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ABSTRACT The effective disposal of healthcare waste is a highly concerned issue. Healthcare waste collec-
tion poses transport risks and temporary storing risks, and the deliberation undertaken by decision-makers
concerning waste collection entails potential scenario wherein some hospitals have not yet submitted
their service requests and may submit their requests during the healthcare waste collection procedure.
A routing optimisation problem for healthcare waste collection with temporary storing risks and sequential
uncertain service requests is introduced. A two-stage decision-making is proposed and mathematical models
corresponding to each stage are developed. Different solution algorithms are developed for different stages
or different scales of instances, including the improved e-constraint method and Non-dominated Sorting
Genetic Algorithm-II for the solution procedure in Stage 1, and the Compare-choose-move algorithm for
the solution procedure in Stage 2. Finally, the models and algorithms are tested by numerical instances and
several suggestions for healthcare waste collection have been proposed based on sensitivity analysis.

INDEX TERMS Healthcare waste collection, routing optimization, sequential uncertain service request,
temporary storing risk.

I. INTRODUCTION stored in the healthcare institutes and collected at a frequency

Healthcarewaste is a type of waste with highly risk, such as
items contaminated with patient blood, bodily fluids, exc-
reta, etc. Containing infectious substances, healthcare waste
poses a significant risk in the transmission of diseases. Con-
sequently, the effective disposal of healthcare waste while
preventing secondary pollution has emerged as a prominent
concern for governments and the public [1]. There has been
a rapid surge in the volume of healthcare waste after the
outbreak of the COVID-19 epidemic [2]. Timely collection of
healthcare waste has gained paramount importance and atten-
tion. For example, in China, healthcare waste was normally
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of every two days before 2020. But now, it is required that
healthcare waste generated every day must be collected in
the day so as to reduce the storing risk of hospitals, namely
Production Every Day and Clearance Every Day mode.

The process of healthcare waste collection follows a
sequential pattern encompassing the steps of “‘temporary
storage in hospitals — retrieval by the collection vehicle —
transportation to the treatment center”’. After the COVID-19
epidemic, many hospitals across China have been equipped
with sensors in their healthcare waste temporary storage
places. These sensors are programmed to trigger service
requests to healthcare waste treatment center upon the attain-
ment of the certain waste accumulation thresholds. Therefore,
in situations similar to Production Every Day and Clearance
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Every Day mode in China, the strategic deliberation under-
taken by decision-makers concerning waste collection entails
potential scenario wherein some hospitals have not yet sub-
mitted their service requests which may be submitted during
the collection procedure.

The route of collection vehicles is the key to safe and effi-
cient healthcare waste collection, mainly for three reasons.
First, the collection vehicles loaded with healthcare waste
may encounter accidents, such as collisions, rollovers, etc.,
which can easily lead to the spread of diseases or environmen-
tal pollution [3]. It is necessary to control the transport risks of
collection vehicles. Then, temporary storing healthcare waste
in hospitals may also cause infectious risk [4]. Thus, it is
also necessary to reduce the temporary storing risk within
hospitals as much as possible by reasonable route planning.
In addition, the Production Every Day and Clearance Every
Day mode, within which a part of the requests for healthcare
waste collection have uncertainty, pose a challenge for the
decisions.

The outbreak of infectious diseases, exemplified by the
COVID-19 epidemic, has also raised scholars’ attention per-
taining to healthcare waste collection. The relevant research
mainly focuses on the collection of industrial hazardous
waste and healthcare waste. These works do not yet effec-
tively address the above challenges. On one hand, research
related to industrial hazardous waste collection fails to ade-
quately capture the distinct features of healthcare waste
collection well, particularly the imperative to mitigate risks
brought by healthcare waste. On the other hand, research
related to healthcare waste collection is mainly based on
premise that all hospitals have proposed their requests and
the decision-makers conduct overall planning, neglecting the
probable situation that some hospitals have not yet submitted
their service requests. In addition, research that considers the
minimizations of both transport risk and temporary storing
risk is rare, which also leads to a gap.

This paper introduces a routing optimisation problem for
healthcare waste collection with temporary storing risks and
sequential uncertain service requests. The goal of this prob-
lem is to determine the routes for healthcare waste collection,
with the aims of minimizing the total transport risk and the
maximum temporary storing risk of each hospital simul-
taneously. A part of the hospitals has already submitted
service requests and their quantities of healthcare waste are
known. However, other hospitals have not submitted their
service requests. Whether they will submit service requests,
alongside their quantities of healthcare waste, are completely
uncertain and cannot be predicted in advance. The submission
of service requests from these hospitals is with the character-
istics of sequential uncertainty. Only when a service request
is submitted can the decision-makers know the quantity of
healthcare waste.

This paper makes primary contributions in several aspects.
First, considering the actual situation where some hospitals
may submit real-time service requests during the healthcare
waste collection, we propose a two-stage decision-making.
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The initial collection plan for the hospitals that have submit-
ted service requests before starting collection is determined
in Stage 1, and the sequential uncertain service requests that
the hospitals submitted during the collection procedure are
addressed dynamically in Stage 2. Second, both the trans-
port risk and temporary storing risk are considered in this
research, and comparative analysis to the proposed models
and algorithms has shown that they can effectively reduce
the risks of healthcare waste collection. Third, the variations
of risk related parameters, number and capacity of vehicles
are analyzed, and several suggestions for healthcare waste
collection have been proposed.

This paper is structured in the following manner. Section II
offers an extensive review of related researches. Section III
is the problem formulation. Section IV is the two-stage
decision-making and mathematical models. Solution algo-
rithms are developed in Section V. Numerical results are
presented in Section VI. In the end, Section VII provides
conclusion.

II. LITERATURE REVIEW

Since healthcare waste collection is a risky process and
revolves primarily around routing decisions, previous
research in this field includes two categories: routing for
hazardous waste collection and routing for healthcare waste
collection. Hereafter, two streams of research will be sorted
out separately.

A. ROUTING FOR HAZARDOUS WASTE COLLECTION
Routing for hazardous waste collection predominantly con-
centrates on industrial hazardous waste, encompassing mate-
rials such as flammable and explosive waste, corrosive waste,
and radioactive nuclear waste, etc. In these researches, the
primary objective is to determine the transport routes, mini-
mizing the total risk and cost simultaneously. While akin to
research about hazardous materials transportation, e.g., [5],
[6], and [7], routes of vehicles in these researches are based on
reverse logistics. Although attention to routing for hazardous
materials transportation began around 2010, a notable surge
in research concerning hazardous waste collection has been
observed since 2015. Research concerning routing for haz-
ardous waste collection can be categorized into two primary
domains. The first category mainly considers vehicle routing,
and the second category combines routing with location or
other decision-making aspects.

For the first category, Zhao and Zhu formulated a
bi-objective routing model for hazardous waste management,
focusing on minimizing the total risk and total cost. A modi-
fied Tchebycheff method is adopted to tackle the problem [8].
Yu et al. developed a bi-objective mixed integer program
(MIP) model to achieve the objectives of minimizing the
population exposed to hazardous waste and maintaining a
high efficiency in the collection process at the same time.
An approximation goal programming algorithm is employed
to address the problem [9]. Saeidi-Mobarakeh et al. formu-
lated a bi-level model with the strategic reverse network
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design. The fluctuation of hazardous waste generation rate
in different scenarios is considered as uncertainty and a
three-part solution approach is employed accordingly [10].
Wang et al. considered three objectives when addressing
the vehicle routing for paint waste management, that is,
to minimize transportation costs, to minimize transport or
sites risks, and to maximize the convenience for the waste
collection [11].

For the second category, Zhao and Ke introduced the
consideration of inventory risk within a location-routing
(LR) model, seeking to reduce the system’s overall cost
and environmental risks [12]. Rabbani et al. presented a
multi-objective LR model for industrial waste, minimizing
the total cost, total transport risk, and the site risk con-
currently. To address the problem, two kinds of algorithms
are implemented [13]. Rabbani et al. incorporated LR and
inventory control into a multi-objective model for industrial
waste collection, aiming to minimize both the overall cost
and total environmental risk. An approach which integrates
Monte Carlo simulation is developed [14]. Zhao and Huang
presented a bi-objective MIP for regional hazardous waste
management minimizing the overall cost and risk associated
with the locating and transporting processes [15]. Rabbani et
al. proposed a multi-objective LR model achieving workload
balance. Three algorithms are employed to tackle the problem
efficiently [16].

From the above analysis, it is evident that although routing
for hazardous waste collection has already considered the
risk, these researches are mainly centered on the collection
for industrial waste. In addition to risks, there are still differ-
ences between healthcare waste and industrial waste. These
differences have given birth to routing for healthcare waste
collection.

B. ROUTING FOR HEALTHCARE WASTE COLLECTION
Healthcare waste falls under the category of hazardous waste
in precise terms. However, routing for healthcare waste
collection necessitates a keen understanding of the charac-
teristics of healthcare waste. These characteristics includes
service requests originating from healthcare institutions,
transportation of collected waste to healthcare waste treat-
ment centers, and the network which is mainly based on a
city, etc. After the outbreak of the COVID-19 epidemic, there
has been a substantial proliferation in relevant research in
this field. Considering the uncertainty in various parameters,
these researches can be classified into the following two
distinct categories.

1) ROUTING FOR HEALTHCARE WASTE COLLECTION
WITHOUT UNCERTAINTY

Routing for healthcare waste collection without uncertainty
can be understood as routing for hazardous waste collection
considering the particularity brought by the characteris-
tics of healthcare waste. Gao et al. explored the periodic
vehicle routing of healthcare waste recycling, taking into

2870

account different collection strategies and time windows,
aiming to minimize the total travelling distance. Particle
Swarm Optimization approach is adopted as the compu-
tational method [17]. Zhang et al. presented a two-stage
multi-cycle routing of healthcare waste recycling to minimize
the total cost. To address this problem, the Clarke-Wright
algorithm and the variable neighbor search algorithm are used
respectively [18].

The above research primarily focusses on single-objective
problem, but there is an increasing body of literature ded-
icated to multi-objective problem. For example, Taslimi et
al. introduced a model to minimize the occupational risk at
the healthcare centers and transportation risk of healthcare
waste. The inventory dynamics is considered and a heuristic
algorithm is employed [4]. Nikzamir et al. presented a model
for two kinds of healthcare wastes, aiming to minimize the
network costs and mitigate the risk of being exposed to
pollution. A benders decomposition algorithm is utilized to
obtain the optimal solutions [19]. Eren and Tuzkaya focused
on minimizing transportation distance and maximizing the
safety of vehicles. AHP method is used to obtain secu-
rity scores and a traveling salesman problem with the goal
of maximum safety is analyzed [20]. Ghannadpour et al.
addressed a routing problem specific to small medical cen-
ters incorporating the objectives for sustainable development.
A self-adaptive algorithm is employed to obtain the social
objective of minimizing the collecting time, environmental
objective of minimizing the environmental hazards, and the
economic objective of minimizing the costs [21]. Erdem
explored the vehicle routing problem of electric healthcare
waste collection. To address the problem, two heuristic algo-
rithms are applied to deal with the problem [22].

2) ROUTING FOR HEALTHCARE WASTE COLLECTION WITH
UNCERTAINTY
The researches summarized above have not taken into
account of the influence of uncertainty factors. However,
there exist several researches that specifically focus on
uncertainty, with fuzzy theory being a commonly employed
approach. For example, Yao et al. conducted an investiga-
tion into a location-allocation of healthcare waste from the
perspectives of hospitals and governments. The uncertainty
in facility location represented as the values of demands and
transportation cost is delt with fuzzy random variables [23].
Govindan et al. developed a multi-product, multi-period MIP
model for healthcare waste collection. A fuzzy methodol-
ogy is used to address the uncertain aspiration levels of
variables [24]. Tirkolaee et al. introduced a multi-trip LR
problem for healthcare waste. The uncertainty of the demand
parameter is considered as an independent triangular fuzzy
number and a chance-constrained approach is used as the
solution method [25].

In addition to the utilization of the fuzzy theory to address
uncertainty, other types of uncertainties have also been con-
sidered. Nikzamir and Baradaran focused on minimizing both
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total costs and contamination emission for healthcare waste
LR. The stochastic nature of the emission depends on the
transporting times is considered as a normal random variable
and a meta-heuristic approach is employed [26]. Govindan
et al. formulated a circular economy transition model. The
uncertainty brought by the amount of waste generated by
hospitals is solved by using a scenario-based approach [27].

Based on the above analysis, it is evident that these
researches mainly address uncertainty through methods such
as fuzzy numbers and expected values. However, in the con-
text of such as Production Every Day and Clearance Every
Day mode, accurately estimating the sequential uncertain
service requests poses considerable challenges. How to mini-
mize the total transport risk and maximum temporary storing
risk in healthcare waste collection simultaneously is also an
unexplored issue.

We investigate the routing optimisation problem for health-
care waste collection with temporary storing risks and
sequential uncertain service requests introduced in this paper.
Unlike previous studies, hospitals that have submitted service
requests before starting collection and will submit their ser-
vice requests during the collection procedure are considered.
The minimizations of total transport risk and the maximum
temporary storing risk are also considered simultaneously.
To the best of our knowledge, there is no existing research
related to healthcare waste collection that has addressed this
problem. The problem formulation will be provided firstly in
the next section.

lll. PROBLEM FORMULATION

G(V,E) is an abstract network which originates from real
roads, where V. = {vg} U V/ U V" is the set of vertexes;
E = {e(vi,vj)lvi,v; € V} is the set of edges in network
G(V, E). vg represents the healthcare waste treatment center;
V' U V" represents the set of hospitals. For the hospitals in
V' = {vi,va, - - -, v}, they have already submitted service
requests and their quantities of healthcare waste are known.
For the hospitals in V" = {v,11, V412, - * , Vurm/}, they have
not submitted their service requests. Whether they will submit
service requests and their quantities of healthcare waste are
completely uncertain. Healthcare waste poses risks during
transportation. Additionally, hospitals encounter temporary
storing risks while awaiting the collection. The goal of this
problem is to determine the routes for healthcare waste col-
lection, with the aims of minimizing the total transport risk
and the maximum temporary storing risk simultaneously.

A. ASSUMPTIONS

1) Therisks are related to the quantity of healthcare waste.

2) After the collection for hospitals in V' starts, each
hospital v; € V” may submit service requests that are
unpredictable in advance. Only when a service request
from v; € V" is submitted can the decision-makers
know the quantity of healthcare waste.

3) The submission of service requests is with the char-
acteristic of sequential uncertainty. According to the
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order in which service requests are submitted, hospitals
are recorded as v,41, Va2, * -+, Vintm-
B. NOTATION

For the convenience of the following discussion, we provide
parameters used in the mathematical model here, as shown in
Table 1.

TABLE 1. Meanings of parameters.

Parameter Meaning

lij Length of e(v,, VJ.) .

voll.j. Travelling velocity of vehicles on e(V,, v/.) .

q; Quantity of healthcare waste to be collected in v, .
0] Capacity of vehicles.

K Number of vehicles can be used for the collection.
B, Accident rate of e(v;,V;).

Conditional probability for a diffusion given the accident
Py on e(v;,v,).

d, Diffusion time on e(v;, V).
W, Wind speed on e(v,,v,).
o» Density of population on e(v,,V;).

Time point when hospital v, submits service request.

Infection coefficient of temporary storing healthcare waste

i in hospital v, .

The decision variables used include 0-1 variable xll‘. that
equals to 1 if vehicle k passes e(v;, v;), 0-1 variable yfjf that
equals to 1 if vehicle k serves hospital v;, non-negative vari-
able uf‘ that represents the load of vehicle k¥ when leaving v;,
and non-negative variable tl.k that represents the time when

vehicle k serves hospital v;.

C. RISK MEASUREMENT

The risks of healthcare waste collection encompass two
different sources, i.e., the transport risk and the temporary
storing risk. Transport risk refers to the risk when healthcare
waste is transported by the collection vehicles. Temporary
storing risk refers to the risk when healthcare waste is tem-
porarily stored in hospitals before the arrival of collection
vehicles. In this research, we consider minimizing the total
transport risk and the maximum temporary storing risk.

For the transport risk, we define the transport risk as the
expected consequence, similar to the approach of [6]. Con-
sidering that infectious substances may diffuse in the air after
an accident, we incorporate the Gaussian plume model into
the measurement of risk. Fig. 1 depicts a schematic diagram
illustrating the Gaussian plum and the area of population
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Accident ~ Gaussian
} wyxd {
Area of
population -
exposed )

FIGURE 1. Schematic diagram of the diffusion.

exposed by transporting healthcare waste. Then, the follow-
ing definitions are provided.

Definition 1: The area of population exposed if an acci-
dent occurs on e(v;, v;) is nw%jdl.z..

Definition 2: The risk of transporting healthcare waste on
e(vi, vj) is Pypijpimw; dg ukx l’;

For the temporary storing risk, similar to the approach
of [4], the following definition is provided.

Definition 3: The temporary storing risk in hospital v; is

K
eiqi(z th —15).

Finally, the total transport risk should be >~ > Z TR
ieVjeV k=1

Z Z Z Pij[?iijT[W dt]ui{ l];

ieV jeV k=1

storing risk of each hospital should be maxSR;, =
1

The maximum temporary

K
max 6;qi( > tl-k - tiS).
! k=1

IV. TWO-STAGE DECISION-MAKING AND
MATHEMATICAL MODELS

A. TWO-STAGE DECISION-MAKING

The proposed problem in the above section leads to a two-
stage decision-making. Normally, the initial collection plan
is arranged in advance. When the collection begins, the
uncertain service requests will be submitted sequentially. The
two-stage decision-making process is presented as Fig. 2.
In Stage 1, the decision-makers need to determine the initial
collection plan for the hospitals that have submitted ser-
vice requests before the collection starts. In Stage 2, the
decision-makers need to address the sequential uncertain
service requests that the hospitals submitted during the col-
lection procedure.

B. MATHEMATICAL MODELS

According to the service requests submitted by hospitals in
V', the mathematical model to determine the initial collection
plan in Stage 1 is developed as follows.
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Determine the initial
collection plan

A sequential
uncertain service
request is
submitted

A sequential
uncertain service
request is
submitted

Determine the
adjustment plan
of routes

Determine the
adjustment plan
of routes

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

FIGURE 2. Two-stage decision-making process of the proposed problem.

Model M:
K
minf :minZZZTR@ (H
i€V jeV k=1
minf, = min max SR; )
12
> o= Gev\Vik=1.2K)
heV\V” JeVA\V”
€
Z k __ k . ol —
xy=y; (eVik=12---,K) 4)
heV\V”
K
D=1 (GeV) )
Daf<0 (k=12 .K) ©)
eV’
ug=0 (k=12 ,K) @)
uf + qj —uf < (1—x)M
(eV\V"jeVik=12--,K) ®)
=0 (k=12 ,K) ©
l k k
t —tf<(1—-xHM
t ol voljj 7~ (I =)
GeV\V"jeVik=12,---,K) (10)
TR _Pl]pl],o,]nw dl]u, ,];
(i,je V\V" k=1,2,--- ,K) (11)
K
SRi = 0iqiQ>_tf — )i e V) (12)
k=1
=0 (eV) (13)
ZZX{;§|W|—1 (ngl;k=1327”'7K)
ieW jew
(14)
,,,>0 (eV\V k=12 ,K) (15)
Xy €101} (Lje V\V ik = 1,2,“- - K)
(16)
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Objective (1) minimizes the maximum transport risk.
Objective (2) minimizes the maximum temporary storing
risk. Constraint (3) imposes the stipulation that each vehi-
cle cannot stay at each hospital without leaving and finally
returns to the treatment center. Constraint (4) guarantees that
a vehicle must visit a hospital in order to serve it. Con-
straint (5) guarantees that each hospital can only be served
by one vehicle. Constraint (6) guarantees that the capacity of
vehicles will not be exceeded. Constraints (7)-(8) represent
the real-time loads of vehicles. Constraints (9)-(10) represent
the relationships between time points. Constraints (11)-(13)
are the expressions of risks. Constraint (14) forbids subtours.
Constraints (15)-(16) show the ranges of decision variables.

For Stage 2, the service requests from v; € V" are unable
to be predicted in advance. We have conducted several inter-
views with healthcare waste collection companies in some
major cities in China. It turns out that decision makers tend
to reduce significant adjustments to the initial plan since the
process is extreme complex and brings a lot of unnecessary
trouble. For each uncertain service request that submitted
during the collection procedure, it is preferable to adjust the
route of one vehicle in the initial plan or arrange an additional
vehicle.

Therefore, when an uncertain service request is submitted
in Stage 2, we choose a vehicle from the initial routing plan
or an additional vehicle, and insert the requested hospital into
the route of this vehicle, as shown in Fig. 3. It is worth noting
that all vehicles from the initial routing plan have already
dispatched, thus their current position is not vy.

Besides, due to the inevitable increase in transport risk
caused by adjusting the routes, the optimization of Stage 2
aims to minimize total transport risk and ensure that it does
not result in maximum temporary storing risk exceeding the
result of Stage 1. Then, the hospital currently submitting
service request is recorded as v, . The current position of each
vehicle is recorded as vl(‘). Each unfinished part of route of each
vehicle in the initial plan is recorded as vk = {v’é, <o, Vo).
0-1 variable Nf(vi) is used that equals to 1 if v, is inserted
after v; in the route of vehicle k. flk (vi) and ka (v;) are used
to represent the values of objective functions if v, is inserted
after v; in the route of vehicle k. The mathematical model in
Stage 2 is shown as follows.

Model M’: <
minfs = min »_ > FFEINS () (17)
ievg k=1
K
st > D Nfy =1 (18)
ieV k=1
@GO NS+ D gy <0k =1,2,-- K)
i€V jev!
(19)
D HOINFE) <fy (k=1,2,-- K) (20)
ieV
Nfw) e{0,1}) (ieVik=1,2,---,K) 1)
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JInsert a hospital}

{ 777777 } in the route |

FIGURE 3. Schematic diagram of the adjustment of the route.

Objective (17) minimizes the total transport risk. Con-
straint (18) imposes the stipulation that v, can only be
assigned to one vehicle. Constraint (19) guarantees that the
capacity of vehicles will not be exceeded. Constraint (20)
guarantees that the maximum temporary storing risk will not
exceed ), where f,* is the maximum temporary storing risk
of Stage 1. Constraint (21) shows the range of the decision
variable.

V. SOLUTION ALGORITHMS

Given that the proposed problem involves a two-stage
decision-making, different solution algorithms are designed
in each stage, as shown in Fig. 4. In Stage 1, a bi-objective
programming Model M needs to be solved. We develop an
improved e-constraint method to generate the entire Pareto
front for small-scale instances, and Non-dominated Sorting
Genetic Algorithm-II (NSGA-II) for large-scale instances.
In Stage 2, a Compare-choose-move Algorithm is developed
to deal with sequential uncertain service requests.

A. SOLUTION ALGORITHMS FOR STAGE 1

The e-constraint method is an effective algorithm for exactly
solving multi-objective programming. For a bi-objective pro-
gramming model, the e-constraint method can transform one
objective into a constraint by &, thereby obtaining a single
objective model. By solving the single objective model mul-
tiple times under different values of ¢, the Pareto front can be
obtained [28]. Then, by further combining the e-constraint
method with an exact algorithm, all Pareto optimal solutions
can be generated.

To generate the entire Pareto front of Model M, a few
steps are necessary. Firstly, Model M requires linearization
processing owing to its nonlinear characteristics. Secondly,
some improvements to the e-constraint method are added to
accelerate the solution procedure.

1) LINEARIZATION PROCESSING
The nonlinearity of Model M is primarily attributed to Con-
straint (11) as it contains uf‘xl]; Thus, Constraint (11) will be
substituted with a set of linear efficient inequalities. Since x{;
is a 0-1 variable, based on the numerical relationship between
xil; and ui‘ , we have the following proposition.

Proposition 1: Xi’; = ufxl]; is equivalent to Xl]j‘ < xi’;M ,
X§ < uf, Xj = uf — (1 —x))M, and X} > 0.
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Improved e-constraint
[ method Stage |

Small-scale
instances

Non-dominated Sorting
Genetic Algorithm-II

Large-scale
instances

Compare-choose-move
Algorithm

FIGURE 4. Solution algorithms for different stages.

Stage 2

Proof: Please see Appendix A.

Therefore, by integrating Proposition 1, we can replace
Constraint (11) with a set of linear constraints, and have the
following bi-objective linear programming model.

Model M~:

K
minfi = min »_ " " TR (22)

eV jeV k=1
minf, = minmax SR; (23)
1
s.t. Constraints(3) — (10) and (12) — (16).
TR =Ppypymwyd; Xy (i.j € V\V" k=1,2,--- ,K)

(24)
Xj <xpM (i, jeV\V" k=1,2,--- ,K) (25)
X5 <uf (G.jeV\V'ik=12- K) (26)
Xp=uf —(1—x)M (i, jeV\V" k=1,2,--- K)
(27)
X5 >0 (jeV\V'ik=12 - K) (28)

2) FAST METHODS OF COMPUTING THE BOUNDS OF ¢

The initial step in implementing the e-constraint method is
to transform Model M* into a single objective Model M
with e-constraint. Then, the lower and upper bounds of &
need to be computed before solving Model M several times
with different values of ¢. Model M( is presented below.
Generally speaking, the bounds of ¢ are generated by solving
the following Model M| and Model M.

Model My:
K
minf; = min Z Z Z TR, (29)
i€V jeV k=1
s.t. Constraints (3) — (10) and (12) — (16), and (24) — (28).
& > max SR; 30)
1
Model M;:
K
minf; = min Z z Z TRZ
ieV jeV k=1
s.t. Constraints (3) — (10) and (12) — (16), and (24) — (28).

3
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Model M>:
minf, = minmax SR;
1

s.t. Constraints (3) — (10) and (12) — (16), and (24) — (28).
(32)

Both Model M and Model M, are NP-hard mixed integer
programming models. The solution procedure for these mod-
els necessitates considerable computing times. This prompts
us to propose an improved e-constraint method, which
notably circumvents the necessity of solving Model M; and
Model M> in order to acquire the bounds of ¢.

The lower bound of ¢ corresponds to the optimal solution
of Model M;. By analyzing max SR;, we derive the following
property. l

Property 1: The lower bound of maxSR; is

1
max 0;q; TS (vo, v;), where TSP (v, v;) represents the travel
l
time of the shortest path from v to v;.

Proof: Please see Appendix B.
Property 1 elucidates that max Qiq,-TSP (vo, v;) is the lower
14
bound of max SR;, and it is the lower bound £ of f>. Then,
14
fZL = max Qiq,-TSP (vo, vi). To compute max QiqiTSP (vo, vi),
14 1

the application of Dijkstra’s algorithm is requisite, with
a result computational time-complexity of O(n?). This
approach is also a polynomial-time fast method. Though sz
is not a strict bound, it is also applicable.

For the upper bound fo , we set f2U = M, where M is a
large positive number. During the procedure of e-constraint

method, it may generate one dominated solution, and this
solution will finally be deleted.

3) ENTIRE SOLUTION PROCEDURE

Based on the fundamental of the e-constraint method, by inte-
grating the above linearization processing and fast methods to
compute the bounds of ¢, the entire solution procedure of the
improved e-constraint method is proposed as follows, where
¢ is a small enough positive number.

Step 1: Use linearization processing to obtain Model M’

Step 2: Transform Model M ™ and obtain Model M.

Step 3: Use Dijkstra’s algorithm to obtain fZL.

Step 4: Sete =f =M, F = .

Step 5: Solve Model M and obtain the solution

(fi(X), L(X)). Merge (fi(X), (X)) into F. Sete = ¢ — ¢.

If ¢ > f2L, turn to Step 5. Else, turn to Step 6.

Step 6: Delete dominated solutions from F'. Output Pareto

front F.

The above improved e-constraint method is suitable for
solving small-scale instances. Although its efficiency has
been improved compared to the e-constraint method without
improvements. However, it is still necessary to solve Model
My multiple times throughout the entire solution procedure.
Since Model My is a NP-hard mixed integer programming
model, the computational burden caused by this prompts
us to lean towards using NSGA-II for dealing with large-
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scale instances. According to [29], the NSGA-II for solving
Model My is developed. Here, we will not introduce the entire
procedure redundantly, and the specific parameter values for
applying NSGA-II will be reported in Section VI.

B. COMPARE-CHOOSE-MOVE ALGORITHM FOR STAGE 2
In Stage 2, the decision-makers are confronted with the
challenge of handling sequential uncertain service requests
that cannot be predicted in advance. All relevant information
is not available until a service request has been submitted.
We design a Compare-choose-move (CCM) algorithm for
addressing this issue.

1) EXECUTION PROCESS OF CCM ALGORITHM

The execution process of CCM algorithm is elucidated as fol-
lows. Assuming v, is inserted after vi.‘ in the route of vehicle
k, compute the values of objective functions flk (v;) and fzk ).
Check each insert point and find the one corresponding to
miin flk (vi) and fzk (vi) < f5. Record the values of objective

functions as f]k and fzk .

Finally, compute and compare each flk and f2k for different
routes of vehicles. Until the insert point corresponding to
n}(in flk and ka < f5 is found. Insert v, into this point and
update the routes of vehicles. Whenever a new service request
is submitted, record the corresponding hospital as v,, and
repeat the above process. The schematic diagram of the CCM
algorithm is shown in Fig. 5.

2) DETAILED STEPS OF CCM ALGORITHM
The detailed steps of CCM are proposed as follows.
vé‘ represents the i vertex on the route of vehicle k.
TR*[v;, vj, LOAD] represents the transport risk from v; to
vj, where LOAD is the load of the vehicle. u(v;) represents
the current load of the vehicle leaving v;. SRX[TIME, ¢;]
represents the temporary storing risk of v;, where TIME is the
time it takes for v; to receive the service. #(v;) represents the
current time when the vehicle arrives at v;. T (v;, v;) represents
the travel time from v; to v;.

Step I1:SetA=n+1,i=0,k = 1.

Step 2: Compute TR’,‘ = TRk[vf, Vi, u(vé‘)],

TR}, = TR*[vx, vE, |, u(¥) + g1], and

TRy, = X TRV, Vi, . q:]. Record

h>i+1

R8N =fF + TRE + TR, + TRY,.

Step 3: Compute SRY = SRE[+(vE) + T, vi) — 15, g3),

SR}, = SRF[t(vV) + T, vi) + T V5, ). gk, D], and

SRy = max SRE[E) + T (7, va) + T vy ), g03))

Record f¥ () = max{fs", SR, SRY,, SRY,.}.

Step 4: Iffzk (vi.‘) <f andflk(vf.‘) <f1k, set
fF=rFob and £5 = £ 0. IEVE | # vo, set

i =i+ 1, turn to Step 2. Else, turn to Step 5.

Step S: I fK < fl,setf' =fF. Ifk <K,setk =k +1
and i = 0, turn to Step 2. Else, turn to Step 6.

Step 6: Set N)’f (vi) = 1 corresponds to f’. Output
Nf@).IfA <n+m,setA =1+ 1,i=0,andk = 1,
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Check £f(v;) and £5(v;) of
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FIGURE 5. Schematic diagram of the CCM algorithm.

turn to Step 2.

The computational time-complexity of Step 2 amounts to
O(n). The computational time-complexity of Step 3 amounts
to O(n). Given that the cyclic count of Step 2 to Step 4 is
n, the computational time-complexity is O(n?). Furthermore,
the cyclic count of Step 2 to Step 5 is n, the computa-
tional time-complexity is O(x*). Finally, the cyclic count of
Step 2 to Step 6 is m, the computational time-complexity is
O(mn?). Consequently, we can derive the following theorem.

Theorem 1: The computational time-complexity of CCM
algorithm is O(mn>). CCM algorithm is a polynomial-time
algorithm.

VI. NUMERICAL RESULTS

In this section, we test the proposed model and algorithms
through numerical instances. A total of 12 instances are
generated, stemmed from Solomon’s instances, as shown in
Table 2. Instances 1-6 are small-scale and can be exactly
solved, while Instances 7-12 are relevant large-scale. The
positions of vertexes in the networks of Solomon’s instances
are retained for our instances, but a part of vertexes is set to
V’ and the other part to V”. The values of each g; are aligned
with those presented in Solomon’s instances, and the value of
Q is set to 100. Furthermore, we adopted various parameters
from the context of Xi’an, a large city in western China.
Specifically, w;; = 1.8m/s is set according to the average
wind speed in Xi’an city. d;j = 30minand P;p; = 0.081%
are configured based on the Statistical Yearbook published
by the local government, and each 6 are randomly generated
between [0.5, 1.5]. What is more special is the times when
hospitals v; € V” submit service requests. We randomly
generate a set of service requests for hospitals v; € V”,
which remain unknown during the decision-making process
and are submitted sequentially. All used solution algorithms
are programed by Microsoft Visual Studio 2017 and CPLEX
Ver. 12.6. For applying NSGA-II, the population size is set
to N = 500, the number of iterations is set to genmax =
1000, and the probabilities of cross and mutation are set to
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Pareto fronts of different algorithms

(a) Instance 1.

Pareto fronts of ditferent algorithms

12300 —

/
Total transport risk.

#-- Solutions generated by A2 rated by Al

(d) Instance 4.

FIGURE 6. Generated solutions of different algorithms.

Pc = 0.8 and Py = 0.05, respectively. For each instance,
each program will run 10 times and take the average value.

A. TESTING AND ANALYSIS OF SOLUTION ALGORITHMS
The efficacy of the proposed solution algorithms is tested.
For the convenience of representation, “A1” is designated for
the approach integrating the improved e-constraint method in
Stage 1 and the CCM algorithm in Stage 2. Similarly, “A0”
signifies the method employing the e-constraint method with-
out improvements in Stage 1 and the CCM algorithm in
Stage 2. Lastly, “A2” denotes the method implementing the
NSGA-II in Stage 1 and the CCM algorithm in Stage 2.
Applying A1, A0, and A2 on Instances 1-12 yields distinct
computing times, as shown in Table 3.

It can be seen that the computing times of Al are signif-
icantly shorter than those of AQ. Specifically, the average
computing time of Al is only 68.61% of the computing
time of AOQ. This indicates that the improvements of the
e-constraint method has indeed accelerated the solution pro-
cedure. Moreover, as we can also see from Table 3, the
computing times of A2 are shorter than those of A1, and both
Al and AO cannot solve Instances 7-12 within reasonable
times. But A2 cannot provide exact solutions, as can be seen
from the Pareto fronts shown in Fig. 6.

Table 4 shows several indicators for different algorithms,
including the number of generated solutions, coincident
points on the Pareto front, and maximum difference between
the solutions generated by A2 and Al. The average maximum
difference on f and f> are 0.60% and 1.35%, demonstrating
that the performance of A2 is not bad. Therefore, the solu-
tion framework shown in Fig. 4 and the proposed solution
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Pareto fronts of different algorithms

(b) Instance 2.

Pareto fronts of different algorithms

& Solutions generated by A2

(e) Instance 5.

Pareto [ronts of different algorithms
13100

£ 12400

1220 1420 620 1820 2020

Maximum temporary storing risk

red by Al Solurions generated by A2

(c) Instance 3.

Pareto fronts of different algorithms

(f) Instance 6.

TABLE 2. Sources of instances.

No. Source V'] [ V"]
1 V, —V;; of R101 12 5
2 V, —V;; of RC101 12 5
3 Vy —V;; of R102 12 5
4 Vo —V;; of RC102 12 5
5 Vy —V,; of R103 12 5
6 Vy, —V,, of RC103 12 5
7 Vy — V4o of R101 30 10
8 Vy — V4 of RC101 30 10
9 Vy — Vgs 0f R102 50 15
10 Vy — Vs of RC102 50 15
11 R103 80 20
12 RC103 80 20

algorithms can solve both small-scale and large-scale
instances effectively.

B. COMPARATIVE ANALYSIS WITH OTHER MODEL

In order to verify the effectiveness of the proposed model,
we compared and analyzed our model in Section IV with
another model. We have chosen a traditional model for
hazardous waste collection, where the two objectives of
the model are the minimization of total transport cost and
risk respectively. The expression of total transport cost is
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Pareto fronts of different objectives

Solutions of minimizing total transpent cost and risk e Solutions of mini

(a) Instance 7.

Pareto fronts of different objectives

& Soluticns of minimizin d risk & Solutions of minimi

(d) Instance 10.

FIGURE 7. Generated solutions of different objectives.

TABLE 3. Computing times of different algorithms.

Pareto fronts of different ohjec

(b) Instance 8.

Pareto fronts of different objectives

-
e
e =

(e) Instance 11.

tives Pareto fronts of different objectives

Maxinus

st and risk »--- Solutions of minimizing total transport cost and risk

(c) Instance 9.

Pareto fronts of different objectives

and risk o Solutions of minimizin and risk

(f) Instance 12.

TABLE 4. Indicators for the results of different algorithms.

Ratio between

Computing times (second) computing times

No.
A0 Al A2 Al/A0 A2/ Al
1 161 130 96 80.75% 73.85%
2 155 115 106 74.19% 92.17%
3 224 158 92 70.54% 58.23%
4 303 173 96 57.10% 55.49%
5 212 137 96 64.62% 70.07%
6 211 136 95 64.45% 69.85%
7 - - 151 - -
8 - - 154 - -
9 - - 284 - -
10 - - 286 - -
11 - - 442 - -
12 - - 432 - -
Average ratio 68.61% 69.94%

K
RIS l,-jx{;. After replacing max SR; in the proposed
ieV jeV k=1 !

K
model in Section IV with > > > lyx,
ieV jeV k=1
prepared NSGA-II and CCM algorithm for generating the
solutions. All algorithms that involve temporary storing risks
have been replaced with transport costs.

The results of our proposed model and the model that
minimizes total transport cost and risk are shown in Fig. 7.
Although the objectives of the two models are different,
we still show the values of total transport risk and maxi-
mum temporary storing risk corresponding to each solution
in Fig. 7. It can be seen that there is a significant difference in

we have also

VOLUME 12, 2024

Maximum difference

Number of .
encrated o between the solutions
gener: Coincident generated by A2 and
No. solutions points on the Al
Pareto front
Al A2 fi A
1 6 6 1 0.76% 1.55%
2 3 3 1 1.51% 0.00%
3 6 7 3 0.85% 1.56%
4 3 3 0 0.14% 0.58%
5 6 6 3 0.21% 0.65%
6 2 2 1 0.11% 3.78%
7 - 5 - - -
8 - 5 - - -
9 - 11 - - -
10 - 5 - - -
11 - 10 - - -
12 - 8 - - -
Average difference 0.60% 1.35%

the corresponding values of total transport risk and maximum
temporary storing risk between the two sets of results.

For a comprehensive comparison, we calculated the aver-
age values of total transport risk and maximum temporary
storing risk of different series of results for each instance,
as shown in Table 5. It is evident that the average total
transport risk and average maximum temporary storing risk
of the solutions of the proposed model are both lower. The
average ratios of two kinds of risks are 79.74% and 87.63%
respectively. This indicates that through our proposed model,
total transport risk and maximum temporary storing risk can
be effectively reduced.
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FIGURE 8. Generated solutions of different diffusion times.
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FIGURE 9. Generated solutions of different numbers of vehicles.
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C. SENSITIVITY ANALYSIS

1) ANALYSIS OF DIFFERENT RISK RELATED PARAMETERS
The local government can reduce the risks of healthcare waste
collection with a commonly employed approach which is to
reduce diffusion times. By investing resources and improving
management skills, rescue teams can expedite their arrival
at the accident sites, thereby reducing diffusion time and
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risks. We reduce the diffusion times by 20% and compute the
results, as shown in Fig. 8.

It can be seen from Fig. 8 that transport risks can be sig-
nificantly reduced by reducing diffusion times. At the same
time, there are instances wherein the concurrent mitigation
of maximum temporary storing risk is achieved. The risk
reduction requires allocation of limited resources, and the
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Pareto fronts of different capacities of vehicles

(a) Instance 7.

Pareto fronts of different capacities of vehicles
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FIGURE 10. Generated solutions of different capacities of vehicles.

TABLE 5. Average objective values of different results.

Average maximum

Average total transport risk L
verage to SpOrt 1S temporary storing risk

Solutions of Solutions of

No. Solutions of ~ minimizing Solutions of ~ minimizing
the proposed total the proposed total
model transport model transport
cost and risk cost and risk
7 30562 38843 1724 1975
8 43872 58087 3630 3823
9 56267 57570 2468 4037
10 69342 90540 5116 5368
11 86209 110300 2783 3135
12 101438 141400 4738 4820
Average 79.75% Average 87.63%
ratio ratio

efficacy associated to the reduction of diffusion times is a
good choice.

2) ANALYSIS OF DIFFERENT NUMBERS OF VEHICLES
Healthcare waste collection, especially during outbreaks of
infectious diseases, often encounters constraints in terms of
vehicle availability. Thus, we evaluate varied numbers of
vehicles and attempt to explore the impact of varying vehicle
numbers on the results. We have computed the results of
halving the number of vehicles, as shown in Fig. 9.

The Pareto fronts in Fig. 9 denote that when the numbers of
vehicles decrease, there is a pronounced escalation in both the
transport risk and temporary storing risk. This phenomenon
indicates that the numbers of vehicles have a significant
impact on risks. It is very necessary to ensure an adequate
number of vehicles or at least to prepare as many vehicles as
possible when conducting healthcare waste collection.

VOLUME 12, 2024
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3) ANALYSIS OF DIFFERENT CAPACITIES OF VEHICLES

In reality, there may be more than one type of vehicles avail-
able for healthcare waste collection. Thus, we evaluate varied
capacities of vehicles and present the results, as depicted in
Fig. 10. It is anticipated that an increase in the capacities of
vehicles should bring about a reduction in associated risks.
Because larger-capacity vehicles can bring more feasible
routes, thereby facilitating the computation of a more optimal
solution.

However, a nuanced analysis of the obtained results in
Fig. 10 reveals that a correlation between increased capacities
of vehicles and risk reduction does not hold universally.
It is likely that the routes capable of serving more hospitals
with a larger capacity of vehicles will lead to higher tem-
porary storing risk. Hospitals situated at the extremities of
these routes inevitably encounter prolonged waiting periods,
so these routes are less effective under the influence of miti-
gating temporary storing risk. Furthermore, a comprehensive
deliberation of healthcare waste collection necessitates the
inclusion of economic factors, as the deployment of distinct
vehicular configurations aligns with divergent cost structure.
Therefore, it is incumbent upon decision-makers to diligently
populate the model with the requisite parameters for all
optional vehicles, compute the results and ultimately select
the most appropriate vehicle type.

VII. CONCLUSION

Healthcare waste is a type of waste with highly infectious
risk, and the effective disposal of healthcare waste is a highly
concerned issue. Healthcare waste collection poses transport
risk and temporary storing risk, and the strategic deliberation
undertaken by decision-makers concerning waste collection
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entails potential scenario wherein some hospitals have not yet
submitted their service requests which may be submitted dur-
ing the collection procedure. The route of collection vehicles
is the key to safe and efficient healthcare waste collection.
A routing optimisation problem for healthcare waste collec-
tion with temporary storing risks and sequential uncertain
service requests is introduced. The goal of this problem is to
determine the routes for healthcare waste collection, with the
aims of minimizing the total transport risk and the maximum
temporary storing risk of each hospital simultaneously.

A two-stage decision-making for the problem is proposed.
The decision-makers determine the initial collection plan
for the hospitals that have submitted service requests before
starting collection in Stage 1, and address the sequential
uncertain service requests that the hospitals submitted during
the collection procedure in Stage 2. The mathematical models
for both stages are developed. Different solution algorithms
are proposed. In Stage 1, an improved ¢-constraint method to
generate the entire Pareto front for small-scale instances, and
NSGA-II for large-scale instances are proposed. In Stage 2,
a Compare-choose-move Algorithm is developed to deal with
sequential uncertain service requests and generate the route of
the additional vehicles.

The results of testing the solution algorithms with a series
of instances show that the proposed solution algorithms can
solve both small-scale and large-scale instances effectively.
And a comparison between the proposed model and another
model is conducted. Through the analysis of risk related
parameters, we find that the local government should reduce
diffusion times so as to improve the healthcare waste col-
lection risk management efficiently. Through the analysis of
different numbers of vehicles, we find that it is very neces-
sary to ensure an adequate number of vehicles or at least to
prepare as many vehicles as possible. Through the analysis
of different capacities of vehicles, we find that a correlation
between augmented capacities of vehicles and risk reduction
is not universally applicable and choosing appropriate vehicle
type is necessary.

Future research can expand the work in this paper from
two aspects. First, developing more realistic risk measure-
ments and combining them with sequential uncertain service
requests in healthcare waste collection can be considered in
the future. Second, the healthcare waste collection procedures
in some cities include transit stations. Researches with the
consideration of transit stations is one of the future directions.

APPENDIX A
PROOF OF PROPOSITION 1
Ifx =0, thenwehaveXk <ka :>Xk <0, anka > 0.

The value of X K in this case can only be equal to 0.

Ifx =1, thenwehaveXk < u anka > u - -
)M => Xk > u . The value of Xk in this case can only be
equal tou

To sum up, this set of linear inequalities can replace Xii k—

k ’; in all cases.
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APPENDIX B
PROOF OF PROPERTY 1
SR; 1s the temporary storlng risk of hospital v;, and SR; =

0:q; Z tk - tS) = 0;q; Z tk Obviously, when a vehicle

starts from vo and chooses the shortest path directly to reach
v;, hospital v; has the shortest waiting time for the service.
Then, the lower bound of maxSR; should be

L
max qu,-TSP (vo, vi), where TSP (vg, v;) represents the travel

]
time along the shortest path from vg to v;.
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