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ABSTRACT This research introduces a compartmental model designed to address the critical challenge of
cost-effective pandemic modeling and analysis. The proposed framework extends the Susceptible, Exposed,
Infectious, and Recovered (SEIR) model by incorporating environmental pathogen dynamics and a mortality
factor within the compartmental model. To identify an optimal strategy for disease control, we formulate
an optimization problem. To expedite the solution of this nonlinear optimization problem, we leverage
Geometric Programming (GP), which is well-suited for handling convex optimization problems related to
parameter control within the compartmental model. Additionally, we employ Particle Swarm Optimization
(PSO) to explore potential solutions. Our simulation results underscore a key finding: the optimal disease
control strategy is a dynamic function of time. This insight highlights the need to go beyond conventional
tactics like managed isolation and quarantine, thereby improving our approach to pandemic management.

INDEX TERMS Evolutionary algorithm, data science, compartmental models, convex optimization,
mathematical epidemiology, artificial intelligence, machine learning.

I. INTRODUCTION
COVID-19 resulted in severe economic hardship, unem-
ployment, and a decline in Gross Domestic Product (GDP)
[1], [2]. Depending on how severe the social distancing
measures are, how long they are implemented, and how
much compliance there is, the negative economic effects
may vary. As a result of the pandemic and its subsequent
interventions, certain socio-demographic groups may suffer
from mental health distress, economic inequality, and special
difficulties [3]. The solution for controlling an airborne
disease must include multiple criteria [4] since the problem
is deeply connected to the economic state of the system. For
instance, although non-pharmaceutical interventions (NPI)
may minimize the strain placed on the health care system,
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these policies will have a direct effect on the economic
status [3].

In general, finding a solution for controlling a pandemic,
can be considered an optimization problem, with multiple
contracting criteria, and finding the weight for different
conditions or setting a restriction on the possible pressure on
the health system needs a high-level knowledge of the system
states. These difficulties can be abstracted in a mathematical
presentation with a cost function in the optimization problem,
and the weights of this function can represent the policy or
the possible level of bending for the society governors in a
different part of the system [5].

Providing accurate forecasts and simplicity are the most
important attributes of mathematical models. It is worth
noting that a complex system may consider different aspects
of the disease in society, however, finding the accurate con-
stant parameters and running this model for an appropriate
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amount of time needs a lot of computation power [6].
Therefore, a useful solution to simulate virus behavior in the
system is the utilization of the compartmental models. These
models are well studied, e.g., simple SEIR (Susceptible,
Exposed, Infectious, Recovered), for simulating Coronavirus
Disease (COVID-19) [7]. In these models, different states
of the disease are modeled as compartments where each
compartment represents the density of the population in that
state. Flows in this model are simulated by simple differential
equations [8]. One of the main functions of these models is
to help policymakers find and assess the best strategies and
policies by providing useful information about the future state
of the disease. In other words, these models can be used to
evaluate the performance of a policy [9].

Many studies used different techniques including mathe-
matical models, compartmental models, Simulation models,
and Multi-criteria decision-making to analyze the dynam-
ics of the disease and the effects of different policies.
Koo et al. [10] studied the effect of isolation policies on
the dynamics of COVID-19 by using a simulation model
in Singapore. Gatyeni et al. [11] developed a dynamic
COVID-19 model for South Africa that evaluates the existing
infection prevention measures such as screening, testing,
mask usage, and physical distancing by utilizing optimal
control theory. Libotte et al. [12] formulated and solved an
inverse problem, using the Differential Evolution algorithm
to determine the parameters that define the mathematical
model based on the compartmental SIR model and found
the best strategy for distributing COVID-19 vaccines during
the pandemic in China. Reference [13] presents a novel
approach to modeling COVID-19 data using the chicken
swarm optimization algorithm and a stochastic process model
with the objective of extending the model’s applicability
by exploring different modeling methodologies, estimation
methods, and fields of application.

Despite the efforts made to classify different policies, most
studies do not consider the economic effects of the disease
on the behavior of individuals and how these controlling
policies might impact the overall economy of society [14],
[15]. Glover et al. [16] addressed this problem by constructing
a model with a focus on the effects of the aged-based policy
on the economy. To show the simultaneous effects of different
isolation policies on both economic and health systems,
Goldsztejn et al. [17] developed a predictive SEIR model.
Rowthorn and Maciejowski [18] suggest a straightforward
cost-benefit analysis that draws inspiration from optimal
control theory and incorporates the SIR model of disease
propagation.

The important aspect of finding controlling parameters
is to search every policy and evaluate it with respect
to criteria like total deaths, the pressure on the health
system, or the total cost of the system. In response to
this problem, Navascués et al. [19] developed a method to
connect the minimization problem to the optimization over
policies space, i.e. the result of the optimization represents a

distribution over policy space such that minimizes the cost
function. Moreover, by designing an optimization problem
that can be converted into a Geometric Programming (GP)
problem, which is easier to solve, Piéni and Szederkényi
[5] addressed the problem of finding the optimal controlling
parameter for COVID-19 hospitalizations while considering
both economics and capacity of the hospital at the same time.

While many studies used the SEIR model for studying the
dynamics of the disease and analyzing the economic effects
of the disease, in this study a novel compartmental model,
named the SEIR-PHD, is developed to include the economic
aspects of the disease within a novel compartmental model.
SEIR-PHD is the extended version of the SEIR model. i.e.
Pathogen, Hospitalized, and Deceased states are added to
enrich the simple SEIR model. The pathogen block in the
SEIR-PHD is considered to clarify the dynamics of the virus
by separating two different aspects (contact of individuals
with infected ones or touching a contaminated surface) for
keeping the virus in society. Moreover, the infectious group
is divided into two subgroups to show a distinction between
the symptomatic and asymptomatic cases in society. Also,
the hospitalized block is added to model the additional cost
of hospitalizing infected individuals with critical conditions.
Additionally, by considering an upper bound on hospital
capacity, defining this state helps with realizing that resources
in hospitals are limited [20].

The SEIR-PHD has a simple mathematical equation
governing the system and is highly nonlinear. Therefore,
optimizing the control parameters over a large period with
heuristic algorithms like PSO (Particle SwarmOptimization),
genetic algorithm, or in general black-box optimization
algorithms may result in an approximately accurate result.
Hezam [21] developed a dynamic mathematical model
integrating COVID-19 and Chikungunya outbreaks and
solved the ordinary differential equations (ODEs) using
PSO in Yemen. In another study by Zreiq et al. [22], the
PSO technique was applied alongside phenomenological and
compartmental models to model reported COVID-19 cases
in Saudi Arabia However, the drawback of these algorithms
is that they need a high amount of computation power [23].
To overcome this difficulty and better analyze the economic
factors in our model, the current study utilized a convex
transformation. To be specific, the problem is transformed to
the GP form by using Taylor approximation and refreezing
each equality constraint to inequality form. Generally, the GP
form can be transformed into a convex optimization problem
by transforming the variables, the objective function, and
the constraints. It is worth noting that an optimum point
of a convex problem can be found with a fast algorithm
[24] i.e., polynomial time with respect to the size of the
problem. Moreover, a theorem (1) is proved to illustrate
that this approximation is accurate enough and the result of
the GP form can be used for the base problem. With this
transformation, it is possible to find the optimized parameters
in the space of all variables. An example of using GP
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can be found in the study by Hayhoe et al. [25] which
utilizes multitask learning to determine the parameters of a
compartmental discrete-time epidemicmodel using data from
various sources. This method enables the design of control
strategies for human-mobility restrictions that effectively
contain the epidemic while also minimizing the economic
costs of implementing non-pharmaceutical interventions.

Another difficulty in the study of these models is the
calculation of constant parameters that are used for com-
puting the state of the disease. Considering the COVID-19
virus and its responses to the policies of society, it can be
inferred that the virus responds to the policy by a genetic
mutation. Additionally, some factors in the model show
seasonal behavior, and some depend on the availability of the
healthcare capacity. Notwithstanding Piéni and Szederkényi
[5] reduced the complexity of the model by considering all
factors to be constant. Despite the difficulties that result from
inspecting some factors to be a function of the system state
within the optimization problem, in the current study, hospital
admission rate and symptomatic death rate are calculated
using the state of the system.

The remainder of this study is constructed as follows.
Section II presents an overview of the proposed methodology
including the SEIR-PHDmodel and its differential equations,
discretization procedure, and aspects of convex optimization
specifically geometric programming along with the PSO. The
results of the study were presented in Section III. Section IV
provides some discussions, limitations, and implications of
the study. Ultimately, Section V presents conclusions and
guidelines for future research.

II. METHODOLOGY
A. MATHEMATICAL MODELING
As a general modeling technique, compartmental models
are capable tools for the prediction of the equilibrium point
in complex systems over the course of time [26]. With
compartmental models, the studied population is divided into
compartments, and the order of the labels shows how the pop-
ulation moves and flows from one compartment to another
[27]. For predicting the number of infected, recovered, and
removed individuals due to infectious diseases, a number of
mathematical models have been introduced. Kermack and
McKendrick [28] developed a model, SIR, which stands
for Susceptible, Infected, and Recovered, which defined
the dynamics of the disease and predicted its progression.
Since the development of the SIR, many variations of
this basic model have been introduced like SIS [29] and
SIRV(Susceptible, Infectious, Recovered, Vaccinated) [30].
SEIR model is the basis of the model used in this study,
including an exposed period, named incubation period which
is the time interval when someone is infected and becomes
infected [26]. Despite the high forecasting accuracy of the
SEIR model [31] this model does not consider the role of
pathogens in infecting individuals. Moreover, there are no
blocks for analyzing hospitalized individuals in addition to

FIGURE 1. SEIR-PHD compartmental model.

TABLE 1. The states of the SEIR-PHD model.

TABLE 2. Parameters of the SEIR-PHD model.

those who have died from the disease. For this reason, the
compartmental model used in this study is an extension
of the SEIR model named SEIR-PHD where P, H, and D
represent the Pathogen, Hospitalized, and Deceased states
respectively. Figure 1, which is adapted from the model in
Mwalili et al. [31], represents the SEIR-PHD model and the
related parameters.

Table 1 and Table 2 respectively present the Parameters and
the states of the proposed model.

It is worth noting that the block P indicates the pathogen
block, which supposes that the disease can be transmitted
from surfaces and the virus can still be dangerous outside
of the living even though this type of transmission is not
very common [32]. The idea of considering a separate block
for the pathogen is the same as the study conducted by
Mwalili et al. [31] for simulating that a susceptible individual
can become infected by touching, contacting the surface,
or breathing the air containing the virus. In contrast with
what Péni and Szederkényi [5] proposed, in this study
an individual can get infected in two scenarios. In the
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first scenario, an individual is exposed to the virus by
having close contact with the infectious group, while in
the second scenario, pathogens are responsible for exposing
a susceptible individual. In the second scenario, contact
with pathogens, touching the same place, or breathing air
contaminated with pathogens can move the individual to
the exposed state. As a result of this separation, the virus
dynamics become more aligned with current intuition [33].
Additionally, this separation provides a way to set control
parameters based on the status of the virus and infectious
population in the system.

The reason for choosing this model is that this model
extends the SEIR model to include the addition of H , IS ,IA,
and P blocks, which can improve the accuracy of the model.
As a result of the mathematical model in this study, the ways
in which the disease spreads are greatly modeled. When the
infectious group is divided into two distinct groups, further
restrictions can be decided in society before the virus spreads,
and by adding a pathogen block, policymakers can determine
the extent of cleaning the environment of the virus based on
the dynamics of the virus in the environment. Moreover, the
hospitalized block can help to implement the need for care in
cases where patients require expensive or limited resources.
Eq. (1) to Eq. (8) represent the mathematical equations of the
proposed novel compartmental model. Where Eq. (1) shows
the transition from the susceptible group to the exposed group
based on two factors. In the first part, the effect of being
exposed to the pathogen environment is demonstrated with
the rate proportional to βν1P, while in the second part, the
effect of infected individuals on the spread of the virus is
shown with the rate βν2(IA+IS ). It is worth noting that ν1 and
ν2 are controlling parameters related to the virus and social
behavior.

Ṡ = −β1ν1PS − β2ν2 (IA + IS) S (1)

Ė = β1ν1PS + B2ν2 (IAIS) S − δAE − δSE (2)

İA = δAE − γAIA − δAS IA + δSAIS (3)

İS = δSE − δSAIS + δAS IA − γH IS − dS IS (4)

Ḣ = γH IS − γRH − dH (5)

Ṗ = ηAIA + ηS Is − dPP (6)

Ṙ = γRH + γAIA (7)

Ḋ = dH + dsIs (8)

Eq.(2) shows the changing rate of the exposed block
where the first and second factors show the incoming
susceptible individuals and the last factor represents the
outgoing susceptible individuals, of which there are two
types, asymptomatic and symptomatic individuals. The
changes in the Asymptomatic and symptomatic groups are
presented by Eq. (3) and Eq. (4) respectively. There is the
possibility that people in these groups can swap, which
means that their health status can change from moderate to
critical and this explains the flows between the symptomatic
and asymptomatic individuals presented in Figure 1. Eq. (5)
shows the group of individuals that are hospitalized due

to their critical conditions. The first part of the equation
shows the proportion of symptomatic individuals reaching
the hospital, whereas the second and third parts represent
the proportion of recovered and deceased patients leaving the
hospital. Eq. (7) represents individuals that have recovered
from the disease and come from either the hospital or
the asymptomatic groups. It is assumed in Eq. (6) that the
infectious groups, IS and IA produce pathogens with the
rates ηS and ηA respectively. A death rate was considered
for the virus since it has a limited lifetime when existing
outside the host, and this rate ranges between 4 hours and
6 days for surfaces like copper [34] and stainless steel
respectively [35]. Moreover, Eq. (8) represents the group
of individuals who did not survive the disease, with the
first part of the equation showing hospitalized patients that
die from the disease and the second part demonstrating the
mortality in the symptomatic individuals. If Eq. (6) is not
considered and the remaining equations are summed then
Eq. (9) can be obtained, which indicates the equilibrium
state, where Ṅ represents the changing rate of the individual
in the system. The main hypothesis behind the Eq. (9) is
the equality of human birth and death in the model. This
assumption is reasonable since only a limited time bound can
be considered in the compartmental model to smooth out the
chaotic behavior of a nonlinear system. In the short period,
these two rates can be approximated to zero compared to other
factors included in the system.

Ṅ = Ṡ + Ė + İA + İS + Ṙ+ Ḣ + Ḋ = 0 (9)

It is worth noting that in Eq. (5), natural death rate and the
natural birth rate are not considered. It can be inferred from
this system that limited resources in the hospital, both in
terms of special equipment and medical, significantly affect
the system dynamics. In other words, considering constant
factors for the transition of individuals between blocks is far
from reality. The hospitalized block has a specific role on
the individuals that die from the disease, thus it is expected
that in the case of sufficient resources (doctors and beds), the
dynamics of the system would be in a more controlled state.
It is expected that even if the number of patients surpasses
a specific threshold, the hospital should continue servicing
patients with its maximum service rate. In this case, the death
rate will rise among patients who require hospital treatment
but cannot get it. The hospital service rate can be modeled
with a simple function as demonstrated in Figure 2.

As it is clear from Figure 2 when the number of patients
is lower than a predefined maximum(H0), it serves all the
incoming symptomatic infectious, but when the number of
patients exceeds this value, the facility only serves a fixed
fraction of them. It is expected that the service level of
the hospital increases when the number of patients rises
but the upper bound limits the service level. However,
individuals in the IS group will have a high probability of
being hospitalized if the hospital can accept new patients
because their probability of death decreases. Therefore it
is likely that before the hospital goes to full capacity, they
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FIGURE 2. Hospital Service rate as a function of the number of patients in
the hospital.

enter the hospitalized block. It is reasonable to assume that
γH ≫ dS and if γH increases, dS decreases and vice-versa
because it shows that hospital services to patients with critical
conditions actually work and their status gradually improves.
It is assumed that dS increases gradually until reaching
a constant value, however, the hospitalization rate, on the
contrary, starts from a constant value and declines gradually
until it becomes zero. The expected plots for these two rates
are illustrated in Figure 3. Furthermore, the visualization of
these relaxations can be found in Figure 4.

For simplicity, an approximation of these two functions is
used (inverse of a linear function). Note that the fractures in
the plots can result in a singular behavior of the dynamics
of the system. The basic idea is to use a smooth function for
relaxing these plots. It is worth noting that functions like the
Sigmoid function and inverse tangent have higher accuracy,
and thus can better fit the desired function. However,
considering that the parameters of the function are in the
range of [0, 1], and a smooth function has a high order
derivative, it can be approximated by using their Taylor
approximation around zero. Additionally, it is considered
that terms with order more than the product of five state
blocks be zero. This results in Taylor approximation of up
to three term will be sufficient for our application which can
be properly modeled with the inverse of the linear function.
An approximation of these rates can be obtained in Eq. (10)
and Eq. (11).

γH (H ) ≈ γ̃H (H ) =
1

α2H + 1
γ ∗H

(10)

dS (H ) ≈ d̃S (H ) =

 −1

α1H + 1
d∗S

+ d∗S

 (11)

B. DISCRETIZATION
In this section, the objective function and the methods for
solving are explained in detail. To solve the proposed model,
discretization is used. This is the first step towards solving
the set of differential equations, in a way that is suitable for

FIGURE 3. Functionality of a. rate γH to number of patients in hospital b.
rate dS to number of patients in hospital.

numerical evaluation on the computer. The equation ḟ =
df
dt = g(t, x) can be written as Eq. (12):

ft+1t − f (t) ∼= 1t × g(x, t) (12)

Suppose that the time interval is 1 day, then Eq. (13) can be
obtained:

ft+1 − ft ∼= g(x, t) (13)

Eq. (14) to Eq. (20) are obtained by assuming that the number
of individuals in group M in time t is denoted by XM ,t and the
controlling parameter is time-dependent.

XS,i+1 = XS,i − β1v1,iXP,iXs,i

− β2v2,i
(
XIA,i + XIs,i

)
Xs,i (14)

XE,i+1 = XE,i + β1v1,iXP,iXs,i

+ β2v2,i
(
XIA,i + XIS ,i

)
Xs,i

− δAXE,i − δSXE,i (15)

XIA,i+1 = XIA,i + δAXE,i − γAXIA,i

− δASXIA,i − δSAXIS ,i (16)
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FIGURE 4. approximations of a. γH (H) function b. shows an
approximation of dS (H) function.

XIS ,i+1 = XIS ,i + δSXE,i − δSAXIS ,i + δASXIA,i

−

 1

α2XH ,i +
1

γ ∗H

XIS ,i

−

 −1

α1XH ,i +
1
d∗S

+ d∗S

XIS ,i (17)

XH ,i+1 = XH ,i +

 1

α2XH ,i +
1

γ ∗H

XIS ,i

− γRXH ,i − dXH ,i (18)

XP,i+1 = XP,i + νAXA,i

+ νSXS,i − dPXP,i (19)

XD,i+1 = XD,i + dXH ,i

+

 1

α1XH ,i +
1
d∗S

+ d∗S

XIS ,i (20)

C. CONVEX OPTIMIZATION
Optimization is one of the essential parts for characterizing
multi-criteria problems like COVID-19 [36]. In situations

where different goals are connected via a problem, opti-
mization techniques can be used to transform the problem
into an optimization problem with the cost function that
is parameterized with concerning goals. solving the trans-
formed problem results in finding weights that minimize the
cost function, each weight can be interpreted as a measure
of its goal importance [5]. Convex optimization is a special
class of mathematical optimization problems. Besides, its
generality for converting the optimization problem in this
format, it benefits by having fast algorithms like the Simplex
algorithm for solving this class of problems in polynomial
time [24]. One instance of an optimization problem that
can be easily converted to a convex problem is Geometric
Programming (GP). This transformation is done by using a
change of variables and a transformation of the objective and
constraint functions [24]. For defining this class properly,
two types of functions need to be defined first which are
demonstrated in Eq. (21) and Eq. (22):
Definition 1: A function f : Rn → R with dom(f ) = {x ∈

Rn : x > 0} define as:

f (x) = cxa11 x
a2
2 . . . xann (21)

such that c > 0 and ai ∈ R is called a monomial function
And the following sum i.e. the sum of the monomial function
is called a polynomial function.

f (x) =
K∑
i=1

cix
ai1
1 xai22 . . . xainn (22)

where ci > 0 for each i ∈ [1, 2, . . . ,K ] [37].
Now it is straightforward to define Geometric Programming
in its general form.
Definition 2 (Geometric Programming): Geometric Pro-

gramming is an optimization programming of the following
form:

minimize f0(x)

subject to fi(x) ≤ 1 i = 1, . . . ,m,

hi(x) = 1, i = 1, . . . , p (23)

where fi are posynomials and hj are monomials for i ∈
[1, . . . ,m], j ∈ [1, . . . , p], and x in the space {x ∈ Rn : x >

0} [37].
First, the primitive version of the optimization problem

will be illustrated then it will be modified to fit the
Geometric Programming conditions. The objective function
will minimize 1

v1
, 1
v2
, the total number of deaths and patients

with critical conditions i.e. IS + H + D. With the proper
determination of the weights, the objective function can be
described in Eq. (24).

ϕ =

N∑
i=1

ω1,i

v1,i
+

N∑
i=1

ω2,i

v2,i
+

N−1∑
i=1

ωd,i(XIS ,i + XH ,i + Xd,i)

(24)

The control parameters can be changed when the duration of
L is passed with respect to the last time it is modified. This is
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a reasonable assumption because to change these parameters,
the policymaker should decide by testing the state of the
society with current restriction parameters. this switch from
one policy to another is assumed to take at least L units of
time.

After that, the optimization problem is reformulated into a
convex problem by applying Geometric Programming (GP).
After reformulation, Eq. (25) to Eq. (31) can be obtained as
follows.

XS,i+1 = XS,i − β1v1,iXP,iXs,i
− β2v2,i

(
XIA,i + XIS ,i

)
XS,i (25)

XE,i+1 = (1− δA − δS )XE,i + β1v1,iXS,iXP,i

+ β2v2,iXS,i
(
XIA,i + XIS ,i

)
(26)

XIA,i+1 = (1− δAS − rA)XIA,i

+ δSAXIS ,i − δAXE,i (27)

XIS ,i+1 = (1− δSA − d∗S )XIS ,i + δSXE,i + δASXIA,i

+

 1

α1XH ,i +
1
d∗S

−
1

α2XH ,i +
1

γ ∗H

XIS ,i (28)

XH ,i+1 = (1− γR − d)XH ,i

+

 1

α2XH ,i +
1

γ ∗H

XIS ,i (29)

XP,i+1 = (1− dP)XP,i + νAXA,i + νSXS,i (30)

XD,i+1 = XD,i + dXH ,i + d∗SXIS ,i

−
XIS ,i

α1XH ,i +
1
d∗S

(31)

The linear coefficients of the equations are positive except
for the right side of Eq. (25) therefore that the equations can
be re-written in the GP form. The Eq. (25) can be left out
since XS is considered to be constant in every time interval
of length L that the policy changes. Moreover, since XS is
linear, if XS,0 is set equal to XS,K of every dynamic with the
optimum parameters in every time interval then a strict bound
would be obtained for the controlling parameters. If N is the
length of the whole period, then changing the controlling
parameters can occur every month (L = 1 month). For a
higher accuracy, consider L to be 2 weeks, since there is a
correlation between L and XS . It is worth noting that only
monomial equality and posynomial inequity are accepted in
geometric programming. By converting equality conditions
from Eq. (26) to Eq. (31), to inequity, and the hypothesis that
all the coefficients in the reminded equation are positive, the
desired GP form is achieved. It needs to be proved that these
changes will not affect the final result i.e. each equation takes
the equality in the optimal value or if one equation is holding
in inequity form, it is possible to reduce it further without
affecting the cost function. As it appears some coefficients
in these equations have to be approximated for fitting in the
proper GP form. Taylor approximation is used, because the
normalized value of each block is used, this approximation

gives good confidence about the actual function value. First,
the coefficient of XIS ,i in the Eq. (28) is approximated.

1

α1XH ,i +
1
d∗S

−
1

α2XH ,i +
1

γ ∗H

=

(α2 − α1)XH ,i +
1

γ ∗H
−

1
d∗S

(α1XH ,i +
1
d∗S
)(α2XH ,i +

1
γ ∗H

)

H⇒ (α1 = α2 = 1)

= (
1

γ ∗H
−

1
d∗S

)(XH ,i +
1
d∗S

)−1(XH ,i +
1

γ ∗H
)−1 (32)

now using Taylor approximation around zero gives Eq. (33).

1
1

γ ∗H
−

1
d∗S

d∗S γ ∗H + XH ,i

−(XH ,i +
1
d∗S
)(XH ,i +

1
γ ∗H

)

(XH ,i +
1
d∗S
)2(XH ,i +

1
γ ∗H

)2


=

1
1

γ ∗H
−

1
d∗S

d∗S γ ∗HXH ,i

(
1
d∗S
+

1
γ ∗H

)
(

1
d∗S γ ∗H

)2


=
(d∗S γ ∗H )

2

d∗S − γ ∗H
− XH ,i

d∗S + γ ∗H

d∗S γ ∗H
d∗S
∗r∗H
∗ d∗S γ ∗H

d∗S − γ ∗H

=
(d∗S γ ∗H )

2

d∗S − γ ∗H
− XH ,i(d∗S γ ∗H )

2 d
∗
S + γ ∗H

d∗S − γ ∗H
(33)

based on the expectation d∗S ≪ γ ∗H ≪ 1, the coefficient
related to the XH ,i is positive, rewriting equation Eq. (28) by
using this approximation, results in Eq.34.

XIS ,i+1 ≥

(
1− δSA − d∗S −

(d∗S γ ∗H )
2

γ ∗H − d
∗
S

)
XIS ,i + δSXE,i

+ δASXIA,i + (d∗S γ ∗H )
2 (d
∗
S + γ ∗H )

γ ∗H − d
∗
S
XH ,iXIS ,i (34)

Eq. (34) is in the proper form of Geometric Programming.
using same idea, for rewriting coefficient of the term XIS ,i in
the Eq. (31) results in Eq. (35).

1

XH ,i +
1
d∗S

≈ d∗S −
1

(XH ,i +
1
d∗S
)2

∣∣∣∣
XH ,i=0

× XH ,i

= d∗S − d
∗
S
2XH ,i

H⇒ XD,i+1 ≥ XD,i + dXH ,i + d∗S
2XH ,iXIS ,i (35)

using this procedure for reforming Eq. (29) does not work out
the problem, because the Taylor approximation of the fraction

1
XH ,i+α

results in a negative factor of XH ,i. for resolving this
issue, the constant approximation of state XH ,i is used i.e. for
each L units of time, the last value of ˜XH ,i is used for next
period. by considering this, the equation can be written as
illustrated in Eq. (36).

XH ,i+1 ≥ (1− γR − d)XH ,i +
1

(X̃H ,L +
1

γ ∗H
)
XIS ,i (36)
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by considering the above modification, the final optimization
problem is represented in Eq. (37).

minimize
N∑
i=1

ω1,i

v1,i
+

N∑
i=1

ω2,i

v2,i
+

N∑
i=1

ωd,i
(
xD,i + xH ,i + xIS ,i

)
s.t:

XE,i+1 ≥ (1− δA − δS)XE,i + β1v1,iXS,iXP,i

+ β2v2,iXS,i
(
XIA,i + XIS ,i

)
XIA,i+1 ≥ (1− δAS − rA)XIA,i + δSAXIS ,i + δAXE,i

XIS ,i+1 ≥

(
1− δSA − d∗S −

(
d∗S γ ∗H

)2
γ ∗H − d

∗
S

)
XIS ,i + δSXE,i

+ δASXIA,i +
(
d∗S γ ∗H

)2 (d∗S + γ ∗H

)
γ ∗H − d

∗
S
XH ,iXIS ,i

XH ,i+1 ≥ (1− γR − d)XH ,i +

 1

α2X̃H ,t0 +
1

γ ∗H

XIS ,i

XP,i+1 ≥ (1− dP)XP,i + νAXA,i + νSXS,i

XD,i+1 ≥ XD,i + dXH ,i + d∗2S XH ,iXIS ,i
XR,i+1 ≥ XR,i + γAXIA,i + γRXH ,i

XH ,i ≥ ϵX̃H
−→
0 ≤ X⃗ ≤

−→
1 (37)

Additional constraints are added to control the population
in the hospital block. worth noting, the constant factor ϵX̃H
represents an upper bound on the hospital capacity. The next
theorem shows that modifying the equation by converting the
equality to inequity constrain, doesn’t affect the final result,
and in the optimum value, all inequity holds as equality.
Theorem 1: Re-writing the equality constraints as inequity

in equation Eq. (15) to Eq. (20) doesn’t affect the final result
of the dynamic i.e. the optimum value holds when the equality
version of all inequity hold.

Proof: Consider X⃗∗ as a solution to the optimization
problem 37 which some of the inequalities strictly hold.
Additionally, this solution in the set of optimum solutions has
themaximum number of conditions that hold inequality form.
the theorem can be proved by contradiction.Worth noting that
if all the inequality holds in equality form in the X⃗∗ solution
then the theorem holds and there is nothing to prove, hence it
is considered that at least one of the conditions in the Eq.(20)
is held strictly. The X⃗∗ can be converted to a better or the
same solution(measuring the cost function) which has more
inequality conditions in the exact form which contradict our
hypotheses.

Note that all the coefficients in the constraints 37 are posi-
tive. now assume, for sake of simplicity first equation(XE,t∗ )
holds strictly for a specific time. If XE,t∗ is reduced to its
minimum value (condition holds inequality form) without
changing anything else, every other condition is proposed to
be held. By reducing the XE,t∗ only conditions with a timeline
greater than t∗ have a chance to not hold anymore. But, this

value is reduced and the fact that the conditions are increment
functions of the state parameters implies that all the altered
conditions still hold. Therefore, changing the form of the
equation will not affect the final state of system dynamics.
The new solution X⃗ ′ which differ with X⃗∗ in only one position
i.e. XE,t∗ has more conditions that hold in equality form than
X⃗∗, this contradict to the hypotheses. Hence, all the inequality
conditions must hold inequality form in the solution X⃗∗. □

D. PSO
The PSO algorithm, draws inspiration from natural phenom-
ena such as the flocking of birds and schooling of fish. This
bio-inspired optimization technique is employed to discover
the optimal solution for a given optimization problem [38].
In PSO, a population-based approach is adopted, wherein
a collective of particles inhabits a multi-dimensional search
space. Each particle within the swarm symbolizes a potential
solution to the optimization problem at hand. The algorithm
continuously updates the positions and velocities of these
particles in a coordinated manner, with the ultimate aim of
guiding them toward the most promising solution identified
thus far. In this section, we outline the key components and
steps of the PSO algorithm.

1) MATHEMATICAL FORMULATION
Let D be the dimensionality of the problem, and N be the
number of particles in the swarm. Each particle i can be
represented by its position vector Xi, and velocity vector Vi
which both have the size of D. The objective function f (Xi)
evaluates the quality of a particle’s position in the search
space. PSO aims to find the minimum (or maximum) of
this function. The position and velocity of each particle are
updated using Eq. (38):

V (t+1)
ij = ω · V (t)

ij + c1 · r1 · (Pbestij − X
(t)
ij )

+ c2 · r2 · (Gbestj − X
(t)
ij ) (38)

where:

V (t+1)
ij : velocity of particle i in dimension j at iteration t + 1,

ω: the inertia weight,

c1 and c2: acceleration coefficients,

r1 and r2: random values between 0 and 1,

Pbestij: personal best position of particle i in dimension j,

Gbestj: global best position in dimension j.

For updating the position of a particle, Eq. (39) is used:

X (t+1)
ij = X (t)

ij + V
(t+1)
ij (39)

The termination of the PSO algorithm is determined by
predefined stopping criteria, which may include reaching
a maximum number of iterations, attaining a specified
target fitness value, or satisfying a convergence threshold.
Implementation of the PSO algorithm allows for flexibility
in adjusting parameters, adopting strategies to update the
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global best position, managing constraints, and adapting
the inertia weight. The selection of these parameters and
strategies is contingent upon the nature of the problem under
consideration. The pseudo-code for the PSO algorithm is
provided below:

Algorithm 1 Particle Swarm Optimization (PSO)

1 Initialize particles’ positions and velocities randomly;
2 Initialize Pbest and Gbest with the best initial

positions;
3 while not termination condition met do
4 for each particle do
5 Evaluate fitness;
6 Update Pbest if current position is better;
7 Update Gbest if current position is better;
8 Update particle’s velocity using Eq. (38);
9 Update particle’s position using Eq. (39);

10 end
11 end
12 return Gbest;

III. FINDINGS AND RESULTS
In order to consider the different values of each parameter,
a specific range is used. For example, for the parameter,
ν, a mean(µ) and standard derivation(σ ) are computed, and
for each simulation, a uniform random ν ← [µ − σ, µ +

σ ] is computed. A large number of parameters are being
considered in the results within strange behaviors of the
system or a variety of bifurcations, however, investigating on
system response to each subspace of the parameters space is
out of the context of this work. Table 3 shows the mean and
standard derivation of each constant parameter in the system
dynamics.

The initial conditions, which represent the state of the
system at the beginning of the pandemic, are set to:

{S,E, IA, IS ,H ,R,D,P}

= {0.98, 1.e−5, 5.e−6, 2.e−6, 1.e−6, 1.e−8, 1.e−8, 0.2}
(40)

Displaying the final state of each block or the maximum
population of a state during the dynamic process can give
valuable insights into the dynamics of the system. For
example, information about the maximum number of people
in the hospital gives a meaningful idea of the possible death
count or at least the approximate curve of the death rate.
One of the best methods for observing the final state of the
system is to project the parameter space to a line, this can be
done by considering all except two parameters to be constant
and relating these two parameters with a linear function.
Figure 5 is obtained by calculating the final state of the system
when all the parameters except β1, β2 are extracted from
Table 3, and these two are related with the linear equation
β2 = 0.01β1.

TABLE 3. Parameters used in the SEIR-PHD model.

FIGURE 5. a. The maximum population in the states IS , H , and total value
of death caused by the disease b. The final susceptible population .

Besides the information about the final state of the blocks,
Figure 5 shows that around β2 ≤ 0.1 the disease-free state
is the stable equilibrium. Additionally, around β2 ≈ 0.1 a
bifurcation occurred, the stable point became unstable and
the system goes to another equilibrium. The discovery of
these bifurcations provides insight into dynamics behavior
in different parameter regimes. Figure 5 shows that the
disease-free equilibrium is stable when β2 ≤ 0.1. Figure 5b
represents the same results, the disease is completely
terminated from the system when β2 ≤ 0.1, in other words,
the hospital is never used when the β2 is less than 0.1. Around
β2 ≈ 0.12 another bifurcation occurred. The straight line
at the end of Figure 5b can be justified with the hypothesis
that the maximum amount of the hospital capacity is set to
0.01 of all the population, and this maximum is used when
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FIGURE 6. Dynamics of the a. S, E, IA, D, R and P population over time b.
IS and H blocks over time.

the β2 passed 0.12. Considering the case where no control
parameters are used for restricting the outbreak of the disease,
Figure 6 shows the progress of the dynamic.

As it appears in Figure 6a, the disease spreads very fast
in the system, and all the susceptible individuals become
infected within 20 days. In symptomatic, asymptomatic, and
hospitalized individuals, the curve peaks around 20 days, then
the hospitalized continues with maximum constant usage
for about 100 days, and the symptomatic and asymptomatic
states, with a high and moderate slope, respectively, both
reach zero within 120 days. This is reasonable, because
if the population goes up in the IS state, with a high
probability they go to the hospital, therefore with a very
short latency they reach their peaks. With the same argument
about the connection of IA and IS , it is possible to justify
the same behavior of these two curves. The slope of the
dead block increased around day 20. This change is related
to the percentage of the population in critical condition.
It shows that sudden usage of all resources in the hospital can
influence the total fatality of the system because the hospital
can only serve at a bounded rate and if the symptomatic
individual does not get medical service, the probability
of going to the dead block is high. For simulating the
system dynamic when the control parameters are considered,

FIGURE 7. Dynamics of the a. E, IS , IA, H, D and R population over time b.
S and P population over time c. two control parameters v1, v2 over time.

a lower bound is set to restrict continuous change of these
parameters, to be specific, control parameters are optimized
every 2 weeks based on the dynamics of the system. In time
t∗ the parameters are optimized with respect to bound
[t∗, t∗ + 4.L]. In the convex optimization method, the value
of L is set to one week because the Taylor approximation
begins to deviate from the actual function when considering
longer timeframes. Conversely, when employing the PSO
method, all the control parameters are predicted for the entire
period of consideration, which spans two years, in advance.
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Additionally, the cost for controlling the β1 is set to 0.05 the
cost for controlling the β2, because the restriction on the
people’s movement or quarantine overpasses the cost of
synthesizing a place. Figure 7 shows the dynamics of the
system when considering the control parameters for both
algorithms.

When applying the PSO method, it’s important to consider
the randomness involved in selecting the initial values for
each swarm, determining the maximum number of iterations,
and setting the number of particles. In this study, 100 swarms
are utilized, and the maximum number of iterations is capped
at 500. It’s worth noting that since this algorithm is heuristic,
there’s potential for achieving better results in terms of
controlling the spread by increasing the number of particles
or iterations. However, with the current hyperparameters, the
execution time for this algorithm is approximately 2 hours
on a device equipped with an Intel i7-6500U CPU running at
2.50GHz. In contrast, when the convex method is applied, the
execution time is reduced to around 5 minutes.

Given that these algorithms need to be applicable in
non-homogeneous systems like graph structures, computa-
tional time becomes a crucial resource. Therefore, increasing
the hyperparameters for the PSO algorithm may not always
be feasible.

In the convex optimization method, the disease is mod-
erately under control. To be more specific, the susceptible
population decreases graduallywith a low slope and stabilizes
at approximately 0.1. Conversely, when the PSO method is
applied, all susceptible individuals eventually get infected,
and it takes roughly 100 days for the disease to spread
completely and reach a stable point, whereas the convex
optimization method takes approximately 200 days to reach
a stable condition of around 0.1. This significant difference
in settling time has a notable impact on reducing the strain on
hospitals.

In both algorithms, attempts were made to control the
pathogen by setting a lower value for v1. However, despite
these efforts, the pathogen reached its highest value in both
algorithms. The crucial difference lies in the time it took
for the pathogen to reach this peak value. This discrepancy
suggests that the convex optimization method was more
successful in regulating the rate of infection, achieving a
slower increase in pathogen levels compared to the PSO
algorithm.

In Figure 7b, the number of symptomatic infections
increased in both cases, reaching a peak at approximately 0.2.
In contrast to the PSO method, in the convex optimization
method, the same peak value is attained with a gentle slope,
allowing the system to gradually adapt to changes. Worth
noting, that in the PSO algorithm, the discrete lines in the
Symptomatic infected category indicate that the algorithm
didn’t quite reach its optimal values. Specifically, there is a
sudden decline around the 90-day mark. Figure.7c represents
the change of the control parameters over time. In the first
stage of the outbreak, the lowest value (which means a
high restriction on both the pathogen and the people) was

considered for v1 in both algorithms. It is rational because
it is the only control tool that can affect the susceptible block
behavior, and if pathogens exist in the environment, there is a
possibility that the susceptible block will make contact with
the pathogen block and cause an outbreak in the system(in the
first stage the probability of infection is very low, therefore
it is not cost-efficient to quarantine hole system i.e. using
v2). As time passes, the importance of the v2 becomes clear.
This parameter directly affects the propagation of the virus,
unlike the pathogen which needs an infected individual to
start its spread. Hence, using a higher restriction on this
parameter is reasonable. In the convex optimization method
after the initial value, it decreases and reaches its minimum.
On the contrary, in the PSO algorithm, these control
parameters tend to fluctuate showing the randomness in this
algorithm.

IV. DISCUSSION, LIMITATION, AND IMPLICATIONS
According to the outcomes of the current study, control
parameters have a significant role in controlling the disease.
In other words, control parameters need to be determined
at the right time in order to avoid the overuse of hospital
resources and prevent death due to disease. Two parameters,
β1 and β2, that are particularly important to spreading
diseases, are controlled in this study with control parameters
ν1 and ν2. The results in both algorithms demonstrate
that these two control parameters are a function of time,
which is not surprising. Once the number of cases reaches
a high point, hospitals will be under pressure and there
will be an increase in the number of people who die in
hospitals due to lack of service. Since these parameters are
time-dependent, measures like distancing, quarantining, and
cleaning the environment can be implemented more strictly
when cases increase in numbers. Policymakers need time
to decide which policy needs to be implemented, therefore
a certain policy will be implemented for a specific period
of time before it is changed and this is close to reality.
Another worthwhile point is transforming the optimization
problem into the GP form. In this way, the optimization
problem is turned into a convex optimization problem that
can be solved in a polynomial time, unlike most optimization
problems which are solved in an exponential time and the
final solution is not necessarily optimum. Therefore by
transforming the problem into the convex optimization form,
the time period for the optimization problem can be extended.
This can help decision-makers reach an optimum solution
in a short amount of time. Also, by using discretization,
the time period can be reduced to the desired amount
which helps decision-makers by providing more accurate
predictions. Furthermore, the PSO algorithm as a reference
for heuristic methods, highlights the superiority of the convex
optimization approach in situations where time is a critical
resource.

The mathematical model in this study simulates the spread
of the disease by considering two critical points. First
dividing the infectious group into two distinctive groups is

VOLUME 12, 2024 2455



H. Barzegar et al.: Optimal Control for Economic Development During the Pandemic

helpful in deciding on further restrictions in society before the
virus is spread. Second by adding the pathogen block which
considers the dynamics of the virus in the environment and
helps policymakers in determining the extent of cleaning the
environment from the virus. Moreover, there is a constraint
on the maximum number of patients in the hospital. This
restriction can be seen in most countries when the disease
reaches its peak and the number of deaths rises since there
are not enough resources in the hospital to support the
patients. For this reason, two rates, γH and ds, which represent
the limitations in the hospital are defined as a function of
hospital capacity. Despite the presence of these limitations
in society, as the results show, the disease can be controlled.
The extensions of the SEIR model bring the model closer to
reality and make it more practical to use. In the real world,
people get infected in two ways, pathogen and infectious
individuals, which is not considered in the SEIR model.
Moreover, infected individuals get infected with different
levels of severity, some have symptoms and require more
attention while others do not show any symptoms. Some
proportion of the infected individuals are hospitalized and
they usually put pressure on the resources in the hospital.
These blocks represent the real world and are not included in
the basic SEIRmodel, hence by adding them decision-makers
can have an accurate presentation of reality.

Considering an upper bound limitation on hospital ser-
vices, in general, is an important part of analyzing the
spread of disease in society. On the other hand, considering
a constraint that will not allow the control parameters to
take their extreme values is due to the economic nature of
the problem. In this study, the main goal, controlling the
spread of the disease, is defined as an economic optimization
problem. According to the results, control parameters can
be considered as a function of time, and the virus is still
being controlled in society. This is different from the extreme
restriction methods implemented in reality. Apart from the
theoretical aspect, results show that the decision-makers
should be aware of the different parts of the society (different
blocks of the disease including the hospital, recovered, etc.)
dynamically and be able to change the restrictions in a short
amount of time therefore that the economical damages would
be minimized while the disease is being controlled.

Although this study met its objectives, there are some
limitations. In this study, some rates are considered to be a
function of the state of the system. However, with a deeper
look at the system, it could be seen that these rates are a
function of time and the blocks of the system. Moreover,
there is no bound for the Taylor approximation. To be
specific, by using Taylor’s approximation we obtained a
convex optimization form of the problem, however, the cost of
this approximation to the optimum solution didn’t measure.
Also, there was no exact value for some rates, hence the rates
ηA, and β1, were obtained by assuming a value for them.With
regards to the weights of the cost function, these weights were
considered to be constant while it is expected that the cost
function should be a function of time.

V. CONCLUSION
In this study, by extending the basic SEIR model with the
addition of P, H , IA, and IS blocks, the spread of the disease
is modeled with higher accuracy. Moreover, some rates that
are usually considered constant for convenience are assumed
to be a function of other states of the system. The rates
γH and ds, which represent the death rate of hospitalized
individuals and symptomatic individuals respectively, are
considered as a function of hospital facilities, and the details
for computing themwith respect to hospital facilities function
are also explained. At last, by using Taylor’s approximation,
an analytical function of these two rates is obtained. In this
study, the optimization problem, which minimizes the cost
of controlling the disease, helps in controlling the disease
with minimum cost and control on the people. At last, with
optimization techniques, the problem is transformed into a
convex optimization problem. This transformation was bene-
ficial in finding the optimum solution without computational
limitations. Heuristicmethods are time-consuming and do not
ensure that the solution is optimum. Thus, the turning point
in this model is the use of convex optimization and proving
a theorem that shows the convex form does not change the
optimum solution.

Based on the findings of this study, the following
propositions may be made for future developments. The
rates are a function of time and the state of the system,
therefore future studies can find more accurate functions for
finding the rates and also find ways to transform the problem
into the convex optimization form. In this study, Taylor’s
approximation was used to transform the problem into the
convex form, but this method didn’t specify the gap between
the solution and the optimum solution which was not found
in this study. Finding the bifurcations can be useful in the
decisions related to finding the control parameters. At some
values of the rates, the disease cannot be controlled and
by finding these bifurcations, the cost function used in the
mathematical equations can be changed in a way to prevent
entering these bifurcations that result in an overall high cost
to society. In other words, the cost function can be considered
a function of system rates.
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