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ABSTRACT Code smell indicates inadequacies in design and implementation choices. Code smells
harm software maintainability including effects on components’ bug proneness and code quality has been
demonstrated in previous studies. This study aims to investigate the importance of code smell metrics in
prediction models for detecting bug-prone code modules. For improvement of the bug prediction model,
in this study, smell-based metrics of code have been used. For the training of our model, we employed
14 different open-source projects from the PROMISE repository. Every project file consists of source code
as well as smell code metrics and was written in Java. We examined different evaluation metrics such as
F1_score, accuracy, precision, recall, the area under the receiver operating characteristic curve, and the area
under the precision-recall curve of the five methods within the version, within the project, and across the
projects. We classify the code components as buggy or non-buggy using Naïve Bayes, Random Forest (RF),
Support VectorMachine (SVM), Logistic Regression, and k-Nearest Neighbor classifiers. RF and SVMhave
given better results within the version as well as within the project.

INDEX TERMS Code smell, source code, smell-aware, bugs classification.

I. INTRODUCTION
The software system has an essential role in our daily life.
Software systems are used to achieve almost all daily require-
ments. The software system is widely used for different
tasks in this digital world, the world is powered by software.
Human beings use software systems for economics, trans-
port, medicare, communication, knowledge, combat, power
plants, or even for the entertainment of humans. Since human
beings depend primarily on software, software applications’
accurate functionality is vital, and as far as possible it should
be bug free. A bug in software is a flaw or malfunction in a
software code that causes incorrect or unwanted results [1].
Software defects are called bugs in a software development
process. It is unanticipated deeds, and actions figured out
by the quality control engineers in application testing and
are preserved as software bugs. Bugs have high effects on
software quality [2]. The information related to bugs is kept
in a bug report [2], [3]. When the software bug reports are
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generated, the reports are returned to the software develop-
ment team to fix the identified bugs. This assignment and
transfer procedure is term as bug triaging [4], [5]. The process
of bug fixing is exceptionally steady and time-consuming.
It is required to detect bugs automatically through automatic
bugs detection that is binary classification. The code may
belong to the buggy or non-buggy classes in binary classifi-
cation. It is technically conceivable to create an application
without bugs, however, this is not the case in practice [6].
Varshneya [6], proposed that making an application without
bugs is impossible because complete code coverage is not a
criterion for bug detection unless that software is a life-critical
application. Even though that will be impossible to make the
application entirely without bugs, software engineers strive
to release applications with the fewest possible bugs. Hence,
software testing must be an obligatory portion of the software
development life cycle (SDLC).

Predicting software bugs is essential in software devel-
opment because predicting buggy modules before program
release increases overall software quality and user satisfac-
tion and further improve the whole software performance [7].
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Furthermore, software adaptation to various surroundings is
improved early by predicting software bugs and optimizing
resource utilization. Several techniques are proposed to deal
with software bug prediction problems. For the prediction of
software bugs, machine learning (ML) techniques are well
documented [1], [2], [3], [4], [5], [6], [7]. They are widely
used to predict buggy components based on historical data,
essential metrics, and other software computing techniques.
This research paper uses five supervised machine learning
classifiers to evaluateML abilities in software bug prediction.

The primary goal of this investigation is to create a bug
prediction model by using code smells as a candidate metric
[1]. The bug prediction model proposed in this study is smell
aware, i.e., to categorize the code into two classes: buggy
class and non-buggy class based on source code and smell
code metrics. On the contrary, the smell-aware prediction can
decrease the debugging period by localizing and refactoring
the smelly files triggering the failure [8]. To be smell-aware,
we added an intensity index to the dataset. In this study, both
source code and smell code metrics are used to train a bug
prediction model. We used Logistic Regression (LR), Naïve
Bayesian (NB), Random Forest (RF), and Support Vector
Machine (SVM) algorithms as our selected algorithms to
train the bug prediction models. Furthermore, in this study,
we compare the efficiency of the NB classifier, SVM clas-
sifier, LR classifier, and RF classifier. The comparison was
made based on specific measures such as accuracy, precision,
F1 score, recall, and ROC curves.

A. PROBLEM STATEMENT
Code smell often indicates a more severe problem in the
software system. It arises when the software engineer does
not follow the design principles, for example, encapsulation,
modularity, abstraction, hierarchy (top down and bottom-up
strategy), modifiability, cohesion, and coupling. Code smell
lowers code quality and makes it difficult to understand and
sustain [8]. Code smell exposes design flaws and creates a
more challenging software system to understand, maintain,
and improve [9]. For this purpose, we want to detect and
classify the bugs based on both smells-based and sourced
code-based metrics, which is an active research area in soft-
ware engineering. Some studies on bug classification have
been published [10], [11], [12], [13] however, the majority of
them are limited to the source code metrics only [14], [15],
[16] which lowers the predictive ability of the preceding bug
classification model. This study develops a model, which is
based on both source and smell code metrics. To be smell
aware we added the intensity index. The intensity index esti-
mates the severity of code smell that aids in bug classification
and showcases the complexity of the code. To develop a
smell aware bug prediction model, the intensity index plays
an important role in deciding the severity of design issues
influencing a code module. Most of the published literature
[10], [13], [16] did not use intensity index as a feature for
bug classification, our essential contribution to the dataset

is the addition of an intensity index for smell-aware bug
classification.

In the published literature majority of the studies use
LR [1], [17], NB [13], [16], k-NN [18], and DTrees [16] as
bug classification models, however, the effectiveness of SVM
was not explored in the published literature. Furthermore, the
preceding models were trained on dataset that were based
only on source code metrics.

B. AUTOMATED BUG PREDICTION
The first bug prediction model is designed by Taba et al. [19].
They specifically established three measures, which they
coined as antipattern metrics. These metrics are described in
the context of smells and might be used to assess the average
amount of antipatterns, complications, and repetition length
using as antipattern measurements in addition to structural
metrics [20]. A bug predictionmodel will now take advantage
of antipattern measures to develop a smell aware bug predic-
tion model. Furthermore, structural metrics were developed
and tested with structural metrics, demonstrating that when
the design faults are considered, bug prediction models can
improve by up to 12.5 %.

We assumed that in a bug prediction model, the severity of
a design issue disrupts a source code segment. We employed
the intensity index, which was determined by Fontana et al.
[21], to prove this conjecture [21]. To create a smell aware bug
prediction model, we consider the design flaws and its sever-
ity that affect a code module. More precisely, we assessed
the severity index’s predictive power by combining it with
a bug prediction model based on structural quality measures
[22] and comparing the accuracy with that obtained by the
standard model on fourteen large open-source Java projects.
The benefits of adding the severity index to these models
to other structural metrics, and the ones used to calculate
the intensity were also analyzed. According to the findings,
using the intensity index to predict the bug improves the clas-
sification results. The consequences exposed that based on
architectural quality criteria (AQC) using the severity index
as a predictor of buggy modules improves the correctness
of a bug prediction model. Furthermore, the data show that
the severity index is more significant than every other quality
metric in predicting the bug-proneness of the smelly classes.
The findings show that using the severity index as a reliable
indicator of buggy modules improves the effectiveness of
structurally based baseline bug prediction models. Still, they
emphasize the significance of the intensity of code smells in
the process metrics-based prediction approaches.

C. OBJECTIVE OF THE STUDY
• The first objective of this research work is to leverage

code smell metrics as the feature metrics for the develop-
ment of a bug prediction model specifically called smell
aware bug predictionmodel. Therefore, themodel in this
study is developed using various sources of information,
specifically the product and process metrics.
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• The second main objective of the study is to describe the
real contribution made by the intensity index to the bug
classification. The intensity index estimates the severity
of code smell that aids in bugs classification and shows
the complexity of the codes. To develop a model for bug
classification, the intensity index plays an important role
in deciding the severity of design issues influencing a
module. The experiments conducted in this study aims to
see how vital the intensity index is in prediction models
for detecting bug-prone code modules [20].

• The third objective of the study is to develop a smell
aware bugs prediction model by highlighting and eval-
uating the selected models based on the modified data
set based on smell-based metrics such as intensity index
and amongst them specify the best model. Therefore,
the smell-aware bug classification model was built using
candidate classifiers such as NB, RF, SVM, k-NN, and
LR classifiers. For this objective, this study examines
different evaluation metrics of the fivemodels within the
version, within the project, and across the projects.

II. BACKGROUND AND LITERATURE REVIEW
A. CODE SMELL
The term ‘Code Smell’ was originally coined by Fowler
in his refactoring book. Code smells are a metaphor for
defining patterns, commonly linked with poor design and
bad programming practices [23]. Code smell often indicates
a more severe problem in the system. It arises when the
software engineer does not follow the design principles, for
example, encapsulation, modularity, abstraction, hierarchy
(top down and bottom-up strategy), modifiability, cohesion,
and coupling. Even though the developers know the design
principles, the developers often violate them because soft-
ware engineers do not have experience, the pressure of a
deadline, and heavy competition between competitors in the
marketplace. In the real world, software systems regress
daily to meet new requirements or correct bugs discovered.
The pressure to fulfill tight deadlines makes it difficult for
developers to manage the complexity of such modifications
effectively. Indeed, development operations are carried out
frequently in an undisciplined manner, resulting in eroding
the system’s initial design by presenting technical debts [24].
Software aging is a common term for this phenomenon [25].
This phenomenon was measured in terms of entropy by some
researchers. Fowler et al. [26] defined this phenomenon as
‘‘Bad code smell’’ (shortened as ‘‘smells of code’’ or simple
‘‘smell’’) as ‘‘signs of existence of the bad design or choices
of implementation applied in a software application develop-
ment’’.

Smell means developers/designers do not appropriately
design the software. Code smells have different kinds, such
as long methods, complex classes, message chains, and many
more, which are explained in the subsequent sections. These
are just a few instances of code smells that might harm a soft-
ware system. In addition to this approach for automatically

detecting code smells in source code [27], the community of
researchers struggled to understand code smell and its adverse
effects on the non-functional characteristics of source code.
We can learn when and why code smells take shape, how they
develop and persist in software programs, and to what extent
code smells apply to software developers. Several studies
[19], [20], [21] have also reported that code smells can have
adverse effects on software maintainability and understand-
ability. Khomh et al. [28] and Palomba et al. [29] recently
recognized that classes with design flaws are more likely to
compromise future bugs. Moreover, this research revealed
the hidden, and underhanded impact of code smells on bug
prediction. The academic community has just scratched the
surface of these observations.

B. MOTIVATION AND NOVELTY
In real-life, software applications frequently change to be
adapted to novel requirements or as a result of bug fixes.
The demand to fulfill tight deadlines makes it difficult for
programmers to effectively deal with the complexities of such
modifications. Indeed, development processes are carried out
in an undisciplined manner, resulting in eroding the system’s
preliminary design by introducing technical debts [24]. It is
experimentally proven that code smells cause code to be
less understandable. The empirical evidence shows that code
smell has been exposed to hamper code understandability
[30], raise modification [28], and proneness of error [31],
and make code less maintainable [32]. Code smell impacts
normal software development tasks such as code inspection,
refactoring, and maintenance [33]. Some researchers [15],
[20], [21] have termed this issue as code smell.

With code smell, the system may work, but it might slow
down the entire system and can produce future bugs due to
bad design and smell. When the bugs grow, the system will
get an error and give an unwanted result. Code smells are
signs to identify poor designs that result in having code with a
smaller amount of maintainability. There is huge possibility
that something may be assumed in the source code without
following the actual design pattern when we have more signs
of bad code smells in the source code. Therefore, we want
to develop a smell-aware bug prediction. Most of the authors
did bug classification without smell based metrices i.e., some
of them did bug classification based on priority and some of
them did bug classification based on severity and some others
did it using different methods and approaches. In this study,
we develop a smell-aware bug classification using different
supervised ML classifiers.

C. LITERATURE REVIEW
One of the hottest current research fields in software
engineering is bug prediction. The academic community
has created a variety of prediction methods. The major
approaches to software bug prediction are based on classifica-
tion. It was thought that the software’s complexity might lead
to defects. To highlight the complexity of software, Akiyama
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[34] suggested a basic model based on LOC. It was too
simplistic to use LOC as a bug prediction metric. In 1976,
MaCabe proposed cyclamate complexity (CC) metrics for
bug prediction [35]. At that time, Halstead and CC [36]
were outstanding measurements; unfortunately, they suffer
from severe flaws. Khoshgoftaar and Munson et al. [37]
suggested amore accurate categorizationmodel. In the 2000s,
process metrics prediction models were introduced as the
use of version control systems expanded. The bug prediction
model created in the 2000s had several disadvantages. One
shortcoming of this model is that it cannot predict defects
when a source code file is modified. To solve this issue, the
Just in Time (JIT) model is proposed to predict bugs. Another
disadvantage was anticipation of bugs for new projects or
projects with limited historical data. As a solution to this
constraint, cross-defect prediction methods were developed.
This approach demonstrates that when cross-company data
increases the likelihood the percentage of false positives also
increases.

Pan et al. [14] proposed 13 program-slicing metrics for
bug classification in the C programming language; these
metrics use program slice information to count program size,
coupling, sophistication, and cohesion. Program slicing met-
rics have measurements for program behavior in contrast to
standard code metrics that focus on statements of code or
structure of code. The program slicing techniques [38], [39]
investigate the behavior of source code by looking at the flow
and control dependencies between statements. Some metrics
used in program slicing lists as sliceCount, verticesCount,
edgesCount, sliceVerticesSum, globalInput, lackOfCohesion
directFanIn, and edgesToVerticesRatio. Program-slicingmet-
rics measurements have an overall accuracy of 82.6 percent
for the Apache HTTP project and 92 percent for the Latex2rtf
project at the file level, respectively. One of the significant
drawbacks of program-slicing metrics metrics is that they
can only use them to generate preprogram-slicing data for
large projects. Regarding bug classification, the data imply
that program-slicing metrics measurements are at least as
effective as UC metrics.

Bug fixing is a time-consuming process. The bugs must
be grouped into several categories to make this procedure
easier [10]. Binary categorization is one of the most funda-
mental software bug classifications, wherein a software code
is labeled either as a buggy or clean code. To identify software
codes as buggy or non-buggy, the proposed approaches use
machine learning algorithms, discriminative words, and a
fuzzy similarity metric with a user-defined threshold value.
The researcher applied various techniques with dissimilar
parameters over the Kaggle dataset. SLC classifiers outper-
form other classifiers in all aspects.

At the primary stage of app development, the software bug
prediction model advances the essential parts, for example,
reliability, software quality, and efficiency, and reduces the
development cost [16]. Bugs constitute a crucial barrier to
system consistency and efficiency in most software systems,

which become increasingly vast and sophisticated programs.
The classifiers, LR, NB, and Decision Tree are used to con-
struct a model to predict the occurrence of software bugs
based on the historical data using four supervised machine
learning algorithms. Among the many software metrics pre-
sented are Metrics of Dimension, Metrics of Complexity,
Metrics of Object-Oriented, andMetrics of Android-oriented.
Dimensional metrics make available quantitative metrics
linked with software sizes like code size and modularity [16].
The number of Byte-code Instructions (NBI), Number of
Classes (NOC), Number of Methods (NOM), and Instruc-
tions perMethod (IPM) are the metrics used in this category’s
analysis. They gathered information from projects available
on the GitHub platform. The accuracy of distinct classifier
models is lower. Across multiple samples, the models are
not tested. As a result, taking random samples is likely to
get lower accuracy. They utilized four algorithms, with the
random forest providing the best results.

At the primary stage of app development, the software bug
prediction model advances the essential parts, for example,
reliability, software quality, and efficiency, and reduces the
development cost [16]. Bugs constitute a crucial barrier to
system consistency and efficiency in most software systems,
which have become increasingly vast and sophisticated pro-
grams. The classifiers LR, NB, and Decision Tree are used to
construct a model to predict the occurrence of software bugs
based on the historical data using four supervised machine
learning algorithms. Among the many software metrics pre-
sented are Metrics of Dimension, Metrics of Complexity,
Metrics of Object-Oriented, andMetrics of Android-oriented.
Dimensional metrics make available quantitative metrics
linked with software sizes like code size and modularity [16].
Several Byte-code Instructions (NBI), Number of Classes
(NOC), Number of Methods (NOM), and Instructions per
Method (IPM) are the metrics used in this category’s analysis.
They gathered information from projects available on the
GitHub platform. The accuracy of distinct classifier models
is lower. Across multiple samples, the models are not tested.
As a result, taking random samples is likely to get lower
accuracy. They utilized four algorithms, with the random
forest providing the best results.

Classes involving smells are revised more commonly than
any other classes, according to Khomh et al. [40]. According
to Olbrich et al. [41], Smelly-code components need more
attention and have different alteration behavior. Smells can
be regularly detected using automated technologies. Smells
can also be identified and analyzed in massive code bases
using tools. As a result, a diversity of closed-source and open-
source smell detection technologies have been established.
Even though there are various tools available nowadays,
each tool captures only a subset of smells. No tool is
pre-programmed to do identification of entirely smells [42].
The smells detected by the tools have a slight overlap. No sin-
gle tool can detect all of the smells we investigated. It’s
impossible to tell which detection method is optimal for
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real-world systems. Hall et al. [42] studied the carry out of
5 smells on the number of faults in three systems, and that
the only conclusion that was steady transversely entirely three
systems would be that Switch Statements had no bearing on
problems from at all of the systems.

Khomh et al. [28] also discovered that classes with design
flaws (‘‘antipatterns’’) are much more likely to include bugs
in the future. Though this research displayed the efficacy
of code smells in bug detection, the discoveries have still
to be incorporated into bug prediction models. The research
authors, Palomba et al. [22], evaluated the involvement of
a metric of the severity of code smells by adding it to
current bug prediction model and comparing the findings
of the novel model to the baseline model. In this paper,
ML classification methods predicted two types of bugs:
buggy and non-buggy. Multilayer Perceptron, ADTree, Naïve
Bayes (NB), LR algorithm, Decision Table Majority, and
Simple Logical were some of the classifiers they investi-
gated. They employed the intensity index, which is identified
by Fontana et al. [21]. The index is calculated by JCodeOdor,
a code smell detector that uses detection techniques applied
to metrics. JCodeOdor produces five expressive values to
be used per threshold values: VERY-LOW, LOW, MEAN,
HIGH, and VERY-HIGH. In this paper, the author added an
intensity index with structural metrics of the source code. The
intensity index’s contributions to bug estimation techniques
are based on process metrics. In bug prediction models built
on product metrics, process metrics, or a grouping of both,
the intensity index assists in distinguishing bug-prone code
components influenced by code smells.

Reference [23] defines technical debt as a circumstance
where software engineers accept giving up one dimension
of a software product (namely, quality) to maximize another
(i.e., applying a group of novel attributes before a time limit).
Even if this sacrifice brings immediate rewards, the debt must
eventually be paid off. When there is too much technical
debt, it slows down development and makes code more dif-
ficult to maintain. One type of technical debt is code smells.
In this paper, Ubayawardana and Karunaratn [1] used several
metrics of source code and metrics of code smell-based to
construct a bug prediction model. They trained the model on
different versions of 13 different Java programming language
open-source projects utilizing NB, LR classifier, and RF
approach as viable techniques. They demonstrated that when
paired with source code metrics, smelly code metrics can
pointedly advance the accuracy of the bug prediction model.
The RF algorithm-based model outperformed compared to
other algorithms in terms of precision and accuracy within
a version, within a project, and across the projects. They
employed two metrics for bug prediction, one for code and
the other for the process. Process metrics gather informa-
tion from VCSs like GitHub and issue-tracking systems like
Bugzilla, whereas code metrics are obtained from source
code. To improve traditional bug prediction methods, they
incorporated smell-based measures.

III. PROPOSED METHODOLOGY
The research community has presented many bugs prediction
[1], [2], [3], [4] and classification [5], [6] models based on
various indicators to recognize more error-prone modules in
software applications. Few of them [7] have enhanced accu-
racy and evaluation metrics as compared to others. However,
only a few authors [8] did bug classification but their model
is not smell-aware. This study used different approaches to
do smell-aware bug classification through ML algorithms.
Furthermore, we will do the result analysis of the algorithms
with each other and compare their accuracy using dissimilar
source code and smell-based metrics.

We propose five ML models: LR, RF, SVM, NB, and
k-NN, to detect and classify smell-aware bugs. Our objec-
tive in these proposed models is to achieve high accuracy.
Multiple stages have been conducted to address the chal-
lenges in Machine Learning, resulting in significant success
in achieving the highest possible accuracy for smell-aware
bug classification. However, we aim to investigate the reasons
behind the lower accuracy of the ML models and compare
the results and performance of LR, SVM, RF, k-NN, and
NB. Consequently, we will analyze which machine learning
approach is best for smell-aware bug detection and classifi-
cation.

For our study, we proceeded with the dataset from
Jureczko et al. [43], which is accessible from the PROMISE
repository [44]. This dataset comprises a rich collection of
44 releases from 14 projects, each with 20 code metrics.
Additionally, the occurrence of bugs in each release is readily
available. It is worth noting that the dataset includes systems
of various sizes and scopes, allowing us to enhance the valid-
ity of our investigation [45]. Furthermore, we considered the
findings of Mende et al. [46], who discovered that models
trained on limited datasets can yield unreliable performance
estimations.

In this study, we utilize source code metrics to develop
the first smell-aware bug prediction model. To train our
initial model, we incorporate various source code metrics
discussed in Section II, which is the literature review. The
primary objective of this study is to correlate the code smell
metrics proposed by [19] and [22]. By associating these
metrics, we aim to enhance the predictive power of our
improved smell-aware bug prediction model. For bug pre-
diction, we employ five classification models: RF classifier,
LR classifier, SVM classifier, NB classifier, and k-NN clas-
sifier. Through an extensive evaluation, we demonstrate the
effectiveness of the metrics proposed by [19] and [22] in
enhancing the predictive power of our developed model.

The proposed methodology for our models consists of
several stages, as depicted in Figure 1. The process begins
with the input of the dataset, which is then processed by
the proposed machine learning techniques. These techniques
analyze the dataset and generate output by classifying the
code as either buggy or non-buggy. Once the classification is
complete, the next stage involves evaluating the performance
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FIGURE 1. Proposed model methodology.

of the proposed models. This evaluation includes comparing
the results of our models with those of other existing models.
By conducting this comparison, we can assess the effective-
ness and efficiency of our proposed models in bug detection
and classification. In summary, the proposed methodology
involves inputting the dataset, applying machine learning
techniques to classify the code, and subsequently evaluating
and comparing the performance of our models with other
approaches.

A. INPUT
The first step in our methodology is the input stage, where
we gather data from different open-source projects containing
bugs. These projects are obtained from the PROMISE bug
repository and serve as the training data for our model. The
details of the software projects dataset used in this study can
be found in 3.3. A comprehensive description of the dataset is
provided, including specific information about each project.
For further reference, please consult Table 1, which presents
the specific details of the dataset used in our study.

B. PROPOSED MACHINE LEARNING TECHNIQUES
In this study, we developed a smell-aware bug prediction
model using various machine learning approaches. Our cho-
sen learning style is supervised learning, which means we
focus on algorithms that support this type of learning. The
prediction outputs of our model are classified into two types:
classification and regression. Classification involves linking
input variables to discrete output values, while regression

predictive analysis maps input factors to continuous output
variables. In the case of our bug prediction model, the output
type is binary, meaning we categorize a source code segment
as either buggy or non-buggy. Consequently, we will only
explore methods that support binary classification, as this
paper specifically focuses on the binary classification of bugs.
For our investigation, we selected five commonly used clas-
sifiers in bug prediction research: LR classifier, RF classifier,
SVM classifier, k-NN, and NB classifier. These classifiers
will be utilized in our study to develop and evaluate the
performance of the smell-aware bug prediction model.

1) LOGISTIC REGRESSION
The LR (Logistic Regression) algorithm is widely used
in data mining, particularly for binary classification tasks.
It is a statistical and data mining method that is commonly
employed by statisticians and academic researchers to ana-
lyze and classify binary and proportional response datasets.
Logistic regression is known for its ability to model the
relationship between a set of input variables and a binary
outcome. Researchers in various fields, such as statistics and
data mining, have extensively utilized the LR algorithm to
analyze and classify binary data. This technique has proven
to be effective in a wide range of applications and is often
chosen as a go-to method for binary classification tasks. Stud-
ies referenced as [47] and [48] provide further insights into
the usage and application of logistic regression in statistical
analysis and binary classification.
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FIGURE 2. Pseudocode for logistic regression.

LR classifier has several key advantages, including the
ability to prepare probabilities and can be extended to handle
multi-class classification issues [49], [50]. Another advantage
is that most LR model analysis methods are based on the
same principles as linear regression [51]. The LR algorithm
is a widely used supervised ML classification technique.
It works on categorical dependent variables, yielding two
discrete variables (0 or 1). As a cost function, the sigmoid
function is used. The sigmoid function converts a predicted
actual value into a probability value (0-(1).

Logistic Sigmoid function:

P (x) =
1

1 + e(−x)
(1)

P(x) is a probability prediction function with a value between
0 and 1, x is the probability function’s input (the algorithm’s
prediction value), and e is Euler’s number, which has a value
of about 2.71828 as indicated in equation 1.

To predict bugs, a logistic regression (LR) machine learn-
ing model is utilized. Initially, the LR model is trained using
data from fourteen open-source projects. Subsequently, the
model is evaluated with test data to determine its behavior and
achieve the highest possible accuracy. The LR model aims
to classify the presence or absence of bugs in an application,
assigning a category of 1 for true (buggy) and 0 for false (non-
buggy). The pseudocode in Figure 2, describes the Logistic
Regression which is used to train and test the bug prediction
model.

2) THE RANDOM FOREST ALGORITHM
Random forest is an ensembled learning technique that is
encircled of n collections of independent decision trees [49].
Traditional machine learning techniques typically result in
low classification accuracy and are prone to overfitting.Many
people study the algorithm for merging classifiers to enhance
accuracy. Many researchers begin their research to improve
classification accuracy by merging classifiers. Random For-
est is an innovative technique and a new combinational
algorithm that is coupled with a succession of tree classifiers,

where every tree cast a unit vote for the further most com-
mon class which means voting by the majority, and then the
findings are merged to achieve the final sorted result [52].
Random Forest has a lot of interesting characters. RF has
never been over fitted, has good classification accuracy, and is
immune to outliers and noise [52]. Random Forest is widely
used for classification and prediction, as well as regression
and our main purpose is to use the RF algorithm for binary
classification of bugs classification. For classification, the RF
algorithm finding is based on the class’s mode. In comparison
to typical algorithms, Random Forest has several advantages
over traditional algorithms.

As a result, Random Forest can be used in a variety
of situations. For classification in the terminal leaf nodes
or decision nodes when constructing a prediction, the RF
algorithm uses multiple trees to calculate the majority votes.
Decision trees are essentially tree-like structures; the top node
is called the root of the tree, which recursively split at the
decision node series from the root until the decision node is
reached [53]. The decision tree algorithm divides the dataset
into smaller subsets using a top-down, ‘‘greedy,’’ methodol-
ogy. Entropy is calculated to determinewhich attribute to split
on at each node. A tree-like learning method has the benefit
of permitting the training of models on large datasets and
moreover on both quantitative and qualitative input variables.
Furthermore, tree-basedmodelsmay be resistant to redundant
variables or variables with significant correlations that could
cause overfitting in other learning algorithms [53]. Bagging is
the process of randomly selecting samples with replacement,
and it produces a new tree for training. The variance will be
reduced and a smoother decision boundary will be created by
averaging the findings from the ‘n’ number of trees [49]. For
example, while using the random forest for smell-aware bug
classification, every tree will give an estimation of the class
label likelihood that it belongs to a particular class (buggy and
clean code).

The likelihood will then be averaged over the ‘n’ trees,
and the tree with the highest likelihood will produce the esti-
mated class label (Figure 3) and the RF algorithm produces
the buggy instance of the code. To decrease the variance
further in the decision boundary the tree should be entirely
uncorrelated. The implementation of the RF algorithm in
Figure 4 includes the pseudocode for RF formation. As well
in Figure 5 include the pseudocode for RF prediction.

3) SUPPORT VECTOR MACHINE
The newest supervisedmachine learning technique is Support
Vector Machine [54]. Reference [55] presents an excellent
overview of SVMs, and [56] is a more recent book on SVM.
As a result, the SVM classifier is a new way to classify and
predict data. Vapnik and Cortes [57] developed this highly
popular and powerful classification system. SVMs are identi-
fied as maximummargin classifiers so the SVMs find the best
segregating hyperplane between two classes (see Fig. 5). So,
our problem is also binary classification. The PROMISE bug
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FIGURE 3. ADTrees ensemble technique for bug classification in RF.

FIGURE 4. Pseudocode for random forest formation.

repository dataset is used for bug detection. We will simply
cover the method’s basic principle in the context of classi-
fication using supervised learning techniques. Here, we will
merely go over themethod’s fundamental concept concerning
classification using supervised learning approaches. To know
the nature of the SVM classifier, one needs to comprehend
four main ideas: separating hyperplane, maximum-margin
hyperplane, soft margin, and kernel function [58]. When we
have a large-scale dataset, it doesn’t perform as well because
the training time is longer. SVM analysis is divided into three
phases:(i) feature selection, (ii) classifier training and testing,
and (iii) performance evaluation. It should be noted that these
stages are available in most machine-learning approaches
and are not exclusive to SVM. For both linear and nonlinear
datasets SVM works well. The SVM classifier performs well
when the dataset has a huge number of attributes.

FIGURE 5. Random forest prediction pseudocode.

SVM works on the fundamental rule of ‘‘margin’’, in a
nutshell. A distribution between 2 data labels that exist on
either side of the hyperplane is built by a hyperplane. The
aim is to increase the margins so building enough probable
gaps amongst the instances and segregating the hyperplane
on both sides of it [59].

Figure 6 segregates dots from triangles, the solid line
demonstrates the hyperplane, and the dotted lines running
parallel to the solid line demonstrate how far the decision
hyperplane can be moved without causing misclassification.

(W.X + b = 0) is a math expression that is a delegation
of separating hyperplanes Where, W = {w1, w2, wn}, sym-
bolized as the weight vector, ‘n’: number of features; and ‘b’
stands for a scalar (also referred to as a bias).
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FIGURE 6. Support vectors.

FIGURE 7. Pseudocode for the SVM classifier.

Linearly detachable data: In the condition of linearly
detachable data there occurs a pair (W, b) such that.
(i) [W.Xi + b ≥ 1] for yi = 1(Label: class 1)
(ii) [W.Xi + b ≤ -1] for yi = - 1(Label: class - 1)
(iii) MMH (maximum margin hyperplane) can again 28 be

written as the decision edge [60], [61].

d
(
XT

)
=

∑l

i=1
yiαiXiXT + b0 (2)

Representations:
(a) yi: Xi support Vector class label
(b) XT is a test tuple
(c) b0 and αi: numeric parameters
(d) l: number of support vectors [62].

For the SVM classifier in this study, the basic steps are
specified in figure 7.

4) NAÏVE BAYES
The Naïve Bayes classification algorithm uses the Bayesian
theorem, which is favored when dealing with high-
dimensional inputs. We use the Naïve Bayes classification
algorithm R function’s implementation. For each character-
istic X (x1, x2, and x3. . . xn) the likelihoods are computed
by the Naïve Bayes Classifier. Then, as a result, it chooses
the instance with the highest likelihood value [63]. For defect
prediction the Naïve Bayes are effectively applied in some
research efforts. And in this study, it will be applied to soft-
ware bug prediction as well. The NB approach in machine

learning is particularly efficient. The bug prediction binary
classification is treated by the NB model, by examining
software modules’ historical data it trains and constructs the
predictor. The predictor is then used to determine whether a
new module contains bugs or not. Equation 3 is the Bayes
Theorem, and this is derived from conditional probability.
The PROMISE bug repository dataset is used in this study,
and it is used for binary classification purposes (as buggy
and non-buggy data). The dataset has multiple independent
features (in our dataset it is called source code and smell code
metrics) for example X = {x1, x2, x3, . . . x n} where x1 is
feature one, x2 is feature two, and so on. And one dependent
feature Y = {0, 1}, ‘1’ means true = buggy, and ‘0’means
false = non-buggy code. So, the Bayes Theorem will be
changed to a binary classification problem.

P (A |B) =
P (B |A)P (A)

P (B)
(3)

P (A): Probability of A
P (B): Probability of B
P (A|B): Probability of A when B is given
P (B|A): Probability of B when A is given
Equation 3we have to change based on our dataset.Wewill

give all input features (X = {x1, x2, x3, . . . x n}) and predict
the dependent feature ‘y’ and categorize it, whether it is buggy
or not. Equation 3 can be written as

P (Y |X) =
P (X |Y )P (Y )

P (X)
(4)

As we know, X = {x1, x2, x3, . . . x n}. Equation 5 can be
reaped from equation 4.

the P (y | x1, x2, x3, . . . xn)

=
P (x1 | y)P (x2 | y) . . . . . .P (xn | y) ∗ P (y)

P (x1)P (x2) . . . .P (xn)
P (y | x1, x2, x3, . . . xn)

=
P (y)

∏n
i=1 P (xi | y)

P (x1)P (x2) . . .P (xn)
(5)

The P (x1)P (x2) . . .P (xn) can be considered as constant
because this will be the same for every record. So,
P (x1)P (x2) . . .P (xn) will be directly proportional to the
P (y)

∏n
i=1 P (xi | y). In order to find out the output of X =

{x1, x2, x3, . . . x n} particular values, we need to take
the argmax of P (y)

∏n
i=1 P (xi | y). Finally, we achieved

equation 6 for NB classifier.

y = argmax((y)
∏n

i=1
P(xi|y)) (6)

Argmax means which will be given the maximum likelihood
to consider that. Suppose for True it is given as ‘0.7’ and for
False it is given as ‘0.3’, now in this case I will consider ‘0.7’,
so the output for the X = {x1, x2, x3, . . . x n} this particular
feature will be Tr.
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5) k-NEAREST NEIGHBOUR (k-NN)
The idea behind Nearest Neighbor Classification is simple.
According to the class of their closest neighbors, instances
are classified. Because that is typically convenient to consider
further than one neighbor, the technique is more com-
monly known as k-Nearest Neighbor (k-NN) Classification,
in which k nearest neighbors are applied to determine the
class [64]. The algorithm needs the training samples at run-
time so they must be in memory at runtime. It is called
a lazy learning approach as well. The main points of the
k-NN classifier are a smaller amount of computation time
and effortlessness of interpretation for the training of model
but in the testing phase, it will take a longer time. The value
of K is significant in the k-NN algorithm and is used to
finetune the algorithm. When the value of K reduces, the
model becomes less consistent; conversely, when the value
of K grows, the model becomes more stable [65]. When the
number of samples or examples rises, the k-NN algorithm
becomes slower. To determine the distance among classes,
the k-NN method employs the Euclidean distance formula.

C. DATASET DESCRIPTION AND PRE-PROCESSING
Pre-processing of data is a crucial step in the data min-
ing process as training datasets often contain imperfections
such as faults, outliers, missing data, and noise. Tools are
necessary for detecting and correcting these issues. Raw
and unprocessed datasets are typically inadequate and may
contain errors, missing data, outliers, and additional noise.
To address these concerns, it is essential to evaluate the qual-
ity and accuracy of the data before conducting experiments.
Pre-processing operations encompass various tasks, includ-
ing data clean-up, data integration, data transformation, and
data reduction. These operations aim to improve the overall
quality and reliability of the data, ensuring that subsequent
analysis and modeling steps are based on accurate and con-
sistent data. Pre-processing operations include data clean-up,
data integration, data alteration, and data lessening [66].
Proper data preparation is needed to advance the accu-

racy of the training model. Each file has an identical set of
properties and is in Comma Separated Values (CSV) format.
The attributes in a PDFSBP(PROMISE dataset for software
bugs prediction) are as follows: All source code metrics can
be obtained in a data file, including project name, version,
file name, bug count per file, is Buggy File, WMC, DIT,
NOC, CBO, RFC, DAM, MOA, MFA, LCOM, Ca, Ce,
NPM, LOC, DAM, MOA, MFA, CAM, ACC. ANA, ACM,
ARL, and antipattern cumulative pairwise diversity are the
code smell-based metrics provided in a data file (ACPD).
In addition to the metric information, each dataset has some
metadata. The bug prediction model is unaffected by some of
the attributes seen in each file.

For this study, we used data from publicly accessible data
repositories. As a result, the data sets have been stripped
of project, file, and version names. A file is deemed an
‘isBuggyFile’ in the data set if at least one problem has been

TABLE 1. PROMISE bug repository dataset.

FIGURE 8. Data set division illustration diagram.

reported against it in a certain version. Table 1 shows the
datasets and versions of several projects that we collected for
the bugs classification.

In a subsequent version, the same file could be a non-buggy
file. The number of problems that have been reported against
a file has also been kept track of.

The ‘Bugs count per file’ attribute was also removed
because predicting the number of bugs associated with a file
was outward to the scope of this study. To increase accuracy,
the data must be in numerical format. As a result, we focused
solely on numerical properties when developing the model.
Some of the characteristics have stronger correlations with
one another. Therefore, those attributes have a high correla-
tion with one another, we can drop one of them.

D. DATA SPECIFICATION
The purpose of this exploration is to look at the model within
a version, even within a project and across the projects. Each
dataset was broken down into two parts. The model was
trained using 70% of each dataset, then tested with 30% of
each dataset. The dataset division illustration is in Figure 8.

For instance, Inside the Apache Ant 1.7 version
745 instances were using real data, we first eliminated
5 occurrences of this dataset at random. The accuracy of the
prediction was evaluated with a real dataset. 70 percent of
instances (518 instances) were used to train the model and
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TABLE 2. Source code and smell code-based metrics.

30 percent of instances (222 instances) were left for testing
of the model. Validation was performed by unseen data from
Eclipse and AgroUML.

We looked at 5 distinct versions of Apache Ant for the
within-project circumstances i.e., 1.3, 1.4, 1.5, 1.6, 1.7. All
versions of the project are used for training of the model.
There were 1692 instances in Apache Ant project wholly
versions. There were 1184 samples records of training (70
percent) and 507 sample records of testing (30 percent) in the
dataset.

The Apache Ivy version 2 dataset is used for validation
purposes in cross-project prediction. This project is a novel
project that has less historical information. In the entire
project (in all versions) there were almost 16257 instances.
For training, we used 70 percent data (11380 instances) and
for testing of the model 30 percent data (4877 instances) are
used.

The model’s accuracy is also affected by the number of
buggy samples in the database. The is-buggy is a Boolean
attribute that specifies if, in a certain version, a file is a buggy
(it is stated as ‘‘1’’) or not (stated as ‘‘0’’). In our datasets,
there must be an equal number of true and false samples.
It’s quite difficult to create a training dataset with a balanced
amount of buggy and non-buggy samples. The number of
instances reported as buggy in all versions of all projects was
34.56 percent.

E. DIFFERENT TYPES OF METRICS USED FOR BUG
PREDICTION
Several of the significant source code and code smell metrics
that were evaluated in the study are summarized in subse-
quent Table 2.

F. PERFORMANCE EVALUATION METRICS
The performance is checked by passing through several
parameters which are Confusion Matrix, Precision, Recall,
F-Measure, ROC curve, PR curve, and Accuracy. This study
considered two crucial factors: performance and effective-
ness.

1) CONFUSION MATRIX
A typical machine learning approach for measuring the qual-
ity of an algorithm is to cross-classify predicted and real
decision classes in a confusion matrix as well identified as an
error matrix [67]. The ideal choice for calculating the accu-
racy and other measuring metrics of RF, NB, LR, SVM, and
most of the classifiers is the Confusion matrix. A confusion
matrix is a table that has the amount of correct and incorrect
predictions produced by a classification model for the task of
binary classification. It creates a table with all of a classifier’s
predicted and actual values. A classification model provides
four different prediction outputs.

•True positive (TP): Malignant instances predicted as
malignant via the ML model.

•False positives (FP): Benign instances predicted as malig-
nant via the ML model.

•True negative (TN): Benign instances predicted as benign
by via ML model.

•False negative (FN): Malignant instances were predicted
as benign via my ML model.

Based on the above prediction results, various evaluation
metrics have been presented in the literature.

2) ACCURACY
Accuracy is a parameter for evaluating the classification
model. The number of correct predicted values multiplied
by the whole number of predicted values is called accuracy.
Equation (1) is also used to calculate accuracy in binary
classification [68].

Accuracy =
TP+ TN

TP+ FP+ FN + TN
(7)

where ‘‘TP’’ is a short form for True Positives, ‘‘TN’’ is short
for True Negatives, ‘‘FP’’ is the short form for False Positives,
and ‘‘FN’’ is the short form for False Negatives.

3) THE PRECISION
The function of related instances amongst the obtained
instances is called precision. The following equation can be
used to calculate it.

precision =
TP

TP+ FP
(8)

4) THE RECALL
The recall is the ratio accurately positive prediction for every-
body in the actual consequence; the equation can be used to
calculate it.

Recall =
TP

TP+ FN
(9)
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5) THE F1-SCORE
A harmonic means of precision and recall would be the F1-
Score. The F1-Score is the average of Precision and Recall
when false positives and false negatives are considered.When
the data distribution is imbalanced, the F1-Score is more
effective than accuracy. F1-Score can be calculated by the
Equation below.

F1 − score = 2 ∗
Pr ecision ∗ Recall
Pr ecision+ Recall

(10)

6) ROC CURVE
The ROC curve shows how well a classification model
works throughout the classification thresholds. In imbalance
datasets, the AUC and F-measure are typically used to assess
classifiers. The area under the ROC curve, which lies between
[1, 0], measures the comparative performance of TPR and
false positive rate (FPR).

This curve displays two values:
• True Positive Rate
• False Positive Rate

There is no difference between recall and TPR, which means
recall is the same as TPR. TPR is defined as bellows:

TPR =
TP

TP+ FN
(11)

The following is how the False Positive Rate is defined:

FPR =
PF

FP+ TN
(12)

TPR & FPR at several classification thresholds are contrived
on an ROC curve. As the classifying threshold is let down,
more substances are classified as positive, leading to an
upsurge in both False Positives and True Positives. AUC is an
efficient, sorting-based technique that can compute the points
in a ROC curve.

7) AREA UNDER ROC CURVE (AUC)
TheAUC of ROC is one of the most important metrics used to
measure classifier performance. ROC is a graphical tool that
is used for binary classifiers’ performance assessment. FPR
and TPR can be combined into a single metric. TPR and FPR
are calculated with separate thresholds and then plotted into
a graph, with FPR values on the abscissa and TPR values on
the ordinate. The produced curve is termed the ROC curve,
and the metric we take into consideration is the Area Under
the Curve (AUC). It should be remembered that the better the
model, the greater the AUC.

8) PRECISION-RECALL CURVE (PR)
The PR curve displays the trade-offs between recall and pre-
cision for various thresholds. Having high accuracy showing
a reduced FPR and excellent recall showing a low false-
negative ratio, a big area under the curve suggests excellent
recall and precision. On an imbalanced dataset, the PR curve
is more informative than the ROC curve when assessing
binary classification because of the usage of TN in FPR.

TABLE 3. Apache Ant 1.7 within version model.

Precision vs. Recall is plotted on the PR curve. PR curve is a
graphical tool that is used for binary classifiers performance
comparison. Sometimes PR curve is further suitable than
ROC. The ROC gives an idea of how the classifier overall
acts, and it considers equally the positive and negative classes.
PR curve is better for imbalanced data because it does not
consider ‘‘True Negative’’, it measures the balance between
two classes. The visual representation of the curves is a signif-
icant difference between ROC space and PR space. Viewing
PR curves can reveal differences between algorithms that are
not visible in the ROC space.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. SYSTEM SPECIFICATION
The system that is used for simulations is an HP Intel core
i5 4th generation desktop with 8GB RAM and 250 GB SSD
and 500 GB HDD, 2.6 GHz processor, and Windows 10 64-
bit operating system. Python 3.9 is used for smell-aware bug
classification simulation. Jupyter Notebook is used for code
execution. The library that was used is Scikit-Learn, Seaborn,
and Matplotlib for Machine Learning.

B. DATASET DIVISION
The dataset is divided into several train and test ratios,
as shown below:

•90 percent training, 10 percent testing
•70 percent training, 30 percent testing
•60 percent training, 40 percent testing

C. RESULTS
The results of the proposed models are discussed briefly in
this section. Furthermore, they demonstrate the evaluation
outcomes of the bug classification model against various
evaluation metrics. The experiment for smell-aware bug
classification was performed using the PROMISE bug pre-
diction dataset, and the different classification consequences
obtained for various classifiers are shown in Table 4.
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FIGURE 9. Confusion matrix for buggy vs non-buggy data on 90-10 %
Ratio.

FIGURE 10. ROC curve within the version on 90-10 % ratio of the dataset.

D. PROPOSED MODEL CONFIGURATION AND RESULT
Using the PROMISE bug prediction dataset for training, test-
ing, and evaluation of the model. The process of training,
testing, and evaluation of the model on different datasets
is shown in Figure 1. Following sub-sections discussed the
entire experimentation.

E. EXPERIMENT WITHIN A VERSION
In a specific version of experimentation, the dataset is divided
into several trains and test ratios, and then themodel is trained
accordingly.

1) FIRST EXPERIMENT WITHIN A VERSION FOR (90-(10) %
RATIO
We experimented on Apache Ant version 1.7 for buggy and
non-buggy classes, which is the PROMISE repository project
dataset for bug classification. In the first step, the dataset is
divided into two parts, 90% for the training of the model and

FIGURE 11. Precision-recall curve of 90% 10% Dataset division.

TABLE 4. Apache Ant 1.7 within version model for 70-30% dataset.

10% for testing of the model. The comparison is done on
five different ML classifiers, SVM, RF, LR, NB, and k-NN
classifiers. In these classifiers, the RF and SVM classifiers
have given the best result and the k-NN classifier gives the
worst output. RF and SVMhave the same output of evaluation
metrics.

In all trained models, the confusion matrix of the best
model is illustrated. Figure 9 demonstrates the confusion
matrix of the buggy and non-buggy classes. In the columns,
the predicted class is signified, whereas the actual class is
signified in rows. The number of true and false predictions
formed by the SVM classifier is shown in a confusion matrix
in Figure 9.
It can be used to specify performance indicators like accu-

racy, precision, recall, and F1-score. TPR (True Positive
Rate) and FPR (False Positive Rate) are used to evaluate the
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efficiency of the proposed model. Numbers on the matrix
diagonal designate the correct predictions, while values out-
side the matrix diagonal designate incorrect predictions.
In brief, both the RF and SVM models have the same accu-
racy, correctly classifying the code as buggy and non-buggy
classes with 100% accuracy.

2) PERFORMANCE ASSESSMENT OF SMELL-AWARE BUG
CLASSIFICATION ON RF, SVM, LR, NB, AND K-NN
CLASSIFIERS CONCERNING ROC CURVE FOR BUGGY AND
NON-BUGGY CLASSES
The ROC and PR curves designate the performance of a
classification model at a 90-10% ratio for bug classification.
ROC and PR curves are two graphical tools that are used for
comparison in binary classification. Figure 10 is a combined
ROC curve for all the evaluated models in the ROC curve.
AUC indicates how well the model can distinguish between
classes. The PR curve shows the trade-off between precision.
Figure 11 represents the PR curve, where the recall is on
the x-axis and the precision is on the y-axis. Good recall
is correlated with a low FN rate, while high precision is
correlated with a low FP rate, this represents that SVM and
RF models are very precise, and these algorithms did the
best classification of codes as buggy or not buggy. Various
performance metrics of the SVM, RF, NB, LR and k-NN
classifiers for the dataset Apache Ant version 1.7 are shown
in Table 3. As presented in Table 4, SVM and RF algorithms
achieved a high accuracy rate of 100. The LR classifier gives
99% accuracy and the accuracy of the k-NN classifier is
89%. RF and SVM models showed an equal F1_score value,
i.e.,1.0 whereas the LR model revealed the F1_score value
of 0.99 and the k-NN classifier displayed the lowest value of
0.55 among all classifiers.

The ROC curve is constructed from two parameters:
1. True Positive Rate
2. False Positive Rate
As shown in Figure 10, every classifier has its own ROC

curve. Each ROC space is specified by TPR (also called sen-
sitivity) and FPR (also called specificity) as y and x-axis. The
optimal prediction model would provide a point at coordinate
(0,1) in the upper left corner of the ROC space, corresponding
to 100% sensitivity (no false negatives) and 100% specificity
(no false positives). In Figure 11, the RF and SVM classifiers
have 100% sensitivity and 100% specificity, and they have
huge AUC of ROC. So, RF and SVM algorithms did perfect
classification, which means these models are the best than
others. It should be noted that the k-NN model has the worst
ROC curve.

In Figure 10 the PR curve is plotted and this is another good
evaluation metric for imbalanced data. The AUC-PR curve is
optimal for SVM and RF models.

3) SECOND EXPERIMENT WITHIN A VERSION
The bug prediction experimentation was conducted on the
ApacheAnt version 1.7 dataset for both buggy and non-buggy
classes. In the first step, the dataset was divided into two

FIGURE 12. Confusion Matrix for Buggy vs non-buggy on 70-30% Ratio.

parts: 70% for training the model and 30% for testing the
model. The comparison was performed using five different
ML classifiers: SVM, RF, LR, NB, and k-NN classifiers.
Among these classifiers, the RF and SVM classifiers yielded
the best results, while the k-NN classifier produced the worst
output.

Figure 12 demonstrates the confusion matrix of the LR
classifier for the buggy and non-buggy classes. In the column,
the predicted class is signifiedwhile in the row the actual class
is signified. It can be used to specify performance indicators
like accuracy, precision, recall, F1-score, TPR, and FPR to
evaluate the efficiency of the proposed model. Numbers on
the matrix diagonal designate correct prediction, but values
outside the matrix diagonal designate incorrect prediction.
Figure 12 demonstrates the confusionmatrix of the buggy and
non-buggy classes. Out of 174 values 173 values of 0-class
are predicted truly and 1 positive value is predicted wrongly.
Correspondingly, 50 out of 50 values of 1-class are predicted
accurately and did not predict any negative values incorrectly.

a: PERFORMANCE ASSESSMENT OF SMELL-AWARE BUG
CLASSIFICATION ON RF, SVM, LR, NB, AND K-NN
CLASSIFIERS ROC AND PRC FOR BUGGY AND NON-BUGGY
The performance of a classification model at a 70-30% ratio
for bug classification level is described by the ROC and PR
curves. ROC and PRC are two evaluation tools that are used
for performance assessment of binary classifiers. Figure 13 is
a combined ROC curve for all the evaluated models. It desig-
nates how well the model can differentiate between classes.
As shown in Figure 13, every classifier has a particular ROC
curve. Each ROC space is visualized by TPR and FPR as
y and x-axis. In Figure 13, RF and SVM classifiers have
100% sensitivity and specificity, and they have huge AUC.
So, RF and SVM algorithms did better classification, which
means these models are better than others. On the other hand,
the LR classifier AU-ROC value is outstanding, i.e.,0.997.
The k-NN model AUC of the ROC curve is not glowing at
all.

In Figure 14 the PR curve is plotted, in which the SVM and
RF models AUC-PRC is 1, which denotes a high precision
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FIGURE 13. ROC curve within a version of the dataset on 70-3a 0 % ratio.

FIGURE 14. Precision-recall curve of 70% 30% Dataset division.

and a high recall, AUC-PRC is another good evaluation met-
ric for imbalanced data. High recall corresponds to a low FN
rate and high precision to a low FP rate, this represents that
SVM and RF models are very precise, and these algorithms
did the best classification of codes as buggy or non-buggy.
The AUC-PR curve value is 0.98 for the LR classifier. The
k-NN classifier’s AUC-PR value is 0.86.

Table 4 signified other performance assessment parameters
such as accuracy, precision, recall, and F1_score. Which
is assessed for bug classification as buggy and non-buggy
classes. As Table 4 demonstrated all trained models have
given very good output except the k-NN classifier, the main
reason is the integration of the code smell metrics with source
code metrics in the given dataset. As shown in Table 5, the
SVM and RF algorithms give very precise outcomes with
both Precision and Recall being 1.00. It is also memorable
that the LR classifier has given a precision value of 0.98,
and the recall value is 1.00. But the k-NN classifier recall
value is low i.e., 0.54 and the F1_score is 0.7 among all
algorithms.

TABLE 5. Within version performance evaluation metrics.

4) THIRD EXPERIMENT WITHIN A VERSION
This experimentation is done for buggy vs non-buggy classes.
This experiment is done for a 50-50% ratio.

Figure 16 demonstrates the confusion matrix of the NB
model for the buggy and non-buggy classes. The predicted
class is indicated in the column whereas the actual class is
shown in the row. Numbers on the matrix diagonal designate
correct prediction, but values outside the matrix diagonal
designate incorrect prediction. Figure 15 demonstrates the
confusionmatrix of the buggy and non-buggy classes, 294 out
of 300 values of 0-class (non-buggy) are predicted truly and
6 positive value is predictedwrongly. Correspondingly, 73 out
of 73 values of 1-class are predicted accurately, while no
value is predicted incorrectly.

a: Performance assessment of Smell-aware bug
classification on RF, SVM, LR, NB, and k-NN classifiers ROC
and PRC for buggy and non-buggy
The performance of a classification model at a 50-50% ratio
for buggy and non-buggy classes is defined by the ROC curve
and PR curve. Figure 16 is a combined ROC curve for all
the evaluated models, in which each ROC space is stated
by TPR and FPR as y and x-axis. SVM and RF algorithms’
recall and cut-off are always better than LR, NB, and k-NN
algorithms. RF and SVM classifiers have 100% sensitivity
and specificity, and these algorithms have vast AUC. On the
other hand, the LR classifier AU-ROC value is outstanding,
i.e.,0.98. The AUC-ROC for the NB model is 0.97 and k-NN
AUC-ROC is 0.86. The PR curve is plotted in Figure 17,
in which the SVM and RF model’s AUC-PR curve value is 1,
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FIGURE 15. Confusion matrix for Buggy vs non-buggy on 50-50% ratio.

FIGURE 16. ROC curve within a version of the dataset on a 50-50 % ratio.

which denotes high precision and high recall. This signifies
that SVM and RF models are very precise. The LR classifier
value of the AUC-PR curve is 0.98 and the k-NN classifier’s
AUC-PR value is 0.86.

Table 5 shows the complete performance report of the k-
NN, NB, LR, SVM, and RF models. In this experiment SVM
and RF give equal performance assessment metrics values.
The overall best accuracy of the model is 100 % on SVM and
RF classifiers for a 50-50% ratio, as shown above in table 6.
RF and SVM models demonstrate equal F1_score value,
i.e.,1.0 whereas the LR model revealed the F1_score value of
0.99 and the k-NN classifier having a low F1_score value of
0.63. The k-NN classifier gives a better F1_score value in the
(50-50) % division of the dataset than the (70-30) % dataset
division as train and test samples.

F. WITHIN THE PROJECT
This part concealments the bug prediction in the context of
the within-project and specifically does not give evidence on
how the model accomplishes within a single version of the

FIGURE 17. Precision-recall curve of 50% 50% dataset division.

TABLE 6. Apache Ant within-project model measures.

project. The outcome of the Apache Ant project is given in
Table 6.

As findings demonstrated in Table 7 conclude, generally
all models have shown a good performance of the evaluation
metrics, and RF, SVM, and LR algorithms provide the most
accurate result within the project and give an equal output of
the performance evaluation metrics. The main reason can be
the dataset is balanced by SMOTE Technique and also the
number of samples is more than within a version, and the
dataset has a good number of buggy instances.

The F2-measure, which is the chosen metric to assess the
model is excessively high for all the classifiers, we have
seen improvements in the performance of some models
(see Table.7) both sensitivity and F2-measures values have
improved suggesting a better distinction between the two
classes and decreases of the false positive’s predictions. The
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FIGURE 18. ROC curve for within-project.

FIGURE 19. Precision-recall curve for within-project.

performance of a classification model within the project for
buggy vs non-buggy classes is depicted by the ROC curve
in Figure 18. The PR curve is drawn in Figure 19, in which
the SVM, RF, and LR model’s AUC-PR curve value is 1,
which denotes high precision and high recall. This signifies
that SVM, RF, and LR models are very precise.

The AUC-PR curve value is 0.99 for the NB classifier.
The k-NN classifier’s AUC-PR value is 0.96, which illus-
trates that k-NN gives better results within the project than
within a version. shown in the results, e.g., k-NN classifier in
14 datasets has the range of 73% to 97%. This can occur due
to sample overlapping, noise interference, and blindness of
neighbor selection during balancing and the size of the dataset
also have a huge impact on the training of the model. For
instance, the Apache Forrest dataset has a total of 61 samples
which is insufficient to train the model accurately. Notable
that the performance evaluation parameters for some data
sets are extremely high, for example, the Apache Synapse

TABLE 7. Apache Ant across project model metrics evaluation report.

and Apache Camel dataset’s performance evaluation matrix
is very high, the main reason can be enough samples in the
dataset for good training of the model.

For instance, the Apache Forrest dataset has a total of
61 samples which is insufficient to train the model accu-
rately. Notably, the performance evaluation parameters for
some data sets are extremely high, for example, the Apache
Synapse and Apache Camel dataset’s performance evaluation
matrix is very high, the main reason can be enough samples
in the dataset for good training of the model.

V. ACROSS THE PROJECTS
From all 14 projects, all the versions were used for training
the model to achieve the results. Table 9 is the evaluation
result of the designed models.

For the validation purpose of the trained model, the second
version of Apache Ivy is used. In the training dataset, there
were 16257 samples, and the buggy samples were 34.56%
(5620 instances). However, in the cross-project prediction
model, there is 34% of buggy samples in the training set, and
therefore, the accuracy of cross-project prediction is low as
compared to within the version in the project prediction.

In this experiment, the NB algorithm has given poor results
as compared to the k-NN algorithm. Moreover, within the
version and the project NB algorithm has given better results
than k-NN. For a better understanding and illustration of the
models, the following are the ROC and PR curves.

Figure 20 is a combined ROC curve for all the trained
models across the projects. Each ROC space is stated by TPR
and FPR as y and x-axis. In figure 20, the RF classifier ROC
space is 1 and the ROC curve is greater than other classifiers.
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TABLE 8. The comprehensive result of the project.
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TABLE 9. Comparison of our proposed model with other classifiers in the literature.

FIGURE 20. ROC curve across the project.

Therefore, RF algorithm recall and cut-off are always bet-
ter than LR, SVM, NB, and k-NN algorithms across the
project prediction. RF classifier has 100% sensitivity and %
specificity and it has massive AUC. On the other hand, the
LR classifier AU-ROC value is outstanding, i.e.,0.988.

In Figure 21, the PR curve is contrived, showing that the RF
model AUC-PR value is 1, which denotes high precision and
high recall. So, this implies that the RF model is very accu-
rate. The AUC-PR curve value is 0.988 for the LR classifier.
The k-NN classifier’s AUC-PR value is 0.845.

A. COMPARISON OF THE PROPOSED MODEL WITH
EXISTING MODELS:
This part presents a performance comparison of the proposed
model with the existing models; therefore, we selected five
ML classifiers. These classifiers are NB, RF, SVM, k-NN,
and LR.

FIGURE 21. Precision-recall curve across the project.

This study explores various evaluation metrics of the five
models within the version, within the project, and across the
projects. The result of this comparison in terms of accuracy,
precision, recall, F1 score, AUC-ROC, and AUC-PR are
listed in table 9.

The result of this assessment is presented in table 9 that the
proposed classifiers exceed the existing classifiers in terms of
all six-measurement metrics.

VI. LIMITATIONS OF THE STUDY
In the field of software engineering various tasks can be
formulated as learning problems and can be solved using
machine learning algorithms. However, in the Software engi-
neering domain the source of training data is source code,
and the majority of the datasets are based on JAVA code.
Therefore, in this study, only software systems coded in the
Java programming language are evaluated for code smell
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prediction. Moreover, the scope of our smell extraction was
restricted to open-source Java projects exclusively from the
Apache repository, this limited selection could potentially
impact the generalizability of our results.

VII. CONCLUSION AND FUTURE WORK
Software defects are called bugs in a software development
process - unanticipated deeds and actions figured out by
quality control engineers during application testing and are
preserved as software bugs. Bugs have high effects on soft-
ware quality. The process of bug fixing is exceptionally
steady and time-consuming. Therefore, it is crucial to detect
bugs automatically.

The primary goal of this investigation is to create a
smell-aware bug prediction model by using code smell as
a nominee metric. To be smell-aware, we added an inten-
sity index to the dataset. The results showed that using the
intensity index as a predictor for bug prediction improves
the accuracy of the bug prediction model. Furthermore, the
data show that the severity index is more significant than any
other quality metric in predicting the bug-proneness of the
smelly classes. The findings suggest that using the severity
index as a reliable indicator of buggy modules improves the
effectiveness of structurally based baseline models for bug
prediction. Furthermore, they also emphasize the significance
of the intensity of code smells in the process metrics-based
prediction approaches.’’

We provided empirical evidence in this study that code
smell-based metrics are quite useful in bug prediction. Using
several source code metrics and code smell-based metrics
proposed in the literature, we constructed a bug prediction
model. To create the model, we employed k-NN, NB, RF,
SVM, and LR algorithms. Multiple versions of fourteen
different open-source projects were used to train the bug pre-
diction model. We experimented with how our bug prediction
model behaved within the version, within the project, and
across the projects.

To emphasize the following are the main conclusion from
our research:

• Using only source code metrics to anticipate project
issues is insufficient.

• When code smell-based metrics are combined with
source code metrics, accuracy, and F1 score can be
improved.

• When compared to other algorithms, RF and SVM algo-
rithms have demonstrated the best results in terms of
accuracy.

• The presence of a large amount of numerical/categorical
data, as well as training with a growing number of
samples, might be the primary factors behind Random
Forest’s superior performance.

• The main reason behind the good results of the SVM
algorithm might be that it is used effectively for slightly
large and complex linear and non-linear datasets.

• Our features are not independent of each other,
which is why Naive Bayes did not perform well in
the study.

• Code smell-based metrics can be used to accurately
forecast bugs across projects. When there are fewer
buggy cases in the system, we were able to get more
accurate findings.

In future work, we would like to evaluate the performance
assessment of the model in other programming languages
as well. Furthermore, we will undertake additional research
on the attributes of the Intensity index in the context of
multi-class bug classification based on the samples collected
from different languages from within a project, within a
version, and across the project’s data set.

APPENDIX A
Code is available on GitHub https://github.com/hqsikandar/
Bug-prediction-train-model-by-Dr-Sikandar-Ali-and-Khyber.
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