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ABSTRACT Human action recognition has become one of the main topics in the computer vision field due to
its high demand and competitiveness in real-world applications. The main goals of human action recognition
are to improve classification accuracy and reduce computational complexity. Previous studies have mainly
used two approaches: the hand-crafted feature extraction approach and the deep learning approach. The hand-
crafted approach is simple, which confers it with an added advantage in terms of computational complexity.
However, this method is low in accuracy. Conversely, the deep learning approach achieves high accuracy
even for complex datasets, but it suffers in terms of computational complexity and long training time as it
needs to process huge datasets during training. Other approaches include the use of pre-trained deep learning
networks to fuse both methods. In this paper, we will introduce a combination of pre-trained convolutional
neural networks (CNN) to extract features, an improved Fisher vector (iFV) codebook, and an optimized
support vector machine SVM to achieve improved human action recognition. We leveraged three pre-trained
CNNSs, namely, Inception-ResNet-v2, NASNet-Large, and Xception, to extract the features. Then, we applied
the improved Fisher vector codebook to encode them. We subsequently trained the codebook using SVM
for classification and re-adjusted the SVM weights using five different optimization techniques, which
are SGD, Adadelta, ADAM, Adamax, and Nadam. To evaluate the performance, we utilized UCF101 and
HMDBS51 datasets. The results demonstrate that the accuracy and computational complexity of our approach
are comparable to state-of-the-art techniques.

INDEX TERMS Human action recognition, pre-trained convolutional neural networks, long short-term
memory (LSTM), features encoding, optimization.

I. INTRODUCTION

Over the past few decades, many researchers have directed
their research interests toward human action recognition
(HAR) due to its wide spectrum of applications and asso-
ciated challenges. Some of these applications include video
surveillance in public and indoor places, home care for
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elderly people, smart homes, virtual reality, video entertain-
ment systems, video indexing, anomalous traffic detection,
gesture control and video monitoring for suspicious people.
In most available datasets, the main challenges of HAR are
different viewpoints, different movement speeds, scale fac-
tors, non-uniform illumination, cluttered backgrounds, and
occlusions. Two different approaches have been applied in
tackling HAR: the hand-crafted approach and the deep learn-
ing approach.

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
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The hand-crafted approaches are mainly based on man-
ually extracting the spatiotemporal features. They can be
categorized into interest points-based methods such as the
use of scale-invariant feature transform (SIFT) [1], speeded-
up robust features (SURF) [2], and the dense features-based
methods that include Hessian matrix, Gabor filter, space-
time interest points (STIP), motion scale-invariant feature
transform (MoSIFT), trajectory (TRA), histogram of ori-
ented gradients (HOG), histograms of optical flow (HOF),
and motion boundary histogram (MBH). The approach that
combines HOG, HOF, and MBH features to form improved
dense trajectory (iDT) features has been proven to achieve
the best results [3]. These features are then encoded using
different codebooks such as the bag of visual words (BoVW)
[4], vector of the local aggregated descriptor (VLAD) [5],
locality-constrained linear coding (LLC) codebook [6], and
Fisher vector codebook [7] methods. The final classification
process is done using different machine learning techniques
such as the support vector machine (SVM), which is the most
commonly used technique. While the hand-crafted approach
has low computational complexity and a training process that
consumes less time, it suffers from low accuracy.

The deep learning approach utilizes the convolution neu-
ral network (CNN) frameworks and has thus far been the
state-of-the-art approach in recent years due to its superior
performance. In its simple form, the CNN consists of an input
layer, a large number of hidden layers, and an output layer.
When the video frames are fed into the network, it extracts
the spatiotemporal features automatically and subsequently
classifies the actions [8]. For better performance, 2D Convo-
lutional Neural Networks (2D CNNs) have been widely used
for spatial feature extraction and classification. However,
this method has poor motion detection which makes it more
suitable only for image classification. A recurrent layer is
added to the last layer of the 2D CNN to extract the temporal
information for video classification [9]. Nevertheless, this
approach fails to identify the inferior motion. In addition,
more training is required because the network has to keep
track of all video sequences, which translates to an increase
in computational complexity [10]. Another approach is the
use of 3D CNNs [11] that combine two-stream networks;
one stream is to extract the space features while the second
stream is to track features through successive frames using
optical flow. This approach requires the network to be trained
with a massive number of data compared to the 2D CNN-
based methods. Hence, it needs intense computing power and
precise network architecture. It is also very time-consuming
and is not applicable to small datasets. Furthermore, transfer
learning has been used to improve the implementation of
CNN [12]. Transfer learning massively speeds up the training
process as the target domain model does not require training
from scratch with a huge amount of data. Subsequently, this
has significantly reduced the training data size and training
time, which in return improves accessibility, the learning
process, and network generalization.
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Transfer learning network can be directly applied to a
given dataset as fixed weights pre-trained CNN. Yet, another
scenario is to fine-tune the networks’ weights by retraining
the weights of some selected layers on the new dataset while
freezing the remaining layers weights, or use the network as
a feature extractor by replacing the last layer with a conven-
tional codebook and a classifier. While the last layer which
is a fully connected (FC) layer followed by a non-linear acti-
vation function that is the SoftMax layer (and loss function
of cross entropy in case of multi class problems), can be
deployed straightaway for classification, those of convolu-
tional layers are nonlinear and considered typically too high
dimensional to be employed directly [13]. Hence, it requires
the adoption of feature extraction or dimensionality reduction
techniques on those CNN activations before the classification
process.

In order to reduce the computational complexity, the final
fully connected layer and multinomial logistic regression
used by SoftMax layer and classifier are replaced by a fea-
ture encoder followed by a linear classifier [14], Encoding
features helps to cluster, group, handle, and recognize these
features. Additionally, it guarantees the coherency of the
classified features which accordingly helps in improving the
accuracy.

In the past, Bag of visual Words (BOvW) has been used
as the most widespread encoding approach. However, this
method lacks optimal feature selection, resulting in the inclu-
sion of numerous background features leading to an increase
in the computational complexity. In addition, several local
features are encoded via the same visual word, resulting
in inaccurate k-means clustering issues. Moreover, because
BOvW describes a video using a random set of local descrip-
tors, the spatial data arrangement is missing. Finally, whereas
some visual words may be more significant than others,
BOvVW assigns all visual words the same weight thereby
reducing the technique’s discriminative ability [7], [15]. As
an alternative, Vector of Locally Aggregated Descriptors
(VLAD) and Fisher vector encoding methods were presented
as an alternative compact codebook representation. Both
Fisher vector and VLAD encoding methods capture varia-
tions in the distribution of local descriptors supplied by a clus-
ter center. VLAD models its codebook using k-means, with a
codebook size of K x D, where K is the number of cluster cen-
ters and D is the feature dimension. This technique relies only
on 1st order statistics (means) and each feature descriptor is
associated with the nearest visual word in the codebook [16].
However, it has never achieved the Fisher vector accuracy. In
addition, the sum of residue vectors between local descriptors
and cluster centers could not provide sufficient diversity,
thereby reducing the ability to differentiate between different
classes [17]. On the other hand, the Fisher vector technique
uses Gaussian mixture model to represent its codebook with
a size of 2 x K x D where the 1st order statistics (means) and
2nd order statistics (covariance) are used to represent each
Gaussian element. Fisher vector technique has advantages
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over other methods due to its efficiency in terms of computing
the codebook visual representations, classifier training and
testing processes especially for large scale datasets, this leads
to excellent results even with efficient linear classifiers. In
the work in [7], demonstrated that applying L2 normalization
for each cluster or each Gaussian component can massively
enhance the performance. Another advantage of Fisher vector
over VLAD is that Fisher coding is viewed as a Gaussian
kernel codebook that integrates probability and credibility,
while VLAD is represented by a conventional codebook that
has a fixed weight and hard-voting. Consequently, VLAD is
regarded as a non-probabilistic form of GMM [18].

In this paper, we introduce a new method that leverages
the fusion of pre-trained CNN extracted features and a hand-
crafted codebook. First, we selected three pre-trained CNNs
to extract features. Then, PCA was used as a feature selec-
tion method to select the dominant features and remove the
redundant features. Next, we engaged in an improved Fisher
vector codebook to encode these features. Finally, SVM was
applied to classify the actions. The codebook gradients rep-
resenting the foreground features were selected using five
different optimization techniques under the inspection of the
validation labels to reduce the codebook size. By removing
the redundant codebook elements, we improved accuracy and
reduced the training time.

The main contributions of this paper are summarized as
follows:

« Introducing a new method that proves to enhance the
model accuracy compared to the pre-trained models
CNN and other state-of-the-art techniques.

o Developing an optimization addition to the codebook
that removes the redundant elements which reduces the
computational complexity.

The rest of the paper is organized as follows: Section II
presents the related works. Section III introduces the three
pre-trained CNN5s used for feature extraction, the codebook
generation using Fisher vector, classification using SVM,
and the mathematical model for applying the optimization
process to extract foreground components and retraining
the optimized model using SVM. Section IV introduces the
experimental results applied to two datasets and compares
their performance to the state-of-the-art techniques. Finally,
Section V concludes the paper along with recommendations
for future work.

Il. RELATED WORKS

A. HAND-CRAFTED METHODS

Previously, hand-crafted feature approaches have been a pop-
ular technique for action recognition [19]. For instance, 2D
spatial descriptors have been extracted for image recogni-
tion while 3D spatiotemporal descriptors have been widely
used for video classification. Wang and Schmid [3] were
the first to propose the iDT descriptors leveraged on the
combination of histograms of oriented gradients (HOG),
histograms of optical flow (HOF), and motion boundary
histograms (MBH) to extract spatiotemporal features. These
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local features were then encoded using Fisher vectors and
classified using an SVM classifier. When tested on UCF101
and HMDBS51 datasets, this method was reported to have
a performance of 85.9% and 57.2%, respectively. Li et al.
[20] developed a model of unified appearance and motion
variation (UMAMYV) that detects SURF feature points with
unique appearance information in the spatial domain and
reflects motion change in the temporal domain. They tested
their method on Weizmann and UCF101 datasets. Aslan
et al. [21] compared four different machine learning methods
to classify both greyscale and binary images on KTH and
Weizmann datasets. They extracted features using a SURF
detector, encoded them using a bag of visual words (BOVW),
and compared the results of four different classifiers viz.
k-nearest neighbor, SVM, decision trees, and naive Bayes.
Bayesian optimization was used to improve the accuracy.
Nazir et al. [22] proposed a new codebook design to represent
the spatiotemporal visual words called Bag of Expression
(BoE). After coupling each visual word with several neigh-
bors in the spatiotemporal domain to obtain independent
visual word pairs, they found that this technique improved the
handling of view independence together with scale invariance
and occlusion in real-world scenarios. Duta et al. [23] pro-
posed a new descriptor using histograms of motion detection
that captures motion information using a simple temporal
derivation. They claimed that their proposed method could
reduce computational costs compared to the optical flow
approach. In addition, they developed the Shape Difference
VLAD (SD-VLAD) encoding technique that attached the
shape information. Based on UCF50, UCF101, and HMDBS51
datasets, they found that their method yielded better accu-
racy and less computational costs. Peng et al. [24] proposed
a new codebook representation from iDT features called a
hybrid super vector that combines the outputs from a man-
ifold of BoVW models. Tested on UCF50, UCF101, and
HMDBS51 datasets, the aggregation of these codebook gen-
erations improved the descriptive power for human action
recognition. Yamada et al. [25] proposed a new approach
for spatial segmentation based on hand-crafted trajectory fea-
tures. Using iDT features, they segmented the spatial frames,
identified the critical features (including human motion),
computed the optical flows, and tracked them over the frames.
Fisher vector was used for codebook generation and classifi-
cation was carried out using RNN instead of SVM for better
results. This method was applied to the J-HMDB and MPII
Cooking Activities datasets.

B. FUSION METHODS

Simonyan and Zisserman [26] proposed a two-stream CNN
for action recognition architecture that combines spatial net-
works for feature detection and temporal networks for optical
flow. The results were compared to the handcrafted state-of-
the-art methods using UCF101 and HMDBS51 datasets, and
the accuracies obtained were 88.0% and 59.4%, respectively.
Bilen et al. [27] proposed a method that maps RGB images
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to a single dynamic image and applies it to a CNN. Sub-
sequently, Wang and Qiao [28] proposed a method that
combines a two-stream CNN and the iDT method to extract
features and forms a descriptor called trajectory-pooled deep-
convolutional descriptor (TDD). Fisher vector is then used
to represent each video into a global super vector which is
then classified using SVM. In another development, Yang
et al. [29] proposed a fully connected recurrent neural net-
work (FC-RNN) to temporally track long videos. Since the
features have different discriminative abilities depending on
the action, they proposed a multilayer and multimodal fusion
framework of CNN features. The method uses four inte-
gral structures involving 2D-CNN-SP (single spatial frame),
an optical flow image along with 3D-CNN on a short clip
of spatial frames, and optical flow images. VGG16 and C3D
pre-trained networks with recurrent layers are used to extract
the features, and these features are then mapped using iFV.
Finally, a linear SVM solver is used for the classification
boosted by the boost-u algorithm that jointly fuses CNN
with multiple approaches. The technique was evaluated using
UCF101 and HMDBS51 datasets, and it achieved accuracies of
91.6% and 61.8%, respectively. Huang et al. [30] proposed
a 2D inflated operation that converts 2D pre-trained CNN
kernels to 3D CNN filters by reorganizing the 2D kernels
in a parallel manner through temporal frames. As a result,
they obtained 3D kernels that minimize the training cost.
Additionally, they included the iDT features in the networks
to improve the results and applied the accumulated gradient
descent technique in the training process to boost its accuracy.
In another attempt, Wang and Li [31] modified the ResNet to
extract a multi-feature map by adding numerous up-sampling
layers to the pre-trained network. The resulting expanded
feature maps lead to an increment of feature numbers and thus
improvements in the training process. In their seminal work,
the trilinear interpolation method was used for up-sampling
the feature. Finally, they used the weighted geometric means
combination forecasting method based on the L1 norm to
combine features of all up-sampled layers. Song et al. [32]
proposed a simple yet effective technique called Temporal-
Spatial Mapping (TSM). Utilizing pre-trained VGG16 and
TSM with BN-Inception, they extracted convolutional fea-
tures for each frame of a video sequence. Next, they gen-
erated a video map and a 2D feature map by encoding the
temporal-spatial information using TSM, which was later
used to build a temporal attention module for predicting the
final action categories. Zebhi et al. [33] proposed an alter-
native approach to represent video sequence spatiotemporal
information. They leveraged the use of gait history images
(GHI), which are similar to motion history images (MHI).
For temporal representation, they used a time-sliced aver-
age gradient boundary magnitude (TAGBM) descriptor. Each
video is split into N and M groups of consecutive frames,
and the GHI and TAGBM are computed for each group,
resulting in spatial and temporal templates, subsequently used
as features. A pre-trained VGG16 framework together with
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transfer learning was selected for classification. Aly et al.
[34] compared the performance of two pre-trained CNN
models with different network architectures, i.e., GoogleNet
and AlexNet on human action recognition datasets. Feature
vectors are extracted from a video and trained via the transfer
learning (TL) paradigm using Long-Short Term Memory
(LSTM) framework to predict the video action labels. Next,
Abdulazeem et al. [12] proposed a TL-based approach for
human action recognition that utilizes a two-stream temporal
CNN architecture along with LSTM. Tu et al. [35] proposed
a multi-stream CNN composed of three networks, with each
network as a two-stream network (TS-Nets). The first net-
work extracts features of a bounding box around the detected
human using an improved Block-sparse Robust Principal
Component Analysis (IB- RPCA) method. The second net-
work extracts features of human moving body parts captured
using motion saliency measure. The third network extracts
features from the whole RGB image using a combination
of VGG 16 pre-trained network and iDT features. Based
on these three networks, three motion streams are organized
from the optical flow field. These features are integrated
efficiently using a spatiotemporal 3D convolutional fusion
approach. The CNN is tested using UCF101 and HMDB51
datasets with accuracies of 94.5% and 69.8%, respectively.
Zamri et al. [36] also proposed a vision-based human
action recognition via transfer learning. Their approach uses
AlexNet as a pre-trained CNN to extract low-level fea-
tures from three different image maps, i.e., motion his-
tory image that sustains spatiotemporal data, binary motion
energy image that captures the motion region data, and opti-
cal flow information that holds accumulative motion speed
data. Jerusha and Kumar [37] proposed a system that uses
both RNN and LSTM units to classify activities in videos.
Their proposed method contains pre-trained convolutional
neural network (CNN) models recognizing actions using the
transfer learning method. Various pre-trained CNN models
including VGG16, InceptionV3, Resnet50, Resnet150, and
Resnet152 were used to extract the visual features, and the
videos of the UCF101 dataset were classified based on those
features. The accuracy is comparable to the state-of-the-art
methods. Muhammad et al. [38] proposed a bi-directional
long short-term memory (BiLSTM) supported by an atten-
tion mechanism to detect and identify the most important
features in sequential multi-frame data. To improve the clas-
sification process, they added a re-center loss function to
the SoftMax layer. Dong et al. [39] proposed a generative
model that evaluates human actions using still images. The
model is based on two VGG16 pre-trained CNNs in which
the first one is used for feature extraction, and the second
one is used to keep the important features for each frame
instead of tracking them through successive video frames
using optical flow. Khan et al. [40] proposed a layout that
comprises numerous steps including feature mapping, feature
fusion and feature selection. The extracted deep features are
combined by utilizing the Sequential-based Extended (SbE)
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method. They employed the Kurtosis-controlled Weighted
KNN method to select the best features. The chosen features
are classified using several learning algorithms. Zhou and
Zhang [41] proposed a method that fuses feature pyramid
networks with a multi-scale feature fusion technology and
attention mechanisms to improve the performance of human
detection in crowded scenarios. Feature pyramid network
(FPN) with an improved hierarchical split block is formu-
lated. Next, the lateral connection in the FPN is replaced
with an attention-based lateral connection (ALC) module
with spatial and channel attention mechanisms. This allows
detectors to focus on key aspects of occlusion patterns while
also improving the representational ability of feature maps
using massive spatial and semantic information. A bottom-
up path augmentation (BPA) module was also used to take
advantage of the Scale-FPN and ALC modules’ character-
istics. Scale-FPN, ALC, and BPA are combined to create
SA-FPN and integrate it into the formulation of a crowded
human detector to test the efficacy of the suggested method.
Feichtenhofer et al. [42] proposed a multiplicative gating of
the appearance stream for a two stream residual network
(ResNet) pre-trained CNN that adds cross stream connec-
tions in the network early stages to ensure the connection
between the spatial stream and the temporal stream during
the training process. At the feature level, temporal filters are
inserted between network layers that are created as identity
mapping kernels. These temporal filters add new layers to
the already established ResNet model while maintaining the
identity of residual networks’ features. This method is used to
overcome the dominance of the spatial stream over the motion
stream during the training process. This process results in an
accuracy improvement. iDT features are added to the ResNet
features to boost the performance. This performance is tested
using ResNet-50 and ResNet-152 on UCF101 and HMDBS51
datasets shows accuracies of 94.9% and 72.2% respectively.
Hao and Zhang [43] proposed a two streams fusion method
for video action recognition based on Dense Convolutional
Networks (DenseNet). The multiplicative gate mechanism is
used to connect between appearance and motion sequences
at the building block level. In addition, knowledge distilla-
tion network is inserted to connect between the two streams
and their final fusion. This network enables both streams
to interact at the highest level layers. Its unique architec-
ture enables successful connections between appearance and
motion streams at various level layers, thereby promoting the
formation of complex spatiotemporal features. Additionally,
it allows the network to be trained as an end-to-end training,
that guarantees the fusion process all over the entire network.
The efficacy of the technique is evaluated using the UCF101
and HMDBS51 datasets, with respective accuracies of 93.78%
and 66.88% respectively.

lll. METHODOLOGY
In transfer learning, the source and target domains depend on
different datasets. A huge dataset is always used for training
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the source domain (e.g. ImageNet), while the input dataset
for the target domain can be small.

Transfer learning can be used in three different ways:
fixed feature extraction, freezing of layers and fine-tuning of
weights, and the pre-trained models. In fixed feature extrac-
tion, the data is used as an input and the weights of the first
fully connected layer are kept while the final fully-connected
layer (also known as the SoftMax layer) and the classification
stage are removed from the CNN network. In the fine-tuning
and layers freezing, the pre-trained model structure is retained
while the network weights are fine-tuned to fit in the target
dataset. The process of weight fine-tuning can be conducted
for all layers of the CNN network or only its higher layers.

The majority of popular architectures for pre-trained CNNs
depend on huge datasets like the ImageNet dataset [44] to
adjust the training weights. This study used the Xception [45],
Inception-ResNet-v2 [46], and NASNet-Large networks [47].
These network structures yield excellent accuracy when sup-
ported by LSTM, which provides a temporal track for video
frames beside the spatial stream for each image and naturally
helps to massively improve the classification accuracy. Addi-
tionally, these networks are pre-trained using the ImageNet
dataset which is an extensive large-scale dataset involving
more than 15 million labelled high-resolution images across
around 22,000 categories. The main reason for choosing these
networks over other pre-trained CNNss is that they achieved
the best performance on the ImageNet dataset [47], [48].

Figure 1 outlines our proposed framework. The data was
first divided into three sets: training, validation, and testing.
Next, we used the training dataset to extract the features
using three deep pre-trained CNN network architectures. For
each pre-trained network, the SoftMax and classification
layers were removed to extract the network features after
the last convolutional layer. These features were applied to
the improved Fisher vector to form an elementary codebook
composed of means and covariances values for each Gaussian
component for features encoding. The codebook size was
set up as 2 x Gaussian elements number x features size since
such encoding eases and improves the classification process.
Elementary codebooks with different Gaussian element sizes
and class labels were applied to train the support vector
machine linear classifier in a one versus all strategy. Then,
the normal vector of the hyperplane (5$ that separates class
m from other SVM classes was extracted, and the codebook
elements were rearranged so that the means and covariances
elements of each Gaussian component gf; are multiplied by
the variable B as shown in (4):

The Gaussian components matrix is written as:

g’g:(l’l’lal’LZ""7“Naﬂ17ﬂ27"'7ﬂ/\/) (1)

where p represents the means, 8 represents the covariances,
and N is the total number of Gaussian elements, the matrix is
rearranged as:

g}fé: (I’Llsﬂlaﬂ2aﬂ27"' v“ﬂvﬂnv"'v“’N#ﬂN)
Z(g)l(’g,%(’...’g,f,...’g%) ©)
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FIGURE 1. General model block diagram.

To solve the optimization problem, the Gaussian components
matrix is multiplied by the optimization variable B as shown:

s =3B = (#1612 Fibu o FbN)) B)

The predicted output is written as:

Sx =L %—B,(ﬁﬁ;’ o)
|#3el,

where L is the linear kernel, g;f is the Gaussian element,
X represents the local descriptors, ¢ is the accumulation of
all of the parametric distributions, and B is the optimization
variable.

Validation data, validation labels y; and 621 were used
to optimize the values of the Gaussian elements to fit the
SVM hyperplanes, where Q');f’ is the classification hyperplane
normal vector differentiating the selected class and other
classes, yx is the class label:

958 N g b
?X — L ¢ , (ﬁgl — Zl’l—l n = n (5)
g{;B 2 \% 2]21 g’% %bg

The optimized output, O, is written as:

Oou = arg max ; L(yx,3x) (6)
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The optimization problem is solved depending on the fol-
lowing equation. If the predicted output and the validation
class labels are equal, then the variable b is set to one and
the Gaussian component is included in the codebook. If the
predicted output and the validation class labels are different,
b is optimized to zero so that the Gaussian component is
eliminated from the codebook.

-~ L, yx =37X
L (yx,yx) = = @)
[0, yX 7YX

> g*fr b,

OW,:argmngZL yx, n -
X V Zn:l g‘f g’fb%

Regarding the optimization process, stochastic gradient
descent (SGD) has been widely used as the most efficient
optimization method for reducing the cost function of large
datasets [49]. In addition, recently improved SGD types
have been used for CNN training. Here, we applied SGD
[50], Adadelta optimizer [51], Adaptive moment estimation
(Adam) optimizer, Adamax optimizer [52], and Nesterov
accelerated Adam (Nadam) optimizer [53] methods. Their
results are compared in the next section.

Following the optimization procedure, the new values of
B were applied to the codebook to adjust the values of its
elements. Finally, the training features were applied to the

®)
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optimized codebook to retrain the classifier. Then, the testing
data were used to get improved accuracy.

IV. EXPERIMENTAL RESULTS

In this section, we discuss the performance of the proposed
model applied to two established datasets and compare the
experimental results with state-of-the-art techniques.

A. EXPERIMENTAL SETUP

We conducted the experiments on an AMD Ryzen Threadrip-
per 3960X 24-Core Processor 3.79 GHz, 64 GB RAM, and
Nvidia GTX 3080 with 12 GB GPU graphics card computer
running on Windows 10 operating system. We used MAT-
LAB programming language for the software.

The first dataset used was the UCF-101 dataset [54] with
13320 videos composed of 101 actions separated into five
categories: human-object interaction, body-motion, human-
human interaction, playing musical instruments, and sports.
The video resolution was 360 x 240 and the frame rate was
25 frames/second.

The second dataset used was the HMDBS51 dataset [55]
with 6766 videos composed of 51 actions collected from
sources such as Youtube and Google videos. The actions were
categorized into five categories: facial actions, facial actions
with object manipulation, general body movements, body
movements with object interaction, and body movements for
human interaction. The video resolution was 320 x 240 and
the frame rate was 30 frames/second.

These datasets were used for testing because of their huge
diversity of actions. Moreover, these actions covered a variety
of different poses, object scaling, camera motion, viewpoints,
cluttered backgrounds, and illumination conditions.

The datasets were divided into 70% for training, 15% for
validation, and 15% for testing. Three different pre-trained
CNNs were used for feature extraction during the training
data. The encoding of these features was accomplished by
the Fisher vector codebook using the VLfeat library [56]. The
encoded features were then sent to the SVM for classification.
Next, the validated pre-trained CNN features were applied
to the codebook and the normal vector of the hyperplanes
separating the SVM classes to optimize its elements under
the validation labels inspection. Finally, the training features
were applied to the optimized codebook to improve accuracy.

B. RESULTS AND DISCUSSION

We tested the three network architectures to extract the fea-
tures as mentioned above and used four different codebook
sizes for feature encoding, i.e., 64, 128, 256, and 512. For
the optimization techniques, we implemented five different
methods: SGD, Adadelta, Adam, Adamax, and Nadam. For
classification, we leveraged the SVM technique.

C. EFFECT OF USING DIFFERENT OPTIMIZERS

Figures 2, 3, and 4 show the performance comparison of
applying the five different optimizers on the UCF 101 dataset,
while Figures 5, 6, and 7 show the same performance
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FIGURE 2. Accuracy comparison for five different optimizers for the
Xception network on the UCF101 dataset.
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FIGURE 3. Accuracy comparison for five different optimizers for the
Inception-ResNet-V2 network on the UCF101 dataset.
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FIGURE 4. Accuracy comparison for five different optimizers for the
NASNet-Large network on the UCF101 dataset.

comparison for the HMDBS51 dataset. As illustrated in
Equation 5, the classifier optimization equation sets the value
of B = 1 if the codebook descriptors are relevant and sets
B = 0 if they are irrelevant. By doing this, redundant com-
ponents are taken out from the codebook; hence, its size is
reduced and it is made more efficient. The results demonstrate
that the Adamax and Nadam optimizers produced the best
results. Tables 1 and 2 show the accuracy vs. codebook size,
where the codebook size “k” increased in a sequence of 64,
128, 256, and 512. The accuracy improved as the codebook
size increased. However, the processing time increased as the
codebook size increased (see Tables 3 and 4); this point will
be illustrated in the next subsection.

D. EFFECT OF APPLYING PCA FOR THE FEATURES

Principal component analysis (PCA) is used to reduce
the dimensionality of the video features. For Xception,
Inception-ResNet-v2, and NASNet-Large pre-trained CNNSs,
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TABLE 1. Accuracy comparison based on the ucf101 dataset with and without using pca.

Codebook Accuracy %
size Without using PCA Using PCA
Xception Inception- NASNet-Large Xception Inception-ResNet- NASNet-Large
ResNet-v2 v2
64 97.13 97.22 97.92 97.54 97.67 98.14
128 97.43 97.51 98.13 97.65 97.63 98.2
256 97.46 97.68 98.15 97.43 97.71 98.23
512 97.58 97.73 98.18 97.68 97.76 98.39
TABLE 2. Accuracy comparison based on the hmdb51 dataset with and without using pca.
Codebook Accuracy %
size Without using PCA Using PCA
Xception Inception- NASNet-Large Xception Inception-ResNet- NASNet-Large
ResNet-v2 v2
64 65.42 67.32 67.26 66.91 68.89 71.83
128 65.87 67.76 67.78 66.24 69.18 72.54
256 65.76 67.65 68.12 66.79 70.21 72.46
512 65.89 67.24 68.33 67.16 69.33 73.13
67.5 TABLE 3. Time of execution with and without the optimization process
for ucf101 dataset.
H SGD
. 67
§ W Adadelta Average time consumption (seconds)
é Adam
S 66.5 Codebook size 64 128 256 512
< B Adamax
Pre-trained CNN
66 . . W Nadam without using 39.71 55.72 90.51 176.32
k=64 k=128 k=256 k=512 o
- - =256 k=5 E;fntrz‘n;fmcz? 40.68 57.12 94.32 182.61
FIGURE 5. Accuracy comparison for five different optimizers for the £00
Xception network on the HMDB51 dataset.
TABLE 4. Time of execution with and without the optimization process
71 B SGD for hmdb51 dataset.
X
o
S 70 B Adadelta
© Average time consumption (seconds)
=] Adam
g 69
< . II I B Adamax Codebook size 64 128 256 512
68 Pre-trained CNN
k=64 k=128 k=256 k=512  ®Nadam without using 21.82 39.99 80.91 164.49
FIGUR A ison for five diff imizers for th optimizer
E 6. Accuracy compatrison for five different optimizers for the Pre-trained CNN
Inception-ResNet-v2 network on the HMDB51 dataset. using optimizer 2324 42.56 83.14 172.82
73.6
H SGD . . . . ..
¥ 73.1 comparison with and without applying PCA on the training
> B Adadelta features for both datasets; the results show that the applica-
£ 726 Adam tion of PCA has a positive influence on accuracy. This is
E 121 because the redundant features are removed as PCA com-
' W Adamax presses them. Conversely, when no PCA was applied, the
71.6 = [} B Nadam resulting accuracy performance was slightly lower than those

k=64 k=128 k=256 k=512

FIGURE 7. Accuracy comparison for five different optimizers for the
NASNet-Large network on the HMDB51 dataset.

the extracted feature vector before applying PCA had a
length of 2048, 1536, and 4032, respectively, which were
reduced later using PCA. Tables 1 and 2 show a performance
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in Tables 1 and 2. Nonetheless, the dimensions of the features
must not be reduced excessively as this will cause deteriora-
tions in accuracy.

E. EFFECT OF TIME EXECUTION
Tables 3 and 4 illustrate the processing times using
the pre-trained features and SVM without and with the
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TABLE 5. Comparison between codebook size after optimization for ucf101 dataset.

Codebook size after reduction for UCF101 dataset

Network Inception-ResNet-v2 Xception NASNet-Large
Codebook
64 128 256 512 64 128 256 512 64 128 256 512
size
SGD 51 108 215 406 48 119 231 408 57 97 212 426
Adadelta 49 117 203 421 52 116 201 452 59 106 228 419
Adam 56 121 201 429 55 121 208 409 52 102 214 464
Adamax 55 115 213 409 52 115 214 493 49 119 231 426
Nadam 52 109 243 459 51 121 211 451 48 121 215 451
TABLE 6. Comparison between Codebook size after optimization FOR hmdb51 DATASET.
Codebook size after reduction for HMDBS1 dataset
Network Inception-ResNet-v2 Xception NASNet-Large
Codebook 64 128 256 512 64 128 256 512 64 128 256 512
size
SGD 59 121 228 501 56 102 214 498 49 118 212 451
Adadelta 57 119 219 469 52 113 207 425 48 97 226 468
Adam 54 118 234 472 56 103 214 421 46 109 241 428
Adamax 57 123 221 481 48 119 231 471 51 106 229 497
Nadam 58 119 235 469 49 107 233 471 50 114 246 425
TABLE 7. Accuracy performance comparison with the other TABLE 8. Time of execution using softmax and cnn classifier for ucf101
state-of-the-art techniques. and hmdb51 datasets.
Accuracy Accuracy Average time consumption (seconds)
Method (%) for (%) for Network Xception | Inception-ResNet-v2 | NASNet-Large
UCr1ol HMDB31 UCF101 dataset 264 347 516
iDT + IFV [3] 85.9% 57.2% atase
Two-stream CNN (fusion by SVM) [26] 88.0 % 59.4 % HMDB51 dataset 191 285 415
Dynamic image (single RGB image)
+CNN +iDT [27] 89.1% 652 %
TDD +iDT [28] 91.5% 65.9 %

FC-RNN [29] 9L.6 % 61.8 % comparing it to the original codebook sizes. In all exper-
3D ResNet 152 +iDT [30] 92.7% 69.1 % . th debook si d d d to th
3D ResNext101 +iDT [31] 903 % 58.4 % 1mepts, .e COdebooK S1Zze Wa§ Ie .UCC compare .0 the

Temporal-Spatial Mapping [32] 94.3 % 2.7 % original size 2 x K x D but still did not reach the size of
ResNet + multipli(Eitzi}/e gate mechanism 9499 722% the VLAD codebook of K x D.

DenseNet +Knowledge distillation 0350 oo For the tlme consumption comparison to the state-of-

network [43] s o the-art techniques, due to the different processors used by

Proposed method 98.4 % 73.2 % different authors, a numerical comparison is not practical.

optimization process, respectively. By using the optimization
process, more steps are involved, such as retraining the opti-
mized codebook using SVM and getting the SVM normal
vector of the hyperplanes and the codebook optimization
vector. The results indicate that although these steps take
more time, the processing time is not significantly affected.

F. CODEBOOK REDUCTION SIZE
Tables 5 and 6 show the codebook size after removing the
redundant elements using the optimization techniques and
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Instead, we summarize the comparison as follows, some
authors use the traditional methods which does not include
high computational complexity [19], [20], [21], [22], [23],
[24]. While others improve on CNN by adding more trajec-
tories to the network to improve the accuracy which increase
the processing time [35], [37], [38], [39]. There are others
who use 3D CNNs which include a huge training time which
involve a huge processing time [29], [30]. On the other hand,
the proposed method uses the optimization approach that
does not affect the processing time.

Table 8 shows the processing time using the pre-trained
CNN . The first step is to freeze the weights of the layers for
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each network. Then the final layers which are a fully con-
nected layer followed by a SoftMax layer and the classifier
are replaced to be suited to the new datasets. The table shows
that the simulation time for the three networks is more than
that of the proposed method.

G. COMPARISON WITH STATE-OF-THE-ART METHODS
Finally, to illustrate the superior performance of our proposed
method, we compared it with other state-of-the-art methods
such as the handcrafted approach [3] and methods based
on fusion between CNN and iDT features [26], [27], [28],
[29], [30], [31]. Table 7 shows that the proposed approach
outperformed other methods for both UCF101 and HMDBS51
datasets. Our proposed method achieved 98.4% classifica-
tion accuracy for the UCF101 dataset, which is 5.7% better
than the state-of-the-art method using 3D ResNet 152 + iDT
[30]. For the HMDBS51 dataset, the proposed method
outperformed all methods and achieved an accuracy of
73.2%.

V. CONCLUSION

In this study, we have introduced a new technique that com-
bines the pre-trained CNNs with the traditional techniques
of codebook encoder and SVM classifier to extract the fore-
ground features by optimizing the codebook elements. The
optimized codebook was constructed based on identifying
the discriminative Gaussians that represent the foreground
while eliminating the non-effective codebook elements.
The technique was tested on two benchmark datasets,
i.e., UCF101 and HMDBS51. The results show that using
the optimization process to adjust the discriminative ele-
ments significantly improved the classification accuracy
while reducing the codebook size compared to Fisher vec-
tor codebook size. In doing so, five different optimiz-
ers were applied and tested, and the results revealed that
the time consumption did not increase much compared
to other state-of-the-art algorithms. It is recommended for
future studies to concentrate on improving the accuracy
while reducing the training time to be applied for real-time
applications.
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