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ABSTRACT Cooperative communications is a core research area in wireless vehicular networks (WVNs),
thanks to its capability to provide a certain degree of fading mitigation and to improve spectral efficiency.
In a cooperative scenario, the intercept probability of the system can be reduced by optimizing the relay
selection scheme in order to select the optimal relay from a set of available relays for data transmission.
However, due to the mobility of WVNs, the best relay is often selected in practice based on outdated channel
state information (CSI), which in turn affects the overall system performance. Therefore, there is a need for
a robust relay selection scheme (RSS) that guarantees a satisfactory overall achievable performance in the
presence of an outdated CSI. Motivated by this and considering the advantageous features of autoregressive
moving average (ARMA), the proposed contribution models a cooperative vehicular communication sce-
nario with relay selection as a Markov decision process (MDP) and proposes two deep Q-networks (DQNs),
namely DQN-RSS and DQN-RSS-ARMA. In the proposed framework, two deep reinforcement learning
(RL)-based RSS are trained based on the intercept probability, aiming to select the optimal vehicular relay
from a set of multiple relays.We then compare the proposed RSSwith the conventional methods and evaluate
the performance of the network from the security point of view. Simulation results show that DQN-RSS and
DQN-RSS-ARMA perform better than conventional approaches, as they reduce intercept probability by
approximately 15% and 30%, respectively, compared to the standard ARMA approach.

INDEX TERMS Secrecy capacity, cooperative communication, deep Q-network, outdated channel state
information, reinforcement learning, relay selection.

I. INTRODUCTION
Fifth-generation and beyond (5G/B5G) wireless networks are
considered for meeting the ever-increasing demand for global
communication services and broad wireless coverage for a
particularly large number of users [1]. Based on this and
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due to the inherent nature of the wireless environment along
with the presence of several low-power wireless devices, it
calls for sophisticated methods that will ultimately ensure the
secure operation of B5G [2]. This becomes even more urgent
because conventional cryptographic approaches are expected
to be insufficient for the new technologies in B5G, and other
security requirements are urgently needed [3]. In this con-
text, physical layer security (PLS) has attracted considerable
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attention in recent years thanks to its capability to enhance
the overall security of wireless communication systems. PLS
exploits the random nature of the wireless channel between
transmitters and receivers, such as dedicated channel state
information (CSI), to secure transmissions at the legitimate
receiver as well as to degrade the quality of the received
signal at the eavesdropper [4]. The core advantage of PLS
methods is that they do not rely on encryption and decryption
operations, so they overcome the difficulties of distributing
and managing secret keys in extremely dense and large-scale
heterogeneous networks. Moreover, compared to encryption-
based methods, PLS approaches only need to execute rel-
atively simple signal processing algorithms, resulting in a
smaller overhead. Therefore, it can be concluded that the use
of PLS in conjunction with traditional cryptographic methods
could provide an additional layer of security that will further
protect transmissions in wireless networks [5], [6].

As a kind of cooperative wireless network, vehicular
relay networks are regarded as efficient wireless networks
because they can reduce energy consumption, extend trans-
mission range, and improve the achievable throughput [7].
Furthermore, PLS in cooperative vehicular relay networks
has received considerable attention from both academia and
industry. It is also recalled that in cooperative vehicular
networks, the transmission overhead associated with CSI
estimation depends on the number of relay nodes. Conse-
quently, selecting the best relay based on the instantaneous
CSI is challenging, so effective relay selection (RS) is still
an open research area in dynamic wireless vehicular net-
works (WVNs) that require a real-time strategy. Particu-
larly, in dynamic WVN, CSI for the best relay is usually
outdated due to the channel feedback delay, so an efficient
RS strategy that can cope with outdated CSI is required in
WVN scenarios.

Recently, researchers used a channel delay model to char-
acterize CSI inaccuracy and proposed a set of robust RS
methods [8], [9]. Yet, while the delay model can develop a
robust RS strategy, it cannot adapt to changes, which affects
the achieved secrecy performance. As a method to solve
this problem, researchers have proposed a self-learning RS
scheme using the Q-learning scheme [10], [11].

Q-learning is a model-free reinforcement learning (RL)
algorithm developed by the Markov decision process (MDP),
which uses an iterative criterion to reach the optimal solution.
Accordingly, a source node with learning capabilities can
select the best relay for cooperative communication accord-
ing to the prior system performance and the reward function
of the observed state [11]. However, the Q-learning-based RS
method stores the Q-value in a Q-table; hence, it can only
solve the problemwith a small state space. To this effect, since
the storage capacity of a Q-table is limited, it cannot cover the
entire state space when it is large. Therefore, the conventional
RL algorithm cannot solve adequately such problems. As a
result, Google DeepMind added deep learning (DL) to RL
and developed the deep Q-network (DQN) aiming to solve
this problem [12]. In particular, the DQN approach leverages

the perceptual capabilities of DL to enable the RL algorithm
to extract environmental features and solve associatedQ-table
problems.

A. RELATED WORK
The RS problems in relay-based cooperative communica-
tions have been analyzed extensively because RS is an
effective method for increasing the communication range
as well as improving the communication quality in emerg-
ing wireless networks [13], [14]. In wireless sensor net-
works (WSNs), for example, the authors in [15] proposed an
adaptive forwarding-based RS approach, while [16] devel-
oped an energy-efficient cooperative communication model
to improve the data transmission performance. In [17], the
authors proposed several RS methods to improve security
and counter strong eavesdroppers. Likewise, authors in [18]
studied a cooperative wireless network with multiple relays,
multiple eavesdroppers, and a transmitter-receiver pair to
improve the overall system security and confirmed the net-
work performance based on the achieved secrecy rate (SR)
and secrecy outage probability (SOP). Moreover, the authors
in [19] derived asymptotic and closed-form expressions for
SOP aiming to maximize the considered energy harvesting
for the case of partial/optimal RS approaches. In addition,
the first game-theoretic RS approach that enhances PLS by
selecting the optimal relay was proposed in [20]. Finally, the
authors in [21] investigated RS techniques for a cooperative
dual-hop network that uses the amplify-and-forward (AF)
protocol in terms of reliability and security.

In general, the effectiveness of RS depends on numerous
variables, including the availability and quality of channel
characteristics. In particular, due to the time-varying nature
of fading channels, there might be a time delay between
relay selection and data transmission, rendering CSI to be
outdated, which in turn degrades the overall network per-
formance [22]. To this effect, two approaches are capable
of addressing this problem: the simple approach is to use
outdated CSI when selecting the best relay; while the second
approach is to use the predicted CSI based on estimated
measurements when selecting the best relay [23]. It is recalled
here that by performing channel estimation, wireless com-
munication systems can obtain an accurate CSI [24]. There-
fore, researchers have developed several channel estimators,
including the least square (LS) [25], maximum likelihood
(ML) [26], and minimum mean-square error (MMSE) [27].
It is also noted that Jake’s tap-gain method has proven to be a
reliable choice for modeling Rayleigh fading channels [28].
In the same context, autoregressive (AR) and autoregressive
moving average (ARMA) methods were employed to repre-
sent the Rayleigh variables of a time-varying channel [29].
For instance, the authors in [30] predicted V2V channels
using a traditional low-complexity approach, i.e., an AR-
based prediction approach.

It has been evident that the demand for learning wire-
less networks has grown exponentially in recent years [31].
For wireless networks, machine learning (ML) has been
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proposed for spectrum sensing, resource allocation, and intru-
sion detection applications, to name but a few [31]. Therefore,
in order to meet the requirements of new wireless technolo-
gies and improve RS methods, intelligent relay nodes are cre-
ated by integrating ML into RS. For example, by combining
PLS, RS, and ML, the authors in [32] transformed the RS
problem into a multi-class classification problem, whereas,
the analysis in [33] transformed the RS approaches into a
prediction and decision-making problem. However, it must
be noted that the availability of a large amount of historical
data for training the ML algorithm is challenging, especially
in rapidly changing fading environments.

In cooperative networks, the RL agent chooses the best
relay in each time slot depending on the previous state
observation and the action-reward feedback from the com-
munication system. In this context, authors in [34] pro-
posed a single-agent RL-based RS scheme for WSNs.
Likewise, the authors in [35] employed unmanned aerial
vehicles (UAVs) to relay an on-board unit’s message and
improve the bit error rate (BER) of vehicular ad-hoc net-
works (VANETs) against jammers, using an RL framework.
In [36], the authors proposed a DQN-based RS scheme
that combines a deep neural network (DNN) with the typ-
ical Q-learning algorithm to minimize the outage proba-
bility (OP), whereas authors in [45] developed a decision-
based deep RL (DRL) approach to support RS as well as
to improve the overall system performance. In addition, [38]
considered an RS-based Q-learning approach to improve
energy efficiency, whereas [39] divided RS and power opti-
mization problems into two subproblems and solved them
with a hierarchical RL architecture aiming to maximize
the overall signal-to-noise ratio (SNR) and minimize the
corresponding OP. Finally, in [40], the authors developed
asynchronous DRL approaches to maximize the system
throughput, whereas the authors in [41] proposed a dual DQN
architecture to minimize the involved transmission delay.

B. CONTRIBUTIONS
Based on the above observations, this work proposes intelli-
gent predictive algorithms for RS that maximize the security
of vehicular wireless cooperative dual-hop networks in the
presence of outdated CSI. The main contribution of this work
is summarized below:
• WedesignDQN-RSS, which is a deep-Q-learning-based
RS scheme for WVNs. In DQN-RSS, an optimal relay
is selected from a plurality of relay candidates according
to the corresponding intercept probability.

• We develop a DQN-RSS-ARMA for our system model,
where the agent aims to use the estimated CSIs to
predict the new one, select the optimal relay and
then compare it with the DQN-RSS. The results show
that DQN-RSS-ARMA achieves lower intercept prob-
ability and thus higher secrecy capacity compared to
DQN-RSS.

• We compare the intercept probability of different
approaches for relay selection, such as baseline, and

FIGURE 1. The RS strategy in a wireless vehicular network (WVNs).

ARMA, as well as approaches based on different com-
binations, such as participating relays and past out-
dated CSIs.

To the best of the author’s knowledge, the listed contributions
have not been previously reported in the open literature.

The rest of the paper is organized as follows. The detailed
system model is presented in section II. Section III presents
the secrecy analysis of a cooperative model. Section IV
presents the proposed Markov decision process formulation
for relay selection. Section V illustrates the proposed intel-
ligent relay selection algorithm. Section VI and Section VII
present the performance metrics and discussions, and
Section VIII concludes the paper.

II. SYSTEM MODEL
A. NETWORK MODEL
As shown in Fig. 1, we consider a vehicular wireless sys-
tem with a source node (S), a destination node (D), and M
trusted relays Rm,m = 1, . . . ,M , in the presence of an
active eavesdropper. Any transmission for the S − D link
is possible only with the aid of one relay since a direct link
between S and D is not available. Each node in the network
is equipped with a single antenna and operates in half-duplex
mode, whereas all channels in the network are assumed to
experience independent Rayleigh fading.

We also let [d (k)i,m = [d (k)1,m, d (k)2,m, d (k)3,m] denote the distance

vector at time k , where d (k)1,m is the distance between the

source S and relaym, d (k)2,m is the distance between relaym and

the destination D, and d (k)3,m is the distance between the relay
m and the eavesdropper E . To this effect, we also naturally
consider that the distances d (k)2,m change when the vehicular
relays move. Therefore, the total distance matrix representing
the distances from S to the relays, from the relays to D, and
from the relays to E is defined by Dm,n

i , of size (M × N ),
i = 1, 2, 3, n = 1, 2, . . .N , m = 1, . . . ,M , column vectors
are d (k)i,m, at time k .
The communication between S and D is realized in two-

time slots. In the first time slot, S broadcasts the signal (X )
to M relays with a transmission power of PS , while in the
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second time slot the best relay m forwards the transmitted
information to D with a transmission power of PR.

B. CHANNEL MODEL
Throughout the paper the channel gain vector is defined by
g(k)i,m = [g(k)1,m, g

(k)
2,m, g

(k)
3,m] are the channel gains of the S-relay

m, the relay m-D, and relay m-E in time slot k , respectively.
The total channel gain matrix, which is composed of the
previous data (i.e., outdated CSI) in all links, is represented
by Gm,n

i , i = 1, 2, 3, n = 1, 2, . . .N , m = 1, . . . ,M at
time k , of size (M × N ), as described in (1), as shown at the
bottom of the page. The column elements of Gm,n

i at time k
are defined as

gm,n
i =

|hm,n
i |

2

(dm,n
i )a

, i = 1, 2, 3,

m = 1, 2, ..M , n = 1, 2, . . .N (2)

It is worth mentioning that hm,n
i

(k) = [ hm,n
1

(k), hm,n
2

(k),
hm,n
3

(k)] represents the channel coefficients of the S-relays,
relays-D, and relays-E , links respectively, in time slot k . The
channel coefficients include path loss, fading, and shadowing
effects, whilst a represents the associated path loss exponent.
Also, the system noise is modeled as additive white Gaussian
noise with zeromean and variance of σ 2. In the time instant k ,
the SNR of the signals transmitted from S-relays, relays-D,
and relays-E , are represented by a matrixγγγ of size (M×N ) in

(3), as shown at the bottom of the page. The entries of γγγ are:

γm,n
1

(k)
=

PS g
m,n(k)
1

σ 2 , γm,n
2

(k)
=

PR g
(k)
2

σ 2 , γm,n
3

(k)
=

PR g
(k)
3

σ 2 .

C. CHANNEL PREDICTION
In order to achieve reliable communication over channels
with rapid time-varying characteristics, it is essential to min-
imize feedback delays and estimation errors. In particular,
feedback delay causes CSI to become obsolete and degrades
the precoder performance, especially in fast time-varying
channels. This is also the case in wireless networks, such

as vehicle-to-everything (V2X), which are characterized by
dynamic environments and high mobility [42]. Therefore,
channel prediction has been proposed as a potentially effec-
tive solution to this problem.

It is recalled that channel prediction techniques can be
mainly classified into the parametric radio channel (PRC)
model, the autoregressive (AR) model, and the basis expan-
sion model (BEM) [43]. The PRC method represents a
time-varying channel as a sum of complex sinusoids. These
parameters are then estimated based on the known channel
coefficients and are used for channel prediction. Traditional
ARmethods, on the other hand, predict the channel as a linear
combination of the known channel coefficients using a linear
or nonlinear MMSE filter. Consequently, AR depends on the
correlationmatrix of the channel [44]. However, conventional
AR schemes are ineffective if the correlation function is
unknown or if it varies over time. To this effect, adaptive
AR schemes based on adaptive filtering techniques such as
recursive least squares (RLS), least mean squares (LMS), and
Kalman filtering have been developed to address this issue.

Based on the above, the best relay selected at time t accord-
ing to the outdated CSI may not be the best relay at time
(t + τ ) of data transmission. In [45], the degree of mismatch
is calculated by the correlation coefficient (ρo) between the
outdated channel (ĥn) at time t and the actual channel (hn)
at time (t + τ ), where 0 < ρo < 1. The expression for this
correlation function is given by:

ρo =
E{ĥnhn}√

E{|ĥn|2}E{|hn|2}
(4)

where (ĥn) is the obsolete channel with variance σn̂ and zero
mean, which can be expressed as

ĥn = σn̂

(
ρo

σn
hn + ϵ

√
1− ρ2

o

)
(5)

where ϵ is a random variable with a standard normal distri-
bution and zero means. Using the traditional Jake’s model
with the assumption that the delay between the outdated and

G =



g1,11 g1,21 · · · g1,N1 g1,12 g1,22 · · · g1,N2 g1,13 g1,23 · · · g1,N3

g2,11 g2,21 · · · g2,N1 g2,12 g2,22 · · · g2,N2 g2,13 g2,23 · · · g2,N3

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

gM ,1
1 gM ,2

1 · · · gM ,N
1 gM ,1

2 gM ,2
2 · · · gM ,N

2 gM ,1
3 gM ,2

3 · · · gM ,N
3


(1)

γγγ =



γ1,1
1 γ1,2

1 · · · γ1,N
1 γ1,1

2 γ1,2
2 · · · γ1,N

2 γ1,1
3 γ1,2

3 · · · γ1,N
3

γ2,1
1 γ2,2

1 · · · γ2,N
1 γ2,1

2 γ2,2
2 · · · γ2,N

2 γ2,1
3 γ2,2

3 · · · γ2,N
3

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

γM ,1
1 γM ,2

1 · · · γM ,N
1 γM ,1

2 γM ,2
2 · · · γM ,N

2 γM ,1
3 γM ,2

3 · · · γM ,N
3


(3)
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the current CSI is (τ ) and the maximum Doppler frequency
is (fd ), the ρo value is expressed as

ρo = Jo(2π fdτ ) (6)

where Jo(.) denotes the zero-order Bessel function of the first
kind. In addition, fd can be calculated according to:

fd =
v fc
c

(7)

where v is the vehicle speed, which in our case is between
(0-80) km/h, whereas fc denotes the carrier frequency and c
is the speed of light.

III. SECRECY ANALYSIS
Selecting a single relay m for information transmission from
candidate relays improves the secrecy capacity of the sys-
tem [46]. Therefore, in the present analysis, we select the
optimal relay for transmission, taking into consideration the
outdated CSIs. In particular, in the dual-hop communication
process, S broadcasts information to all relays in the first hop,
and then the selected relay m forwards the information to D
in the second hop. Due to the broadcast nature of wireless
communication, an eavesdropper could potentially intercept
the data transmitted by this relay m. Therefore, the received
signal at the mth relay for the first hop is written as follows:

ym =
√
PS g(k)1 X + nm (8)

Based on this, the signal received from node D and node E
during the second hop can be represented as

yD =
√
PR g(k)2 ym + nD (9)

and

yE =
√
PR g(k)3 ym + nE (10)

respectively.
Therefore, the channel capacity of the channel in time

slot k for the S-m link is given by

C (k)
S,m =

1
2
log2

(
1+

PS g
m,n(k)
1

σ 2

)
=

1
2
log2

(
1+ γ

(k)
1

)
(11)

Without loss of generality, we assume that the considered
cooperative system operates according to the AF relay proto-
col and that the S and D nodes are static, and has an ampli-
fication factor = 1. Also, all relays are moving in the same
direction but at different velocities. Finally, the eavesdropper
is active and we can locate it. Similar to [34] and [47], if the
relay m is assigned to cooperate, the channel capacities for
m-D and m-E are expressed as

C (k)
m,D =

1
2
log2

(
1+

γ
(k)
1 γ

(k)
2

γ
(k)
1 + γ

(k)
2 + 1

)
(12)

and

C (k)
m,E =

1
2
log2

(
1+

γ
(k)
1 γ

(k)
3

γ
(k)
1 + γ

(k)
3 + 1

)
(13)

respectively.

It is recalled that the secrecy capacity (Cs) and the intercept
probability (IP) are the two basic performance metrics for
PLS [13]. The achievable secrecy capacity is calculated as
the difference between the secrecy capacity of the legitimate
link and the eavesdropper link, namely

Cs = [Cm,D − Cm,E ]+ (14)

where Cs is the secrecy capacity, [x]+ = max (0, x). Based on
the above, it follows that the secrecy capacity can be readily
determined with the aid of (12), (13), and (14), yielding

Cs =
1
2
log2


1+

γ
(k)
1 γ

(k)
2

γ
(k)
1 + γ

(k)
2 + 1

1+
γ
(k)
1 γ

(k)
3

γ
(k)
1 + γ

(k)
3 + 1

 (15)

A. RELAY SELECTION
Based on the instantaneous end-to-end (EE) SNR of the
mth-relay in (12), the optimal selection policy activates the
m relay, where:

m = argmax
m∈M

γsmd

= argmax
m∈M

γ
(k)
1 γ

(k)
2

γ
(k)
1 + γ

(k)
2 + 1

(16)

with γsmd denoting the end-to-end (EE) SNR from S to D
via m. Notably, due to the mobility of the involved vehicles,
the instantaneous SNR used for RS is an outdated version
of (16). Therefore, our model predicts the CSI based on the
estimated values to select the optimal relay. In particular,
the proposed scheme selects the best relay m∗ as m∗ =
argmaxm∈M γ̂m, where γ̂m is the predicted CSI for the S-m
and m-D transmission.

B. INTERCEPT PROBABILITY
It is recalled that the intercept probability occurs when the
capacity of the main link drops below that of the wiretap
link. Therefore, when m is chosen as the optimal relay for
cooperative vehicular communications from (16), the inter-
cept probability based on (15) can be expressed as

P(k)m (D,γγγ) = Pr(max
m∈M

Cs < 0)

= Pr(max
m∈M

CmD < CmE ) (17)

where CmE denotes the channel capacity from the optimal
relay (m) to E. According to [47],P(k)m (D,γγγ ) can be calculated
as shown in (18)

P(k)m (D,γγγ ) =
M∏
i=1

Pr
( g1(k)g2(k)

1+ g1(k)g2(k)
<

g1(k)g3(k)

1+ g1(k)g3(k)

)
(18)

Without loss of generality, the fading coefficients g(k)i
are assumed to be independent and identically distributed.
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Therefore, similar to [R1] , P(k)m (D,γγγ ), can be written as
follows

P(k)m (D,γγγ ) =
M∏
i=1

Pr(g2 < g3) (19)

IV. MDP FORMULATION FOR RELAY SELECTION
According to the system model described in the previous
sections, the cooperative communication process is analo-
gous to the state transition process. To progress to the next
state (ŝ(k)), the system chooses an action (a(k)) and per-
forms it in the current state (s(k)). The state of the next time
is associated only with the current state and action; there-
fore, the RS problem is modeled as an MDP [48]. Notably,
an MDP is the best way to make decisions for stochas-
tic dynamical systems based on a Markov process (MP),
a large class of stochastic processes whose original model is a
Markov chain.

In this paper, DQN-RSS and DQN-RSS-ARMA are devel-
oped as two different agents for the RS process in a vehic-
ular cooperative network. The purpose of these agents is to
select the optimal relay given an outdated CSI in a vehic-
ular environment. In particular, DQN-RSS only considers
previously transmitted signals that contain outdated versions
of CSI, while DQN-RSS-ARMA employs ARMA-based
channel prediction in the reward function to evaluate past
and future versions of CSIs. Therefore, the reward-penalty
function in DQN-RSS-ARMA gives it the ability to predict
the channel based on the predictive behavior of the ARMA
model.

Fig. 2 presents the components of RL in the context of the
proposed framework, namely, state space (s), action space (a),
and the long-term cumulative reward (r), respectively.

A. STATE (s(k))
The system state at time k consists of the following parts:
1) the distance matrix Di = d (k)i , i = 1, 2, 3; 2) the SNR
signals γγγ with entries γ

(k)
1 , γ(k)

2 and γ
(k)
3 ; and 3) the intercept

probability P(k)m (D,γγγ). Thus, the state space can be written as
S = [D,γγγ,P(k)m (D,γγγ)] of size (N × 6M + 1), where M is the
number of relays, and N is the previous transmitted frames.
During the initial state setup, the system is in the

initial system state s(k)o , which is a tuple consisting of
[Do, γoγoγo, P

(k)
o (D,γγγ)]. In particular, Do and γoγoγo are obtained

when all relays are in the initial position before movement,
and P(k)o (D,γγγ) is the intercept probability resulting from this
initial setup. Finally, the system reaches the final state sf (k)
after convergence.

B. ACTION (a(k))
Based on the current state of the channel system, an action
must be selected for execution. This action is defined as

A = {a(k)}, k = 1, 2, 3, . . . ,K . (20)

where a(k) ∈ A = {0, 1, 2, 3, . . . ..,M} of size (1 × M ).
In particular, when a(k) = 0, it means that the system does
not transmit any data in time slot (k) (i.e., there is no direct
transmission). When a(k) = m, the best relay m is selected to
participate in cooperative communication in time slot (k).

C. REWARD (r (k))
In DQN, the definition of a reward function is extremely
important. To this end, the reward r (k), which is a function of
the received P(k)(m), varies depending on the state (s(k)) and
action (a(k)). Therefore, in this paper, we present two different
reward functions to evaluate their efficiency and robustness
against eavesdropping.

1) DQN-RSS FRAMEWOK
In this framework, the immediate reward function is defined
as the receiver’s instantaneous intercept probability for a
given state s(k) and action a(k), namely

r (k)(s, a) = exp(−P(k)(D,γγγ))− (csr λ) (21)

where csr is the cost of changing the selected relay, indicating
the degree of energy consumption for the different actions
based on the previous decisions, and λ is the transitions
between relays at time (k − 1) and (k) according to

λ =

{
0, a(k) = a(k−1)

1, a(k) ̸= a(k−1)
(22)

The choice of exp(.) is due to its concavity, which captures
adequately the system reward. Decreasing P(k)(m) causes the
reward function to grow rapidly.

2) DQN-RSS-ARMA FRAMEWORK
From Fig. 3, it can be seen that the reward function depends
on the intercept probability, (P(k)AR), taking into account the
behavior of the ARMA model. Specifically, the reward func-
tion compares the intercept probability of DQN-RSS-ARMA
with the ARMA model at each time (k) to consider both
outdated CSIs as well as the predicted ones. Whenever the
DQN-RSS-ARMA model outperforms or equals the ARMA
model, it is rewarded; otherwise, it is penalized. Therefore,
the reward function for the proposed system can be expressed
as follows:

r (k)(s, a) =


−P(k)(D,γγγ)+ 20− (csr λ), P(k)m > P(k)AR
−P(k)(D,γγγ)+ 10− (csr λ), P(k)m = P(k)AR
−P(k)(D,γγγ)− 10− (csr λ), otherwise

(23)

The proposed agents’ goal is to maximize the cumulative
reward by determining the best strategy π∗, which is typically
an approximation function with adjustable parameters that
map (a(k)) given (s(k)).

V. LEARNING-BASED RELAY SELECTION SCHEME
Despite the fact that dynamic programming techniques
can be used to solve MDPs and determine the optimal
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FIGURE 2. Proposed DQN-RSS framework.

FIGURE 3. Proposed DQN-RSS-ARM framework.

strategy, π∗(.), large MDPs result in a high degree of com-
putational complexity. In particular, the system states and
actions are discrete, and when an action is executed, the
system state changes rapidly. Researchers are increasingly
employing RL algorithms to overcome the constraint of
dimensionality in large MDPs [49]. RL is a goal-oriented
computing technique in which an agent interacts with an
unknown dynamic environment in order to learn how to
perform a task. The objective of the agent is to maximize
the task’s cumulative reward without being explicitly pro-
grammed and without human intervention [50].

In RL, the agent selects an action (a(k)) and executes it in a
given state (s(k)). When the environment accepts this action,
it moves to the next state (ŝ(k) = s(k+1)) as well as sends
a reward signal (r (k)) to the agent. Consequently, the agent
chooses an action (a(k+1)) based on the reward (r (k)). The
fundamental RL framework is presented in Fig. 4.

FIGURE 4. Basic components of RL.

In the proposed approach, the environment consists of the
structure described in Sec. II. The structure of the system
is dynamic and unknown at the beginning of each training
episode; however, it remains the same during the time steps
of each episode. In the proposed framework, shown in Fig. 3,
we develop a double-deep Q-network (DDQN) as a learning
agent algorithm to solve the RS problem in the presence of
obsolete channels. Nonetheless, when the DQN algorithm
attempts to approximate a large function, it has a tendency
to overestimate the action values. Therefore, this limitation is
solved by the idea of DDQN, which generalizes the problem
of approximating large functions and provides considerably
better performance. This type of agent was employed in our
proposed framework since the observation space is continu-
ous and the action space is discrete. The implementation of
the proposed DDQN algorithm is shown in Algorithm 1.
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As Q-network approximators, the DDQN agent imple-
ments two independent feedforward neural networks (FNN):
1) the action-value function approximator Q(s, a; θ ) and
2) the target action value function approximator Q(s, a; θ−),
where θ and θ− are the current and prior parameters, respec-
tively. To obtain an optimal strategy, θ and θ− are updated in
each iteration; however, π∗(.) can be achieved only with k →
∞. In particular, a target network is utilized to generate an
action, i.e., the optimal RS, while a Q-network is employed to
determine the Q-value of this action. As shown in Table 1, the
Q-network is composed of four dense (i.e., fully connected
- FC) layers, with a rectified linear unit (ReLU) activation
function, σ = log(1+ ex).

TABLE 1. DDQN critic network dimension.

In each time slot k , the agent (i.e., source node (S)) stores
its interactive experience tuple e(k) = (s(k), a(k), r (k), ŝ)
in a replay memory (buffer) D, which is defined as
D = (e(1), e(2), · · · , e(K )). The FNN parameter θ (k) is then
updated by randomly sampling the display memory D. This
demonstrates that given a state s(k), performing an action a(k)

in the environment, results in a reward r (k), and changes the
state of the environment to ŝ(k). The approximation of the
Q-value should be able to approximate the state-action value
function estimated by the DDQN. This state-action value
function is given by the Bellman equation as

Qπ∗ (s(k), a(k)) = Es

[
r (k) + γ max

a∈A
Qπ∗ (ŝ, â) |s(k), a(k)

]
(24)

where, â = a(k+1).
During training, the DDQN updates the weights

(i.e., θ and θ−) at the end of each time interval tominimize the
mean square error (MSE) of the target value in mini-batches
every J time slot as follows:

min
θ (k)

(
L(θ (k))

)
= min

θ (k)

(
Es,a[(yt − Qπ (s(k), a(k); θ (k))2]

)
(25)

where yt denotes the estimated function value at k when s(k)

is the current state and a(k) is the action performed, so yt is
written as follows:

yt = Es

[
r (k) + γ max

a∈A
Qπ (ŝ, â; θk−1) |s(k), a(k)

]
(26)

where 0 < γ < 1 is the discount factor. In training, stochas-
tic gradient descent (SGD) is used to update the weights.
In SGD, the weights are initialized randomly and updated
iteratively based on a learning rate η. The formula for updat-
ing the weights is expressed as:

θk = θk − η ∇ L(θ (k)) (27)

Algorithm 1DQN-Based RS Scheme for Outdated Channels
Initialize γ, η, A, D;
Initialize the Q-network with random weights θ ;
Initialize the target Q-network parameters by θ = θ−;
Initialize the first state s0;
For k = 1, 2, 3, . . . ,K do S node will broadcast the message
to all involved relays;
Select a(k) ∈ A by ϵ-greedy policy;
ReceiveD,γγγ and the intercept probabilities (P(k)m &P(k)AR) from
node D;
Obtain reward function (r (k)) for DQN-RSS from (21) and
DQN-RSS-ARMA from (23);
Update D as (D← D + {s(k), a(k),r (k) , s(k+1)});

For j=1,2,3,. . . .J do Select (s(j), a(j),r
(j)

, s(j+1)) from D
randomly;
y(j)← r (j) + γ maxa∈AQ(s(j+1), a(j+1); θ );
calculate θ via (27);
Update FNN weights by θ (k).
Optimal Policy π∗

VI. PERFORMANCE METRICS
In this section, we discuss the performance metrics, such as
convergence and intercept probability improvement that are
used to measure the performance of the proposed DQL-based
framework solutions for the RS problem, given the outdated
CSI in a vehicular network.

On the one hand, convergence is the number of episodes in
which the total targeted reward is achieved. The convergence
time increases as the number of relays (M ) increases since
both the size of the state space (i.e., the size of the input)
and the size of the action space (i.e., the size of the output)
increase. Table 4 shows that the input to the action space
increases linearly with the size of M , resulting in a linear
convergence time.

On the other hand, by using the intercept probability
expression given in (19), we obtained the improvement of the
intercept probability with variable system model parameters
to demonstrate the generalization of the optimal policy (π(.)),
obtained with the proposed RS agents.

VII. RESULTS AND DISCUSSIONS
Based on the performance metrics described in Sec. VI, this
section evaluates the performance of the proposed intelligent
RS solutions over the vehicular network.

Unless otherwise stated, the system parameters for the
proposed frameworks are listed in Table 2, while the RL
hyperparameters are depicted in Table 3. During training,
these hyperparameters are adjusted to achieve an optimal
strategy for RS agents. The impact of some key parameters
on the security of the proposed system is quantified and the
obtained results are compared with the benchmark solutions.
These results are obtained as an average of 200 runs.

The area of the simulation environment is a vehicular
network with dimensions of a lane (1000m × 20m) in
which S, D, M relays, and an eavesdropper are placed
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TABLE 2. System model parameters.

FIGURE 5. Example of the initial simulation scenario with M = 8 relays.

TABLE 3. RL hyperparameters.

randomly. Specifically, the S, D, and E are located at (0, 0),
(0, randi(1000)), and (randi(20), randi(1000)), respectively.
It is also assumed that the direct links, namely S − D and
S − E , are blocked by obstacles. We assumed that one D
node moves over time in the simulation area and that the used
mobility model for relay distriution is a random waypoint

TABLE 4. DQN-based approaches complexity.

FIGURE 6. Convergence time of the proposed frameworks as a function
of the number of vehicular relays M and previous data N .

(RWP) model with a velocity distribution of 0-80 km/h. Also,
we considered the traffic in the lane to be of a single direction.
The example of the initial simulation scenario with M = 8
relays is shown in Fig. 5. At each time step, the number of
relays and the positions of the D nodes change as well.
The path loss coefficient of the channels is assumed to be

a = 3. The transmit power of the (S) node and (M ) nodes
are assumed to be 20 dB. The power of the white Gaussian
noise is −10 dB. According to the IEEE 802.15.4 standard
protocol, we assume that the operating frequency for all nodes
is 2.4 GHz. The learning rate η and discount factor γ are
set to 0.6 and 0.9, respectively. Simulations were performed
to evaluate the performance of the proposed learning-based
predictive RS schemes; ARMA scheme; random RS scheme,
and conventional RS scheme.1

1The random scheme means that the RS policy is random.
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FIGURE 7. Performance convergence of the reward function for the proposed DQN-RSS approach with different
specifications.

FIGURE 8. Performance convergence of the reward function for the proposed DQN-RSS-ARMA approach with different
specifications.

A. CONVERGENCE
Fig. 6 depicts the convergence time for training the proposed
DQL-based frameworks as a function of the number of vehic-
ular relays (M ). It can be observed that the convergence time
for training also increases with the number of relays (M )
and previous data (N ). This is confirmed by the calculated
computational complexity, which is depicted in Table 4.

From Fig. 7 and Fig. 8, we can see that the proposed selec-
tion criteria achieve optimal policy (π∗) after convergence
in the vehicular cooperative communication system. This
confirms the convergence capability of the proposed models
(i.e., DQN-RSS and DQN-RSS-ARMA). In essence, the pro-
posed framework outperforms the ARMA approach with a
higher reward function and a lower intercept probability.

For example, Fig. 7 and Fig. 8 show the reward function
of the proposed RS model as a function of time during
training with M = [4, 14], csr = [0, 0.01], and N = 10,
for DQN-RSS and DQN-RSS-ARMA, respectively. The
reward function increases with time, as shown in the graphs,
indicating that the agents select the optimal relay and that
the proposed agent outperforms the autoregression method.
Therefore, it is evident that the overall security of the vehic-
ular network is improved. Further to this, after training the
proposed model we tested the agent selection in different
networks to determine the overall security and compared it
with other approaches, which confirms its effectiveness.

B. PERFORMANCE COMPARISON
Fig. 9 compares the average secrecy capacity and inter-
cept probability of different RS approaches, including ran-
dom, ARMA, max-min, and the proposed DQN approaches
(i.e., DQN-RSS and DQN-RSS-ARMA). As the number
of relays increases, it can be seen that the DQN-based
approaches achieve remarkable performance improvements.
For example, when M = 10, the secrecy capacity of the
proposedmethod is nearly 30%higher than that of theARMA
approach and almost 4 times higher than that of the max-min
selection approach. Moreover, the intercept probability of the
proposed approaches is almost 60% lower than that of the
conventional models. Fig. 9 also shows that the proposed
DQN-RSS-ARMA framework is better than the DQN-RSS
framework in terms of both secrecy capacity and inter-
cept probability. However, both of the proposed frameworks
exhibit better performance than the conventional approaches.
Consequently, the DQN relay selection approaches can effec-
tively improve the security of vehicular networks.

C. INTERCEPT PROBABILITY
Figure 10 illustrates a comparison of the intercept probability
of the proposed DQN approaches (DQN-RSS & DQN-RSS-
ARMA) for different M and varying N and csr . In addi-
tion, Fig. 10 demonstrates that the proposed framework

VOLUME 12, 2024 12433



E. M. Ghourab et al.: Secure Relay Selection With Outdated CSI in Cooperative WVNs: A DQN Approach

FIGURE 9. Performance comparison of different RS approaches, including Random, ARMA, max-min, and the proposed DQN approaches
(DQN-RSS & DQN-RSS-ARMA).

FIGURE 10. Comparison of the intercept probability of the proposed DQN approaches (DQN-RSS & DQN-RSS-ARMA) at
(a,b) when N = [1], [5], [10] for different M (2,8,12,16) and (c,d) when csr = [0,0.01,0.02] for different M (2,8,12,16).

(DQN-RSS-ARMA) archives a lower intercept probability
than the other frameworks when M or csr change. From
Fig. 10(a) and Fig. 10(b), it can be seen that for a given
numberM , the intercept probability decreases asN increases,
while for a large number of M (i.e., M > 10), the inter-
cept probability remains almost the same regardless of the
available past data. Thus, if a large number of relays (M) are
available in the lane, there is no need to consider large data
from outdated data. On the other hand, the intercept probabil-
ity decreases when csr increases and the number of vehicular
relays increases.

Fig. 11 shows the comparison of intercept probability per-
formance between the proposed frameworks and the conven-
tional ARMA given the change in available previous CSI
data. This figure shows the achieved performance when only

an outdated CSI is considered. It is observed that the pro-
posed DQN-RSS-ARMA outperforms both ARMA and the
DQN-RSS approaches. In particular, for a small number of
relays (i.e., M < 6), ARMA outperforms the DQN-RSS
approach, while this pattern is reversed for a large number
of relays. It is worth noting that the proposed approaches
behave identically as the number of relays increases. On the
other hand, Fig. 11(b) demonstrates the achieved intercept
probability when (N = 10). In this context, the ARMA
approach exhibits the lowest intercept probability for a small
number of relays, while the proposed approaches outperform
the ARMA approach when M increases. In conclusion, for
a small value of M , our proposed frameworks outperform
ARMAby almost 30%,while for a higher value ofM , ARMA
performs almost 5% lower than the proposed frameworks.
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FIGURE 11. Performance comparison of intercept probability between
the proposed frameworks and the conventional ARMA was given the
change in available previous data.

FIGURE 12. Performance comparison of intercept probability between
the proposed frameworks given the change in csr and available previous
data.

Fig. 12 shows the performance comparison of the inter-
cept probability between the proposed frameworks given the
change in csr and the available previous data. In Fig. 12(a),
we observe the corresponding behavior at csr = 0.01 and
N = [5, 10] over the available relays, while Fig. 12(b) shows
the performance when csr increases to 0.02. For a given
csr , the intercept probability decreases as N or M increases.
Also, for a given N , the intercept probability decreases as csr
or M increases. It is worth noting that the proposed DQN-
RSS-ARMA outperforms the DQN-RSS approach. There-
fore, if we include the predicted CSI in the reward when train-
ing the agent, the agent will be rendered a more experienced
decision at selecting the optimal relay.

VIII. CONCLUSION
The present contribution investigated the use of coopera-
tive communication with adaptive RS for WVNs as well

as proposed intelligent RS algorithms DQN-RSS and DQN-
RSS-ARMA, to improve the security of the physical layer and
select the optimal relay. In the proposed algorithm, we lever-
aged recent advances to formulate the opportunistic relaying
optimization as an MDP model and transform the secure RS
into a prediction and decision-making problem. A source
node collects the CSI from the environment and then sends
the integral system state to the DQN to derive the optimal RS
policy. The effects of increasing the number of relays (M )
and outdated CSI (N ) were analyzed to select the optimal
relay over the proposed schemes. The results confirm that
the proposed DQN-RSS-ARMA algorithm outperforms all
other RS schemes discussed in this paper in terms of lower
intercept probability and higher secrecy capacity. In future
work, we will consider blockchain ledgers to guarantee the
reliability and authenticity of the involved relays over more
complex channelmodels that aremore realistic in realWVNs.
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