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ABSTRACT Scenario-based testing will help to validate automated driving systems (ADS) and establish
safer road traffic. To date, most data-driven test scenario generationmethods rely primarily on one data source
such as police accident data (PD), naturalistic driving studies, or video-based traffic observations (VOs).
However, none of these data sources perfectly satisfies all the layers of the six-layer model for the description
of test scenarios. Moreover, not all available data sources cover the same location and period of time.
Therefore, we fused information from 1,648 scenarios extracted from a German VO with information from
74 scenarios extracted from German PD into a comprehensive new PD* database. Finally, PD* consisted
of 74 accident scenarios extended, for example, by variables containing the dynamic information of the
VO scenarios. Thus, PD* contained more than 350 variables, whereas PD contained only 269 and VO only
122 variables. For fusion, we followed the Find-Unify-Synthesize-Evaluation (FUSE) for Representativity
(FUSE4Rep) processmodel using statistical matching. Subsequently, we derived three logical scenarios from
PD* to test an autonomous emergency braking system (AEB) in a stochastic traffic simulation incorporating
driver-behavior models. The quality of the fusion itself was satisfactory, and we propose improving the VO
data collection process and observation time to obtain even better results.

INDEX TERMS Advanced driver assistance systems, autonomous driving, system validation, vehicle safety,
road traffic.

I. INTRODUCTION
The second wave of automated driving is starting right
now [1], aiming to make road traffic safer by introducing
automated driving systems (ADSs). Thus, ADSs should drive
more safely than attentive human drivers to achieve safer road
traffic [2]. One way of proving that ADSs drive safer than
human drivers is to compare their safety performance with
that of human drivers in selected test scenarios representing
real-world traffic. In the early development stage of ADSs,
these prospective assessments are performed virtually, for
example, by comparing the number of accidents per test
scenario for human drivers and ADSs in a large number
of virtual simulation runs. To obtain the greatest possible
variety of differently executed scenarios over all simulation
runs, stochastic simulations can be used, which can vary
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test scenario-specific parameters, such as ego-/agent speed,
stochastically per simulation run [3]. Moreover, they can also
incorporate driver behavior models to compare ADSs with
human driving behavior [3], [4]. The idea of comparing the
performance based on test scenarios emerges from the so-
called scenario-based testing approach [5], which attempts
to compress the interesting parts of the road traffic in the
ADS operational design domain (ODD) into test scenarios.
The ODD describes the domain and conditions for which
the ADS is developed to operate securely, such as the
road layout, speed ranges, and environmental conditions [6].
Generally, test scenarios are “a kind of flip book representing
the temporal sequence of scenes with different actions
(e.g. lane change) and events (e.g. collision)” [7, p. 226].
The description of the test scenarios can follow the six-layer
model (6LM) [8], specifying, for example, road networks,
traffic guidance objects, dynamic objects, and environmental
conditions. Additionally, for ADS comparisons with human
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driver behavior, information on the road users involved,
such as the driver’s age and driving experience [4],
is also helpful in the scenario description. Furthermore,
Menzel et al. differentiate between logical and concrete
scenarios [9]. Logic scenarios, suitable for stochastic traffic
simulations [3], [7], provide parameter ranges of the infor-
mation contained, whereas concrete scenarios, suitable for
proving ground tests, provide specific parameters from the
ranges.

One way to generate test scenarios is to extract them
from the road traffic data [10]. Possible road traffic data
sources include police accident data (PD), video-based traffic
observations using drone/stationary cameras (VOs), and
naturalistic driving studies (NDSs) [10], [11]. Ideally, one
would continuously collect all of these different road traffic
data in the correspondingODDof the ADS to obtain a holistic
scenario catalog covering the entire traffic event of the ODD,
including accident and critical, complex, and normal driving
scenarios [3], [12], [13]. In other words, the test scenario
catalog should be representative of the ODD traffic event,
meaning that the distributions of the scenarios in the test
scenario catalog and in real traffic are similar at the time of the
ADS testing. However, there are three main drawbacks that
hinder the creation of holistic and representative test scenario
catalogs:
1) Limited availability: To date, there has been no

continuous, representative [13], or standardized traffic
data collection covering real-world driving behavior,
comparable to the nationwide collections of road
traffic accidents by the police [14]. So far, various
VO [11], [15], [16] and NDS [11], [17] data sets
exist, which show, however, only a temporally and
spatially limited section of road traffic, for example,
two intersections over three months [16]. Owing to the
large organizational and financial efforts involved, for
example, continuous drone VOs of all ODD-relevant
traffic sections are unrealistic in the future.

2) Differing information: Existing data sources vary in
their information content available to describe all six
layers of the 6LM and information on road users. For
example, the German PD provide conflict situations
leading to accidents (“AccidentType”) and personal
information about the road users involved (e.g., age,
driving experience, car details) [18]; however, they do
not contain any dynamic information (trajectory, speed
course, etc.) of the road users to derive logical/concrete
scenarios. By contrast, VOs provide dynamic informa-
tion for all road users, such as detailed trajectories,
traffic volume, and overall traffic behavior, but do not
contain any personal information that is not visible to
the sensor/camera. Finally, NDSs can provide personal
and dynamic information of the road users involved, but
are limited to the information perceivable by the sensors
from the road users’ vehicles participating in the study –
the surrounding traffic is only perceived selectively here,
depending on the “ego-vehicle-view”.

3) Reliable coverage: Even if all data are available,
it is almost impossible to reliably identify all relevant
scenarios using supervised, unsupervised, or rule-based
scenario identification approaches [10]. Owing to the
large amount of necessary road traffic data, there are
always unknown scenarios that cannot be identified by
the algorithms used – be it due to missing rules, missing
training data or incorrect hyperparameterization.

To overcome these drawbacks, we propose two approaches:
First, we propose fusing concrete scenarios [9] identified in

different data sources to overcome the challenges of limited
availability (1) and differing information (2), motivated by
the Find-Unify-Synthesize-Evaluation (FUSE) for Represen-
tativity (FUSE4Rep) process model [7], [19]. The fusion
of the scenarios identified from PD and VO can create a
representative accident test scenario catalog containing the
dynamic and personal information of the road users involved.
Using this representative test scenario catalog, the following
question can be answered to identify edge cases for testing:
Which is the most likely police-recorded traffic conflict
leading to accidents, and how should it be parameterized?
To create the test scenario catalog, the FUSE4Rep process
model uses statistical matching (SM) and provides a general
procedure for fusing scenarios identified in road traffic
data [7], [20]. SM is a technique to combine “statistically
heterogeneous samples to construct a new sample that can
be regarded as having come from an unobserved joint
distribution of interest” [21, p. 6]. In contrast to other fusion
techniques such as record linkage, the samples to be fused
do not require identical observations linked by a unique
identifier [21].

Second, we propose to derive logical scenarios from the
identified (concrete) scenarios and vary them in a stochastic
traffic simulation to overcome the coverage challenge (3),
as shown in [3]. Thus, the accident scenarios are extended
to normal driving and critical scenarios. Therefore, scenarios
that were not included in the real-world data sample or were
identified in real-world data are revealed using the stochastic
component of the simulation.

Building on these two proposals, this study explores
the following overall research question (RQ): How can a
representative test scenario catalog applicable for testing in
stochastic traffic simulations be derived by fusing scenarios
identified in PD and VO using the FUSE4Rep process model?
To answer this question, we applied the FUSE4Rep process
model for the first time completely. The aim was to fuse
the scenarios identified in the PD and VO data [16] from
selected intersections in Dresden, Germany. To provide a
practical example, the scenarios to be fused are relevant for a
hypothetical autonomous emergency braking system (AEB),
which supports drivers in car-car conflicts. The contributions
of this study are as follows:

• Demonstration of all necessary steps for fusion, starting
with collection of PD and VO data.

• Fusion of the scenarios identified in PD and VO using
SM.
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• Derivation of three exemplary logical scenarios for
application in a stochastic traffic simulation to test a
hypothetical AEB.

In the following section, we first introduce the existing
data-driven scenario generation approaches, the basics of SM,
and the FUSE4Rep process model. Next, we demonstrate
how to apply the FUSE4Rep process model to the PD and
VO data, and how to derive logical test scenarios. Finally,
we conclude the paper with a discussion and directions for
future research.

II. BACKGROUND/RELATED WORK
The following section provides an overview of the current
data-driven scenario generation approaches and SM. More-
over, the section introduces the FUSE4Rep process model.

A. PROCESS OF DATA-DRIVEN TEST SCENARIO
GENERATION
To provide an overview of the current data-driven test sce-
nario generation approaches, we extended the data-driven test
scenario generation process proposed in [10], [22], and [23],
and added the proposed 5th step of scenario fusion to
overcome the challenges of limited data availability and
differing information (see Figure 1).

[Steps 1 & 2] After determining the ADS under test (SuT)
and specifying the corresponding ODD in step one, step
two requires the minimum types of data sources required to
generate the test scenarios. To date, only a few approaches
have required more than one primary data source to identify
the scenarios.When usingmore than one primary data source,
the approaches rely either on a combination of real driving
(NDS/VO) and accident data [7], [19], [24], [25], [26], [27]
or on a combination of real driving and simulated/synthetic
data [28], for example, recorded in driving simulators.
[Step 3] Step three asks how the chosen primary data

are collected. To date, most of these methods are based on
existing accident or real driving data sets, as listed in [10],
and [11]. Frequently used VO data sets are the highD [29] and
inD [30] data sets. Currently, only [7], [19], [31] emphasize
to perform real driving data collection following a fixed
sampling plan to obtain a representative sample of the road
traffic of the ODD.

[Step 4] Subsequently, step four requires the identification
and extraction of scenarios, which is mostly done using rule-
based approaches: rule-based approaches alone [7], [19],
[22], [24], [25], [26], [27], [28], [32], [33], [34], [35], [36],
[37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47],
[48], [49], [50], [51], [52], [53], [54], [55] or combined
with unsupervised [56], [57], [58] or supervised [59], [60],
[61], [62], [63], [64] approaches. An example of a rule-based
approach applied to VO data is to first determine the
trajectories of road users and then use surrogate safety
measures (SSMs), such as time-to-collision (TTC), to detect
critical scenarios [19].

[Step 5] Step five (optional) requires the fusion of
scenarios identified from different road traffic data sources.

To date, [25] has matched the three-digit accident type (3AT)
classification [65] used by the German police to driving
situations from a NDS by comparing attributes such as the
ego-maneuver using record linkage. However, [25] did not
aim to create a statistically valid and representative database.
In contrast, [26] fused VO and PD data for one intersection
in Germany, Dresden, using SM. Hereby, the SM-process
assigned traffic densities and average velocities, extracted
from VO data, to past accidents based on time-related
variables, such as day, hour, and minute [26]. Consequently,
the matching in [26] did not create test scenarios, which is
also due to the low level of common information, that is,
common variables, shared between the two data sources to be
fused. Therefore, [7] proposed the FUSE4Rep process model
(see Section D) to maximize the common information to be
fused by designing the data collection accordingly. Thus,
[19] illustrates how to collect and prepare VO data following
the FUSE4Rep process model. Consequently, [19] identified
scenarios in VO data according to the 3AT classification
scheme using a rule-based approach. However, a complete
fusion of the scenarios identified in the PD and VO data
using SM has not yet been achieved. We want to emphasize,
that the fusion of e.g. weather-related information to already
identified scenarios using timestamps, as proposed by [24],
belongs more to the field of ‘‘data enrichment’’ relying on
record linkage [21].

[Steps 6 & 7] Finally, steps seven and eight, which are
not the focus of this study, aim to generate executable
test scenarios by using e.g., parameter sampling or driver
models [10], and to evaluate the created scenarios regarding,
for example, their criticality [10].

B. APPLICATION OF GENERATED TEST SCENARIOS IN
STOCHASTIC TRAFFIC SIMULATION
Scenario-based testing of ADSs in virtual traffic simulations
will help compare ADSs with the current traffic event and
thus help answer whether ADSs:

(a) reduce the occurrence of accidents/critical situations in
the scenarios tested,

(b) mitigate the consequences of accidents/critical situations
in the scenarios tested,

(c) and cause new critical situations/accidents [7], [66].

Representing a wide range of possible virtual traffic
simulations, we focus on comparing ADS driving behavior
with human driving behavior in a stochastic traffic simula-
tion [3], [66]. Owing to the stochastic approach, only logical
scenarios are required, which allows a new parameterization
in each simulation run. Here, the required logical scenarios
must contain the following information on the dynamic
objects at a minimum:

(a) start positions of ego vehicles and agents (i.e., other road
users),

(b) maneuvers of ego vehicles and agents (for example,
going straight, turning left, or turning right),

16356 VOLUME 12, 2024



M. Bäumler, G. Prokop: Test Scenario Fusion: How to Fuse Scenarios

FIGURE 1. Data-driven scenario generation process based on [10], [22], and [23]. The proposed 5th step of scenario fusion to overcome the
challenges of limited availability and differing information of data sources is highlighted. The overall process was mapped to the FUSE4Rep process
model [7]. Steps six and seven are masked out because they are not in the main focus of this study and do not belong to the FUSE4Rep process
model.

(c) and speed at start (e.g., min/mean/max) of ego vehicles
and agents [3], [7].

Interestingly, the 3AT classification, originally developed
for PD [64], [65] and applied by [19] to identify scenarios
in VO data, helps determine both the start positions and
maneuvers of the ego vehicle and agents. As stated, for ADS
comparisons with human driver behavior, information on the
road users involved, such as the driver’s age and driving
experience, can also be helpful [4]. To date, the scenarios
used in [3] for comparing an AEB system to human driving
behavior have been selected based on accident statistics
and expert opinion, and parameterized based on a literature
review and a descriptive analysis of VO data.

C. STATISTICAL MATCHING (SM)
SM originates from social sciences [21] and aims to combine
information from independently acquired samples into a
new synthetic one [20]. The new synthetic sample can then

FIGURE 2. Schematic representation of an asymmetric data fusion using
statistical matching [26].

be considered as a sample of a virtually joint distribution
emerging from the fused samples [21]. Therefore, the two
samples must already address the same population before
fusion; for example, all traffic conflicts in a specific space
and time [19].
Figure 2 [26] illustrates the SM for two independently

acquired data sets A and B. Both data sets have some
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FIGURE 3. Example of the distance-hot-deck-method (DHD) [26].

variables X1, ..,XP in common, as well as some missing
variables: Data set A misses variable Z , and data set B
misses variable Y . In the case of asymmetric SM, the smaller
data set – here A, receives information about Z from B.
Thus, A is also called “recipient” and B is called “donor”.
After the fusion,A∗ represents a new, complete, and synthetic
micro-data set containing all variables, X1, ..,XP, Y , and Z .
Depending on the fusion quality, A∗ can be used for further
analysis.

For data sets containing categorical variables, such as PD,
non-parametric fusion methods are suitable [67]. In the case
of fusing PD with VO data, suitable non-parametric fusion
methods, such as the distance-hot-deck (DHD) method,
use the Gower distance metric [26], [68]. Furthermore,
(ensembles of) machine learning classifiers are also suitable,
such as random forests and their boosted derivatives, support
vector machines, and neural nets [26], [69], [70]. However,
because we want to fuse unique scenarios described by
several single variables in this case, the aforementioned
single-label machine learning classifiers are not applicable;
thus, we focus on DHD, as illustrated in [26]. Furthermore,
DHD outperforms other hot-deck methods, such as random-
hot-deck, and also outperforms random forests in preserving
marginal distributions (see the upcoming validity proof),
according to [26]. We also emphasize that the Gower
distance metric can handle categorical and metric variables
simultaneously [67].

As presented in Figure 3 [26], DHD aims to replace the
missing variable Z of the recipient by comparing the common
variables X of B and A. Usually, DHD does not use all
common variables X, but only these explaining the missing
variable Z the best – this subset of the common variables
XMV used for comparing / fusing is also called matching
variables (MV). In detail, DHD selects a suitable observation
to be fused from B by minimizing the local and global
distances of the MVs following a distance function, which
here is the Gower distance, suitable for handling categorical
and non categorical variables [67]. In constrained mode,
the DHD selects every observation only once for fusing,
whereas in unconstrained mode, the DHD can select every
observation multiple times. When two observations have the
same distance, DHD randomly chooses.

After fusing successfully, we can check the validity of the
fusion using a plausibility check performed by experts [26] by
comparing the results with real-world data and by comparing
the (marginal) distributions [20]. Specifically, the (marginal)
distributions of Z inA∗, that is f̃Z , and B, that is fZ , as well as

the common distributions of Z with single MVs in A∗, that is
f̃ZXMV , and B, that is fZXMV , must coincide [20]:

f̃Z = fZ and f̃ZXMV = fZXMV (1)

To generate logical scenarios, the preservation of the
(marginal) distributions is more important than assigning
every observation correctly, which is measured by the “hit
rate” [20]. This means that for logical scenario genera-
tion, which relies on parameter ranges/distributions, the
fulfillment of the best possible hit rate, as a strong, never
measurable indicator for valid data fusion [20], is not in focus.

D. THE FUSE4REP PROCESS MODEL
In the following, we present the Find-Unify-Synthesize-
Evaluation (FUSE) for Representativity (FUSE4Rep) process
model in detail, as proposed in [7], for fusing PD and
VO data. In addition, we mapped the FUSE4Rep process
model to the corresponding steps of the data-driven scenario
generation process (see Figure 1). The FUSE4Rep process
model incorporates the following four steps [7]:

• Find a possible common population and information
shared between the PD and VO data. This information
serves as the basis for shared variables. Accordingly,
using smartphone apps in VO data collection to collect
additional common information, such as the incorrect
behavior of road users, is reasonable [19].

• Unify the possible common information in the form
of shared variables; for example, identify scenarios
according to the 3AT scheme in both data sets [19], [64].
This also includes an assessment of the crash risk of
the scenarios identified in the VO data using generalized
extreme value distributions (GEV) [19], [71].

• Synthesize both data sets by SM.
• Evaluate the fusion using statistical indicators, compa-
rable real-world data, or expert opinions.

Regarding the data-driven scenario generation process,
the step “Find” depends on the “scope definition” (1), the
“primary data source selection” (2) and the “primary data
collection” (3). In contrast, the step “Unify” belongs to
the “scenario identification” (4) step because, for example,
determining the 3AT is a type of scenario identification.
Finally, the steps “Synthesize” and “Evaluate” belong to the
optional fifth step “scenario fusion”.

E. RESEARCH GAP AND OBJECTIVE
The overall objective is to fuse PD and VO data for the first
time using the FUSE4Rep process model to be able to derive
a representative test scenario catalog, applicable for testing
in stochastic traffic simulations. Therefore, we consider the
following four RQs in detail to answer the overall RQ stated
in the Introduction:
1) What are the suitable MVs for fusing the PD and VO

data?
2) Does the constrained or unconstrained DHD perform

better?
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3) How good are the final fusion results obtained?
4) Is it possible to derive logical scenarios applicable for

testing in stochastic traffic simulations?

III. METHODOLOGY
The methodology mainly follows the four steps of the
FUSE4Rep process model [7] and is based on the exemplary
data fusion presented in [26], as well as on VO data
preparation according to the FUSE4Rep process model
presented in [19]. We use the terms “accident” and “crash”
in the following as synonyms, considering only accidents
with two participants, excluding e.g. accidents with only
one participant due to driving errors. We also use the terms
“scenario” and “observation” synonymously: the scenario
identified in the PD/VO data is equivalent to an observation
stored in the data sets. Finally, we use the following conven-
tion regarding the different sets of variables considered:

• Shared variables XS : All variables with the same name,
content, and categories in PD and VO.

• Common variables XC : All shared variables, which
have a similar distribution in PD andVO and thus belong
to the same common population.

• Specific variables Z: All variables that are specific to
the donor data set, that is, VO.

• Matching candidates XMC : All common variables
investigated as candidates for matching variables.

• Matching variables XMV : All matching candidates that
are finally selected as matching variables for fusion.

A. FIND
The first step “Find” encompasses all steps to find a common
population and common information between the PD and
VO data [7] because a shared, unobserved superordinate
population is essential for every data fusion. The identi-
fied population must be described spatially, factually and
temporally [13], [72]. Following the data-driven scenario
generation process (see Figure 1), the common population
depends on the ODD of the ADS to be tested. Thus, the
acquisition of PD should be based on the ODD defined
beforehand. Subsequently, the VO data set should attempt to
cover the same ODD as a random sample [13] of the common
population. To define a common population, a link between
PD andVO is required [19]. According to [73] and [74], every
accident is preceded by a traffic conflict, but not every traffic
conflict can lead to an accident. In Germany, PD includes
the traffic conflict preceding the accident described by the
variable “AccidentType” [65]; in some states, AccidentType
is also described by the detailed 3AT scheme [65]. The
3AT describes the traffic conflict leading to an accident,
whereby a conflict is defined as the simultaneous approach
of road users to a road location where they may collide [65].
Consequently, VO can also reveal traffic conflicts [75], which
is a possible link between PD and VO. Thus, the shared,
unobserved superordinate population can consist of all traffic
conflicts that occur in the ODD in a given period. To provide a

TABLE 1. ‘‘Find’’: All steps.

specific example, a common superordinate population for an
AEB system operating at intersections under good weather
conditions in 2023 in Germany could be “all traffic conflicts
occurring in the absence of rain, fog, and snow [Factual]
at German intersections [Spatial] in 2023 [Temporal]”.
With respect to the required sample sizes for the PD and VO
data, the size of the PD must be sufficient to encompass the
variations in the VO at the desired level of confidence and
error tolerance and vice versa [26].

Regarding possible common information, the VO data
set/data collection should be oriented towards PD collection,
as PD collection is normally standardized and independently
performed by the police. For example, in VO, a suitable
approach would be to record the incorrect behavior of
road users in observed traffic conflicts according to the
PD categories with the help of drone pilots conducting
VO [19], [76]. Moreover, the 6LM [8] can help find infor-
mation associated with the six layers between both data
sets, whereby the ListDB specification already provides a
comprehensive codebook of possible variables [76]. Table 1
summarizes all ‘‘Find’’ steps necessary.

B. UNIFY
The second step “Unify” encompasses all steps to unify
the possible common information in the form of shared
variables XS between the PD and VO data [7]. With respect
to the required format, both PD and VO should be tabulated
such that each row contains an accident or observed traffic
conflict described by means of shared variables XS , as well
as variables Y and Z specific to each data set (see Figure 2).
As an example of unification, we demonstrate in part how to
determine the AccidentType variable according to the 3AT
scheme as a shared variable as the link between PD and VO.
The detailed instructions can be found in [19] and [64].
First, the 3AT should be, if not available, determined for
all accidents contained in the PD by manually analyzing the
accident descriptions (see Table 2) with expert knowledge or
using machine learning approaches [64].

Second, after determining the set of different 3ATs
occurring in the PD, the equivalent conflict situations
according to the 3AT scheme must be identified in the VO.
The prerequisites for identification are the trajectories of
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TABLE 2. Exemplary accident descriptions of 3AT 201 and 3AT
302 recorded by the police (street names were replaced for easier
reading). Pictograms provided by [65]. “W” in pictogram indicates a road
user, which has to wait / give priority.

FIGURE 4. Process of 3AT determination in VO according to [19] (left).
Possible maneuvers at a 3-/4-way intersection without turn-around
(right). Virtual gates are indicated by the letters A-D.

road users already extracted from the video data using com-
mercial [77], open-source [78], or self-developed [19], [79]
video analysis frameworks. After determining the maneuvers
(going straight, turning left, turning right) and travel direc-
tions (e.g., from virtual gate C to virtual gate A at a 3-way
intersection) of all road users, the rule-based determination
of conflict constellations following the 3AT scheme (for
details, see [19]) is applicable (see Figure 4). For example,
when two cars at a 3-way intersection are visible in the
video simultaneously, they can have a potential conflict
constellation according to 3AT 201 [65], when

• the first car, called “agent”, entering the intersection at
virtual gate C wants to turn to virtual gate A and thus
slows-down/stops to turn, and

• the second car, called “ego”, succeeds car A and goes
meanwhile straight.

In the following, the road user causing the conflict is called
“ego” and the opponent road user is called “agent”. After
identifying a potential conflict constellation, the question is
whether it can also be a traffic conflict, that is, whether
it bears the potential risk of a crash. Therefore, every
identified conflict constellation, called 3AT, is described by

the time course of an SSM to assess its maximum risk over
time [80], [81]. Therefore, 3ATs involving a longitudinal
approach between ego and agent, for example, 3AT 201, are
described by the modified-time-to-collision (MTTC), [82]
expanding the concept of time-to-collision (TTC) [83] by
considering road users’ accelerations. The TTC describes
“the time until a collision between the vehicles would occur if
they continued on their present course at their present rates”
[80, p. 155]. MTTC was calculated as follows:

MTTC =
1v±

√
1v2 + 21a1s
1a

(2)

where 1v is the relative speed, 1a is the relative (tangential)
acceleration, and 1s is the relative distance between the ego
and agent. The MTTC is equal to TTC when 1a = 0 and
1v > 0. When 1a ̸= 0 and both results are positive, the
MTTC corresponds to the smaller value [82]. When 1a ̸= 0
and one result is negative and one is positive, the MTTC
corresponds to the positive result [82]. In contrast, 3ATs, for
example, 3AT 302 [65], consisting mostly of perpendicular
approaches between ego and agent, are described using post-
encroachment-time (PET) [84]. PET is defined as “the time
between the moment that a road user (vehicle) leaves the
area of potential collision and the other road user [vehicle]
arrives [at the] collision area” [80, p. 155] and is calculated
as follows:

PET = t2 − t1 (3)

where t1 is the moment at which the rear bumper of
the first vehicle leaves the area of potential collision and
t2 is the moment the front bumper of the second vehicle
enters the area of potential collision. After calculating the
corresponding SSMs and their time-course SSM(t), only
the conflict constellations with a potential risk of crash are
stored by removing those with a minimum SSMmin greater
than five seconds. Hereby, five seconds corresponds to the
length of the GIDAS pre-crash matrix [19], [85], which
is a simulation format widely used in accident research.
Subsequently, for each of the identified and stored 3ATs,
the corresponding metadata, including the incorrect behavior
of road users, of the VO can be matched. Finally, the
population of traffic conflicts identified from VO should also
be assessed for their overall risk of crashes using an approach
based on real-time crash prediction modeling [19], [71].
Reference [19] proposed using only 3AT populations, with a
positive risk of crashes RC,3AT > 0. The RC,3AT is calculated
as follows [19], [71], and [86]:

RC,3AT = G3AT (0) =


exp

{
− [1 + ξi(−

µi

σi
)]−

1
ξi
}
, ξ ̸= 0

exp[−exp(
µi

σi
)], ξ = 0

(4)

Here, G3AT is the generalized extreme value (GEV)
distribution obtained via maximum likelihood estimation
based on the SSMmin distribution obtained for every type
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TABLE 3. ‘‘Unify’’: All steps.

of 3AT [19]. Specifically, G3AT is described by scale
parameter σ , location parameter µ, and shape parameter ξ .
After sorting out the 3ATs that do not have a positive crash
risk and transforming, if possible, all other variables to the
shared variables XS , the actual fusion can then begin. Table 3
summarizes all the necessary “Unify” steps.

C. SYNTHESIZE
The third step, “Synthesize” encompasses all steps to fuse
both data sets, the donor data set VO, and the recipient
data set PD into the new data set PD∗ by SM [7]. First,
the assumption that both data sets to be fused belong to
the same population is verified by investigating the shared
variables XS with the same name, content, and categories
identified previously. The more shared variables exist and the
more the distributions of the shared variables in PD and VO
coincide (the more common variables XC exist), the more
likely it is that a common population is given. Reference [87]
recommended using the Hellinger Distance HD ∈ [0, 1] as a
similarity measure to compare the distributions of categorical
(nominal) shared variables. To compare a shared categorical
(nominal) variable x between PD and VO, HD(px,VO, px,PD)
is calculated based on the relative frequencies px of the
individual categories j = 1, . . . , J of the shared variable x
compared:

HD(px,VO, px,PD) =
1

√
2

√√√√√ J∑
j=1

(
√
px,VO,j −

√
px,PD,j)2 (5)

The more similar the distributions are, the closer
HD(px,VO, px,PD) is to zero. Reference [88] refer to the rule of
thumb that distributions are similar whenHD(px,VO, px,PD) ≤

0.05, which must not be valid for every data fusion. There-
fore, we determine the threshold for similarity empirically
by splitting the VO data set n times randomly into two
data sets following the same ratio as PD to VO and
applying the maximum/median of all HD measured between
the synthetically created VO data sets as the similarity
threshold. Subsequently, all common variablesXC belonging
to the same population are investigated for their suitability
as matching candidates for XMC . In this data fusion, the
specific (missing) variables Z to be fused, are all metric

and assumed to be normally distributed; for example, the
variables EgoStartSpeed and AgentStartSpeed. By contrast,
the shared variables XS are all categorical and nominal and
can thus be displayed as dichotomous variables. Thus, we use
the point-biserial correlation measure rpb ∈ [−1, 1] to
find the categorical matching candidates x in XC,VO, which
explain the (metric) specific variables Z to be fused best [89]:

rpb,xz =
Z1 − Z0∑
Z2−

(
∑
Z )2
N

N−1

√
N1N0

N (N − 1)
(6)

where Z0 / Z1 are the means of the specific variable zwhen the
common variable x is coded 0 and 1, respectively;N0 / N1 are
the numbers of observations when x is 0 / 1; and N is
the number of all observations, that is, the sum of N0 and
N1 (= VO size). A perfect positive correlation is given at
rpb,xz = +1, no association is given at rpb,xz = 0, and a
perfect negative correlation is given at rpb,xz = −1.

Because it is also difficult to define a selection threshold
for the selection of matching candidates XMC using point-
biserial correlation, we perform test fusions with the selected
matching candidates and thereby identify their best combi-
nation/selection. The best combination/selection corresponds
to the final matching variables XMV for the subsequent
fusion. The best fusion is that which best preserves the
distributions of the specific variables Z in VO and the fused
data set PD∗, among others (see Sections II-C and III-D).
With regard to fusion using constrained/unconstrained DHD,
we consider every scenario/observation stored in VO as
unique. Consequently, all the specific variables Z that are
fused always originate from the same scenario identified by
one matching combination of MVs. This approach has the
advantage that the parameter ranges/distributions required to
describe logical scenarios can be derived flexibly, because
values that have already been aggregated over multiple
scenarios, such as the mean values of EgoStartSpeeds, are
not matched during the fusion. Table 4 summarizes all
“Synthesize” steps.

D. EVALUATE
The fourth and last step “Evaluate” encompasses all steps
to evaluate the data fusion [7], whereby we do not compare
the results with real-world data owing to missing access to,
for example, the German-In-Depth-Accident-Study [90]
providing comparable accident data with a five-second pre-
collision simulation [85]. The metrics used to compare the
(marginal) distributions fZ of VO and PD∗ and the common
distributions fZXMV of VO and PD∗ depend on the type
of variables compared (metric vs. categorical). In the case
of distributions fZ / fZXMV formed by categorical variables,
we use the Hellinger Distance HD(pVO, pPD∗ ), as introduced
in (5). When comparing distributions fZ formed by metric Z,
we calculate the two-sample Smirnov test statistic D [91] for
α = 0.05, which is a common approach for comparing two
empirical distributions [91]. The corresponding critical value
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TABLE 4. ‘‘Synthesize’’: All steps.

TABLE 5. ‘‘Evaluate’’: All steps.

of the test statistic Dcrit,α=0.05, forming the upper threshold
for judging similarity and used for large samples, such as nVO
and nPD∗ , is calculated as follows [92]:

Dcrit,α=0.05 = 1.36

√
nVO + nPD∗

nVOnPD∗

(7)

However, a comparison of the common distributions fZXMV

formed bymetricZ and categoricalMVsXMV is not possible.
Hence, we compare how the correlation between Z and
XMV is preserved between VO and PD∗, and thus compare
the corresponding difference 1rpb,XMV Z ,VOPD∗ using (6).
As stated in Section III-C, applying pre-defined thresholds
to judge similarity is difficult. Additionally, relying only
on statistical tests may be too strict. Hence, we empirically
determine thresholds for all comparisons, as introduced,
based on the mean of all metrics computed for n random
splits of the donor data set VO. Please note that some of
the determined thresholds are already necessary in the step
“Synthesize” to judge, for example, the common population
of the common variables. Table 5 summarizes all “Evaluate”
steps.

FIGURE 5. Aerial images [93], [94], [95] of all 20 intersections included in
the PD. The intersections were mostly connected via primary and
secondary roads to ensure a comparable volume of traffic. The two
intersections also included in VO are largely displayed (Tharandter
Straße/Frankenbergstraße; Kohlenstraße/Dorfhainer Straße). All
20 intersections are located in Dresden, Germany: (Tharandter Straße
AND (Altfrankener Straße OR Anton-Weck-Straße OR Chauseehausstraße
OR Clara-Viebig-Straße OR Frankenbergstraße OR Reisewitzer Straße OR
Schillingstraße)) AND (Reisewitzer Straße AND (Schillingstraße OR
Anton-Weck-Straße OR Bonhoefferplatz OR Frankenbergstraße OR
Mohorner Straße)) AND (Chemnitzer Straße AND (Bayreuther Straße OR
Bamberger Straße OR Hegerstraße OR Bienertstraße)) AND (Kohlenstraße
AND (Dorfhainer Straße OR Muldaer Straße OR Döbraer Straße OR
Höckendorfer Weg)).

IV. RESULTS
The results follow the structure of the FUSE4Rep process
model.

A. FIND
The ODD of the hypothetical AEB for which the test
scenarios were identified is defined as follows: “The AEB
shall operate in 2022 at 20 different, but in their geometry,
traffic volume and traffic signage comparable, inner-city
intersections (see Figure 5) in Dresden, Germany, at good
weather conditions (dry road, no rain, no fog, no snow,
no strong wind) during daylight and shall support the drivers
in car-car turning / crossing / longitudinal conflicts.”

To address this ODD, we used for demonstration
purposes two, according to the FUSE4Rep process model
collected [19], data sets of the representative and publicly
available ListDB data set collection [16] as VO data:
ListDBRepOne [93] and ListDBRepTwo [94] data sets.
Both contain each representative three-month VO (June to
August 2022) at one intersection in Dresden, Germany.
According to [19], June to August are accident-prone
months in Dresden and may thus lead to more observed
traffic conflicts in the data sets used. The ListDBRe-
pOne data set focuses on a three-way intersection,
called “Tharandter Straße/Frankenbergstraße” and encom-
passes 790 min of video and 10,324 car trajectories. The
ListDBRepTwo data set focuses on a four-way intersection,
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called “Kohlenstraße/Dorfhainer Straße” and encompasses
855 min of video and 7,570 car trajectories. Both intersec-
tions were recorded during daylight at four different time
slots throughout the day, four times a month, and under
good weather conditions (no rain, fog, snow or stronger1

wind) [19]. In addition to the original video material and
trajectories of all road users analyzed by DataFromSky [77],
both data sets contain extensive metadata (122 variables)
according to the ListDB specification [76], which is
already geared towards the closest possible conformity
with PD [19]. Thus, the metadata include variables of
environmental information (e.g., temperature and road
surface temperature), location information, and information
on incorrect behavior (e.g., failure to observe the right of way)
of road users [19], [76]. Both intersections are located in the
city and have a speed limit of 50 km/h on priority roads.

We then obtained all PD available to us from 01/01/2005 to
12/31/20212 for all 20 intersections (see Figure 5) specified in
the ODD (2x VO+18x additional intersections) and filtered
them according to the following criteria:

• Car-car accidents not involving trailers.
• No influence of alcohol or drugs was observed, which is
not observable in VO.

• In the case of the seven intersections connected with
“Tharandter Straße”: Accidents since 2009 due to con-
struction work in 2007-2008, which removed embedded
train tracks on the road.

• Plausible accident information coded by the police.
• Available accident description that allows the determi-
nation of 3AT.

• 3AT is either of type “turning”, “crossing” or “longitu-
dinal” [65].

Finally, we obtained a PD data set of 74 car-car accidents
described by 269 variables and an accident description.
Overall, the shared superordinate population between the
acquired PD and VO data sets is estimated as:

• [Factual] All turning, crossing or longitudinal traffic
conflicts that potentially lead to accidents between
two cars. Conflicts occur during daylight under good
weather conditions (no rain, fog, or snow).

• [Spatial] At 20 specified intersections in Dresden,
Germany.

• [Temporal] From 2005 to 2022.

B. UNIFY
Overall, ten different types of 3ATs describing the conflict
situations of the 74 car-car accidents are represented in the
PD (see Figure 6): three turning conflicts (3ATs 201, 211,
231), four crossing conflicts (3ATs 302, 303, 321, 322), and
three longitudinal conflicts (3ATs 681, 601, 621). According
to the ten 3ATs represented in PD, we identified the same
conflict constellations in the VO by analyzing the provided

1The drones were able to fly at wind speeds of up to 10.5 m/s.
2Unfortunately, the PD for 2022 was not available at the time of

processing, and only the VO data for 2022 were available.

FIGURE 6. Ten different 3ATs represent the conflict situations of
74 car-car accidents in the PD. Pictograms provided by [65]. “W” in
pictogram indicates a road user, which has to wait / give priority.

FIGURE 7. Bar chart showing the 3AT distribution in police accident
(PD, n=74) and video-based traffic observation data (VO, n=1,648).

trajectory data. However, we collapsed 3ATs 601 and 621 into
one category, called “6021”, resulting in the identification of
nine different 3ATs. The reason was, that the 3ATs 601 and
621 are difficult to distinguish at the observed intersections.
In fact, they differ only in that 3AT 621 specifies a possible
reason for the leading car to slow down: it must wait at the
intersection entry.

Figure 7 illustrates the distribution of the nine different
3ATs identified in the 74 accidents recorded in PD and in the
1,648 conflict constellations, that is, the scenarios identified
in VO. Accordingly, the three most frequent 3ATs are in both
data sets: 3ATs 6021, 302, and 322, where 3AT 6021 leads by
a large margin to the second most common 3AT in both data
sets. Interestingly, 3AT 681 was recorded twice in PD but was
never observed in VO.

Table 6 presents 3AT-dependent crash risk RC,3AT esti-
mates based on the calculated minimum SSMs (SSMmin).
Accordingly, every 3ATGEV distribution has a positive crash
risk, meaning that the identified conflict constellations bear
the inherent risk of a crash. But, the risk of crashes for
3AT 231, RC,231 = 1e−8, is relatively small; therefore,
inclusion seems questionable. However, when inspecting the
empirical and modeled GEV distributions for 3AT 231 (see
Figure 8), it is evident that the modeled GEV underestimates
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TABLE 6. Results of modeled extreme value distributions. Minimum and
maximum standard error estimates are bold in the columns. Scale σ ,
location µ, shape ξ .

FIGURE 8. Comparison of empirical and modeled extreme value
distributions of 3AT 231 with MTTC [s] as SSM. The vertical yellow line
marks zero.

the risk of a crash RC,231 compared to the real observation
(see the left area under the corresponding curve, next to
the yellow vertical line). Therefore, we included the 3AT
231 population for subsequent data fusion. Finally, when
comparing the standard error estimates (see Table 6), it is
remarkable that the modeling quality correlates with the
available number of extreme values, and the highest error
estimates are observed for the GEV of 3AT 321, which is
based on only 29 extreme values.

In conclusion, the recipient data set PD encompasses
74 scenarios/observations and the donor data set VO encom-
passes 1,648 scenarios/observations. Moreover, PD and VO
share 38 categorical variablesXS (Table 7), which are further
described in the ListDB codebook [76].

TABLE 7. Shared XS and specific variables Z (alphabetically sorted).

C. SYNTHESIZE
Of the 38 shared categorical variables XS between PD and
VO, 27 did not show any variance between PD and VO,
that is HD = 0 (Figure 9). Subsequently, we can assume
a common population between PD and VO regarding these
27 variables, whereby 16 of the 27 variables specify the
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FIGURE 9. Hellinger distance for all 38 variables shared between PD and VO. The variables are explained in [76]. The yellow dot indicates the Hellinger
distance for the variable ‘‘AccidentType’’ when dropping the 3AT 681 in PD. The dashed lines indicate empirically determined thresholds for similarity
(yellow: maximum/blue: median) by measuring the Hellinger distance for 100 random splits of VO according to the ratio of PD/VO.

locations of the VO/PD (e.g., Bridge, BusLane, and Bypass).
Of the remaining 11 variables showing a HD > 0, six
were below the empirically determined similarity threshold
ofHD = 0.148 (maximumHD observed in 100 random splits
of VO). However, AccidentType, the variable specifying 3AT,
did not seem to share a common populationwithHD = 0.249,
exceeding the (maximum) similarity threshold by 68%.When
calculating HD only for the 3ATs occurring in PD and VO,
that is, when neglecting 3AT 681 only occurring in PD,
HD for AccidentType decreased to 0.222, but still exceeded
the (maximum) threshold by 50%. Overall, VO and PD
appeared to share a common population with 33 common
variables: XC .

To select the matching candidates XMC , we investi-
gated the explanatory power of the common variables XC
for selected specific variables Z (see Table 7), describ-
ing mainly the dynamic behavior of the ego at the
start of the scenario: EgoSpeedStart, EgoAccelerationStart,
EgoAccelerationTanStart, and SSMmin. All variables (except
SSMmin) were calculated using the median of the first ten
data points of the corresponding trajectory. Regarding the
common variables XC , 27 common variables showing zero
variance between PD and VO are negligible; they cannot be
used for matching.

Instead, we also included the shared variables Accident-
Type and CrashType in the selection process because
these variables are assumed to have a high correlation,
and thus explanatory power, with Z variables. Figure 10
supports this assumption: The variable AccidentType had

FIGURE 10. Maximum significant (α = 0.05) absolute point-biserial
correlation between selected specific variables Z and possible matching
candidates (measured in VO).

the highest, significant positive correlation with all selected
specific variables: SSMmin (0.44), EgoSpeedStart (0.31),
EgoAccelerationStart (0.16) and EgoAccelerationTanStart
(0.25). In contrast, the variables HourMinute and Weekday
had the weakest correlations, resulting in a maximum
correlation of 0.08 for e.g., HourMinute ∼ EgoSpeedStart.
Moderate correlations were observed for BusStop (max:
0.16), CrashType (max: 0.23), CycleLane (max: 0.16) and
Geometry (max: 0.16). Based on these results, we selected
the following five variables as matching candidates XMC
for the test fusions, despite not all five variables belonging to
the common population between PD and VO: AccidentType,
CrashType, Geometry, CycleLane, and BusStop. The vari-
able CrashType specifies the (estimated) type of collision and
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FIGURE 11. Boxplots illustrating the calculated Smirnov test statistics D of the selected specific variables Z between VO and PD*. The results depend on
the combination of matching candidates used for the test fusions and the type of DHD (constrained/unconstrained). The blue and yellow dashed lines
indicate empirically determined thresholds for similarity (yellow: maximum/blue: median) by measuring the Hellinger distance for 100 random splits
of VO according to the ratio of PD/VO. The gray dashed line indicates the critical value of the test statistic (α = 0.05; 0.162) under which all
distributions can be considered similar.

distinguishes in the present data set between collisions with
leading cars, oncoming cars, and turning/crossing cars. The
variable CrashType was estimated for VO based on the 3AT
during the step “Unify”. The variable Geometry differentiates
between three- and four-way intersections. The variables
CycleLane and BusStop indicate whether a cycle lane or bus
station are located at an intersection, respectively.

In the 32 test fusions, we tried all 16 combinations
of the five selected matching candidates XMC , dependent
on constrained/unconstrained DHD. However, the variable
AccidentType always had to be included because it is the
strongest link between PD and VO and had the highest
correlation with the specific variables Z. To identify the
best test fusion, we compared the distributions fZsel of
the seven most important specific variables, Zsel , between
VO and PD*, to save time and computational resources.
The most important specific variables Zsel are those that
specify the dynamic behavior of ego and agent at the start
of the scenario (except SSMmin) and are all of metric
nature: Ego/AgentSpeedStart, Ego/AgentAccelerationStart,
Ego/AgentAccelerationTanStart, SSMmin.
Figure 11 illustrates the 32 test fusion results, where all

test fusions were below the upper threshold DZ ,upper = 0.23
(yellow line). 26 of the 32 test fusions produced similar
distributions, according to the Smirnov test (Dcrit,α=0.05 <

0.162). Seven test fusionswere also below the lower threshold

DZ ,lower = 0.09, whereby the best results were delivered by
an unconstrained DHD, relying on the matching candidates
AccidentType, Geometry, and BusStop (median: 0.068).
Interestingly, in 31 of the 32 test fusions, the unconstrained
DHD outperformed the constrained DHD, except for the
fusion that used the matching candidates AccidentType and
BusStop. Furthermore, more matching candidates did not
necessarily lead to better fusion results, as demonstrated by
the fusion using all matching candidates; this phenomenon
coincides with the experience in [88]. Table 9 (see Appendix)
provides an overview of the 74 scenarios with an excerpt
of 13 selected variables.

D. EVALUATE
In the following, we evaluate the best fusion PD* (uncon-
strained; MVs = AccidentType, Geometry, BusStop) by
comparing the (marginal) distributions fZ of all specific
variables Z (see Table 7) and the common distributions fZXMV
of specific variables Z with the MVs in VO and PD*.

Figure 12 shows that the median (0.07) of all compared
distributions of metric and specific variables Zmetric is
below all the determined thresholds and thus can be
considered similar. Furthermore, all the compared metric
distributions of Zmetric were below the critical value
of the Smirnov statistic (Dcrit,α = 0.162), with the
variable AgentAverageSpeed (0.118) closest to the threshold.
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FIGURE 12. Boxplots illustrating the 4th validity level. The blue and yellow labels indicate empirically determined thresholds for similarity (yellow:
maximum/blue: median). The gray label indicates the critical value of the test statistic (α = 0.05; 0.162) under which all distributions can be
considered similar.

Six of the seven most important specific variables, Zsel ,
were below or equal to the lower threshold DZ ,lower =

0.09: EgoSpeedStart (0.07), Ego/AgentAccelerationStart
(0.059/0.065), Ego/AgentAccelerationTanStart (0.093/
0.068), and SSMmin (0.063). Only AgentSpeedStart was
slightly above the lower threshold (0.108).

In contrast, the median of the compared categorical
distributions (0.04) for Zcat was slightly higher than the
lower empirical threshold (HD,Z ,lower = 0.03). However,
all categorical specific variables, Zcat , were below the
upper empirical threshold (HD,Z ,upper = 0.15), except for
EgoDirection (0.167). Regarding the preservation of the
correlation between the metric specific variables, Zmetric, and
the MVs, XMV , the median of the compared differences in
the correlations in VO and PD* exactly coincided with the
identified lower threshold (1rpb,MVZ ,lower = 0.05), and all
were below the upper threshold 1rpb,MVZ ,upper = 0.35.
Finally, the common distributions of the categorical

specific variables, Zcat , and categorical MVs exceeded
the lower threshold, HD,MVZ ,lower = 0.09, by 144%,
resulting in a median value of 0.22. Only 21 out of
42 compared common distributions were below the median
of 0.22, and thus, can be considered similar. In addition,
the common distributions of AccidentType + Wind (0.356)
and BusStop + RoadUserSecondMost (0.367) exceeded the
upper threshold HD,MVZ ,upper = 0.33.
Figure 13 shows the cumulative density function plots for

Ego/AgentSpeedStart and Ego/AgentAccelerationTanStart
for the VO and PD*. As revealed by the Smirnov test statistic,

FIGURE 13. CDF plot comparing specific variables ‘‘SpeedStart’’ and
‘‘AccelerationTanStart’’ between VO and PD*.

the AgentSpeedStart curves did not coincide as well as the
others, and the fused start speeds in PD* (median: 6.7 m/s)
were, on average, 10% higher than the original donor speeds
in VO (median: 6.1 m/s). In conclusion, we consider data
fusion to be valid for the subsequent derivation of logical
scenarios because of the similar distributions of VO and PD*.
Moreover, the unconstrained DHD used 73 different VO
scenarios to fuse them with the 74 scenarios contained in PD.
The identical scenario fused twice by the unconstrained DHD
was a scenario based on the 3AT “322”.

E. DERIVATION OF LOGICAL SCENARIOS
The most likely traffic conflict leading to an accident
in the considered ODD, which the hypothetical AEB
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could face, was 3AT 6021 (44.6%, see Table 8). Thereby
the observed EgoStartSpeeds were between 2.43 m/s and
17.32 m/s, with a mean of 10.71 m/s. Interestingly, in the
VO data set for scenario 6021, the minimum observed
EgoStartSpeed was 0.91 m/s, and thus 62.5% lower than
in PD*. The variable EgoAccelerationStart demonstrates a
comparable occurrence, as its minimum initial acceleration
rises from 0.05 m/s2 in VO to 0.16 m/s2 in PD*.
The observed AgentStartSpeeds were between 3.23 m/s
and 16.23 m/s, with a mean of 10.64 m/s. The same
phenomenon as for the ego occurs for the agent, showing
an observed minimum AgentStartSpeed, which increases
from 0.05 m/s in VO to 0.16 m/s in PD*, and an observed
minimum AgentAccelerationStart, which increases from
0.01 m/s2 to 0.11 m/s2 in PD*. The accident severity
was between no one injured and the agent being slightly
injured, whereby the maximum property damage observed
was 8.500e. The driver age of the egos was between
19 and 71 years, whereas that of the agent was between
19 and 79 years.

Table 8 also introduces exemplary logical scenarios for
3ATs 231 and 321, which display the minimum, mean,
and maximum values of the considered PD* variable.
As expected, the EgoSpeeds at start differ between the 3ATs:
while the 3AT 6021 has a minimum speed at the start of
2.43 m/s (mean: 10.71 m/s), 3AT 231 has 9.72 m/s (mean:
10.01 m/s) and 3AT 321 12.24 m/s (mean: 14.72 m/s) due
to probably wrongly assuming the right of way. For testing
in a stochastic simulation, it is necessary to transfer real
intersection geometries into an OpenDRIVE file [96]. Table 8
provides the location IDs (LocIDs) for OpenDRIVE file
creation, that can be used to create the corresponding files
from aerial images.

V. DISCUSSION
In the following section, we answer the research questions,
relate the results to the literature, and discuss the limitations
of the study. Finally, we provide an outlook for researchers
and practitioners.

A. RESEARCH QUESTIONS
The overall RQ asked for a method to create a representative
test scenario catalog suitable for testing in stochastic
traffic simulations. We answered the overall RQ by fusing
74 accidents obtained from PD and 1,648 scenarios identified
in the VO data following the FUSE4Rep process model.
The generated representative test scenario database PD*,
containing 74 scenarios described by over 350 variables,
can be considered representative of the defined population
derived from AEB’s ODD. We want to emphasize that it
would not have been possible to derive concrete scenarios
from PD by analytically reconstructing accidents because
of missing information. Even if the PD contains extensive
information for reconstruction, the analytical reconstruction
of any accident is very complex and expensive.

RQ1 asked for suitable MVs to fuse PD and VO
data. Among the 32 test fusions conducted, AccidentType,
Geometry, and BusStop were identified as the best combina-
tions of MVs. Unfortunately, AccidentType did not belong
to the common population of PD and VO, and attention
should be paid to this in future fusions. An improvement
could possibly already be achieved by a VO that overlaps
more closely in time with the PD and/or a VO that is
carried out over a longer period of time instead of just three
months.

RQ2 asked which type of DHD performed better: con-
strained or unconstrained. In this study, unconstrained DHD
performed the best and outperformed constrained DHD in
31 of the 32 test fusions.

RQ3 asked how good the final fusion results were
overall: Almost all conducted comparisons of distri-
bution similarity between VO and PD* showed that
these are similar, which is the most important qual-
ity criterion for a valid data fusion. In particular, the
distributions of the most important metric variables –
Ego/AgentSpeedStart, Ego/AgentAccelerationStart, Ego/
AgentAccelerationTanStart, and SSMmin – show a high
degree of similarity.

Finally, RQ4 asked whether it was possible to derive
logical scenarios applicable for testing in a stochastic
traffic simulation. In fact, the logical scenarios derived
from PD* do contain all necessary variables [3], [4], [7]:
Ego/AgentEntryStart specifying the start position as the
distance to the intersection entry, AccidentType and
Ego/AgentManeuver describing the maneuvers of ego and
agent, Ego/AgentSpeedStart describing the initial speed at
the start, Ego/AgentAge as the corresponding driver’s age,
and Ego/AgentDrivingLicenseYear as the year in which
the driver’s license was acquired. The latter can be an
indicator of the driving experience. It has also been shown
that logical scenarios derived from PD* instead of VO have
a narrower range of values, e.g. for the initial start speeds
Ego/AgentStartSpeed, which allows the speed ranges to
be narrowed down to higher start speeds in the stochastic
simulation.

In addition, the fused data set PD* allows the derivation
of the parameters in the way they are needed to generate
logical scenarios for stochastic traffic simulations [3], [7]:
be it min/max specifications for metric variables or, for
example, normal distributions. The quality of the data fusion
is suitable for the derivation of logical scenarios, because of
the good distribution reproduction of the specific variables Z
in PD*. Moreover, it is also possible to derive, for example,
the Ego/AgentSpeed describing variables dependent on
their current intersection phase (approaching, deceleration,
crossing, and exit) [97]. Next, the three identified logical
scenarios can be used for AEB evaluation in a stochastic
simulation, as in [3]. The logical scenarios and the stochastic
component of the simulation can then be used to test the
AEB in normal driving, critical, and accident scenarios [3].
However, we emphasize that the concrete scenarios stored
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in PD* do not necessarily have to be plausible, because the
DHD minimzes both, the single and overall distances of the
matching variables [26].

B. COMPARISON TO EXISTING RESEARCH
When comparing the results to the PD-VO fusion conducted
in [26], it is remarkable that the MVs used are no longer
time-related (e.g., Weekday, Hour, Minute), but conflict-
(AccidentType) and location-related (Geometry, BusStop).
Moreover, the quality of the data fusion itself is significantly
better than that of [26], for example, with regard to the Z
distributions in PD* andVO (a direct comparison of figures is
not reasonable, because in [26] all specific variables Z were
categorical). The reasons for this may be found in the use
of the unconstrained DHD instead of the constrained one,
in the more meaningful MVs, and in the longer VO (eight
days vs. three months). Regarding the FUSE4Rep process
model proposed in [7], no major drawbacks were identified
in the application. Only matching the manually recorded
incorrect behavior of road users (provided in VO [93], [94])
to the identified 3ATs (see [19]) did not work properly.
In the future, location-based information (e.g., the zone
of incorrect behavior) should be included in the matching
process. Furthermore, while convenient, the 3AT scheme for
describing a conflict situation, finds only pre-defined conflict
patterns. This situation is exacerbated by the fact that the
SSMs used (MTTC and PET) are unsuitable for describing
any form of traffic conflict [80].

C. LIMITATIONS
Limitations arise owing to the conditional independence
assumption (CIA) necessary for valid data fusion, according
to [88], [98], and [99]. Thereby, CIA cannot be measured
and must be assumed by an expert performing SM [88].
CIA assumes that the variables specific to each data set Y and
Z are independent, given the common variables X. In other
words, the joint distribution of Y and Z is unknown, whereas
it is also difficult to estimate. However, the more common
variables X exist, the more likely CIA can be assumed [100].
We assume that the CIA is given by 38 shared and 33 common
variables.

We also emphasize that only the fourth validity level, the
similarity of fZ and fZXMV between PD* and VO, according
to [20], can be verified in real-world fusions. Therefore,
subsequent statistical analyses of PD* must be performed
carefully because of potential limitations. In addition, the
overlap between the periods of PD (16 years) and VO
(3 months) in the example shown is small; therefore, care
should be taken to ensure a better match for future fusions.

Another limitation arises from the empirically determined
thresholds, which were obtained by randomly splitting
VO 100 times into two data sets. Further studies should
investigate the optimal number of random splits to properly
determine thresholds.

Finally, we want to point out that the trajectories con-
tained in the VO data sets [93], [94] describe only the
estimated center point of every road user, combined with an
estimated standard geometry (length/width). Therefore, the
calculated SSMs can overestimate or underestimate the cor-
responding conflicts owing to varying real-world geometries.

D. FOR RESEARCHERS
We recommend further research efforts to determine the
incorrect behavior of road users in VO to gain additional
MVs. Moreover, the 3AT determination, especially the SSM
calculation in VO, can be improved using video analysis
techniques, that allow the determination of exact road user
geometries. In addition, scenarios/traffic conflicts can be
identified in PD and VO by relying on rule-based techniques
as well as supervised/unsupervised techniques [10].
Regarding SM, we recommend investigating imprecise

imputation techniques, which are independent of CIA [101],
and testing further validation techniques, such as relying on
bias and variance estimates [102]. Finally, the construction
of a fused data set using a symmetric SM [101] can lead to a
larger database of test scenarios.

E. FOR PRACTITIONERS
We recommend that practitioners compare the demonstrated
fusion results with real-world data, such as with comparable
reconstructed accidents stored in the GIDAS database [90].
In addition, we recommend extending the shared variables
between VO and PD by improving the VO data collection
process. Also, the collection of metric variables instead of
categorical variables can be expanded (e.g., precipitation
amount instead of Rain: yes or no). Moreover, we rec-
ommend performing longer VO observation periods and
conducting these continuously alongside PD collections so
that the superordinate shared population between the VO
and PD matches better. Furthermore, we recommend the
additional use of weather-independent sensors. The drones
used in [93], and [94] can fly only under good weather
conditions, excluding bad weather-related traffic conflicts.

VI. CONCLUSION
Fusing concrete scenarios identified from different data
sources helps close the gaps in data availability and differ-
ing information when creating representative test scenario
databases and catalogs. As part of the FUSE4Rep process
model, statistical matching can generate a new representative
accident test scenario database, PD*, by asymmetrically
fusing scenarios identified in police accident data (PD)
with those identified in video-based traffic observation (VO)
data. The necessary matching variables are AccidentType
(describing the underlying traffic conflicts), BusStop (indi-
cating the presence of bus stops), and Geometry (describing,
for example, the number of nodes of intersections). The
best matching algorithm is the unconstrained distance-hot-
deck method. Consequently, the fused scenario database
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TABLE 8. Logic scenarios derived from the fused database containing n = 74 scenarios following the 6LM when applicable (extract).

PD* includes information on the road users involved in
an accident (age, year of driving license acquisition), the
conflict situation, and the corresponding starting speeds and
accelerations. Thus, the most frequent conflicts leading to
accidents and how they should be parameterized for ADS
testing in stochastic simulations can be determined and
transferred to a test scenario catalog.

The FUSE4Rep process model was proposed and applied
in part to determine scenarios from VO data. As our results
demonstrate for the first time, it is also possible to use
the FUSE4Rep process model to fuse PD and VO scenario
data sets into PD* and subsequently derive a test scenario
catalog containing logical scenarios. These logical scenarios
can then be used to assess, for example, autonomous
emergency braking systems (AEBs), in stochastic traffic
simulations. Future research should focus on improving
the scenario identification process in the PD and VO

data sets and increasing the number of shared variables
between the scenario data sets to be fused. Moreover,
the process of statistical matching can be improved by
investigating imprecise imputation techniques, performing
symmetric statistical matching, and expanding validation
techniques.

Overall, the collection of VO data (samples) should be
continuous with the PD collection and a fixed VO collection
system should be established - if this happens, we expect
that our method will help to develop test scenario databases
containing comprehensively described test scenarios that are
representative of clearly defined operational design domains.
In this way, we contribute to safe ADSs and, thus, to safer
road traffic in the future.

APPENDIX
See Tables 8 and 9.
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TABLE 9. Newly created data set PD*, described by 13 of 350+ selected variables. “9999” is coded, if unknown.
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TABLE 9. (Continued.) Newly created data set PD*, described by 13 of 350+ selected variables. “9999” is coded, if unknown.
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