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ABSTRACT Manifold learning techniques aim to the non-linear dimension reduction of data. Dimension
reduction is the field of interest and demand of many data analysts and is widely used in computer vision,
image processing, pattern recognition, neural networks, andmachine learning. The research has been divided
into two phases to recognize manifold learning techniques’ importance. In the first phase, the manifold
learning approach is used to improve the ‘feature selection by clustering’. Clustering algorithms such as
K-means, spectral clustering, and the Gaussian Mixer Model have been tested with manifold learning
approaches for adaptive feature selection. The results obtained are satisfactory compared to simple clustering.
In the second phase, a Triple Layered Convolutional Architecture (TLCA) has been proposed for image
classification bearing 85.34%, 59.14%, 71.43%, 90.06%, and 71.71% accuracy levels for the datasets such
as Pistachio, Animal, HAR, Mango Leaves, and Cards respectively. The performance of the proposed TLCA
model is compared to the other deep learning models i.e., CNN, LSTM, and GRU. To further improve the
accuracy, reduced dimensional data frommanifold learning technique is used and achieved higher accuracies
from Hybrid Triple Layered Convolutional Architecture HTLCA as 97.73%, 87.18%, 97.97%, 99.19%, and
96.91% for the mentioned sequence of datasets. The effectiveness and precision of the suggested methods
are demonstrated by the experimental findings.

INDEX TERMS Clustering, feature extraction, feature selection triple layered convolutional architecture.

I. INTRODUCTION
Manifold learning is a machine learning and data analy-
sis technique that extracts meaningful features from high-
dimensional data [1]. Its primary objective is to identify a
lower-dimensional representation of the data that preserves
the underlying structure and relationships among the data
points. The technique treats the data as it lays on a mani-
fold, which is a curved, lower-dimensional surface embedded
in the high-dimensional space. This manifold can be envi-
sioned as a twisted or folded version of the high-dimensional
space. By identifying the underlying manifold, the manifold
learning algorithms can uncover the intrinsic structure of the
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data, thereby extracting meaningful features that capture this
structure.

Several techniques for manifold learning exist, includ-
ing Principal Component Analysis (PCA) [2], t-distributed
Stochastic Neighbor Embedding (t-SNE) [3], and Isomet-
ric Mapping (Isomap) [4], among others. These tech-
niques employ different algorithms to determine the
lower-dimensional representation of the data while preserv-
ing the relationships among the data points. The extracted
features can be utilized for diverse tasks, such as classifi-
cation, clustering, object recognition, image retrieval, and
visualization [5]. Through the reduction of the data’s dimen-
sionality and the extraction of meaningful features, manifold
learning enhances the performance of machine learning and
deep learning algorithms and simplifies the understanding
and interpretation of the data.
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FIGURE 1. Main focus of the research.

The use of extracted features from manifold learning
techniques helps deep learning algorithms to accurately
classify images based on their underlying structure and
relationships, thereby improving the performance of com-
puter vision systems [6]. Image classification by deep
learning algorithms is widely used in fields such as med-
ical imaging, natural language processing, and robotics.
By reducing the dimensionality of the image data and extract-
ing meaningful features, manifold learning can enhance
the performance of computer vision systems, thereby
advancing research and practical applications in these
fields.

Diffusion maps [7], Laplacian eigenmaps, and manifold
regularized extreme learning machines [8] are other manifold
learning algorithms that have been used for picture catego-
rization. These techniques have shown a promising increase
in image classification accuracy as they aim to capture many
features of the underlying data structure. A researcher pro-
posed a unique approach to feature selection that makes use of
both labeled and unlabeled data [9]. To find themost pertinent
features for classification, a strategy that combines mani-
fold learning with a graph-based semi-supervised learning
algorithm is used. To propagate labels from labeled to unla-
beled data, it uses the graph-based semi-supervised learning
algorithm.

Feature selection is a data preprocessing technique that
prepares data for various data mining and machine learn-
ing tasks [10]. It aims a simpler and more comprehensive
model to improve data mining performance and produce
clean and logical data. In recent decades, numerous fea-
ture selection techniques have been introduced, primarily
designed for supervised classification problems. However,
the recent advancements in technology and the abundance
of unlabeled data generated in various applications, such
as text mining, image retrieval, social media and intrusion
detection, have led to a significant interest in Unlabeled
Feature Selection (UFS) methods within the scientific com-
munity. Daniela proposed a solution for feature selection
SFAM [11] a unified learning paradigm that combines
adaptive global structure learning with manifold learn-
ing, to address the algorithm cost concern. The method
is designed to retain global and sparse reconstruction

structure while investigating local structure and label
correlations.

The main attention of this study is to realize the importance
of manifold learning techniques in the domain of machine
learning and deep learning. The focus of our research has
been mentioned in Fig. 1 and the techniques used and appli-
cations considered are stared in the diagram. The major
applications are image classification, adaptive feature selec-
tion, and data visualization. Image classification is used in
the fields of medical imaging, natural language processing,
and robotics. The adaptive feature selection technique has its
advantages in web cluster engines [12], bioinformatics [13],
recommendation systems, search result clustering, and social
network analyses, while data visualization is essential for
image and video processing [14].

There are lots of feature selection methods that already
exist like filters, wrappers, and some hybrid methods [15].
Clustering itself facilitates feature selection. Different clus-
tering algorithms have different accuracies on different
datasets. These accuracies can be improved using manifold
learning techniques. The same is the case with image classi-
fication. Experimental results show that introducing feature
extraction by manifold learning can play an important role
in adaptive feature selection and perform better image clas-
sification than that can be achieved by state-of-the-art deep
learning models.

II. PRELIMINARIES
Machine learning and data analysis employ manifold learn-
ing approaches to comprehend and extract high-dimensional
data structures. Deep learning techniques have excelled by
outperforming other techniques in a variety of applications,
including text mining, speaker identification, handwriting
recognition and object detection and recognition. Data often
resides on a lower-dimensional manifold embedded in a
higher-dimensional environment in real-world applications.
Manifold learning attempts to capture and explain this funda-
mental structure. Different manifold learning techniques are
discussed and elaborated below.

A. ISOMAP
Isomap dimensionality reduction preserves geodesic dis-
tances between data points. Visualizing high-dimensional
data in smaller dimensions is typical. Isomap creates a neigh-
borhood graph from paired data point distances and finds a
low-dimensional embedding that retains geodesic distances.
Isomap has the following steps to be followed. Data input X
with ‘d’ dimensions refers to (1) having ‘n’ number of data
points.

X = [x1, x2, . . . , xn] , xi : Rd (1)

Pairwise distances between data points are computed to build
the neighborhood graph. The distance matrix D= [dij] shows
the distance between data points xi and xj. In the k-nearest
neighborhood graph G, Euclidean distance (2) is used to
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calculate the edge length

dij =
∥∥xi − xj

∥∥2 (2)

An adjacency matrix A represents the neighborhood graph,
where Aij = 1 if xi and xj are connected and 0 otherwise.
Next, the geodesic distances between all pairs of data points
are obtained. The shortest route distance along G is the
geodesic distance (3) Gij between xi and xj.

Gij = shortest_path_distance(xi, xj) (3)

The shortest paths are usually calculated using graph-based
methods like Dijkstra’s or Floyd-Warshall. The distance
matrix DG

= [Gij] reflects the geodesic distance between xi
and xj. Isomap computes a low-dimensional data embedding
using classical multidimensional scaling (MDS). MDS finds
a group of points in a lower-dimensional space that approx-
imates pairwise distances from the high-dimensional space.
The low-dimensional embedding matrix Y = [y1, y2,. . . , yn]
represents the lower-dimensional coordinates of each data
point xi.
Isomap has proved successful in several applications. Data

and parameters determine its efficacy. Isomap, like other
dimensionality reduction methods, does not function well for
all datasets. The data structure, noise, and outliers affect its
performance.

B. LLE
Locally Linear Embedding (LLE) is an effective non-linear
dimension reduction technique for reducing the features of
high-dimensional data while retaining its core geometric
structure. The LLE algorithm consists of three key stages:
constructing a neighborhood graph, computing the weight
matrix, and computing the embedding coordinates. To begin,
the algorithm constructs a neighborhood graph G represented
by an adjacency matrix. It identifies the k nearest neighbors
‘j’ of each data point ‘i’ and connects them with edges. The
variable ‘Gij’ sets to 1 if there is an edge between i and j
otherwise sets to 0. Next, for each data point, the algorithm
computes a weight matrix E(W) (4) by minimizing the recon-
struction error between the data point and its neighbors using
linear weights Wij.

E (W) =

∑
i

∣∣∣∣Xi −
∑

j
WijXj

∣∣∣∣2 (4)

Finally, the algorithm computes the embedding coordi-
nates Yi by minimizing a cost function C(Y) that preserves
the local relationships between the data points referred to (5).

C (Y) =

∑
i

∣∣∣∣Yi −
∑

j
WijYj

∣∣∣∣2 (5)

The resulting embedding coordinates provide a
lower-dimensional representation of the data that main-
tains its essential geometric structure. LLE recovers global
nonlinear structure from locally linear fits, unlike Isomap.

C. UMAP
UMAP is mostly used for larger datasets to convert high
dimensional data to lower dimensional data that visualization
is much better and easy. It is beneficial for the outliers and
similarities to be identified. UMAP works in a way that
preserves the high-dimensional grouping of data and the
relationships between different data points. The method starts
with all the high dimensional points in low dimension and
then moves those low dimensional data points so that the
categorization among different groups remains as same as
the relationships present in high dimension data. Distances
between every pair of data in high dimensions are calculated
in the initial step. Then UMAP algorithm determines the
similarity score for each cluster which helps recognize how
good clustering has been done. It must be as same as the
clusters in the low-dimensional graph present. UMAP uses
Spectral Embedding to initiate a low-dimensional graph by
using the similarity score SS (6).

SS = e−(Raw Distance−Distance to nearest neighbor)/σ (6)

Cost = log
(

1
neighbor

)
+log(

1
1 − notneighbor

) (7)

UMAP focuses on the two scores ‘neighbor’ and ‘not neigh-
bor’ to evaluate if a point is in the right place or not. There
is a Cost Function elaborated in (7) which uses the two
scores to calculate. For an optimal low-dimensional graph
very few points are moved at a time by Stochastic Gradient
Descent.

D. PHATE
High-dimensional data is complex to visualize in a manner
that is it should be intuitive and accurate. This visual-
ization method must preserve local and global structure
in higher dimensional data, denoise the data so that the
underlying structure is visible, and preserve as much infor-
mation as possible i.e. local and global structure, in low
dimensions (two to three). In addition, a visualization
method should be robust in the sense that the obtained
data structure is insensitive to the user configurations of
the algorithm and scalable to the massive sizes of contem-
porary data. Potential of Heat-diffusion for Affinity-based
Transition Embedding (PHATE) [16] is designed for these
objectives.

There are three main steps of the algorithm. The first
step is to use local similarities to encode local data infor-
mation. The second step is to use potential distances to
encode global relationships in data. The third one is to
have low-dimensional data by embedding potential distance
information.

III. METHODOLOGY
The research has been divided into two phases. Feature
selection is the first phase in which different clustering tech-
niques are used. These selected features are analyzed against
five datasets. Along with the clustering techniques, some

VOLUME 12, 2024 40281



A. Ashraf et al.: Adaptive Feature Selection and Image Classification

FIGURE 2. Adaptive feature selection includes techniques such as feature extractor and clustering algorithms for feature selection.

manifold learning techniques are hybridized in attention to
attain better performances. In the following sections, the
manifold learning techniques and the clustering techniques
are explained respectively. The second phase of the research
is about image classification, where a new model TLCA is
proposed and the three state-of-the-art algorithms are tested
and evaluated for image classification.

A. ADAPTIVE FEATURE SELECTION
The objective of feature selection for clustering is to select
a set of most relevant features that facilitate the discovery of
natural clusters in the data, according to the selected crite-
rion [17]. These selected features may lead to the best version
of relevant features if a suitable feature extraction technique
is applied to consider the spatial features of image data X.
Fig. 2 represents the complete flow of how data spectrum is
used to capture spectral features and how feature extraction
is performed. As normal preprocessing steps, data normal-
ization and data scaling of a spectral signature are used to
provide the spectral features of an image. Therefore, we add
feature extraction using isomap, LLE, UMAP, or PHATE.
These techniques are known as manifold learning techniques
explained in Section II.

Clustering algorithms discussed in the literature are sen-
sitive to largeness or dimensionality or both. There is an
entropy-based solution is proposed for the ranking of fea-
tures [18]. The key issue regarding this resolution is the
repeated calculations required for the information-entropy-
based significance of an attribute set, which slows down
feature selection for large datasets. Consequently, fea-
ture extraction followed by feature selection assisted in
this regard. Adaptive feature selection involves different

combinations of clustering techniques and manifold learning
techniques. Experimentally tested clustering methodologies
are discussed below.

1) K-MEAN
It works in an iterative process [19], of assigning all
the data points to the groups with the initial supposi-
tion of a specific centroid to each cluster. This assign-
ment of data points is done by calculating the Euclidean
distance (8) between the data points and the supposed
centroids.

d (x, y) =

√∑n

i=1
(xi − yi)2 (8)

The centroid chosen for a fixed number of clusters in
the first step keeps on changing to minimize the sum
of distances between the data points and the assigned
centroids.

Ci =
1

|Ni|

∑
Xi (9)

2) SPECTRAL CLUSTERING
Numerous fields, such as data analysis, video indexing,
character identification, image processing, speech separa-
tion, etc., have effectively implemented spectral clustering.
In these applications and many more, the number of data
elements to cluster can be extraordinarily large [20]. Basic
concepts of spectral clustering involve algebraic graph the-
ory and graph cut methods. The advanced development of
spectral clustering comprises the aspects of similarity matrix,
Laplacian matrix, selecting eigenvectors, and the number
of clusters chosen. The main focus of spectral clustering is
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choosing a distance measurement that adequately describes
the intrinsic structure of the data elements. Data within the
same category should have a high degree of similarity and
adhere to space consistency. The measurement of similar-
ity is vital to the efficacy of spectral clustering [21]. As a
rule, the Gaussian kernel function is chosen as the similarity
measure.

Following the construction of a similarity matrix, the
corresponding Laplacian matrix is created using various
graph cut methods. The efficacy of spectral clustering algo-
rithms is significantly influenced by the selection of graph
cut methods and the construction of Laplacian matrices.
Through eigen-decomposition, the eigenvalues and eigenvec-
tors of a Laplacian matrix can be determined. An analysis
of the properties of eigenspace demonstrates that: (a) not
every Laplacian matrix’s eigenvector is relevant for clus-
tering; (b) eigenvector selection is crucial because using
uninformative eigenvectors could result in poor cluster-
ing results; and (c) the corresponding eigenvalues can-
not be used to select relevant eigenvectors for a realistic
dataset.

3) GAUSSIAN MIXER MODEL
GMM [22] works the same as k-means does but k-means
only performs better for the data distributed over circular
shapes. The reason behind this is it clusters the points only in a
circular shape with a radius defined by the most distant point.
In the case of GMM, the clusters can be oblong depending
upon the data distribution. Besides assigning a cluster to each
point, GMM considers the probability that a certain point
belongs to which cluster.

B. IMAGE CLASSIFICATION
A popular technique for classifying hyperspectral images is
supervised classification. The fundamental procedure is to
calculate the discriminant function and then establish the
discriminant criterion based on the given sample category and
prior knowledge; Support vector machine, artificial neural
network (ANN) [23], convolutional neural network (CNN)
[24], long short-term memory (LSTM), decision tree, gated
recurrent unit networks (GRU) [25] and maximum like-
lihood classification methods are supervised classification
techniques that are frequently employed. Some of these are
described below.

1) CNN
CNN’s structure includes the convolutional, pooling, non-
linear activation, and fully connected layers. In general, the
image is preprocessed [26] before being provided to the net-
work via the input layer, passed through a series of alternately
arranged convolutional and pooling layers, and then a fully
connected layer is used for classification.

CNN [27], [28] adds a very distinctive convolutional and
pooling layer compared to Multilayer Perceptron (MLP). For
large data sets, CNN exhibits exceptional cost performance

in terms of model size, and its performance is better also.
The convolutional layer has the properties of a local recep-
tive field, which retains the input shape. Another point to
be noticed is that the convolutional layer frequently calcu-
lates the same convolution kernel and various input positions
through a sliding window, thereby effectively preventing the
training parameter size from becoming excessively large. The
pooling layer reduces the computational load by minimiz-
ing the number of connections between the convolutional
layers [29] and alleviates the convolutional layer’s exces-
sive position sensitivity. CNN ensures the invariance of
input image pixels with respect to displacement, scaling, and
distortion.

2) LSTM
Long Short-Term Memory (LSTM) is a sophisticated
form of Recurrent Neural Networks (RNN) that cap-
tures long-term dependencies. LSTM was introduced in
1997 [30] and improved in 2013 [31], garnering a
great deal of popularity in the deep learning community.
LSTM models have proven more effective than standard
RNNs at retaining and utilizing information over extended
sequences [32].

In an LSTM network, the current input at a particu-
lar time step and the output from the previous time step
are supplied into the LSTM unit, which in turn generates
an output that is passed on to the subsequent time step.
Commonly, the final hidden layer of the last time phase,
and sometimes all hidden layers, are used for classification
purposes [33].
Three gates comprise LSTM: input gate, forget gate,

and output gate. Each gate serves a distinct purpose in
regulating the passage of information. Based on the cur-
rent input and the preceding internal state, the input gate
determines how to update the internal state. The for-
get gate determines how much of the preceding state of
the internal environment should be forgotten. Lastly, the
output gate regulates the effect of the system’s internal
state [34].

3) GRU
A gated recurrent unit (GRU) is an improvement on the
conventional RNN (recurrent neural network). In 2014,
Kyunghyun Cho [35] introduced it for statistical machine
translation. More or less they are similar to LSTM. GRU
also employs gates to control the information flow, just
like LSTM. They are comparatively more recent than
LSTM and are superior to LSTM in terms of simplicity of
architecture.

Unlike LSTM, it lacks a distinct cell state (Ct) and pos-
sesses only a hidden state (Ht). Due to their simplified
architecture, GRUs can be trained more quickly. Only two
gates comprise GRU: Reset gate and Update gate. Equations
for their functionalities are as follows.

rt = σ (xt × Ur + Ht−1 ×Wr ) (10)
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FIGURE 3. Proposed model of image classification.

TABLE 1. Model summary.

ut = σ (xt × Uu + Ht−1 ×Wu) (11)

The reset gate uses equation 1, where Ur and Wr are the
weight matrices for the reset gate. Similarly, the update gate
uses equation 2, where Uu and Wu are the weight matrices
for update gate.

4) TLCA (PROPOSED MODEL)
TLCA has proven to be an effective solution for image
classification problems. The efficacy of large image
databases, such as the Pistachio, HAR, Mango Leaves, and
Cards datasets have been significantly enhanced by the
TLCA-based network. As an improved form of CNN, it is
very adept at understanding the local and global structures
from image data.

The overall design of the framework can be depicted in
Fig. 3. The first part of layer 1 is a convolutional layer with
32 output channels and a kernel dimension of 3 × 3 pixels.
The second part of layer 1 is also a convolutional layer with
64 output channels and the same kernel size. The third part
of layer 1 is a max pooling layer with a 2 × 2 kernel. In a
triple-layered architecture, the same sequence is repeated
three times. Each of the subsequent five layers is composed
of 73728-1024-512-64-c neurons and is fully connected.

Where ‘c’ is different for different datasets and is the
number of classes each dataset has. Since the input image
is not textual, the network must learn large-scale or high-
level features. The network with a three-layered architecture
performs image classification tasks significantly well. The
large number of parameters to be learned may result in over-
fitting, but as a consequence, accuracy improves. The results
obtained using epochs 20 on batch size 32 are satisfactory.
Model summary is shown in Table 1.

C. EXPERIMENTAL SETUP
To evaluate the proposed model of adaptive feature selection
and image classification model TLCA, we used the following
experimental setup and five datasets, whose prescription is
mentioned as follows.

The experiment setup involves disk storage, system RAM,
and GPU RAM as hardware requirements and Python3 as
software prerequisites. Depending on dataset size and model
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TABLE 2. Dataset description.

FIGURE 4. Data distribution over classes.

complexity almost 32 GB of system RAM and 32 GB of
disk storage is desired for data accumulation, model check-
points, and other relevant files. We have used the Google
Colab Pro+ version for our experimentation. A100 type of
GPU has been chosen. The latest generation, A100-80GB
doubles GPU memory and introduces the world’s quickest
memory bandwidth at 2 terabytes per second (TB/s), which
accelerates time to solution for the largest models and largest
datasets.

D. DATASETS
Five different image datasets mentioned in Table 2, have been
taken from the Kaggle repository. The image data has been
divided into 3 proportions for training, testing, and validation.
Of the total images, 75% is used for training, 15% for testing,

and 10% for validation. Their distribution can be seen in the
table.

The distribution of data over different classes in each
dataset is demonstrated in the histograms shown in Fig. 4.
Datasets Pistachio and Animal are binary class datasets while
others are multiclass. The dataset ‘Human Action Recogni-
tion’ (HAR) is a balanced dataset which means each class
has an equal number of images and the dataset ‘Mango
Leaves’ is the most imbalanced while others are near to
balanced.

IV. EXPERIMENTAL RESULTS
A. ADAPTIVE FEATURE SELECTION
In the first phase of experimentation, three clustering algo-
rithms; KMeans, GMM, and spectral clustering are used for
feature selection. As expected the results are not satisfied so
some manifold learning techniques: LLE, Isomap, UMAP,
and PHATE are introduced as a preprocessing step for better
performance. For different datasets, the different combination
of clustering and manifold learning technique provides the
best results. Three out of five datasets i.e. Animal, HAR, and
Cards dataset perform better with PHATE + Kmeans while
for the Pistachio dataset, its Isomap+Kmeans performswell.
As far as simple clustering is concerned, spectral behaves a
way better than Kmeans and GMM for this dataset but when
these clustering techniques combine with Isomap, Kmeans
provide better features. There are two most prominent cases
where clustering accuracy improved remarkably by intro-
ducing manifold learning. For dataset HAR, it rises from
8.07% to 55.07% while for Cards, it elevates from 20.80%
to 31.78%.

B. ADAPTIVE FEATURE SELECTION
In the second phase of experimentation, the proposed image
classification model; TLCA is evaluated based on accuracy.
Its performance is compared with the state-of-the-art image
classification models CNN, LSTM, and GRU. Simple classi-
fication can be further improved by reducing data size before
processing.

This data size reduction is dimension reduction which
prevents overfitting and eliminates noise and redundancy.
Eventually, the computational cost is reduced and generalized
performance improves. As shown in Table 3, the accuracy
level of TLCA for datasets Pistachio, Animal, and Cards
is far better than CNN, LSTM, and GRU. The accuracy
is further improved when feature extraction by PHATE is
done and the reduced features are used for classification by
TLCA. For Pistachio it goes from 85.34% to 97.73%. For
HAR, it improves from 71.43% to 97.97% and for dataset
Cards, the accuracy rises from 71.71% to 95.65%. The results
of TLCA with PHATE i.e. Hybrid Triple Layered Convo-
lutional Architecture (HTLCA) are also mentioned in the
table.

To show the performance of TLCA, we presented the con-
vergence graphs. Training accuracy and validation accuracy
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TABLE 3. Adaptive feature selection results.

TABLE 4. Image classification results.

curves are demonstrated in the upper half of Fig 4 for
each of the 5 datasets. Similarly, training loss and vali-
dation loss curves are shown in the lower half of each

figure. It can be observed from the accuracy plots of three
datasets that accuracy is inclined over 20 epochs and the
model performed well against state-of-the-art algorithms
while convergence in loss plots is not that eminent, hence
providing room for over-fitting to be handled. In HTLCA,
we first extract features then reduce dimensions using
PHATE, and then train TLCA offline using the labeled image
dataset.

V. DISCUSSION
Adaptive feature learning via clustering is introduced in
the first phase of this research. K-means, GMM, and spec-
tral clustering It is evident that feature selection can be
significantly improved using manifold learning techniques.
In the second phase of experimentation, the proposed image
classification model HTLCA is tested, and the accuracy is
compared with state-of-the-art classification models: CNN,
LSTM and GRU. The association with manifold learning fur-
ther improves classification performance. The convergence
graph for the training/validation accuracy and loss of the
proposed model shows how it behaves (Fig. 5); good fit in
some cases while overfitting for other datasets. The results
show that there is no overfitting in the case of small datasets.
Among the model accuracy mentioned in Table 4, TLCA
achieved the best classification performance for the Pistachio
and Cards image datasets, with an accuracy of 85.34% and
71.71%. Using PHATE as a preprocessing step (HTLCA)
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FIGURE 5. Graph of convergence for HTLCA.

increases the classification accuracy up to 97.73%, 60.18%,
97.97%, and 95.65% for Pistachio, Animal, HAR, and Cards
datasets respectively. Here are some useful insights observed
in experimental results.

For Larger datasets Pistachio, HAR, Mango Leaves, and
Cards, we observe a smooth curve of TLCA accuracy(Fig. 5),
while for dataset ‘Animal’, jerks are found. This dataset is

about 100 times smaller than others, so adequate training
data is required for better model performance. For datasets
Pistachio, Mango Leaves, and Animal, the training accu-
racy and validation accuracy graph lines are much closer to
each other, which depicts a very small overfitting of data.
It means the model is performing well on unseen data. Con-
trary to this, the data is overfitted for the datasets HAR and
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Cards. Accuracy may be compromised for smaller datasets
and the datasets where data distribution over classes is not
balanced. For instance, the Animal dataset is small (Table 2),
and for Mango Leaves, data distribution over 16 classes is
unbalanced (see Fig. 4).

VI. CONCLUSION AND FUTURE WORK
Manifold learning is a technique of machine learning and
data analysis that extracts significant features from high-
dimensional data. Different clustering algorithms have dif-
ferent performances on various datasets for feature selection.
Their accuracies can be enhanced using manifold learn-
ing techniques i.e. PHATE, UMAP, isomap, and LLE. The
extracted features can also assist in image classification.
Therefore, feature extraction by manifold learning followed
by adaptive feature selection or image classification performs
well and can be depicted by experimental results. Animal,
HAR and Cards datasets perform better with PHATE fol-
lowed by Kmeans while for the Pistachio dataset, its Isomap
followed by Kmeans that performs well. In the second phase
of experimentation, the proposed image classification model
TLCA is evaluated compared with modern classification
models: CNN, LSTM, and GRU and governed the accura-
cies of 97.73%, 60.18%, 97.97%, and 95.65% for Pistachio,
Animal, HAR and Cards dataset respectively.

In the future, this research can be extended with dimen-
sion reduction by auto-encoders. As we see, in the results
how drastically performance accelerated by using manifold
learning techniques, extra feature reduction can cause lesser
training times, enhancing or at least retaining the accuracy
level of feature selection and image classification. Moreover,
work can be done to resolve data overfitting issues.

DATA AVAILABLE STATEMENT
Code will be available on demand.
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