
Received 5 December 2023, accepted 19 December 2023, date of publication 25 December 2023,
date of current version 29 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3346429

On-the-Fly Learning With Mixed-Mode Spiking
Neural Network and Passive Memristive Array:
Application to Neuromorphic Cameras
PIERRE LEWDEN 1, ADRIEN F. VINCENT 2, JEAN TOMAS2, AND SYLVAIN SAÏGHI 1,2
1CNRS@CREATE, Singapore 138602
2Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, F-33400 Talence, France

Corresponding author: Sylvain Saïghi (sylvain.saighi@u-bordeaux.fr)

This work was supported in part by the European Union’s Horizon 2020 Research Innovation Programme (Ultra-Low Power Event-
based Camera (ULPEC) Project) under Grant 732642; in part by the French National Research Agency (ANR); in part by the ‘‘Chaires
Intelligence Artificielle (IA)’’ Program (Green Artificial Intelligence (GrAI) Project) under Grant ANR-19-CHIA-0003; in part by the
‘‘Programmes et Équipements Prioritaires de Recherche (PEPR) IA’’ Program (Emergences Project); in part by the Programme DesCartes;
and in part by the National Research Foundation, Prime Minister’s Office, Singapore, under its Campus for Research Excellence and
Technological Enterprise (CREATE) Programme.

ABSTRACT The massive deployment of the Internet of Things (IoT) combined with the need to reduce its
impact on global energy consumption calls for the design of intelligent sensors. These sensors must be able
to process information in situ to reduce the amount of data to be transferred, and to perform computing at
low energy cost. Therefore, the design of intelligent sensors requires a compromise between performance
and energy consumption. Spiking neural networks (SNNs) are good candidates for achieving the goal of an
efficient intelligent sensor, as they use event-based computation. Interest for hardware implementation of
SNNs has bloomed since the first experimental observation of memristors in 2008. In this paper, we study,
by simulation means, the impact of the main technological parameters of Ferroelectric Tunnel Junctions
(FTJs) synapses and of analog Leaky Integrate-and-Fire (LIF) neurons on the system learning capabilities.
This allows us to determine which parameters are critical for the design of such systems and to suggest
mitigation solutions as well as guidelines on how to build a SNN-based smart vision sensor in the context of
unsupervised or reward-modulated learning. In particular, we show that splitting up the passive crossbar array
of memristors could help dealing with the detrimental effect of the input voltage offset of the postsynaptic
neurons.

INDEX TERMS Edge computing, memristors, passive crossbar, reward-modulated learning, spiking neural
networks, unsupervised learning.

I. INTRODUCTION
Artificial Neural Networks (ANNs) and Deep Learning (DL)
[1] have revolutionized machine learning in many fields
like healthcare, automotive, speech and visual recognition.
To attempt to achieve human performances and surpass them
on specific tasks [2], [3], ANNs have evolved into a much
more complex structure since their first implementation by
Rosenblatt in 1958 [4]. The past 60 years have seen the
birth of Deep and Convolutional Neural Networks (DNNs,

The associate editor coordinating the review of this manuscript and

approving it for publication was Hadi Tabatabaee Malazi .

CNNs) used in computer vision, which have added many
layers of computation to solve complex tasks. However, these
neural networks weremostly implemented onVon-Neumman
architectures, which are not built for the highly parallel tasks
that ANNs aim to achieve. To solve this problem, other
computational architectures such as Graphical Processor Unit
(GPUs) were diverted from their original purposes [5], before
processor units or hardware accelerators were built, such
as Tensor Processing Units (TPU) [6] or Vision Processing
Units (VPU) [7] dedicated to the optimization in terms of
power and speed of some of themathematical operations used
by ANNs.

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 146103

https://orcid.org/0009-0005-8311-8526
https://orcid.org/0000-0002-9770-4236
https://orcid.org/0000-0002-1414-2523
https://orcid.org/0000-0002-2960-6896


P. Lewden et al.: On-the-Fly Learning With Mixed-Mode SNN and Passive Memristive Array

FIGURE 1. Illustration and structure of theoretical visual smart sensor for
edge computing. It combines a DVS camera for the sensing element and a
mixed-mode SNN made of analog neurons and a crossbar array of
memristive synapses.

Spiking Neural Networks (SNNs) [8], another type of
ANN closer to the brain [9], [10], are expected to be
much more energy-efficient, like their biological counterpart,
making them good candidates for embedded systems or smart
sensors dedicated to enabling edge computing, where the
computation is carried out as close as possible to the acquisi-
tion of the data. Their computational framework, based on the
use of discrete electrical signals (events), is a very different
approach to that of the widely used CNNs using continuous
signals, thus leading to a number of different challenges
when targeting neuromorphic hardware implementation. This
energy-efficient idea raised the question of either convert
already-working ANNs to SNNs [11] or adapting the learning
rules used in those other neural networks. However, despite
the growing interest in SNNs, their actual applications are
limited by the sparsity of event-based sensors that can
natively communicate with them, for example the Dynamic
Vision Sensor (DVS) [12].
The interest in hardware spiking neural networks has

increased in recent years, leading to the construction of
dedicated chips as ‘‘neuromorphic processors’’, such as
TrueNorth [13], [14], Loihi [15] or other ‘‘neural emulators’’
[16] that can be used to deploy or emulate SNNs. However,
they are mostly developed as versatile chips that need to be
configured or tuned to work for a specific application. The
question of a purpose-built neuromorphic smart sensor with
on-line learning for dedicated applications made to optimize
power efficiency and implementation cost is still an open
topic, with many unanswered questions. These questions
include which neural network architecture to use, the type
of learning rules, and the technology used to implement the
neurons and synapses. While the origin of neuromorphic

systems was the use of analog component behaviors for
event-based computing, today’s systems are either mixed
(analog neurons and digital synaptic communications), like
BrainScale [17] and Neurogrid [18], or entirely digital, like
SpiNNaker [19]. However, the emergence of another type of
device in the 2010s, called the memristor, reshuffled the deck.

If neurons (the ‘‘computation units’’) are a critical part of
neuromorphic systems, synapses (the ‘‘memory points’’) are
actually one of the main remaining technological bottlenecks
as they are much more numerous than neurons (e.g., by a fac-
tor 1,000× to 10,000× in the human brain [20], [21], [22]).
Besides, emulating learning-capable synapses, for which
some form of synaptic plasticity is required, often severely
degrades integration density especially for silicon-based
synapses [23]. Memristors combine two of the main
properties of biological synapses: they are a memory point
and are intrinsically plastic. As well as their ability to emulate
synapses, we can add their nanometric dimensions, allowing
high integration in dedicated chips. We will not debate here
the merits of any particular memristor technology [24], as we
believe that each technology has its place depending on the
intended application, just as we now have several memory
technologies in the same digital system. Still, in this work
we have chosen ferroelectric tunnel junction memristors
(FTJs) because they offer interesting characteristics when
interfaced with an integrated circuit. We selected a threshold
voltage of the order of a volt, a resistance in the order
of a megohm (therefore a current of the order of a
microampere), and a ratio between Ron (lowest resistance
state) and Roff (high resistance state) that can be in the
order of a hundred (Roff/Ron≈100) [25], [26]. An M×N
crossbar array of nanoscale memristors can emulate a dense
synaptic connection layer between M presynaptic and N
postsynaptic neurons allowing high integrability (see Fig. 1).
One sometimes adds a selection transistor in series with
each memristor to make a 1T1M structure, which reduces
both sneak path currents and the current needed to drive the
array during programming events [27], [28]. However, such a
solution requires a significant amount of extra control signals
(for the transistors) degrading the integrability. That is why
for this work we have chosen to consider a passive crossbar
array of memristors, without any selection device, in order
to simplify manufacturing and to allow for higher integration
density. This choice also shifts the complexity of the system
realization to the microelectronics part.

In previous work, we defined by simulation a set of
hardware-friendly mixed mode unsupervised and reward-
modulated learning rules that enable learning of real-word
data without accelerating the task timescale [29], [30] of a
SNN, using a passive memristive array and analog neurons.
The present work aims to study the influence of different
parameters of a silicon neural network with ferroelectric
memristive synapses on the learning capabilities of such a
network in the context of the co-integration of an event-
based visual sensor with this neural network. Section II
presents the context of the study, i.e., the system block

146104 VOLUME 11, 2023



P. Lewden et al.: On-the-Fly Learning With Mixed-Mode SNN and Passive Memristive Array

diagram, the learning rules and the database. Section III
focuses on the memristors, detailing their model parameters
and then the influence of their initialization values and
the transition asymmetry between Ron and Roff values on
learning capabilities. Section IV studies the impact of a
few tunable parameters and the variability of some of the
microelectronic subcircuits on the network performance.

II. CONTEXT
A. GENERAL ARCHITECTURE
The type of low power smart visual system studied in this
work is composed of two parts:

• The ‘‘sensing’’ part for the data acquisition is achieved
through a dynamic vision sensor that asynchronously
outputs events according to the light variation that
each one of its pixels detects. The use of a dynamic
vision sensor is justified by its ability to natively emit
spikes preventing the need for encoding layers or any
algorithmic overhead.

• As our aim is to build a first demonstrator, and given
the difficulty of co-integrating FTJ memristors on chips,
edge computing is achieved through a fully connected
single-layer spiking neural network fed by the output
of the dynamic vision sensor to detect some learned
patterns as soon as possible.

Furthermore, we consider the following scenario where the
smart sensor learns once deployed (‘‘on-the-fly’’), meaning
that the smart part of the sensor will carry out the learning in
a local manner with data acquired in real time.

The general architecture of the smart sensor is shown in
Fig. 2. The edge computing part is composed of an all-to-
all analog spiking neural network with 1156 input neurons
(34 × 34) and 100 output Leaky Integrate-and-Fire (LIF)
neurons. The presynaptic neurons are predefined waveform
generators. When an event is received for the DVS, they
apply a waveform dedicated to inference and, when a training
phase occurs, they apply different waveforms depending on
the targeted change of weight (see Appendix C for further
details). On top of similar waveform generator capabilities,
the postsynaptic neurons (detailed in Section IV-A) also
include the electronic circuits required for implementing and
driving the LIF behavior.

This analog SNN is controlled by a Digital Control Block
(DCB), making it a mixed-mode architecture. The DCB,
a logical block introduced in previous work [29], [30],
collects the data (events) coming from the acquisition block
(sensor data) and the output events of the postsynaptic analog
neurons. Using this collected data, the DCB achievesmultiple
sub-functions to enable the sensor to learn and recognize data.
Some of those sub-functions serve:

• to determine which postsynaptic neuron fired using an
event arbiter that ensures that only one postsynaptic
neuron is chosen if more than one fired during the same
timestamp (see Appendix A);

FIGURE 2. General architecture of the smart sensor composed of a Digital
Control Block, an input layer of 1156 neurons, an output layer
of 100 Leaky Integrate-and-Fire (LIF) neurons and an all-to-all memristive
passive array.

• to trigger a predefined presynaptic waveform used for
inference according to the events coming from the
acquisition part;

• to trigger predefined presynaptic and postsynaptic
waveforms, according to the learning rules it implements
(see Appendix C);

• to disable a postsynaptic neuron if it did not pass the
labeling phase or should not be used.

The results presented in this article were obtained bymeans
of an in-house Python simulator. Appendix A describes the
main computation principles used in this software tool.

B. THE DATASET
As the aim of this work is to determine through simulation all
the parameters and guidelines to follow before implementing
the actual sensor, a dataset derived from a dynamic vision
sensor is needed. We use the N-MNIST dataset generated
by filming a MNIST handwritten digits dataset with a
DVS performing 3 successive saccades [31]. This dataset
is composed of 60,000 training samples and 10,000 test
samples for 10 classes (digits from 0 to 9).While each sample
contains two polarities of events (ON/OFF) depending on
the perceived light variation (increase/decrease), our study
limits itself to the ON events to reduce the number of events
needed for computation and the number of inputs needed,
as the inputs of our spiking neural network only use one
type of event. Furthermore, as the task we aim to achieve is
to only recognize the digits, we only feed into our network
the first 100ms, corresponding to the first saccade of the
sensor used to generate the dataset. Indeed, while each sample
corresponds to a single digit, some studies have seen the
different saccades as different classes (or sub-patterns) [32],
as the pixels composing the digits are not in the same general

VOLUME 11, 2023 146105



P. Lewden et al.: On-the-Fly Learning With Mixed-Mode SNN and Passive Memristive Array

location due to the movement. This can become a challenge
for very low power architecture that does not go through
multiple layers with convolution and pooling to remove the
location dependence such as ours, which only uses one all-
to-all layer. Thus, each saccade is seen as a different class,
leading to either a reduction in the number of available output
neurons per class, or an increase in the overall number of
outputs. For our task, this data trimming (ON events only, first
100ms) of the original dataset leads us to reduce drastically
the number of events fed into the SNN. Removing the OFF
events, especially, should lead to less activity used and thus
less power used when computing the sensor information.
An example of such a N-MNIST sample (with our data
trimming) is shown in Fig. 3.

Finally, as the aim in this work is to recognize the digit as
fast as possible, when a postsynaptic neuron fires, the next
sample is given even if there is still data in the on-going
sample that was not consumed by the spiking neural network.
Doing so also prevents another kind of similar problem that
leads to using only the 100ms. As the perceived digit is
moving (relatively to the frame, as it is the camera that moves
for this dataset), the digit appears at multiple and slightly
different locations over the 100ms, as can be seen in Fig. 3
where the digit appears at different locations every 10ms,
which, in a very simple system, would most likely lead to
more sub-classes. Thus, our system will learn to recognize
the digit at the beginning of the camera displacement.

FIGURE 3. N-MNIST sample with our data trimming. For each image, the
events have been accumulated over a 10 ms time-window. The first and
last time-windows correspond respectively to the beginning and end of
the mechanical movements (camera displacement) leading to a
decreased number of events.

C. LEARNING RULES
To enable the sensor to learn by itself in a local manner
with actual data while respecting the idea of low power
consumption, one must define learning rules that do not
require a lot of computation to be implemented. Unsupervised
learning using only local learning rules (rules only using
the activity of the neuron connected by a synapse) is a
prime candidate, as no information about the actual weight
is needed, meaning that in our system, no circuit dedicated
to acquiring the values of the memristors’ conductances is
needed.

Because we intend to use a short inference window
(called TLTP, around a few microseconds) to stimulate the
postsynaptic neurons while keeping power consumption low,
we cannot effectively learn the N-MNIST dataset with the
standard STDP (reinforce the events falling into the inference
window and depreciate all the others), as only a sparse
number of input events fall into this time window [29]
for the samples used, which come from a slow mechanical
movement (relatively to the inference time window). These
few coincident events are not sufficient to discriminate or
recognize a digit. To solve this problem, in our previous
work we introduced a type of unsupervised learning ruled
called iPjD, where, when a postsynaptic event occurs, all
the connected synapses that transmitted at least i presynaptic
events are potentiated (iP) and those that fired fewer than
j events are depreciated (jD). This learning rule uses one
memory cell per presynaptic input stored in the DCB, called
Nfire, which registers for each input how many presynaptic
events were emitted per input since the last postsynaptic
event occurred. This removes the inference time window
mismatched with the event-based data issued by the DVS.

These rules allow the system to learn while keeping the
learning algorithm overhead to a minimum thanks to their
simplicity, as they only require knowledge of how many
events were emitted recently by the presynaptic inputs.
Building SNNs using unsupervised or reward modulated
learning rules is encouraged by results in similar works [33],
[34], [35] using the sign of the pre and postsynaptic time
delays instead of the number of presynaptic events.

In this work, the unsupervised rule 1P1D, where only a
1-bit memory is needed per input, is used, as adding more bits
with the trimmed dataset only decreased performances [30].
This rule potentiates synapses connected to inputs that fired
at least once and depreciates those that had never fired since
the last postsynaptic event. In addition to the unsupervised
1P1D rule, we also use a set of reward modulated rules
introduced beforehand, which change the applied learning
rule depending upon the sample class that a postsynaptic
neuron fires on, as illustrated in Fig. 4. These rules can also be
called ‘‘weak supervision’’, as they do not need to compute
any kind of error or need to acquire the value of the synapses,
unlike standard back-propagation algorithms.

In this work, we consider two additional learning rules
given in Fig. 4 to allow some supervision in the system. The
Rγ 1P1D learning rule applies a fraction of the unsupervised
reward rule 1P1D opposite if a neuron fires on the wrong
class, while R∅1P1D consist of doing nothing (no weight
change) for a wrong class.

D. LABELING AND PERFORMANCE
To define the performance of the smart sensor after a training
phase, the postsynaptic neurons must have a defined label (to
which class they are sensitive) to compute the performances
in a test phase where all the postsynaptic neurons that
successfully learned something are put in competition with

146106 VOLUME 11, 2023



P. Lewden et al.: On-the-Fly Learning With Mixed-Mode SNN and Passive Memristive Array

FIGURE 4. Unsupervised and weakly supervised learning rules. According
to the value of the Nfire memory cell, when a postsynaptic neuron fires,
the sign of the synaptic weight change is decided. The weak supervision
rules presented here correspond to a fraction of the reward learning rule
opposite (Rγ ) or simply a skip of the weight modification (R∅).

each other. In the case of unsupervised learning, the question
of the postsynaptic neuron labels is unavoidable. Instead
of presenting the training dataset a second time without
modifying the weights to determine which neuron is sensitive
to which class, we use a simple and economical heuristic
method using the latest outputs of the networks in the training
phase to prevent any unnecessary power consumption. Using
the outputs obtained in the training phase:

• If a postsynaptic neuron fired fewer than 50 times
(among the 60,000 samples), it is disabled and will not
be used in the test phase.

• If in the last 50 accounted events of a postsynaptic
neuron, one class fired the most and represents more
than 1/Nclass, it is taken as a label. If more than one class
fired the most and the same number of times, the neuron
is disabled and will not be used in the test phase.

In the case of weakly supervised learning, this heuristic
can cause a small number of output neurons to get labels that
are not the ones that were targeted, a phenomenon we called
mislabeling. If a mislabeling occurs on a postsynaptic neuron,
we still force the label to be the one we wanted to learn.
This forced labeling did not show any significant difference in
terms of performance when we compared the two versions in
the reference situation. This forced labeling only takes place
when one wants to supervise (impose) the output label. The
results in this work for the rules Rγ 1P1D and R∅1P1D are
given using this method.

E. PERFORMANCE OF THE REFERENCE SITUATION
The purpose of the sensor we aim to create is to be a low-cost,
event-based smart sensor that can execute on-line learning to

recognize digits in our study case. As it is aimed towards low-
cost implementation and power efficiency, the architecture
and the learning rules it implements were kept as simple as
possible. This choice involves acknowledging a certain trade-
off between:

1) The cost of the sensor in terms of power and
implementation cost.

2) The recognition rate we can obtain.
Thus, while we expect the sensor to be able to recognize
the digits, we cannot expect the results obtained to match
the performances (recognition rate) of state-of-the-art CNN
architectures implemented on GPUs.

While the details of the reference parameters and their
choices will be given in Section III for the ferroelectric
devices and in Section IV for the neurons, in Table 1 we
give the reference results we obtain in this paper with our
architecture. The results are averaged for five sets of random
(uniform law) initial synaptic weights for the three learning
rules of interest.

TABLE 1. Results of our reference situation for the three learning rules
for 5 sets of random initial synaptic weights.

From these reference results, we first note that the architec-
ture is indeed able to recognize the digits, as it is substantially
above a random guess when discriminating Nclasses =
10. Furthermore, as expected, the weak supervision greatly
outperforms the unsupervised learning, while in the case of
R∅1P1D it should consume less power because it does not
go through a weight change when a postsynaptic neuron fires
on the wrong class. The rule Rγ 1P1D should have a power
consumption in between 1P1D (unsupervised) and R∅1P1D
as it only changes a subset of the weights if a neuron fire
on the wrong class to depreciate them. One might argue that
these results are not as high as those from other works [32]
with very few layers, however:
• We showed in our previous work [30] that adjusting the
parameters (learning rate) and increasing the number
of outputs allows us to increase the recognition rate,
meaning that the reference situation does not represent
the maximum possible recognition rates. But doing this
will have consequences in terms of implementation cost
and power consumption.

• We chose to have lower performances for a higher level
of integration and to consume less power. This is the
trade-off between performance and power consumption
that we mentioned previously.

III. FTJ MEMRISTIVE ARRAYS AS SYNAPTIC MATRICES
Ferroelectric Tunnel Junction (FTJ) memristors can be made
using different ferroelectric materials [36], [37] and will,

VOLUME 11, 2023 146107



P. Lewden et al.: On-the-Fly Learning With Mixed-Mode SNN and Passive Memristive Array

depending on their size and the interface materials, show
different weight ranges and have different modification
parameters (modification threshold, minimal pulse width
to change them, etc.). The conductance change of these
devices can be achieved through the repetition of fixed
amplitude impulsions of a short time width of a few hundred
nanoseconds [37], or even under the nanosecond [38].
The high synaptic conductance state that will consume the
most current when inferring data can be around a few
microsiemens while having physical dimensions of a few
hundred nanometers [26], [37], making these devices ideal
for fast, low power and highly integrable applications.

For our application, we consider the progressive weight
change that can be achieved by this repetition of short
programming pulses [25], [37] that will be applied at every
training phase, making the system and the synapses able to
change (learn) progressively without being restrained by a
specific learning time window thanks to our learning rules.
As we do not wish want to restrict ourselves to a specific
technology of ferroelectric memristor (stack of materials
used), the learning rule we use is a synthetic version that
only captures the general behavior of the synapses. One can
expect such a system to be resilient to synaptic variability as
suggested in the literature [39].
In this section, we study two important issues for the

passive memristive crossbar array. The first one concerns the
impact of the asymmetrical behavior between the increase
and the decrease in the memristor resistance on the learning
performance that can be intrinsic to the technology (see
Fig. 1) or forced by adapting the waveforms used. The second
one focuses on the impact of different initialization weights
on the capabilities of learning.

A. SYNAPSES MODEL
We assume that the weight modification is achieved through
the application of repetitive fixed impulsions, as it has
been observed in some ferroelectric memristor technologies
if those impulsions are below a negative device writing
threshold Vthpot to increase the conductance, i.e., the synaptic
weight (assuming Vthpot ≤ 0), or above the positive device
writing threshold Vthdep to decrease the conductance (assum-
ing Vthdep ≥ 0). These two thresholds Vthpot and Vthdep (see
Fig. 1) define the amplitude range

[
Vthpot ≤ 0;Vthdep ≥ 0

]
of

the possible amplitudes that can be applied without changing
the synaptic weights (conductances), which is especially
important for the inference phase but also for the weight
modification phase of a passive memristive array. In our
architecture, to achieve the weight modification of a device
in a crossbar, the presynaptic and postsynaptic neurons
are required to simultaneously trigger specific waveforms,
as shown in Fig. 5.

This method allows us to modify only the memristor of
interest by splitting the voltage between the presynaptic and
the postsynaptic connections. Using this one third/two thirds
method, the memristor that will be modified will see the full

FIGURE 5. Example of the voltages used to perform inference or modify
the synaptic weights of one memristor (dashed orange area) in a
3 × 3 passive array. The PRE and POST terminals indicate the crossbar
lines and columns towards the presynaptic and postsynaptic neurons.

programming voltage Vpot or Vdep to increase or decrease
the weight, while the other memristors in the array will only
see one third of the programming voltage. This ensures that
the other synaptic weights are not modified, while providing
more margin in the maximum impulsion amplitudes that
can be used to change a synaptic weight compared to a
half-voltage programming scheme. This method makes three
assumptions:

1) All the presynaptic and postsynaptic connections of the
crossbar are maintained to a potential at all times with
a resting value of Vmid .

2) The voltages Vpot and Vdep are higher than their
respective writing thresholds (Vthpot and Vthdep) for the
memristive device.

3) ±Vpot/3 and ±Vdep/3 are lower than the writing
thresholds of the memristors in the passive array.

These three conditions must be fulfilled to be able to
change the synaptic weight of interest. Finally, using this
method, not all the afferent weights can be increased or
decreased at the same time for a postsynaptic neuron,
leading to a minimum of two writing phases. Furthermore,
maintaining a voltage on every presynaptic and postsynaptic
line (see Fig. 5) is also necessary to reduce as much
as possible any sneak path current (uncontrolled/unwanted
current flowing inside the crossbar).

To describe in our simulation the modification triggered
when a postsynaptic fires while not restricting us to a very
specific memristive implementation, we use a simple self-
limiting model for the conductance change 1G given in
Equation (1), which qualitatively fits the behavior of several
memristive technologies where Go is the current synaptic
conductance, Gmin is the minimum possible conductance and
Gmax is the maximum possible conductance.

146108 VOLUME 11, 2023



P. Lewden et al.: On-the-Fly Learning With Mixed-Mode SNN and Passive Memristive Array

Apot and Adep are the potentiating and depression learning
rates which may depend on the waveform duration or
amplitude applied on the memristor (Vsyn = Vpre-Vpost ).

1G =


+Apot × (Gmax − Go) for Vsyn ≤ Vthpot
−Adep × (Go − Gmin) for Vsyn ≥ Vthdep
0 otherwise

(1)

B. THE LEARNING RATES ASYMMETRY
The conductance range we use in our simulations
([Gmin = 10 nS;Gmax = 1 µS] reported in Appendix B
Table 5) was chosen as the reference situation. It is based
on the possible values that can be achieved by ferroelectric
memristors, as these are fast and highly resistive devices,
thus limiting the overall energy consumption. Still, lower or
higher synaptic values could be used assuming that some of
the neuron parameters are adapted, as will be discussed in
Section IV. In our simulations, unless specified otherwise,
conductance values are randomly initialized from a uniform
distribution between Gmin and Gmax . The learning rates Apot
and Adep are a more open question as their value depends
on the memristor technology and the waveform (amplitude,
width) used to change the conductance. However in our
application case, there are two elements that can give a
general idea of their effective range:

1) IN CASE OF VERY LOW LEARNING RATES
Very low learning rates (Apot and Adep ≤ 3.33% for example)
will likely lead to the need for more train samples or the
use of multiple epochs of a dataset (number of presentations
of the full train dataset to the network) for the system to
fully specialize and finish learning. Furthermore, such a low
learning rate also assumes that the memristors implemented
in the architecture can be modified with a high level of
precision, without any means of acquisition to tune them in
our case.

2) IN CASE OF VERY HIGH LEARNING RATES
Very high learning rates (≥ 50% for example) might not
be achievable due to the nature of the memristor passive
crossbar. Depending on the technology, a high learning rate
might be linked to a higher writing amplitude or longer
impulsion time width. Indeed, in a passive memristive
crossbar, the possible writing amplitude is limited by the
threshold writing voltages of the memristive devices, as the
other devices that are not being updated will see a residual
amplitude that needs to be lower than the writing threshold.

An example of the synaptic weight evolution with our
synthetic rule is shown in Fig. 6.

To see the impact of these learning rates for the learning
rules 1P1D (unsupervised), R∅1P1D and Rγ 1P1D, we run
the simulations for 5 sets of random (uniform law) initial
synaptic weights. Fig. 7 shows the average performance
obtained for the three learning rules for different values of
Apot and Adep, where the red square area locates the reference
situation, presented in Section II-E, and the green square

FIGURE 6. Weight evolution using different pairs of learning rates
(Apot , Adep) of a single synapse when applying 200 consecutive
potentiations followed by 200 depressions.

area shows where the maximum averaged learning rate was
obtained.

For the three learning rules, we can see that an asymmetry
between Apot and Adep in favor of Apot gives better
performances for the chosen task (recognizing N-MNIST
numbers), as the maximum averaged performances for every
learning rule is when Adep is at 3.33% (minimum value
tested) and a Apot at 13.33% for 1P1D, 16.66% for R∅1P1D
and 10% for Rγ 1P1D.

As some FTJ memristor technologies can naturally present
an asymmetry in favor of Apot to increase the conduc-
tance [25], the fact that our system handles an asymmetry in
favor of Apot better than one in favor of Adep is encouraging
for an actual implementation using those devices.

The rule Rγ 1P1D that generally yields better results for
low values of Adep shows a sudden drop in performances,
down to 0% (fail-stop condition) when Adep is too high.
This fail-stop condition stops the simulated architecture if,
for 50 successive samples, the architecture did not fire any
output events. This can be explained by the behavior of
the punishment rule Rγ 1P1D, which decreases all weights
that contributed to charging a postsynaptic neuron learning
a wrong class. As multiple pixels are common between the
different classes, if those common pixels are decreased too
strongly (after multiple depressions due to the punishment
rule), the neuron will not be able to charge enough until it
is unable to fire any longer.

The rule R∅1P1D yields globally the best performances,
with a strongly degraded performance when the learning
rate asymmetry is in favor of Adep (weights are strongly
decreased). Furthermore, it is the rule that theoretically
consumes less current, as when a neuron fires on the wrong
class, there is no programming phase.

The rule 1P1D works best with a small asymmetry in favor
of Apot and low learning rates.

The simulations carried out for this paper used identical
learning rates for all the synapses in the system. However,
in a real implementation, it is unlikely that every memristive
device will demonstrate the same learning rates. To see
the impact on the system’s performances, we use randomly
chosen learning rates Apot and Adep between 6.66% and
13.33% (around the reference situation) using a uniform rule

VOLUME 11, 2023 146109



P. Lewden et al.: On-the-Fly Learning With Mixed-Mode SNN and Passive Memristive Array

to see the impact of such behavior. The range of these learning
rates is depicted by the purple area in Fig. 7. To see the effect
of such a situation, we run 5 sets of simulations for different
initial synaptic weights and randomly chosen learning rates
for the 3 learning rules of interest. The results obtained are
given in Table 2.

TABLE 2. Simulation results for the 3 learning rules obtained with 5 sets
of random initial synaptic weights and the variability over Apot and Adep.

As the results obtained with or without the learning
variability are close, we can conclude that the architecture in
itself is resilient to such a behavior, which is encouraging as
having devices with the exact same learning rates is unlikely
due to device variability. Our results are consistent with
results from other works that mention the resilience of spiking
neural networks to synaptic variability [39].

C. INITIALIZATION OF THE MEMRISTIVE ARRAY
When deploying the neuromorphic system for its first use or
for a new task, the question of the initial synaptic weights
must be addressed. The reference situation and most of the
simulations presented in this work give us an estimate of
the smart sensor’s behavior with synaptic weights initialized
in a random fashion with a uniform distribution. With a
minimalist architecture such as ours that do not have a
complex acquisition and tuning system, this kind of weight
distribution seems difficult to achieve. A starting situation
that is simpler to implement as it should not require any
weight measurement unit to be added, relies on the idea of
starting from a simple reference situation like a checkers
pattern, where half of the weights are connected to a
postsynaptic neuron close to their minimum or maximum
values. This initial situation can be achieved by triggering
multiple times the learning phase over a dedicated pattern
that we want to learn. However, having (or setting) half of the
synaptic weights at their highest conductance weight would
lead to a high power consumption, as the more weight needed
to be in their ON state, the more current would be needed in
the inference or training phase. Thus, we considered different
initial patterns where only memristors chosen on a periodic
basis among the number of inputs would be set to their highest
value Gmax (yellow in Fig. 8), while all the others are set to
their minimum conductance values Gmin (black in Fig. 8).
Fig. 8 shows different initialization patterns set for every

postsynaptic neuron (initial conductance/sensitivity map) and
the results obtained after training the SNN using these initial
patterns. The patterns used correspond to synaptic weights
set to their maximum Gmax value following a chosen period
between 2 (half of the memristors set to Gmax) and 10 (every

10th memristor set to Gmax), while all the other weights are
set to their minimum value Gmin.

From the results we obtained with different initializing
patterns, we can observe that the lower the number of
synapses in their high conductance state (yellow), the more
the learning rate drops. Indeed, if too many synaptic weights
start in a low conductance state, some postsynaptic neurons
can end up in a situation where they are unable to fire due to
low synaptic currents.

We can see that having 1 device set to Gmax every
3 memristors (33.33% of the synapses, period 3) gives
very similar results after 1 epoch compared to the reference
situation (see Table 1). We can also observe that for some of
the initialization patterns, some simulation ended as failures.
This means that the simulation has ended up with weights that
do not stimulate the postsynaptic neurons enough to fire for
50 consecutive presented samples.

To go slightly further, we also consider setting a percentage
(33.33%) of randomly chosen inputs that will have synapses
at their maximum values, while the other inputs are connected
to a synapse at its minimum conductance, instead of using
a forced pattern. From our results given in Table 3, and we
can see that one of the simulations for Rγ 1P1D ended in the
fail-stop condition. Indeed, choosing a random distribution
of the initial synaptic weights with only a small fraction of
them not in a low conductance state increases the chances of
starting the system with a distribution of weights where the
weights set in their high conductance states are not connected
to the input where the useful data will be located, leading to
postsynaptic neurons being unable to charge enough to fire
and learn. This is the same reason why some of the fixed
initialization patterns led to failure.

TABLE 3. Simulation results for the 3 learning rules obtained with 5 sets
of initial synaptic weights with a randomly chosen percentage of input
set to Gmax with the rest set to Gmin. The patterns are the same for each
postsynaptic neuron.

To seek to prevent this situation where synaptic weights
do not permit the postsynaptic neurons to fire often enough,
one can fill the presynaptic Nfire memory with a pattern of
choice (which may be different from one postsynaptic to
another), then trigger the postsynaptic neuron of interest to
force it to learn a initializing pattern. This method relies on
the existing learning protocols inside the DCB, and only a
small logic overhead to allow the filling of Nfire and of an

146110 VOLUME 11, 2023



P. Lewden et al.: On-the-Fly Learning With Mixed-Mode SNN and Passive Memristive Array

FIGURE 7. Averaged performances for different learning rate combinations obtained after 1 epoch. The red area represents the results of the reference
situation. The green area represents the location of the maximum learning rate. The purple area represents the range of the uniformly distributed Apot
and Adep for the results given in Table 2. The color bars are filled up to the (average) maximum learning rate obtained for the learning rule.

FIGURE 8. Results obtained with the network starting with different
initial synaptic weight patterns. The pattern shown is the same for every
postsynaptic neuron in the network. Yellow represents synapses at Gmax ,
black represents synapses at Gmin.

additional memory containing the initialization pattern would
be required.

To verify the impact of this kind of initialization, we define
the following test in simulation using a reduced architecture

(30 postsynaptic neurons instead of 100, as we will learn only
3 classes):

1) Randomly set the weights to start the simulation.
2) Initialize each postsynaptic neuron by triggering the

learning phase multiple times when the Nfire memories
are filled according to the initialization pattern for
every postsynaptic neuron.

3) Learn a subset of the N-MNIST (digits 5, 6, 9).
4) Initialize each postsynaptic neuron with the initializa-

tion pattern (same as step 2).
5) Learn a different subset of the N-MINIST (digits 0,

1, 4).
6) Initialize each postsynaptic neuron with the initializa-

tion pattern (same as step 2).
7) Learn the previous subset of the N-MINIST (digits 5,

6, 9) to ensure that we can retreive similar performances
to those obtained previously.

The results we obtained with this protocol are shown
in Fig. 9 where, for one set of initial synaptic weights,
the conductance map of the first postsynaptic neuron is
shown and the corresponding recognition rate of the reduced
architecture for each learning rule is given. Using this
method, the time required for an initialization will be the time
to fill theNfirememories plus the number of times the learning
phase is triggered times the number of postsynaptic neurons
if they are all initialized sequentially. In simulation we only
triggered 25 programming phases to learn the initialization
pattern, which is enough to make the previous sensitivity
maps appear, but not enough to make them completely
disappear, meaning that 750 training phases were needed for
this reduced architecture (only 30 postsynaptic neurons) to
initialize it.

Despite not fully erasing the previous sensitivity maps
beacause not all the weights after the initialization are at

VOLUME 11, 2023 146111



P. Lewden et al.: On-the-Fly Learning With Mixed-Mode SNN and Passive Memristive Array

FIGURE 9. Results obtained for 1 set of initial synaptic weights with the
reduced architecture using the initialization process pattern ‘Period=3’.
The conductance matrix of the first postsynaptic neuron is shown with
the resulting Recognition Rate of the full SNN (3 classes, 30 postsynaptic
neurons).

their min or max values (not visible in Fig. 9), as we do
not trigger enough training phases to reach the minimum
or maximum conductance states for every synapse, we do
achieve similar recognition rates between steps 3 and 7,
meaning that our programming protocol would allow us to
change the application of a deployed sensor even if it was
used for a different task. Of course, if one wants to completely
forget the previous task, one can simply increase the number
of training phases used to program the initialization pattern,
in the knowledge that this will require more time and power.

Finally, it is worth mentioning that the initialization phase
is not linked to the learning rule that will be used, as no
inference is performed. Indeed, even if an inference was
used to fill the Nfire memory, as the same pattern is used to
program the neurons one by one, the neuron can only fire on
a ‘‘correct’’ class.

IV. DESIGN CHOICES AND LEVERAGES
The chosen spiking neural network is a single all-to-all layer
with 1156 inputs (34 × 34 to match the dataset shape)
and 100 output neurons connected through a memristive
synaptic crossbar array. While the previous section addressed
the synaptic array, how to use or initialize it and what
impact its behavior and characteristics would have on the
overall smart sensor, this section focuses on the impact of
the chosen neuron parameters on the SNN performance. The
SNN has two types of analog neurons, presynaptic ones that
will stimulate the synapses according to the data from the
acquisition part, and postsynaptic neurons that will classify
the data. Furthermore, both presynaptic and postsynaptic
neurons apply dedicated waveforms when a weight needs to
be modified for training or initialization (see Appendix C).

To progress from the model of the sensor to an actual
implemented architecture, one must first define the actual
parameters that will be used. Instead of running multiple

random batches of simulations to find a working situation,
in this part, we consider the main neuron parameters and their
restrictions used to determine the working reference situation
while looking at the impact some of those parameters can
have on performances.

Table 5 in Appendix B contains the reference values of the
spiking neural network parameters.

A. POSTSYNAPTIC NEURONS MODEL USING A CCII+
As the target of our simulations is a hardware implementation
of the studied sensor using analog neurons and synapses, our
output neuron model is defined by an electrical circuit shown
in Fig. 10. The values of its parameters are constrained by
physical values.

FIGURE 10. Postsynaptic neuron model. The Vpost unit constantly applies
a potential Vmid unless a potentiation (pot) or depression (dep) signal is
received to apply dedicated weight modification waveforms. Both signals
pot and dep are driven by the DCB unit. POST i represents the connected
column of the synaptic array where all the memristors connected to the
same postsynaptic neuron are electrically connected.

The chosen neuron model is a Leaky Integrate-and-
Fire (LIF) neuron, a variation of an Integrate-and-Fire
neuron which is the least complex spiking neuron model
to implement [40]. Therefore, this LIF neuron model is
ideal for low-cost and efficient computation. The ‘‘Leaky’’
part is assured by a current source (transistor-based circuit)
instead of a classical resistor, allowing the use of adjustable,
very low-discharge current without using too much surface,
because the lower the discharge current is, the more surface
a resistor would take up in an integrated circuit. The
‘‘Integrate’’ part is assured by an analog capacitor, while
the ‘‘Fire’’ part is assured by a comparator circuit that
emits an output event if the membrane potential Vmembrane
reaches Vthreshold . The postsynaptic event signal is collected
by the DCB in charge of controlling the presynaptic and
postsynaptic neurons if a synaptic weight update must be
executed.

The input synaptic current used to charge the membrane
of the LIF neuron is collected through a second-generation
positive current conveyor (CCII+). The use of a CCII+,
proposed by G. Lecerf [41], enables the collection and
copying of the sum of synaptic currents connected to the
same postsynaptic neuron (Kirchhoff’s law), while constantly
applying a postsynaptic voltage or waveform (Vpost ). Thanks
to this property, we can effectively apply different presynaptic
and postsynaptic waveforms to either infer data to stimulate
the postsynaptic neurons or modify the synapses’ weights
without requiring any switching circuits connected to the

146112 VOLUME 11, 2023



P. Lewden et al.: On-the-Fly Learning With Mixed-Mode SNN and Passive Memristive Array

synaptic array. In our case, only positive synaptic currents
(IX ) are copied to the output Z of the CCII+ (IZ ← K · IX ) to
prevent any discharge of the neuron membrane. The voltage
applied on the postsynaptic terminal of the synaptic array
is always fixed at Vmid (resting potential), except when a
postsynaptic neuron is to have its connected synaptic weights
updated according to the protocol described previously (see
Fig. 5).

The postsynaptic voltage copy offset ϵ of the CCII+ rep-
resents the variability of components of the input differential
pair. It can critically impact the behavior of the overall
neural network, as mentioned in our previous work [29]. This
offset, whichmay differ according to the postsynaptic neuron,
causes the generation of currents in the connected synapses,
leading to some adverse effects that will be mentioned later.
Unless specified otherwise, it is fixed at zero for all the
postsynaptic neurons in our simulations.

The postsynaptic neurons also possess a reset circuit to
either put the membrane at its resting potential 0V or to
disable a postsynaptic neuron if needed. Furthermore, the
postsynaptic neurons do not possess the standard refractory
period usually used to prevent one postsynaptic neuron
from concentrating all the network activity. Indeed, while
a refractory period would need to be adjusted according
to the input data dynamic to be efficient, in our previous
work we introduced a refractory counter Nrefrac that is only
active during a training phase to remove this constraint linked
to the synaptic stimulation dynamic. When a postsynaptic
neuron fires in a training phase, it follows the weight update
protocol before being disabled for Nrefrac events issued
from other postsynaptic neurons. This method effectively
prevents a postsynaptic neuron from firing consecutively
for at least Nrefrac. In our simulations, we fixed this
Nrefrac counter at 10, which is a tenth of the number of
outputs.

1) MEMBRANE CAPACITANCE
The membrane capacitance Cmem is the component that
implements the ‘‘Integrate’’ part of the analog LIF neuron
described in this architecture. The bigger it is, the more space
it will need in the analog neuron. If it is too small, the time
constant of the postsynaptic neuron will become smaller until
it is too small for the neuron to charge enough if the input data
dynamic is too slow (incoming events are spread through a
large time window). Considering all of this, we choose to run
our simulation with a Cmem of 1 pF [42].
We showed in previous work that our architecture is

resilient to membrane capacitance variability with a slightly
different SNN configuration and use [29]. Table 4 shows, for
the current architecture, the average, minimum andmaximum
results obtained in this work for 5 simulations with different
starting weights and postsynaptic neuron capacitances. Our
results show that a strong variability of these membrane
capacitances (uniform law between±20% of Cmem) does not
have a big impact on the recognition rate.

TABLE 4. Results for the three learning rules over 5 simulations with
different initial synaptic weights and membrane capacitances. The
membrane capacitance are chosen following a uniform law between
0.8 pF and 1.2 pF.

2) MEMBRANE THRESHOLD AND DISCHARGE CURRENT
The membrane threshold Vthreshold implements the ‘‘Fire’’
part of the analog LIF neuron. It is another leverage on
the neurons’ behavior. As we assume that the implemented
sensor is working using a standard 5V or even 3.3V power
source, we choose a typical value of 1V that can potentially
be adjusted by an external polarizing circuit if needed.

To implement the ‘‘Leaky’’ part of the analog LIF neuron
we use a current source pumping out a idischarge current from
the membrane capacitance if its voltage is above 0V. In our
simulation, we use a discharge current idischarge of 100 pA.
It corresponds to a discharge speed of idischarge/Cmem =
0.1Vms−1 or 1V (themembrane threshold) per 10ms, which
is a tenth of the duration of the trimmed sample we use
in which a digit can be visible (see Fig 3). Along with the
discharge speed, we fixed the discharge current at a value that
would consume the current incoming by a single OFF state
memristive device (‘‘worst stimulation case’’).

B. CHOOSING THE SYNAPTIC STIMULATION STRENGTH
In our neuron model, the CCII+ that connects the memristive
crossbar array to the postsynaptic neurons copies the synaptic
current with a factor K . This parameter, used to adjust the
synaptic stimulation of the postsynaptic membrane, can be
estimated according to the range of the synaptic weights
(conductances), the type of data we wish to recognize and
the neuron parameters such as the membrane capacitance
Cmem, the neuron threshold voltage Vthreshold , the absolute
amplitude of the inference voltage 1vstim (see Appendix B
and C) and the neuron discharge current idischarge. If we
consider a single synapse at its maximum value Gmax , the
current it generates if stimulated once during an inference is
isyn = Gmax × 1vstim = 1 µA for an inference time window
TLTP = 10µs. The increase in the membrane potential it
would represent without a current copy adjustment (K = 1) is
1Vmembrane = TLTP× (K× isyn− idischarge)/Cmem = 9.999V,
which is almost 10 times the threshold voltage. To prevent this
situation there are a few possible solutions:

• Increase the membrane capacitance. However, this
choice would lead to a higher surface use in the circuit
per postsynaptic neuron.

• Decrease the stimulation voltage. It could be a good
solution to also reduce the power consumption. How-
ever, by lowering it too much (around a few millivolts),
the circulating currents through the crossbar would be

VOLUME 11, 2023 146113



P. Lewden et al.: On-the-Fly Learning With Mixed-Mode SNN and Passive Memristive Array

much smaller and it could become problematic due to
intrinsic noise of the devices.

• Decrease K , the current copy factor of the CCII+,
to reduce the current that will be injected into the
neuron membrane. This is mathematically equivalent
to decreasing the voltage stimulation (1vstim) without
reducing the current collected by the CCII+.

In our simulation we decided to leverage the use of the K
by reducing it. It is fixed to K = 1/100 for the reference
situation, meaning that a synapse at its maximum value would
increase the membrane by 99mV. A synapse at the average
value of 505 nS would increase the membrane by 49.5mV,
while one at its OFF state (10 nS →100 pA injected in the
membrane) would not alone increase the membrane potential
due to the value of the discharge current (100 pA) that was
given before. Looking at these values, one might argue that
a stimulation in the maximum (average) state would lead to
only 10 (20) simultaneous events to trigger a postsynaptic.
However, when choosing the value of this K (or 1vstim)
parameter, one must take into account the dynamic of the type
of data we want to recognize, because the events do not come
at the same time and the LIF neuron discharges over time.
This input data dynamic must be taken into account to adjust
how much the postsynaptic neurons are stimulated.

The strength of the stimulation of the LIF neurons
inside the spiking neural network of the smart sen-
sor is adjusted according to the synaptic weights range
[Gmin = 10 nS;Gmax = 1 µS], the stimulation amplitude
1vstim and the factor K . When deploying the sensor,
multiple scenarios impacting the stimulation strength of the
implemented LIF neurons could arise. Among them are:

• A shifted operating range of the synaptic weights.
Depending on the technology they could show higher or
lower conductance synaptic weights.

• One might try to reduce 1vstim to reduce the power
consumption of the inference phase as long as it is strong
enough to charge the postsynaptic neurons.

To see the impact of these possibles changes, we simulate
the architecture for multiple possible values of K for the three
learning rules of interest, as it is equivalent to either changing
the synaptic weights or changing the1vstim. Fig. 11 shows the
simulation results for K taken between K/2 and K×2, which
is equivalent to simulating with 1vstim between 1vstim/2 and
1vstim × 2 or between the synaptic range divided by two and
multiplied by two.

According to our results shown in Fig. 11, the recognition
rate starts to drop the smaller the value of K is. This is
consistent with the problem mentioned earlier. A smaller
stimulation strength means that less current will be injected
in the membrane, and the discharge will become too strong
for more synaptic stimulation, preventing the membrane
from reaching the threshold. Conversely, the stronger the
stimulation of the membrane (K at higher values), the faster
the neuronwill charge and trigger an output event. This is also
a problem as it leads to having fewer inputs (pixels) used to

FIGURE 11. Impact of the averaged performance on the smart sensor
depending on the strength of the stimulation by changing the current
scaling factor K. Each point (+) represents the average results obtained.
The tinted area around each point represents the minimum and
maximum values obtained.

discriminate the data (digits in our case), until too few inputs
are used (not enough pixels used to discriminate a digit in our
case).

Considering the limitation on both sides, we can see
that the SNN is still quite tolerant to different stimulation
strengths, as there is no apparent narrow optimum of
the recognition rate. While one might want to adjust the
stimulation strength to get maximum performances, the
system will still be able to work efficiently if fine tuning is
not possible.

The unsupervised learning rule seems to be able to
handle lower stimulation strength, while showing a stronger
degradation of performance if the stimulation strength is
increased. Thus, one could, with this learning rule, reasonably
decrease the inference absolute amplitude 1vstim to reduce
power consumption without losing too much performance.

The weakly supervised rule R∅1P1D shows a similar
behavior to the unsupervised learning rule, but with a
much higher recognition rate. Still, its performance when
decreasing the stimulation strength drops faster than the
unsupervised learning rule.

The rule Rγ 1P1D can handle higher stimulation strengths
better than the other two rules. However, if the stimulation
strength drops, its performance drops abruptly towards the
performance of the unsupervised rule. This behavior could
be explained by the nature of the rule, which depreciates all
the contributing weights as a punishment if a neuron fires
on the wrong class. Because the data (digits) share common
inputs for the dataset we use, this leads to a reduced synaptic
stimulation of those shared contributingweights each time the
neuron is ‘‘wrong’’, which, in addition to a general reduced
stimulation strength seems to be too much of a punishment
for the value tested in the simulation.

C. RESILIENCE TO THE INPUT DATA DYNAMIC
The iPjD learning rules and their weakly supervised variation
were made to be less dependent on the input dynamic than

146114 VOLUME 11, 2023



P. Lewden et al.: On-the-Fly Learning With Mixed-Mode SNN and Passive Memristive Array

the classical STDP. This means that the sensor should still
be able to recognize the sensor despite events occurring
faster. To see how our architecture behaves for different
input dynamics, we run simulations for different accelerated
factors of the trimmed data we used, by dividing the samples’
timing by a speed factor acc = {1, 10, 100} for the
training and the test phases. This change of input dynamic
should impact the performances because if the stimulation
events are occurring faster, keeping the parameters of the
architecture as they are means that fewer events would be
needed for the neurons to trigger, leading to fewer inputs
used to try to recognize the data and less current would
then be consumed to trigger an answer from the SNN.
To influence or compensate for the postsynaptic neurons’
charge dynamic of the SNN, a few parameters could be
altered: Cmembrane, K (or 1vstim) and idischarge, which impacts
how quickly the postsynaptic neurons reacts. However, while
some parameters should be easier to adjust on a deployed
sensor through some polarization and tuning circuits, the
analog membrane capacitance is supposedly a fixed physical
capacitor in our architecture. Due to this, we only consider
altering the idischarge, which describes how fast the neurons
discharge. The simulation results (5 simulations for 5 initial
synaptic weight distributions) for the three acceleration
factors mentioned and different discharge currents (from the
reference 100 pA to 1 nA) for the three learning rules are
given in Fig. 12.
For the unsupervised 1P1D learning rule, if we consider

the reference configuration of the SNN (idischarge =100 pA),
we can see that having events occurring at a higher speed
causes a decrease in performance, but it is still able to
work and recognize almost 60% of the digits on average,
and increasing the discharge current allows the architecture
to regain some performance. Furthermore, if the data is
accelerated by 10, multiplying by 10 the discharge speed
allows the architecture to restore the reference situation
performance. When accelerating by a hundred, increasing the
discharge by ten does increase the performance compared
to the original discharge speed, but the reference situation
results are not achieved. The two other weakly supervised
learning rules can handle much better the accelerated dataset
at the reference situation, as the performance only drops
slightly compared to the unsupervised rule, while Rγ 1P1D
handles it better than the other rules. The leakage current
idischarge is a useful lever if one has to deal with a
faster input dynamic, and using one of the proposed weak
supervision learning rules can also prevent the loss of asmuch
performance as the unsupervised learning when dealing with
a faster input dynamic.

Concerning the original speed of the dataset (acc = 1),
we can see that when the data has been accelerated, the
recognition rate drops sharply the higher idischarge is. And
conversely to the behavior with a faster input rate, the
unsupervised rule is more resilient to an increase in the
discharge current as it drops slower than Rγ 1P1D and
R∅1P1D. The reason it drops at the original speed for the

three rules is because a higher idischarge means a higher
stimulation strength would be needed for sparse events to be
able to trigger a postsynaptic event, as mentioned before.

Thus, according to our results, when dealing with relatively
slow data inputs, one should be sure to have a small enough
idischarge, but if the input data is coming at a much faster rate,
increasing it can actually optimize the performance.

FIGURE 12. Averaged performance when the input dynamic is altered by
an acceleration factor for different values of leakage current idischarge.
Each point (+) represents the average results obtained. The tinted area
around each point represents the minimum and maximum values
obtained.

D. SPLITTING THE SYNAPTIC CROSSBAR
Dealing with a passive crossbar while offering an interest
in terms of integration comes with some constraints and
limitations. Among those limitations:

• Because all lines (presynaptics) or columns (postsynap-
tics) are connected all together to the corresponding
inputs, the neuron circuits in charge of driving them
must be able to drive the equivalent parallel resistance
during inference, but also to provide the current needed
to modify the weights in a training phase. Due to
this, having too many memristors connected on a same
terminal can require too much current to be achievable.

• Because the connection between two successive mem-
ristors on the same line or column will show a certain
resistance rx (that should be as small as possible to limit
its impact), the more memristors are connected together,
themore thememristors will see a voltage drop along the
line or column connection.

• The more memristors are connected to the same
postsynaptic neuron, the greater the impact of the
voltage copy offset ϵ will be for the network.

This voltage copy offset ϵ is the representation of the
variability of the postsynaptic neuron integration that can,
if uncontrolled, cause the architecture to have defective
postsynaptic neurons. Its impact is strongly linked to the
connected synapses, as it will cause the generation of synaptic

VOLUME 11, 2023 146115



P. Lewden et al.: On-the-Fly Learning With Mixed-Mode SNN and Passive Memristive Array

current in the architecture. Depending on its sign, there are
two possible different impacts:
• If it is in the negative range, it will cause a synaptic
current to be continuously injected into the membrane,
and could result in spurious output events if it is above
the idischarge current.

• If it is in the positive range, it will cause the generation
of a current in the crossbar that will shadow mask some
of the synaptic activity if it is too great. Furthermore,
because the CCII+ can only copy positive currents
(pumped from the X terminal according to the normal-
ization, see Fig. 10) the ‘‘negative’’ current generated
will only shadow mask some synaptic activity and not
discharge the membrane.

To alleviate those difficulties linked to how many mem-
ristors are connected in parallel, changing the architecture
slightly can reduce their impact. In our case, as it is the
number of inputs that is the largest and will thus causes
more challenges, the solution we consider, as mentioned in
the literature [43], is to split the main crossbar or synaptic
array into smaller ones to separate the presynaptic inputs.
Using multiple CCII+, we can collect and copy to the
corresponding postsynaptic neurons the synaptic currents
issued by the smaller crossbars. Reducing the number of
connected memristors at the same output neurons with this
method can drastically reduce the detrimental effect linked
to this high parallelism, as they originally connect to all the
synaptic inputs (1156 in our case). Fig. 13 shows an altered
postsynaptic neuron using one CCII+ per smaller crossbar to
combine the different currents. However, one must keep in
mind that this solution brings an additional cost in area and
power, as more electronic circuits are needed.

FIGURE 13. Altered structure for a postsynaptic neuron with Nxbar = 17.
The partial output synaptic currents can be combined by connecting the
output terminal of the CCII+ thanks to Kirchhoff’s law.

As the first two limitations mentioned (current requirement
of a synaptic neuron and voltage drop) are highly linked to
the fabrication process and technology of the ferroelectric
memristors, we only look at the impact of splitting the
crossbar array on the detrimental voltage copy offset.We only
consider positive voltage copy values, as:
• if it is negative, it would constantly generate current
towards the neuron membrane (as long as this current
is higher than the discharge);

• if it is positive, it would generate a current that absorbs
the synaptic activity as it would be in opposition;

• we assume that a dedicated adjustment circuit could be
added to reduce it to a maximum and set it up in the right
range.

Fig. 14 illustrates the simulation results we obtained when the
ϵ is randomly chosen following a uniform law between 0mV
and different upper bound values ϵ+ (1mV, 2mV, 3mV and
4mV) for every CCII+ in the architecture when it is using
1 crossbar of 1156×100, 2 of 578×100, 4 of 289×100, and
17 of 68×100. Fig. 14 shows on the top panels the recognition
rate of the architecture for these different situations, while
the bottom panel gives the number of useful neurons after
training (with a label).

FIGURE 14. Averaged performance and number of labeled neurons after
training using one or more crossbars for different values of ϵ chosen
randomly in a uniform fashion between 0 mV and ϵ+. Nxbar indicates
how many crossbars were used. For these results, if the simulation ends
in a failure (fail-stop), the recognition rate is fixed at 0 % and the number
of labeled neurons to 0. Each point (+) represents the average results
obtained. The tinted area around each point represents the minimum and
maximum values obtained.

According to our results, the higher the upper bound value
of the randomly chosen ϵ is, the more detrimental it is when
using only one crossbar (Nxbar = 1), as the number of
useful neurons after training drops drastically. Indeed, the
higher ϵ is, the more it will prevent the synaptic current from
being transmitted to the neuron membrane, because of the
parasitic current it causes inside the crossbar. This current is
in opposition to the inference current and is not copied by the
CCII+. The higher it is, themore synaptic current is needed to
cancel it and pass through the CCII+. Because of this, many
neurons with a high value of ϵ are not able to charge enough
to fire and become useless or ‘‘dead’’. The recognition rate
thus drops, but the system can still discriminate thanks to the
redundancy of postsynaptic neurons that have lower ϵ values.

Splitting the synaptic array into smaller ones effectively
reduces the detrimental impact of the voltage copy offset of
the CCII+, as fewer memristors are connected to the same
CCII+, thus reducing the adverse current generated. This

146116 VOLUME 11, 2023



P. Lewden et al.: On-the-Fly Learning With Mixed-Mode SNN and Passive Memristive Array

means that more neurons can effectively learn instead, and
the recognition rate drops less.

Interestingly, among the three learning rules, the one that
generally handles this voltage copy offset variability best
is R∅1P1D in terms of performance, despite having a high
number of ‘‘dead’’ neurons the higher ϵ can be.
Splitting the crossbar into smaller ones like 68×100 allows

us to drastically reduce the detrimental impact of this offset
variability. Furthermore, it should also help with the two
other problems mentioned before. First, the voltage drop on
a postsynaptic line would be greatly reduced as far fewer
memristors are in parallel. Secondly, the CCII+ blocks, while
much greater in number, would have to handle a smaller
current range at the X terminal (from copying a single/a
few memristors to handle the inference and write on all
the connected memristors). Nevertheless, this solution, while
alleviating multiple challenges, needs more CCII+ electronic
circuits, thus more space and a higher power consumption.

V. CONCLUSION
In this work we study in greater depth and by simulation
a small smart sensor architecture combining a DVS camera
and a mixed-mode single-layer SNN with analog neurons
and memristive synapses. Looking at the synaptic properties,
we show that a small asymmetry in the learning rates in
favor of synaptic potentiation can yield superior results,
and that such behavior is better handled by the smart
sensor compared to an asymmetry in favor of synaptic
depression. This is encouraging, because some memristor
technologies are already showing such an asymmetry, and
it could theoretically be adjusted by adapting the waveforms
used to change the synaptic weights. We also show that the
architecture is quite resilient to variability over these learning
rates around a reference situation. More specifically, having
a certain level of synaptic learning rate variability should not
cause a complete failure of the sensor. We also looked at
the practical initial starting weight distribution, a question
usually eluded but critical for an architecture such as ours,
which cannot finely tune the weights when the sensor is
deployed or will be used for a new application. To tackle
this question, we proposed a simple algorithm that makes the
SNN learn starting patterns to set it in a known and controlled
starting configuration. These initial patterns can have only a
fraction of synaptic weights at their high conductive states as
long as they are located where the synaptic activity will most
likely occur, in order to ensure that the postsynaptic neurons
can fire.

We also investigated the impact of some of the parameters
of the analog neurons used in the SNN. First, we con-
firmed that the architecture is resilient to the membrane
capacitance variability, in line with some of our previous
work with a slightly different configuration, which is a
strong point when designing analog postsynaptic neurons.
Second, by testing the architecture with different stimulation
strengths, we demonstrated the resilience of the architecture
in case of smaller synaptic inference currents if one wants to

reduce the power consumption or if one is using a synaptic
crossbar with shifted conductance ranges.

However, as identified in previous work, this paper
confirms that the voltage copy current offset of the CCII
is critical, as it generates currents in the crossbar that are
detrimental to the behavior of the postsynaptic neurons,
especially when the synaptic activity is sparse in time.
To alleviate this challenge, among others (voltage drops along
the synaptic lines, driving current needed per postsynaptic
neuron), we show that splitting the synaptic crossbar into
smaller ones is a viable solution, while coming with the
drawback of the need for more electronic circuits.

Overall, among the three learning rules, the weakly
supervised R∅1P1D is the one that shows the best resilience
while potentially consuming less current in a learning phase.

This work provides indications for the design and man-
ufacture of an intelligent visual sensor capable of learning
on the fly. Current performances could be improved, based
on the conclusions of this paper, by studying an SNN with
hidden layers. This future network will have to keep in
mind technologically resilient solutions that can be easily
implemented in hardware, to reduce silicon surface area and
power consumption.

APPENDIX A
METHODS
All the simulations presented in this work are obtained using a
custom simulator written in Python to estimate the behavior
of the system. The computation method of the simulator is
briefly described here.

1) COMPUTING THE POSTSYNAPTIC CURRENTS
To compute the synaptic currents two different methods are
used depending on the value of ϵ. If the input offsets ϵ

of all postsynaptic neurons are equal to 0, the postsynaptic
currents injected into the membrane (istim) are acquired by a
vector-matrix product between the synaptic weights matrix of
the layer and the vector of presynaptic voltages. Otherwise,
if each postsynaptic has different value of ϵ, the computation
of synaptic current is done by a Hadamard product between
the matrix of each synaptic voltage (Vpre i,j−Vpost i,j) and the
matrix of the synaptic weights to get all the synaptic currents.
They are then summed along the postsynaptic lines to get the
current collected by the postsynaptic neurons.

2) COMPUTING THE MEMBRANE VOLTAGES
As we only have square waveforms or continuous voltages
used to generate currents that will be injected into the
postsynaptic membranes, the evolution of the membrane
voltage can be described by a slope. Thus, to compute the
increase or decrease of the membrane voltage (slope) until it
reaches the threshold, we generate 2 computation points: one
at the start of the presynaptic waveform at time t; one at the
end at time t+TLTP. As the stimulation current istim is constant
between those two computation points per presynaptic events
(as is the discharge current for positive membrane voltages),

VOLUME 11, 2023 146117



P. Lewden et al.: On-the-Fly Learning With Mixed-Mode SNN and Passive Memristive Array

we can compute the membrane voltage as shown in Fig. 15.
The equation used to compute the membrane voltage increase
1Vmembrane between two computation points (tj− 1 and tj) is
given by Equation (2), where1T = tj−tj−1 and istim = K · iX
if iX > 0 else istim = 0A. Furthremore, the membrane
voltage is clipped between 0V and the operating voltage (5V
in our simulations).

1Vmembrane|1T =
istim
Cmem

1T︸ ︷︷ ︸
synaptic charge

−
idischarge
Cmem

1T︸ ︷︷ ︸
membrane leak

(2)

FIGURE 15. Computation method of the membrane voltage when events
occur at 2 different presynaptic inputs. Two computation points are
generated per synaptic event and, because the current is constant
between computation points, the membrane capacitance can be
computed by finding the corresponding membrane voltage slope.

3) DETERMINING WHICH POSTSYNAPTIC NEURON FIRED
If at a computation point, at least one postsynaptic membrane
surpassed the membrane threshold (Vthreshold ), we compute
the instant where it was reached per postsynaptic neuron that
crossed the threshold by using the computed slope of the
membrane voltage evolution between the two computation
points. The system will choose the postsynaptic neuron
according to a slightly modified Winner Take All (WTA)
rule that keeps the postsynaptic neuron that fired first. In our
system, the DCB (see Fig. 2) controlling all the postsynaptic
neurons works with a fixed clock frequency to save which
neuron fired before resetting the others. Thus, if more than

one postsynaptic neuron fired between two computational
clock edges of the DCB, we used an arbiter that should be
located in the Digital Control Block to keep only one output
neuron as illustrated in Fig. 16. This arbiter, working at a
clock Tclk chose the output neuron with the lowest index if
more than one are detected between two computational clock
edges.

FIGURE 16. Output event arbiter inside the DCB to select only one
postsynaptic neuron if more than one fired between two clock
computational edges. ‘events out’ represents the output events received
by the DCB. ‘DCB chosen’ event shows which postsynaptic is chosen.

4) RECOGNITION RATE
The recognition rate (RR) used for the results reported in this
paper is computed after the test phase using the following
equation:

RR =
Number of correct answers

Ntest

APPENDIX B
REFERENCE SITUATION PARAMETERS
Table 5 gives the reference parameters of the simulated SNN.

TABLE 5. Reference parameters of the spiking neural network.

APPENDIX C
PRESYNAPTIC NEURONS MODEL
To infer data through the SNN, the presynaptic neurons only
apply a negative square waveform with a width TLTP and
absolute amplitude 1vstim that corresponds to an input event.
The inference waveform in this architecture is negative for
two reasons:
• The first reason is hereditary and linked to the original
analog implementation of the STDP using a CCII+ [41].

146118 VOLUME 11, 2023



P. Lewden et al.: On-the-Fly Learning With Mixed-Mode SNN and Passive Memristive Array

FIGURE 17. Presynaptic neuron model and example of the waveforms
that it can apply on the connected memristors. A postsynaptic waveform
is also shown as an example.

• The second reason is due to the CCII+ normalization.
To have a positive current injected in the neuron
membrane, the current iX must be pumped from the
CCII+ X terminal, thus leading to the need for a
negative current flowing through the memristor due to
normalization.

This negative piecewise waveform needs to be long enough
to generate current to stimulate the postsynaptic membrane
while being short enough not to consume too much power.
It also needs to be short enough to allow the application of
successive events of the same input as in our architecture;
while a presynaptic input is active (applying the inference
waveform) it cannot apply a new inference waveform on the
same input. Furthermore, a TLTP that is too high would also
mean the need for higher time constants to generate them in
the analog neurons, most likely leading to the use of a greater
surface if capacitors are used to generate them. Considering
all of this, we choose to run our simulation with a TLTP of
10µs, which is of the order of magnitude of time constants
in microelectronics. As this value of TLTP is used to define
some of the following parameters, if a smaller TLTP is used,
the other neuron parameters should be adjusted accordingly.
The value of the absolute amplitude 1vstim is fixed to 1V
assuming that it is below the voltage needed to change the
memristives weights. In our case, as it is negative, it needs
to be lower than Vthpot , the negative threshold voltage (to
increase a synaptic conductance). If it is not, this value can
be adjusted by dividing K by this factor to keep the current
stimulation of the membrane identical.

As the presynaptic neurons have the charge of applying
the inference waveform and part of the programming (weight

changing) waveforms used to modify a weight, they need to
be able to generate 3 different waveforms, as illustrated in
Fig. 17: one when an event is received; one to potentiate the
synapse and one to depreciate the synapse.

APPENDIX D
CONFUSION MATRIX AND CONDUCTANCE MAPS IN THE
REFERENCE SITUATION
Fig. 18 shows the raw confusion matrix obtained for one
simulation in the reference situation obtained with the rule
R∅1P1D. We can see that some test samples did not permit
the SNN to fire (represented by No class column).

FIGURE 18. Raw confusion matrix obtained after the simulation of the
reference situation for the same initial synaptic weights. The lines
correspond to the sample class (expected). The columns correspond to
the SNN output (Predicted). The No class column corresponds to the case
were the SNN did not fire. The No class line corresponds to test samples
without a label (none in the used dataset).

REFERENCES
[1] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin,

B. C. Van Esesn, A. A. S. Awwal, and V. K. Asari, ‘‘The history began from
AlexNet: A comprehensive survey on deep learning approaches,’’ 2018,
arXiv:1803.01164.

[2] S. Dodge and L. Karam, ‘‘Human and DNN classification performance
on images with quality distortions: A comparative study,’’ ACM Trans.
Appl. Perception, vol. 16, no. 2, pp. 1–17, Apr. 2019, doi: 10.1145/
3306241.

[3] S. Dodge and L. Karam, ‘‘A study and comparison of human and deep
learning recognition performance under visual distortions,’’ in Proc. 26th
Int. Conf. Comput. Commun. Netw. (ICCCN), Vancouver, BC, Canada,
Jul. 2017, pp. 1–7, doi: 10.1109/ICCCN.2017.8038465.

[4] F. Rosenblatt, ‘‘The perceptron: A probabilistic model for information
storage and organization in the brain,’’ Psychol. Rev., vol. 65, no. 6,
pp. 386–408, 1958, doi: 10.1037/h0042519.

[5] K.-S. Oh and K. Jung, ‘‘GPU implementation of neural networks,’’
Pattern Recognit., vol. 37, no. 6, pp. 1311–1314, Jun. 2004, doi:
10.1016/j.patcog.2004.01.013.

[6] N. Jouppi, C. Young, N. Patil, and D. Patterson, ‘‘Motivation for and
evaluation of the first tensor processing unit,’’ IEEE Micro, vol. 38, no. 3,
pp. 10–19, May 2018, doi: 10.1109/MM.2018.032271057.

VOLUME 11, 2023 146119

http://dx.doi.org/10.1145/3306241
http://dx.doi.org/10.1145/3306241
http://dx.doi.org/10.1109/ICCCN.2017.8038465
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1016/j.patcog.2004.01.013
http://dx.doi.org/10.1109/MM.2018.032271057


P. Lewden et al.: On-the-Fly Learning With Mixed-Mode SNN and Passive Memristive Array

[7] S. Rivas-Gomez, A. J. Pena, D. Moloney, E. Laure, and S. Markidis,
‘‘Exploring the vision processing unit as co-processor for infer-
ence,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp. Workshops
(IPDPSW), Vancouver, BC, Canada, May 2018, pp. 589–598, doi:
10.1109/IPDPSW.2018.00098.

[8] W. Maass, ‘‘Networks of spiking neurons: The third generation of neural
network models,’’ Neural Netw., vol. 10, no. 9, pp. 1659–1671, 1997, doi:
10.1016/S0893-6080(97)00011-7.

[9] M. Mozafari, M. Ganjtabesh, A. Nowzari-Dalini, and T. Masquelier,
‘‘SpykeTorch: Efficient simulation of convolutional spiking neural net-
works with at most one spike per neuron,’’ Frontiers Neurosci., vol. 13,
p. 625, Jul. 2019, doi: 10.3389/fnins.2019.00625.

[10] M. Stimberg, R. Brette, and D. F. Goodman, ‘‘Brian 2, an intuitive and
efficient neural simulator,’’ eLife, vol. 8, Aug. 2019, Art. no. e47314, doi:
10.7554/eLife.47314.

[11] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, ‘‘Conversion
of continuous-valued deep networks to efficient event-driven networks for
image classification,’’ Frontiers Neurosci., vol. 11, p. 682, Dec. 2017, doi:
10.3389/fnins.2017.00682.

[12] P. Lichtsteiner, C. Posch, and T. Delbruck, ‘‘A 128 × 128 120 dB
15 µs latency asynchronous temporal contrast vision sensor,’’ IEEE
J. Solid-State Circuits, vol. 43, no. 2, pp. 566–576, Feb. 2008, doi:
10.1109/JSSC.2007.914337.

[13] H.-P. Cheng, W. Wen, C. Wu, S. Li, H. H. Li, and Y. Chen,
‘‘Understanding the design of IBM neurosynaptic system and its
tradeoffs: A user perspective,’’ in Proc. Design, Autom. Test Eur. Conf.
Exhib. (DATE), Lausanne, Switzerland, Mar. 2017, pp. 139–144, doi:
10.23919/DATE.2017.7926972.

[14] J. Hsu, ‘‘IBM’s new brain [news],’’ IEEE Spectr., vol. 51, no. 10, pp. 17–19,
Oct. 2014, doi: 10.1109/MSPEC.2014.6905473.

[15] M. Davies et al., ‘‘Loihi: A neuromorphic manycore processor with on-
chip learning,’’ IEEE Micro, vol. 38, no. 1, pp. 82–99, Jan. 2018, doi:
10.1109/MM.2018.112130359.

[16] C. S. Thakur, J. L. Molin, G. Cauwenberghs, G. Indiveri, K. Kumar,
N. Qiao, J. Schemmel, R. Wang, E. Chicca, J. O. Hasler, J.-S. Seo, S. Yu,
Y. Cao, A. van Schaik, and R. Etienne-Cummings, ‘‘Large-scale neuro-
morphic spiking array processors: A quest to mimic the brain,’’ Frontiers
Neurosci., vol. 12, p. 891, Dec. 2018, doi: 10.3389/fnins.2018.00891.

[17] S. Schmitt et al., ‘‘Neuromorphic hardware in the loop: Training a deep
spiking network on the BrainScaleS wafer-scale system,’’ in Proc. Int.
Joint Conf. Neural Netw. (IJCNN), Anchorage, AK, USA, May 2017,
pp. 2227–2234, doi: 10.1109/IJCNN.2017.7966125.

[18] B. V. Benjamin, P. Gao, E.McQuinn, S. Choudhary, A. R. Chandrasekaran,
J.-M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen,
‘‘Neurogrid: A mixed-analog-digital multichip system for large-scale
neural simulations,’’ Proc. IEEE, vol. 102, no. 5, pp. 699–716, May 2014,
doi: 10.1109/JPROC.2014.2313565.

[19] S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras,
S. Temple, and A. D. Brown, ‘‘Overview of the SpiNNaker system
architecture,’’ IEEE Trans. Comput., vol. 62, no. 12, pp. 2454–2467,
Dec. 2013, doi: 10.1109/TC.2012.142.

[20] Y. Tang, J. R. Nyengaard, D. M. G. De Groot, and H. J. G. Gundersen,
‘‘Total regional and global number of synapses in the human brain
neocortex,’’ Synapse, vol. 41, no. 3, pp. 258–273, Sep. 2001, doi:
10.1002/syn.1083.

[21] P. Lennie, ‘‘The cost of cortical computation,’’Current Biol., vol. 13, no. 6,
pp. 493–497, Mar. 2003, doi: 10.1016/S0960-9822(03)00135-0.

[22] W. B. Levy and V. G. Calvert, ‘‘Communication consumes 35 times
more energy than computation in the human cortex, but both costs
are needed to predict synapse number,’’ Proc. Nat. Acad. Sci. USA,
vol. 118, no. 18, May 2021, Art. no. e2008173118, doi: 10.1073/pnas.
2008173118.

[23] N. Qiao, H.Mostafa, F. Corradi,M. Osswald, F. Stefanini, D. Sumislawska,
and G. Indiveri, ‘‘A reconfigurable on-line learning spiking neuromorphic
processor comprising 256 neurons and 128K synapses,’’ Frontiers
Neurosci., vol. 9, p. 141, Apr. 2015, doi: 10.3389/fnins.2015.00141.

[24] S. J. Kim, S. Kim, and H. W. Jang, ‘‘Competing memristors for brain-
inspired computing,’’ iScience, vol. 24, no. 1, Jan. 2021, Art. no. 101889,
doi: 10.1016/j.isci.2020.101889.

[25] A. Chanthbouala, V. Garcia, R. O. Cherifi, K. Bouzehouane, S. Fusil,
X. Moya, S. Xavier, H. Yamada, C. Deranlot, N. D. Mathur, M. Bibes,
A. Barthélémy, and J. Grollier, ‘‘A ferroelectricmemristor,’’NatureMater.,
vol. 11, no. 10, pp. 860–864, Oct. 2012, doi: 10.1038/nmat3415.

[26] S. Boyn, S. Girod, V. Garcia, S. Fusil, S. Xavier, C. Deranlot, H. Yamada,
C. Carrétéro, E. Jacquet, M. Bibes, A. Barthélémy, and J. Grollier,
‘‘High-performance ferroelectric memory based on fully patterned tunnel
junctions,’’ Appl. Phys. Lett., vol. 104, no. 5, Feb. 2014, Art. no. 052909,
doi: 10.1063/1.4864100.

[27] X. Ji, Z. Dong, Y. Han, C. S. Lai, G. Zhou, and D. Qi, ‘‘EMSN: An energy-
efficient memristive sequencer network for human emotion classification
in mental health monitoring,’’ IEEE Trans. Consum. Electron., p. 1, 2023,
doi: 10.1109/TCE.2023.3263672.

[28] Z. Dong, X. Ji, G. Zhou, M. Gao, and D. Qi, ‘‘Multimodal neuromorphic
sensory-processing system with memristor circuits for smart home
applications,’’ IEEE Trans. Ind. Appl., vol. 59, no. 1, pp. 47–58, Jan. 2023,
doi: 10.1109/TIA.2022.3188749.

[29] P. Lewden, A. F. Vincent, C. Meyer, J. Tomas, S. Siami, and S. Saïghi,
‘‘Hardware spiking neural networks: Slow tasks resilient learning with
longer term-memory bits,’’ in Proc. IEEE Biomed. Circuits Syst.
Conf. (BioCAS), Nara, Japan, Oct. 2019, pp. 1–4, doi: 10.1109/BIO-
CAS.2019.8918992.

[30] P. Lewden, A. F. Vincent, C. Meyer, J. Tomas, and S. Sïghi,
‘‘Toward hardware spiking neural networks with mixed-signal event-
based learning rules,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
Glasgow, U.K., Jul. 2020, pp. 1–8, doi: 10.1109/IJCNN48605.2020.
9206736.

[31] G. Orchard, A. Jayawant, G. K. Cohen, and N. Thakor, ‘‘Converting
static image datasets to spiking neuromorphic datasets using saccades,’’
Frontiers Neurosci., vol. 9, p. 437, Nov. 2015, doi: 10.3389/fnins.2015.
00437.

[32] L. R. Iyer and A. Basu, ‘‘Unsupervised learning of event-based
image recordings using spike-timing-dependent plasticity,’’ in Proc. Int.
Joint Conf. Neural Netw. (IJCNN), Anchorage, AK, USA, May 2017,
pp. 1840–1846, doi: 10.1109/IJCNN.2017.7966074.

[33] T. Masquelier and S. J. Thorpe, ‘‘Unsupervised learning of visual features
through spike timing dependent plasticity,’’ PLoS Comput. Biol., vol. 3,
no. 2, p. e31, Feb. 2007, doi: 10.1371/journal.pcbi.0030031.

[34] M. Mozafari, M. Ganjtabesh, A. Nowzari-Dalini, S. J. Thorpe,
and T. Masquelier, ‘‘Bio-inspired digit recognition using reward-
modulated spike-timing-dependent plasticity in deep convolutional
networks,’’ Pattern Recognit., vol. 94, pp. 87–95, Oct. 2019, doi:
10.1016/j.patcog.2019.05.015.

[35] M. Mozafari, S. R. Kheradpisheh, T. Masquelier, A. Nowzari-Dalini, and
M. Ganjtabesh, ‘‘First-spike-based visual categorization using reward-
modulated STDP,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 12,
pp. 6178–6190, Dec. 2018, doi: 10.1109/TNNLS.2018.2826721.

[36] S. Majumdar, H. Tan, Q. H. Qin, and S. van Dijken, ‘‘Energy-Efficient
organic ferroelectric tunnel junction memristors for neuromorphic com-
puting,’’ Adv. Electron. Mater., vol. 5, no. 3, Mar. 2019, Art. no. 1800795,
doi: 10.1002/aelm.201800795.

[37] S. Boyn, J. Grollier, G. Lecerf, B. Xu, N. Locatelli, S. Fusil, S. Girod,
C. Carrétéro, K. Garcia, S. Xavier, J. Tomas, L. Bellaiche, M. Bibes,
A. Barthélémy, S. Saïghi, and V. Garcia, ‘‘Learning through ferroelectric
domain dynamics in solid-state synapses,’’ Nature Commun., vol. 8, no. 1,
Apr. 2017, Art. no. 14736, doi: 10.1038/ncomms14736.

[38] C. Ma, Z. Luo, W. Huang, L. Zhao, Q. Chen, Y. Lin, X. Liu, Z. Chen,
C. Liu, H. Sun, X. Jin, Y. Yin, and X. Li, ‘‘Sub-nanosecond memristor
based on ferroelectric tunnel junction,’’ Nature Commun., vol. 11, no. 1,
p. 1439, Mar. 2020, doi: 10.1038/s41467-020-15249-1.

[39] D. Querlioz, O. Bichler, and C. Gamrat, ‘‘Simulation of a memristor-based
spiking neural network immune to device variations,’’ in Proc. Int. Joint
Conf. Neural Netw., San Jose, CA, USA, Jul. 2011, pp. 1775–1781, doi:
10.1109/IJCNN.2011.6033439.

[40] E. M. Izhikevich, ‘‘Which model to use for cortical spiking neurons?’’
IEEE Trans. Neural Netw., vol. 15, no. 5, pp. 1063–1070, Sep. 2004, doi:
10.1109/TNN.2004.832719.

[41] G. Lecerf, J. Tomas, and S. Saïghi, ‘‘Excitatory and inhibitory memristive
synapses for spiking neural networks,’’ in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), Beijing, China, May 2013, pp. 1616–1619, doi:
10.1109/ISCAS.2013.6572171.

[42] C. Meyer, ‘‘Conception de réseaux de neurones sur silicium à l’aide de
synapses memristives: Application Au traitement d’image,’’ M.S. thesis,
Dept. Electronique, Université Bordeaux, Bordeaux, France, 2021.

[43] M. R. Mahmoodi, A. F. Vincent, H. Nili, and D. B. Strukov, ‘‘Intrinsic
bounds for computing precision in memristor-based vector-by-matrix
multipliers,’’ IEEE Trans. Nanotechnol., vol. 19, pp. 429–435, 2020, doi:
10.1109/TNANO.2020.2992493.

146120 VOLUME 11, 2023

http://dx.doi.org/10.1109/IPDPSW.2018.00098
http://dx.doi.org/10.1016/S0893-6080(97)00011-7
http://dx.doi.org/10.3389/fnins.2019.00625
http://dx.doi.org/10.7554/eLife.47314
http://dx.doi.org/10.3389/fnins.2017.00682
http://dx.doi.org/10.1109/JSSC.2007.914337
http://dx.doi.org/10.23919/DATE.2017.7926972
http://dx.doi.org/10.1109/MSPEC.2014.6905473
http://dx.doi.org/10.1109/MM.2018.112130359
http://dx.doi.org/10.3389/fnins.2018.00891
http://dx.doi.org/10.1109/IJCNN.2017.7966125
http://dx.doi.org/10.1109/JPROC.2014.2313565
http://dx.doi.org/10.1109/TC.2012.142
http://dx.doi.org/10.1002/syn.1083
http://dx.doi.org/10.1016/S0960-9822(03)00135-0
http://dx.doi.org/10.1073/pnas.2008173118
http://dx.doi.org/10.1073/pnas.2008173118
http://dx.doi.org/10.3389/fnins.2015.00141
http://dx.doi.org/10.1016/j.isci.2020.101889
http://dx.doi.org/10.1038/nmat3415
http://dx.doi.org/10.1063/1.4864100
http://dx.doi.org/10.1109/TCE.2023.3263672
http://dx.doi.org/10.1109/TIA.2022.3188749
http://dx.doi.org/10.1109/BIOCAS.2019.8918992
http://dx.doi.org/10.1109/BIOCAS.2019.8918992
http://dx.doi.org/10.1109/IJCNN48605.2020.9206736
http://dx.doi.org/10.1109/IJCNN48605.2020.9206736
http://dx.doi.org/10.3389/fnins.2015.00437
http://dx.doi.org/10.3389/fnins.2015.00437
http://dx.doi.org/10.1109/IJCNN.2017.7966074
http://dx.doi.org/10.1371/journal.pcbi.0030031
http://dx.doi.org/10.1016/j.patcog.2019.05.015
http://dx.doi.org/10.1109/TNNLS.2018.2826721
http://dx.doi.org/10.1002/aelm.201800795
http://dx.doi.org/10.1038/ncomms14736
http://dx.doi.org/10.1038/s41467-020-15249-1
http://dx.doi.org/10.1109/IJCNN.2011.6033439
http://dx.doi.org/10.1109/TNN.2004.832719
http://dx.doi.org/10.1109/ISCAS.2013.6572171
http://dx.doi.org/10.1109/TNANO.2020.2992493


P. Lewden et al.: On-the-Fly Learning With Mixed-Mode SNN and Passive Memristive Array

PIERRE LEWDEN received the Ph.D. degree in
electronics on hardware implementation of event-
based neural networks based on nanotechnologies
from the University of Bordeaux, France, in 2023.
He is currently a Research Fellow with the
DesCartes Research Program, CNRS@CREATE,
Singapore, where he is also working on the
implementation of spiking neural networks on
FPGAs.

ADRIEN F. VINCENT received the Ph.D. degree in
the use of innovative memory devices as artificial
synapses in neuro-inspired electronics from the
University of Paris-Saclay, France, in 2017. After
graduating, he was a Postdoctoral Researcher with
the University of California at Santa Barbara,
Santa Barbara, USA, in the group of Prof. Dmitri
Strukov, working on the statistical modeling of
TiO2 memristors and their potential for analog
dot-product engines. Since 2018, he has been

an Associate Professor with Bordeaux INP. He has joined the Bioelec-
tronics Group, IMS Laboratory, Talence, France, where he works on
hardware implementation of artificial intelligence systems and neuromorphic
architectures.

JEAN TOMAS received the Diploma degree
in electrical engineering from Ecole Nationale
Supérieure d’Electronique et de Radioélectricité
de Bordeaux (ENSERB), in 1985, and the Ph.D.
degree in electrical engineering from Université
Bordeaux 1, in 1988. Currently, he is an Associate
Professor with the IMS Laboratory (UMR 5218
CNRS), Université de Bordeaux. His research
interests include design of analog andmixed signal
circuits and systems dedicated to neuromorphic

applications, such as memristive spiking neural network for edge computing.

SYLVAIN SAÏGHI received the Ph.D. degree
in the design of analog operators dedicated to
silicon neurons, in 2004. He is currently a Full
Professor with the University of Bordeaux. He has
performed pioneering work in developing biologi-
cally realistic and tunable silicon neurons. He has
also authored or coauthored more than 60 peer-
review publications. Thanks to a Fulbright Scholar
Grant, he was a Visiting Associate Professor with
Johns Hopkins University, Baltimore, MD, USA,

for six months, in 2011. His current research interest includes the hardware
implementation of neuromorphic systems for edge computing, with projects
ranging from co-integrating emerging memristive nanodevices with CMOS
circuits to strategies relying on more conventional digital systems.

VOLUME 11, 2023 146121


