steering signals and achieves comparable CIT and CIR
compared to the IBVS method. Finally, we employed an
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End-to-End (E2E) model, which not only reduces computa-
tional processing time but also enhances CIT, CIR, and sta-
bility for autonomous operation. The results of the proposed
method also outperformed novice operators. It is expected
that the proposed method can support colonoscopists in
reducingworkload, physical demands, work-related pain, and
injuries related to colonoscopy procedures.

In future work, it is crucial to develop an improved strat-
egy or control algorithm to minimize the intubation time,
specifically in the rectosigmoid section. This is important
not only because it poses challenges for human operators
but also for the proposed autonomous system. Furthermore,
it is recommended to generate additional datasets, as we
have determined that the elongation issue stems from an
insufficient number of images used during training. Con-
sequently, the robot struggles to accurately classify various
situations. To enhance the network’s accuracy, it would be
beneficial to explore the implementation of advanced deep
learning models like vision transformers. From a mechanical
development standpoint, our future plans involve attach-
ing an accelerometer-gyroscope sensor to the head of the
colonoscope to monitor the occurrence of any elongation.
Furthermore, it is crucial to implement a searching algorithm
and incorporate additional mechanisms like an expansion
mechanism to effectively overcome the elongation issue.

ACKNOWLEDGMENT
The authors would like to thank students at Korea Aerospace
University and Space Mechanisms and Robotics Laboratory
for participating as human operators in the colonoscopy
experiments.

REFERENCES
[1] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal,

‘‘Global cancer statistics 2018: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries,’’ CA, Cancer J.
Clinicians, vol. 68, no. 6, pp. 394–424, Nov. 2018.

[2] H. Khil, S. M. Kim, S. Hong, H. M. Gil, E. Cheon, D. H. Lee, Y. A. Kim,
and N. Keum, ‘‘Time trends of colorectal cancer incidence and associated
lifestyle factors in South Korea,’’ Sci. Rep., vol. 11, no. 1, pp. 2413–2425,
Jan. 2021.

[3] R. Siegel, ‘‘Cancer treatment and survivorship statistics, 2012,’’ CA, Can-
cer J. Clinicians, vol. 62, no. 4, pp. 220–241, 2012.

[4] E. Ofori, ‘‘Occupation-associated health hazards for the gastroenterolo-
gist/endoscopist,’’ Ann. Gastroenterol., vol. 31, no. 4, p. 448, 2018.

[5] S.-H. Lee, ‘‘Colonoscopy procedural skills and training for new begin-
ners,’’World J. Gastroenterol., vol. 20, no. 45, 2014, Art. no. 16984.

[6] H.-S. Yoon and B.-J. Yi, ‘‘Semi-automatic knob system for assisting
flexible endoscope steering,’’ Int. J. Control, Autom. Syst., vol. 18, no. 10,
pp. 2650–2657, Oct. 2020.

[7] J. Ruiter, E. Rozeboom, M. van der Voort, M. Bonnema, and I. Broeders,
‘‘Design and evaluation of robotic steering of a flexible endoscope,’’ in
Proc. 4th IEEE RAS EMBS Int. Conf. Biomed. Robot. Biomechatronics
(BioRob), Jun. 2012, pp. 761–767.

[8] E. D. Rozeboom, J. G. Ruiter, M. Franken, M. P. Schwartz, S. Stramigioli,
and I. A. M. J. Broeders, ‘‘Single-handed controller reduces the work-
load of flexible endoscopy,’’ J. Robotic Surg., vol. 8, no. 4, pp. 319–324,
Dec. 2014.

[9] T. Iwasa, R. Nakadate, S. Onogi, Y. Okamoto, J. Arata, S. Oguri,
H. Ogino, E. Ihara, K. Ohuchida, T. Akahoshi, T. Ikeda, Y. Ogawa, and
M. Hashizume, ‘‘A new robotic-assisted flexible endoscope with single-
hand control: Endoscopic submucosal dissection in the ex vivo porcine
stomach,’’ Surgical Endoscopy, vol. 32, no. 7, pp. 3386–3392, Jul. 2018.

[10] Y. Huang, W. Lai, L. Cao, J. Liu, X. Li, E. Burdet, and S. J. Phee, ‘‘A three-
limb teleoperated robotic system with foot control for flexible endoscopic
surgery,’’ Ann. Biomed. Eng., vol. 49, no. 9, pp. 2282–2296, Sep. 2021.

[11] H.-E. Huang, S.-Y. Yen, C.-F. Chu, F.-M. Suk, G.-S. Lien, and C.-W. Liu,
‘‘Autonomous navigation of a magnetic colonoscope using force sensing
and a heuristic search algorithm,’’ Sci. Rep., vol. 11, no. 1, pp. 1–15,
Aug. 2021.

[12] Y. Xu, K. Li, Z. Zhao, and M. Q.-H. Meng, ‘‘Autonomous magnetic
navigation framework for active wireless capsule endoscopy inspired by
conventional colonoscopy procedures,’’ IEEE Robot. Autom. Lett., vol. 7,
no. 2, pp. 1729–1736, Apr. 2022.

[13] J. W. Martin, B. Scaglioni, J. C. Norton, V. Subramanian, A. Arezzo,
K. L. Obstein, and P. Valdastri, ‘‘Enabling the future of colonoscopy with
intelligent and autonomous magnetic manipulation,’’ Nature Mach. Intell.,
vol. 2, no. 10, pp. 595–606, Oct. 2020.

[14] T. Yang, Y. Yang, P. Wang, Y. Cao, Z. Yang, and H. Liu, ‘‘A lumen-
adapted navigation scheme with spatial awareness from monocular vision
for autonomous robotic endoscopy,’’Robot. Auto. Syst., vol. 165, Jul. 2023,
Art. no. 104444.

[15] K. B. Ozyoruk, G. I. Gokceler, T. L. Bobrow, G. Coskun, K. Incetan,
Y. Almalioglu, F. Mahmood, E. Curto, L. Perdigoto, M. Oliveira, H. Sahin,
H. Araujo, H. Alexandrino, N. J. Durr, H. B. Gilbert, and M. Turan,
‘‘EndoSLAM dataset and an unsupervised monocular visual odometry
and depth estimation approach for endoscopic videos,’’Med. Image Anal.,
vol. 71, Jul. 2021, Art. no. 102058.

[16] R. Reilink, S. Stramigioli, and S. Misra, ‘‘Image-based flexible endoscope
steering,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2010,
pp. 2339–2344.

[17] Q. Zhang, J. M. Prendergast, G. A. Formosa, M. J. Fulton, and
M. E. Rentschler, ‘‘Enabling autonomous colonoscopy intervention using
a robotic endoscope platform,’’ IEEE Trans. Biomed. Eng., vol. 68, no. 6,
pp. 1957–1968, Jun. 2021.

[18] N. van der Stap, F. van der Heijden, and I. A. M. J. Broeders, ‘‘Towards
automated visual flexible endoscope navigation,’’ Surgical Endoscopy,
vol. 27, no. 10, pp. 3539–3547, Oct. 2013.

[19] J. M. Prendergast, G. A. Formosa, M. J. Fulton, C. R. Heckman,
and M. E. Rentschler, ‘‘A real-time state dependent region estimator for
autonomous endoscope navigation,’’ IEEE Trans. Robot., vol. 37, no. 3,
pp. 918–934, Jun. 2021.

[20] A. Pore, M. Finocchiaro, D. Dall’Alba, A. Hernansanz, G. Ciuti,
A. Arezzo, A. Menciassi, A. Casals, and P. Fiorini, ‘‘Colonoscopy nav-
igation using end-to-end deep visuomotor control: A user study,’’ in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2022,
pp. 9582–9588.

[21] D. Jha, S. Ali, N. K. Tomar, H. D. Johansen, D. Johansen, J. Rittscher,
M. A. Riegler, and P. Halvorsen, ‘‘Real-time polyp detection, localization
and segmentation in colonoscopy using deep learning,’’ IEEE Access,
vol. 9, pp. 40496–40510, 2021.

[22] S.-Y. Yen, H.-E. Huang, G.-S. Lien, C.-W. Liu, C.-F. Chu, W.-M. Huang,
and F.-M. Suk, ‘‘Automatic lumen detection and magnetic alignment con-
trol for magnetic-assisted capsule colonoscope system optimization,’’ Sci.
Rep., vol. 11, no. 1, pp. 1–10, Mar. 2021.

[23] J. F. Lazo, C.-F. Lai, S. Moccia, B. Rosa, M. Catellani, M. de Mathelin,
G. Ferrigno, P. Breedveld, J. Dankelman, and E. De Momi, ‘‘Autonomous
intraluminal navigation of a soft robot using deep-learning-based visual
servoing,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Oct. 2022, pp. 6952–6959.

[24] L. Y. Korman, V. Egorov, S. Tsuryupa, B. Corbin, M. Anderson,
N. Sarvazyan, and A. Sarvazyan, ‘‘Characterization of forces applied
by endoscopists during colonoscopy by using a wireless colonoscopy
force monitor,’’ Gastrointestinal Endoscopy, vol. 71, no. 2, pp. 327–334,
Feb. 2010.

[25] L. Ott, F. Nageotte, P. Zanne, and M. de Mathelin, ‘‘Robotic assistance
to flexible endoscopy by physiological-motion tracking,’’ IEEE Trans.
Robot., vol. 27, no. 2, pp. 346–359, Apr. 2011.

[26] M. Kang, S. Joe, T. An, H. Jang, and B. Kim, ‘‘A novel robotic colonoscopy
system integrating feeding and steering mechanisms with self-propelled
paddling locomotion: A pilot study,’’ Mechatronics, vol. 73, Feb. 2021,
Art. no. 102478.

[27] M. Kmich, H. Karmouni, I. Harrade, A. Daoui, and M. Sayyouri, ‘‘Image-
based visual servoing techniques for robot control,’’ in Proc. Int. Conf.
Intell. Syst. Comput. Vis. (ISCV), May 2022, pp. 1–6.

VOLUME 12, 2024 1289



V. S. Nguyen et al.: End-to-End Learning-Based Control Signal Prediction for Autonomous Robotic Colonoscopy

[28] Y. Li, W. Y. Ng, Y. Huang, Y. Jiang, Y. Xian, W. Xin, P. W. Y. Chiu, and
Z. Li, ‘‘Towards semi-autonomous manipulation of an electromagnetically
actuated soft-tethered colonoscope based on visual servo control,’’ in Proc.
IEEE Int. Conf. Robot. Biomimetics (ROBIO), Dec. 2022, pp. 2075–2080.

[29] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[30] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
‘‘MobileNetV2: Inverted residuals and linear bottlenecks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510–4520.

[31] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ‘‘Densely
connected convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 2261–2269.

[32] A. Loquercio, A. I. Maqueda, C. R. del-Blanco, and D. Scaramuzza,
‘‘DroNet: Learning to fly by driving,’’ IEEE Robot. Autom. Lett., vol. 3,
no. 2, pp. 1088–1095, Apr. 2018.

[33] F. Mattioli, C. Porcaro, and G. Baldassarre, ‘‘A 1D CNN for high accu-
racy classification and transfer learning in motor imagery EEG-based
brain-computer interface,’’ J. Neural Eng., vol. 18, no. 6, Dec. 2021,
Art. no. 066053.

[34] J. Kuester,W. Gross, andW.Middelmann, ‘‘1D-convolutional autoencoder
based hyperspectral data compression,’’ Int. Arch. Photogramm., Remote
Sens. Spatial Inf. Sci., vol. XLIII-B1-2021, pp. 15–21, Jun. 2021.

[35] M.Moradi A., S. A. Sadrossadat, and V. Derhami, ‘‘Long short-termmem-
ory neural networks for modeling nonlinear electronic components,’’ IEEE
Trans. Compon., Packag., Manuf. Technol., vol. 11, no. 5, pp. 840–847,
May 2021.

[36] L. Ma and S. Tian, ‘‘A hybrid CNN-LSTMmodel for aircraft 4D trajectory
prediction,’’ IEEE Access, vol. 8, pp. 134668–134680, 2020.

[37] J. Wang, G. Wen, S. Yang, and Y. Liu, ‘‘Remaining useful life estimation
in prognostics using deep bidirectional LSTM neural network,’’ in Proc.
Prognostics Syst. Health Manage. Conf. (PHM-Chongqing), Oct. 2018,
pp. 1037–1042.

[38] D. Zhou, X. Zhuang, and H. Zuo, ‘‘A hybrid deep neural network based
on multi-time window convolutional bidirectional LSTM for civil aircraft
APUhazard identification,’’Chin. J. Aeronaut., vol. 35, no. 4, pp. 344–361,
Apr. 2022.

[39] A. Plooy, A. Hill, M. Horswill, A. Cresp, R. Karamatic, S. Riek, G. Wallis,
R. Burgess-Limerick, D. Hewett, andM.Watson, ‘‘The efficacy of training
insertion skill on a physical model colonoscopy simulator,’’ Endoscopy Int.
Open, vol. 4, no. 12, pp. E1252–E1260, Sep. 2016.

[40] R. Nakadate, T. Iwasa, S. Onogi, J. Arata, S. Oguri, Y. Okamoto,
T. Akahoshi, M. Eto, and M. Hashizume, ‘‘Surgical robot for intraluminal
access: An ex vivo feasibility study,’’ Cyborg Bionic Syst., vol. 2020,
pp. 1–9, Jan. 2020.

VAN SY NGUYEN received the B.S degree from
Viet Nam National University Ho Chi Minh City
(VNU-HCM)-Ho Chi Minh City University of
Technology, in 2017, and the M.S./Ph.D. Inte-
grated degree from Korea Aerospace University,
in 2023. He is currently a Postdoctoral Research
Associate with the Department of Mechanical
and Aerospace Engineering, University of Cen-
tral Florida, USA. His research interests include
robotics, mechanisms and control, bio/medical

application robots, computer vision, and deep learning.

BOHYUN HWANG received the B.S. and M.S.
degrees in mechanical engineering from Korea
Aerospace University, in 2015 and 2017, respec-
tively, where he is currently pursuing the Ph.D.
degree. His research interests include bio/medical
application robots and mechanism design.

BYUNGKYU KIM received the Ph.D. degree in
mechanical engineering from the University of
Wisconsin, Madison, in 1997. From 1997 to 2000,
he was a Technical Staff Member with the Center
for X-ray Lithography, University of Wisconsin,
where he developed a computer code for thermal
modeling of a mask membrane and wafer dur-
ing beam exposure. From 2000 to 2005, he was
with the Microsystem Center, KIST, as a Principal
Research Scientist. Hewas in charge of developing

a microcapsule-type robotic endoscope. He is currently a Professor with
Korea Aerospace University. His research interests include space mecha-
nism, robotics, micro/nano-manipulator, and bio/medical application robots.

JAY HOON JUNG received the Ph.D. degree in
computer science from the State University of
New York at Stony Brook. He is currently an
Assistant Professor with the Artificial Intelligence
Department, Korea Aerospace University. His pri-
mary research delves into uncovering the founda-
tional principles of artificial neural networks. He
aspires to leverage these insights to develop quan-
tum algorithms for deep learning. Additionally,
he is invested in creating efficient algorithms for

daily-life applications, particularly in the realm of autonomous systems.

1290 VOLUME 12, 2024


