
Received 22 November 2023, accepted 14 December 2023, date of publication 25 December 2023,
date of current version 29 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3346433

A New Strategy for Combining Nonlinear Kalman
Filters With Smooth Variable Structure Filters
SALMAN AKHTAR , PEYMAN SETOODEH , (Senior Member, IEEE),
RYAN AHMED, AND SAEID HABIBI, (Member, IEEE)
Department of Mechanical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada

Corresponding author: Salman Akhtar (akhtarsm@mcmaster.ca)

This work was supported in part by the Federal Economic Development Agency for Southern Ontario (FedDev) under Grant 814996 and in
part by Ontario Research Fund Research Excellence (ORF) under Grant 08-044.

ABSTRACT Bayesian filters exemplified by the celebrated Kalman Filter (KF), and its non-linear variants
rely on a fairly accurate state-space model of the system under study. To address the issue of modelling
uncertainty in state estimation, the Smooth Variable Structure Filter (SVSF) was proposed in 2007. Since
then, several SVSF variants have been proposed to extend its domain of applicability. In some of these
algorithms, SVSF has been viewed as a complementary approach alongside the well-established nonlinear
Kalman Filters. This paper seeks a general framework for SVSF formulation to unify some of the recent
developments in SVSF literature under one umbrella. In this way, the SVSF variants are revisited as special
cases of the proposed framework. This paper proposes a new strategy to combine SVSF filters with other
nonlinear filters and puts existing SVSF filters under one umbrella. Six filters are formulated based on the
proposed method of combining filters. The proposed filters relax limitations of existing SVSF variants,
making the proposed filters more universal. In simulations, the new filters outperform state-of-the-art
nonlinear KFs and some existing SVSF filters. To demonstrate the merits of the proposed framework, the
new filters are applied to target tracking and are comparatively evaluated.

INDEX TERMS Target tracking, state estimation, estimation theory, smooth variable structure filter, Kalman
filters, variable structure systems, maneuvering targets.

I. INTRODUCTION
The general formulation of Bayesian optimal filtering leads to
a conceptual solution, which is computationally intractable,
except for the special case of the Kalman Filter (KF) [1].
The KF is optimal in terms of minimum mean squared error
(MMSE) subject to the system being linear and the noise
being Gaussian with known statistics [2], [3], [4]. However,
in reality, many systems are non-linear with scented noise
distributions. To handle non-linear systems, there are two
main approaches to approximate the conceptual Bayesian
solution and obtain suboptimal filters [5]:

• Approximating the non-linear functions in the state and
measurement equations of the state-space model using
a power series: The Extended Kalman Filter (EKF)
and Divided Difference Filter (DDF) are derived in this
way [3], [5]. In the EKF, linearization is applied to
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the system and/or measurement models by applying a
Taylor Series approximation, and the resulting Jacobian
matrices are used to approximate the state covariance
matrix. However, one issue with this strategy is that if
the system is highly non-linear, the filter may become
unstable or its performance may degrade. Moreover,
obtaining Jacobian matrices may be difficult depending
on the application at hand.

• Approximating the probability distributions using a set
of sample points: the Unscented Kalman Filter (UKF),
Cubature Kalman Filter (CKF), and Particle Filter (PF)
follow this approach [5]. In the UKF, a deterministic
sampling technique, known as the Unscented Trans-
formation (UT) is used to approximate probability
distributions [6], where for the input distribution of
the functions, sigma points are selected based on the
corresponding mean and covariance. These points are
then propagated through the non-linear system and/or
measurement models to approximate the mean and

146262

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-3258-3290
https://orcid.org/0000-0002-5618-9717
https://orcid.org/0000-0002-6471-8455


S. Akhtar et al.: New Strategy for Combining Nonlinear Kalman Filters With SVSFs

covariance of the output distributions. This technique is
accurate with up to a 3rd-order series expansion [7].

In practice, it is difficult to obtain perfect models for
systems. For instance, in target tracking, which can be viewed
as a challenging application of filters, obtaining accurate
models is difficult, especially when the target maneuvers.
Target-tracking is utilized in tasks such as situational
awareness, environmental sensing and interpretation, and
safety. Tracking is the process of estimating the state of
a remote moving object using uncertain, inaccurate, and
indirect measurements from one or multiple sensors [4], [8].
It has been applied to a number of areas, including
military and surveillance [4], [8], [9], medical imaging [10],
robotics [11], and autonomous vehicles [12], [13], [14].
Sensors commonly used to detect objects and obtain
measurements are radar [9], [12], LIDAR [13], and vision
camera [14]. These measurements are then fed into a tracker
to estimate states of moving targets such as position, velocity,
and acceleration. In the context of target tracking, targets
tend to maneuver as they move. For example, in traffic
monitoring and autonomous driving applications, vehicle
targets exhibit several types of maneuvers such as lane-
changes, accelerations, and turns. Since obtaining an accurate
dynamic model for the motion of a maneuvering target is
challenging, the states of such a target must be robustly
estimated. Therefore, robust and accurate state estimates are
critical for the design of target-tracking systems. Robust state
estimation refers to a category of filtering techniques that are
used to compensate for inaccurate modelling. These filters
have the ability to perform estimation under the presence
of modelling uncertainties and can handle a larger range
of modelling errors compared to conventional KF-based
techniques. Examples of robust state estimation methods
include the Robust Kalman Filter [15], H-infinity Filter [16],
and Smooth Variable Structure Filter (SVSF) [17].
The SVSF follows a predictor-corrector form likewise

to the KF. The technique is formulated based on Sliding
Mode Control (SMC), where the state estimate is forced
to converge to a region around the true trajectory of the
system. In the SVSF, a switching gain is applied in order
to keep the state estimate moving back and forth across the
true state trajectory. As such, it benefits from the stability
features of SMC, and it is shown to be robust against
modelling uncertainties [17]. The SVSF is a robust state and
parameter estimation strategy that can guarantee numerical
stability and can recover its performance in the presence of
a fault condition. It allows for the explicit definition of the
source of uncertainty and can guarantee stability given an
upper bound for uncertainties and disturbances. The SVSF
has demonstrated robust performance in several applications,
including Artificial Neural Network training [18], battery
state of charge estimation [19], electric power grids [20],
fault detection and diagnosis [21], target tracking [22], robot
localization and mapping [23], robot manipulators [24],
satellite state estimation [25], and trajectory prediction for
autonomous driving [26].

Many advancements have been proposed for the SVSF,
with an overview given in [27]. The initial formulation
provided in [17] has no state covariance formulation. It was
followed by a revised version with a covariance as reported
in [28]. In [29], an optimal smoothing variable boundary
layer (VBL) was formed for the SVSF by minimizing the
trace of the a posteriori covariance matrix; this approach is
called the VBL-SVSF. In [30], [31], and [32], the SVSF was
combined with the EKF, UKF, CKF, and PF. These extended
formulations combine the advantages of these different filters
with robustness of the SVSF. The Interacting Multiple Model
(IMM) estimator was combined with the SVSF in [33]. In the
more general formulations of the SVSF reported in [17] and
[34], where the number of measured states is less than the
number of states, the filters are derived for linear systems by
incorporating a reduced-order Luenberger observer. In [34],
a covariance matrix was derived for this filter and was
then applied to track targets in the presence of clutter by
combining it with Probabilistic Data Association (PDA)
and Joint Probabilistic Data Association (JPDA) methods.
This work was further extended to formulate an optimal
smoothing variable boundary layer for the filter in [34],
called Generalized Variable Boundary Layer - Smooth
Variable Structure Filter (GVBL-SVSF), which was obtained
through minimizing the trace of the SVSF state covariance
in [34]. This method was also combined with JPDA to track
targets for automotive applications using LIDAR data. Other
formulations of the SVSF include the Square-root SVSF [35],
2nd-order SVSF [36], Predictive SVSF [25], Hyperbolic
Tangent SVSF (Tanh-SVSF) [37], and Non-linear Variable
Boundary Layer SVSF (NVBL-SVSF) [38].

It is worth noting the following points regarding the
contributions of this paper. Table 1 summarizes the recent
advances in SVSF literature along with the limitations of
each algorithm. This paper aims at developing a general
framework for the SVSF formulation. To be more precise,
a new strategy for combining SVSF with other popular
nonlinear filters is proposed. This results in a set of filters,
where each one combines SVSF with a state-of-the-art
nonlinear filter. The mentioned algorithms in Table 1 can be
subsumed under the proposed set of filters. In other words,
all SVSF filters in that table can be discovered as special
cases of the proposed filters. Thus, a key contribution of
this paper is that the framework puts all these filters under
one umbrella. Furthermore, Table 1 shows how the proposed
set of filters relax limitations of existing SVSF strategies.
Another key contribution of this work is that the proposed
filters relax limitations of all SVSF filters in Table 1, which
makes the proposed strategies more universal than the ones
mentioned in the table. Through relaxing these limitations,
the proposed approaches contain features that not all filters
in Table 1 have. In summary, as stated in Table 1, the relaxed
limitations include:

• No covariance matrix for some SVSF filters, which is
needed in a multi-target tracking pipeline for tasks such
as data association as specified in [8]. Moreover, the
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IMM algorithm can be used in conjunction with the
proposed filters as they provide a covariance matrix.

• Requirement of a full measurement matrix. The pro-
posed framework relaxes the requirement of measuring
all states, which is not always possible in practice.
Adding more sensors to obtain more measurements
increases the system cost. Although artificial measure-
ments can be derived to create a measurement for
unmeasured states, they may introduce additional noise
and for some states it may be impossible to obtain an
artificial measurement.

• The GVBL-SVSF and NVBL-SVSF were derived and
applied to linear systems. The proposed framework
in this paper extends the domain of applicability of
the GVBL-SVSF and NVBL-SVSF to systems with
non-linear dynamic models.

• Not all SVSF-based filters take advantage of KF-based
filtering, which is beneficial when the modelling error
is low.

The performance of these proposed combined filters
resulting from the proposed framework are evaluated in a
maneuvering target scenario. It is shown that the proposed
algorithms outperform the conventional EKF, UKF, and CKF
estimators as well as five selected existing non-linear SVSF
strategies.

The rest of the paper is organized as follows. Section II
presents the proposed framework that is formed such that
existing SVSF strategies are put under one umbrella. The
derivations and algorithms for the proposed combined filters
are presented in that section. Simulation results are shown in
Section III, where a simulated maneuvering target scenario
is used for comparative performance evaluation. Section IV
concludes the paper.

II. PROPOSED STRATEGY TO COMBINE FILTERS
In the proposed framework, a new approach for combining
SVSF with other non-linear filters is developed. This results
in a set of six combined filters, where for three, the
Luenberger SVSF (SVSF-L) is combined with EKF, UKF,
and CKF. For the other three, the Luenberger Hyperbolic
Tangent SVSF (Tanh-SVSF-L) is combined also with EKF,
UKF, and CKF. This framework puts all SVSF filters in
Table 1 under one umbrella because these filters can be
discovered as special cases of the proposed filters. Moreover,
all limitations stated in Table 1 are relaxed by the proposed
filters. This section provides a detailed derivation of the
proposed filtering algorithms. The derivations of all filters
build on the presented algorithms in [22], [30], [31], and [38],
but relax some of their limiting assumptions:

• In [30] and [31], three SVSF variants were presented
that deploy EKF, UKF, and CKF. Furthermore, they
rely on the VBL-SVSF from [29] to compute variable
boundary layer widths through minimizing the trace
of the a posteriori covariance matrix of the SVSF
in [29]. The VBL in other words is used as a method
to combine SVSF with nonlinear KFs (EKF, UKF,

and CKF). These calculated boundary layer widths
obtained from the VBL are then compared to user-
defined thresholds. If the boundary layer widths are
below the thresholds, then the EKF/UKF/CKF gain will
be applied, otherwise, the SVSF gain will be used to
preserve the technique’s robustness against modelling
uncertainty. In the case when the measurement model
is linear and the system model is nonlinear, these
approaches are applicable to non-linear systems with the
same number of states and outputs (measured states),
n = m, where m denotes the number of measured
states and n is the total number of states. Although
artificial measurements can be generated for cases with
m < n, this makes the technique to some extent
more heuristic. Also, it is not always possible to obtain
artificial measurements of unmeasured states. Adding
more sensors to measure more states may increase
system cost too. This constraint on the number of
measurements is relaxed by the proposed framework
of this paper, which makes it more suitable for target-
tracking, where typically m < n.

• In [22] and [38], the GVBL-SVSF and NVBL-SVSF
were established for linear systems, in which the number
of outputs (measured states) is less than the number of
states, m < n. Both apply a similar approach to VBL-
SVSF in [29], but the difference is that both compute
the optimal boundary layer widths separately for the
measured and unmeasured states. The optimal widths
are then compared to thresholds, if they are below the
thresholds, the ordinary KF gain is used, otherwise, the
corresponding SVSF (SVSF-L or Tanh-SVSF-L) gain
is deployed. A limitation of GVBL-SVSF and NVBL-
SVSF is that they are applied to systems with a linear
system model. This linearity constraint is relaxed by the
proposed framework of this paper.

In the proposed framework in this paper, the GVBL-SVSF
and NVBL-SVSF are extended to non-linear systems in
multiple forms in combination with the EKF, UKF, and CKF
estimators, where the number of measured states is lower
than the number of states, m < n. More specifically, in this
framework, a new strategy is proposed to combine SVSFwith
nonlinear KFs. Figure 1 shows a flowchart of how the strategy
works. In summary, after state prediction executes, this
method uses a variable boundary layer, either the Generalized
Variable Boundary Layer (GVBL) in [22] or the Non-linear
Variable Boundary Layer (NVBL) in [38] to obtain boundary
layer (BL) widths separately for measured and unmeasured
states. The widths are compared to thresholds to determine
whether to apply the SVSF (SVSF-L or Tanh-SVSF-L) gain
or a KF-based filter gain (EKF, UKF, or CKF). Afterwards,
the measured and unmeasured states are updated separately.
This results in a set of six combined filters, namely,
EK-SVSF-L, UK-SVSF-L, CK-SVSF-L, EK-Tanh-SVSF-L,
UK-Tanh-SVSF-L, and CK-Tanh-SVSF-L. The limitations
of SVSF filters in Table 1 are relaxed and these filters can be
discovered as special cases of the proposed filters, allowing

146264 VOLUME 11, 2023



S. Akhtar et al.: New Strategy for Combining Nonlinear Kalman Filters With SVSFs

TABLE 1. SVSF strategies that are special cases of the proposed framework.

the proposed framework to put existing filters under one
umbrella. The filters are derived in the following subsections.

A. SMOOTH VARIABLE STRUCTURE FILTER (SVSF)
Before presenting the proposed strategies, a general overview
of how the SVSF works is presented. Similar to the KF, it has
a predictor-corrector formulation. The main difference is that
the gain derivation and the filter are developed based on the
sliding mode concept [17]. Through this, the filter gain is
computed such that the estimated state converges to a region
around the true state trajectory as shown in Figure 2. This
region is known as the existence subspace and the width
of this region, denoted by β, is dependent on the level of
modelling uncertainties as well as disturbances [17]. Within
this subspace, the estimated state follows a zig-zag pattern in
Figure 2b, which is due to the discontinuous corrective action
from the switching gain. In other words, the gain forces the
estimated state trajectory to move back and forth across the
system state trajectory (true trajectory). This state estimator
is proven to be stable and robust to modelling errors as well
as disturbances if there exists an upper bound on the level of
modelling uncertainties [17]. The zig-zag pattern due to the
discontinuous corrective action is known as chattering, which
is undesirable, and this results from measurement noise,
modelling errors, and disturbances. One method to suppress
chattering is utilize a smoothing boundary layer (BL) denoted
byψ [17]. From applying the BL, the gain’s corrective action
in a region surrounding the switching hyperplane, called
the neighborhood (denoted by ψ), is linearly interpolated to
smoothen the estimated trajectory [17]. Figure 2 illustrates

the concept. In Figure 2a, chattering is smoothened if the
smoothing boundary layer width is larger than the width of
the existence subspace, whereas in Figure 2b, chattering is
present when the smoothing subspace width is smaller.

For all of the proposed filters, the system and measurement
models follow this form:

xk+1 = f(xk ,uk ) + vk (1)

zk = Hkxk + wk (2)

where xk is the state vector, which is of dimensions n × 1,
zk is the measurement vector with dimensions m× 1, and uk
is the control vector, which is of dimensions p × 1, where
p is the number of control inputs. f(xk ,uk ) is the nonlinear
state transition function, which outputs an n × 1 vector and
Hk is the measurement matrix with dimensionsm× n. vk and
wk are process and measurement noise vectors, respectively.
The respective dimensions of these vectors are n × 1 and
m × 1, where vk is white Gaussian noise that is zero-mean
with covarianceQk , andwk is zero-meanGaussian noise with
covariance Rk . The process and measurement noise vectors
are assumed to be mutually independent of each other.

B. PROPOSED STRATEGY TO COMBINE FILTERS
The derivations for each combined filter are shown in the
following subsections. Each filter follows the flowchart
shown in Figure 1, where state prediction executes first
and then depending on whether the combination is with the
SVSF-L or Tanh-SVSF-L, either the GVBL or NVBL is
computed. If the filter combines SVSF-L with a nonlinear
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FIGURE 1. The proposed framework/methodology to combine SVSF with nonlinear KF-based filters.

FIGURE 2. Effects of varying the boundary layer width [17].

KF, then GVBL is used. If the filter combines Tanh-SVSF-
L with EKF/UKF/CKF, then the NVBL is calculated. Both

VBLs output the BLwidths for themeasured and unmeasured
states. The BL widths quantify the level of modelling error
for each state. First, the BL widths for the measured states
are compared to thresholds to select the gain to correct the
measured state estimates. If the BL width of any measured
state is above its user-defined threshold, then an upper SVSF
gain is used to take advantage of robustness and stability.
SVSF is more advantageous when there are higher levels of
modelling error. If GVBL is used, the upper SVSF-L gain is
applied. Otherwise, if NVBL is used, the upper Tanh-SVSF-L
gain is utilized. If all BL widths are below their respective
thresholds, then the upper gain of the EKF, UKF, or CKF
is used to correct the measured state estimates because
nonlinear KFs are advantageous when the level of modelling
error is low. Moreover, the BL widths of the unmeasured
states are compared to thresholds, if any BL width is above
its threshold, the lower gain of the SVSF-L or Tanh-SVSF-L
is used to correct the unmeasured state estimates. Otherwise,
if all BL widths are below the thresholds, the EKF, UKF,
or CKF gain is used to update the unmeasured state estimates.

1) EXTENDED KALMAN - LUENBERGER SMOOTH VARIABLE
STRUCTURE FILTER (EK-SVSF-L)
Prediction:Given the a posteriori state estimate from the last
time step, denoted as x̂k|k , the predicted state is computed
using the system model:

x̂k+1|k = f(x̂k|k ,uk ) (3)
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The covariance of the predicted state, also known as the
a priori covariance (denoted as Pk+1|k ), is obtained via
linearization similarly to the EKF [3]. It is assumed that
the a posteriori state covariance is also given from the
previous time step, denoted as Pk|k . Similar to the EKF [3],
linearization is applied to the estimated state trajectory by
applying a Taylor series approximation to equation (1). This
results in a Jacobian matrix Fk , which is obtained as:

Fk =
∂ f(x̂k|k ,uk )

∂x
(4)

The Jacobian is then used to obtain the a priori error
covariance matrix:

Pk+1|k = FkPk|kFTk + Qk =

[
P11
k+1|k P12

k+1|k
P21
k+1|k P22

k+1|k

]
(5)

Correction: The predicted measurement, innovation
covariance, and a priori measurement error are obtained as:

ẑk+1|k = Hk+1x̂k+1|k (6)

Sk+1 = Hk+1Pk+1|kHT
k+1 + Rk+1 (7)

ez,k+1|k = zk+1 − ẑk+1|k (8)

Since not all states are measured, the output matrix is
non-square of dimensions m × n, it follows the form defined
in [22] and [34], which is expressed as:

Hk+1 =
[
H1 H2

]
(9)

where H1 is m × m and H2 is a zero matrix of dimensions
m× (n−m). m is the number of measured states and n is the
number of states. Since a Luenberger observer is employed to
estimate unmeasured states, using a similar procedure to [17]
and [34], the state vector consists of two portions, the upper
part represents the measured states, denoted by xuk , and the
lower portion contains the unmeasured states, xlk , which is
shown as follows:

xk =

[
xuk
xlk

]
(10)

The linearized system undergoes a transformation using a
transformation matrix T. Since the system model is non-
linear, linearization is applied to that model before applying
the transformation. The transformed transition matrix is:

8k = TFkT−1
=

[
811 812
821 822

]
(11)

When using a Luenberger observer to obtain unmeasured
states, the error vectors associated with the measured and
unmeasured states are denoted by Ez and Ey, respectively,
which are [22]:

Ez = |ez,k+1|k | + γ z|ez,k|k | (12)

Ey = |8228
−1
12 ez,k+1|k | + γ y|8

−1
12 ez,k+1|k | (13)

where the matrices γ z and γ y are diagonal matrices of
dimensionsm×m and (n−m)× (n−m), respectively, which
are parameters. The diagonal elements can take values in the

ranges of 0 ≤ γzii < 1 and 0 ≤ γyii < 1. These parameters
determine the filter’s convergence rates [17], [34].

The next step is to obtain the Generalized Variable
Boundary Layer (GVBL), which gives the boundary layer
(BL) widths for the measured and unmeasured states. In [22],
to obtain theGVBL, considering linear systems only, the trace
of the a posteriori covariance matrix of the Luenberger SVSF
from [34] was minimized with respect to the BL widths of the
measured states and unmeasured states, represented asψ z and
ψy, respectively. For linear systems, the smoothingBLwidths
were found to be [22]:

ψ z = (Ēz
−1

H1P11
k+1|kH

T
1 S

−1
k+1)

−1 (14)

ψy = (Ēy
−1

P21
k+1|kH

T
1 S

−1
k+1(8228

−1
12 )

−1)−1 (15)

where Ēz = diag(Ez) and Ēy = diag(Ey). Note that even
though the BL widths above are for linear systems, they
can be applied to nonlinear systems by using 812 and 822
from the transformed linearized state transition matrix from
equation (11). These BL widths are used as a means to
combine SVSF-L with EKF by comparing these widths to
thresholds as discussed later below.

Next, the EKF gain is computed [3]:

KEKF
k+1 = Pk+1|kHT

k+1S
−1
k+1 =

[
KEKF
uk+1

KEKF
lk+1

]
(16)

where KEKF
uk+1

is an m× m gain matrix for the measured states

and KEKF
lk+1

is an (n−m)×mmatrix for the unmeasured states.
After, the task is to select the upper and lower gains,

which are also known as the observed and unobserved gains,
respectively. The observed gain updates the measured states,
and the unobserved gain corrects the unmeasured states. The
stacked gain is denoted by:

Kk+1 =

[
Kuk+1

Klk+1

]
(17)

Let ψ z,max and ψy,max be vectors containing the upper
limits/thresholds for the level of modelling uncertainty for the
measured and unmeasured states, respectively. The smooth-
ing boundary layer widths measure the level of modelling
error for each state as described in [22] and [29]. Hence,
they are compared to their upper limits as described below to
determine whether to apply the SVSF-L gains or EKF gains.
When the widths are low, this indicates the level of modelling
error is low, which makes a nonlinear KF advantageous.
When the widths are high, the modelling uncertainty is high,
thus, the SVSF-L is more beneficial in order to maintain
robustness and stability against modelling uncertainties. Note
that the SVSF-L gains below are from [22] and [34]:

If the BL widths for each state in ψ z are below their
respective limits in ψ z,max , then

Kuk+1 = KEKF
uk+1

(18)

else:

Kuk+1 = KSVSF
uk+1
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= H−1
1 diag[Ez ◦ sat(ez,k+1|k ,ψ z,max)][diag(ez,k+1|k )]−1

(19)

If the BL widths for each state in ψy are below their
respective limits in ψy,max , then

Klk+1 = KEKF
lk+1

(20)

else:

Klk+1 = KSVSF
lk+1

= diag[Ey ◦ sat(8228
−1
12 ez,k+1|k ,ψy,max)]

[diag(8228
−1
12 ez,k+1|k )]−18228

−1
12 (21)

where ◦ refers to the Schur product. The saturation function
denoted by sat() is used to smoothen the discontinuous
corrective action from the switching gain. In terms of how
the function works, as explained in [17], let q and ψ be
vectors of the same dimension, sat(q,ψ) outputs a vector of
the same dimension, where the ith component of the vector is
computed as:

sati(q,ψ) =


qi
ψi
, if|

qi
ψi

| ≤ 1

sign(
qi
ψi

), if|
qi
ψi

| > 1
(22)

The a posteriori state estimate, covariance, and measurement
error are computed as:

x̂k+1|k+1 =

[
x̂uk+1|k

x̂lk+1|k

]
+

[
Kuk+1

Klk+1

]
ez,k+1|k (23)

Pk+1|k+1 = Pk+1|k −

[
Kuk+1

Klk+1

]
Hk+1Pk+1|k

− Pk+1|kHT
k+1

[
Kuk+1

Klk+1

]T
+

[
Kuk+1

Klk+1

]
Sk+1

[
Kuk+1

Klk+1

]T
(24)

ez,k+1|k+1 = zk+1 − Hk+1x̂k+1|k+1 (25)

2) UNSCENTED KALMAN - LUENBERGER SMOOTH
VARIABLE STRUCTURE FILTER (UK-SVSF-L)
Many of the equations for this filter are the same as the EK-
SVSF-L, the only differences are that the predicted state,
a priori covariance, predicted measurement, and innovation
covariance are computed differently. Thus, equations (3), (5),
(6), and (7) are replaced by the formulas of x̂k+1|k , Pk+1|k ,
ẑk+1|k , and Sk+1 shown below, respectively. Also, the EKF
gain is replaced with the UKF gain, hence, the EKF gains
from equations (18) and (20) are replaced by the observed
and unobserved gains of the UKF, respectively. The predicted
state, a priori covariance, predicted measurement, innovation
covariance, and UKF gain are calculated as follows:
In the prediction stage, sigma points are used to compute

the predicted state and covariance as described in [7]. The
2n+1 sigma points and their corresponding weighting factors
are obtained as:

χ0,k|k = x̂k i = 0 (26)

χ i,k|k = x̂k|k + (
√
(n+ λ)Pk|k )i i = 1 . . . .n (27)

χ i,k|k = x̂k|k − (
√
(n+ λ)Pk|k )i i = n+ 1 . . . .2n (28)

W x
0 =

λ

n+ λ
(29)

W p
0 =

λ

n+ λ
+ (1 − α2 + β) (30)

Wi =
1

2(n+ λ)
i = 1 . . . 2n (31)

where λ is a scaling parameter as described in [7], which is
calculated as λ = α2(n + κ) − n and n is the number of
states [5]. κ is also a scaling parameter. The term α represents
the spread of sigma points around the mean of the state
vector and β is a parameter used to take into account a-priori
knowledge of the state vector’s probability distribution [7].
(
√
(n+ λ)Pk|k )i is the ith column of the square root of the

(n + λ)Pk|k matrix. Next, the points are propagated through
the non-linear state transition function to get the predicted
state and covariance:

χ i,k+1|k = f(χ i,k|k ,uk ) (32)

x̂k+1|k =

2n∑
i=0

Wiχ i,k+1|k (33)

Pk+1|k =

2n∑
i=0

Wi(χ i,k+1|k − x̂k+1|k )(χ i,k+1|k − x̂k+1|k )T

+ Qk

=

[
P11
k+1|k P12

k+1|k
P21
k+1|k P22

k+1|k

]
(34)

The predicted measurement and innovation covariance
are calculated also using sigma points using the method
explained in [7]:

Zi,k+1|k = h(χ i,k+1|k ,uk ) (35)

ẑk+1|k =

2n∑
i=0

WiZi,k+1|k (36)

Sk+1 =

2n∑
i=0

Wi(Zi,k+1|k − ẑk+1|k )(Zi,k+1|k − ẑk+1|k )T

+ Rk+1 (37)

The cross covariance is [7]:

Pxz,k+1|k =

2n∑
i=0

Wi(χ i,k+1|k − x̂k+1|k )(Zi,k+1|k − ẑk+1|k )T

(38)

The UKF gain is computed as [7]:

KUKF
k+1 = Pxz,k+1|kS−1

k+1 =

[
KUKF
uk+1

KUKF
lk+1

]
(39)

where KUKF
uk+1

is an m × m observed gain matrix for the
measured states and KUKF

lk+1
is an (n − m) × m gain matrix

for the unmeasured states.

146268 VOLUME 11, 2023



S. Akhtar et al.: New Strategy for Combining Nonlinear Kalman Filters With SVSFs

3) CUBATURE KALMAN - LUENBERGER SMOOTH VARIABLE
STRUCTURE FILTER (CK-SVSF-L)
Most equations of this filter are the same as EK-SVSF-L. The
only differences are that the predicted state, a priori covari-
ance, predicted measurement, and innovation covariance are
computed differently. Hence, equations (3), (5), (6), and (7)
are replaced by the computations of x̂k+1|k , Pk+1|k , ẑk+1|k ,
and Sk+1 shown below, respectively. In addition, the EKF
gain is replaced with the CKF gain. The calculations of these
quantities are as follows:

Cubature points are used to obtain the predicted state and
a priori covariance using the method described in [39]. The
2n Cubature points are obtained as:

χ i,k|k = x̂k|k +
√
n(

√
Pk|k )i i = 1 . . . .n (40)

χ i,k|k = x̂k|k −
√
n(

√
Pk|k )i i = n+ 1 . . . .2n (41)

where n is the number of states. (
√
Pk|k )i is the ith column of

the square root of the Pk|k matrix.
The predicted state and its associated covariance are

calculated as [39]:

χ i,k+1|k = f(χ i,k|k ,uk ) (42)

x̂k+1|k =
1
2n

2n∑
i=1

χ i,k+1|k (43)

Pk+1|k =
1
2n

2n∑
i=1

(χ i,k+1|k − x̂k+1|k )(χ i,k+1|k − x̂k+1|k )T

+ Qk (44)

The predicted measurement and innovation covariance are
calculated using Cubature points as described in [39]:

Zi,k+1|k = h(χ i,k+1|k ,uk ) (45)

ẑk+1|k =
1
2n

2n∑
i=1

Zi,k+1|k (46)

Sk+1 =
1
2n

2n∑
i=1

(Zi,k+1|k − ẑk+1|k )(Zi,k+1|k − ẑk+1|k )T

+ Rk+1 (47)

The cross covariance is [39]:

Pxz,k+1|k =
1
2n

2n∑
i=1

(χ i,k+1|k − x̂k+1|k )(Zi,k+1|k − ẑk+1|k )T

(48)

The CKF gain is computed as [39]:

KCKF
k+1 = Pxz,k+1|kS−1

k+1 =

[
KCKF
uk+1

KCKF
lk+1

]
(49)

whereKCKF
uk+1

is an m× m gain matrix for the measured states

and KCKF
lk+1

is an (n−m) × m gain matrix for the unmeasured
states.

4) EXTENDED KALMAN - LUENBERGER HYPERBOLIC
TANGENT SVSF (EK-TANH-SVSF-L)
The majority of the equations of this method are the same
as EK-SVSF-L. Only the BL widths for the measured and
unmeasured states as well as the SVSF gains are computed
differently. Equations (14), (15), (19), and (21) are replaced
by the calculations of ψ z, ψy, K

Tanh−SVSF
uk+1

, and KTanh−SVSF
lk+1

,
respectively, as shown below. These quantities are calculated
as follows:

The Nonlinear Variable Boundary Layer (NVBL) reported
in [38] is used to obtain the smoothing boundary layer (BL)
widths for the measured and unmeasured states. In [38],
the NVBL was obtained by minimizing the trace of the a
posteriori covariance matrix of the Tanh-SVSF-L considering
linear systems only. The minimization was done with respect
to the BL widths of the measured states and unmeasured
states, represented asψ z andψy, respectively. The BL widths
obtained from the NVBL are [38]:

ψ z = [artanh(H1P11
k+1|kH

T
1 S

−1
k+1 diag(ez,k+1|k )Ē−1

z )

[diag(ez,k+1|k )]−1]−1 (50)

ψy = [artanh(P21
k+1|kH

T
1 S

−1
k+18128

−1
22

diag(8228
−1
12 ez,k+1|k )Ē−1

y )[diag(8228
−1
12 ez,k+1|k )]−1]−1

(51)

where artanh(A) applies the scalar inverse hyperbolic tangent
function to every element in the matrix A, assuming A is a
square matrix. Even thoughψ z andψy are for linear systems,
these widths can again be used for nonlinear systems by using
822 and 812 from the transformed linearized state transition
matrix 8.
The observed and unobserved gains are now [37]:

KTanh−SVSF
uk+1

= H−1
1 diag[Ez ◦ Tanh(ez,k+1|k ,ψ z,max)]

[diag(ez,k+1|k )]−1 (52)

KTanh−SVSF
lk+1

= diag[Ey ◦ Tanh(8228
−1
12 ez,k+1|k ,ψy,max)]

[diag(8228
−1
12 ez,k+1|k )]−18228

−1
12 (53)

The Tanh() function is used to smoothen the chattering
resulting from the SVSF gain. The above Tanh-SVSF gains
are from [37], which are modified SVSF gains. In [37], the
sat() function of the standard SVSF is replaced with Tanh() to
smoothen the chattering signal more effectively. Given that q
andψ are vectors of the same dimensions, Tanh(q,ψ) outputs
a vector of the same dimension, where the ith element of
Tanh(q,ψ) is computed as:

Tanh(qi, ψi)i =
e
2qi
ψi − 1

e
2qi
ψi + 1

(54)

5) UNSCENTED KALMAN - LUENBERGER HYPERBOLIC
TANGENT SMOOTH VARIABLE STRUCTURE FILTER
(UK-TANH-SVSF-L)
Most equations of this method are the same as UK-SVSF-L.
Only ψ z, ψy, the observed SVSF gain, and the unobserved
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SVSF gain are computed differently. The equations for these
variables are given in the previous sub-section.

6) CUBATURE KALMAN - LUENBERGER HYPERBOLIC
TANGENT- SMOOTH VARIABLE STRUCTURE FILTER
(CK-TANH-SVSF-L)
Similarly, the majority of the equations of this filter are the
same as CK-SVSF-L. Only ψ z, ψy, the observed SVSF gain,
and the unobserved SVSF gain are computed differently. The
equations for these quantities are given in the sub-section that
presents EK-Tanh-SVSF-L.

III. SIMULATION RESULTS
To evaluate the performance of the proposed framework,
a scenario of a maneuvering aircraft is simulated that
undergoes turns, and the objective is to apply filters to track
the aircraft using noisy position-only measurements from a
radar. The six filters resulting from the proposed framework
are compared to the EKF, UKF, CKF, PF, three SVSF variants
that deploy EKF UKF, and CKF presented in [30] and [31],
and two SVSF variants in [40], which deploy linearization
and sigma points. The following nonlinear motion model is
used to generate the aircraft trajectory:

xk+1 = f(xk ) + vk (55)

vk ∼ N (0,Qk ) (56)

The state variables are x-position, y-position, x-velocity, y-
velocity, and turn-rate, represented as pxk , pyk , vxk , vyk , and
ωk , respectively. In the equations below, Ts represents the
sampling time.

Considering the nonlinear Coordinated Turn (CT)
model [4], the model’s state equation is obtained as follows:

xk =
[
pxk pyk vxk vyk ωk

]T (57)

f(xk ) =


pxk +

sin(ωkTs)
wk

vxk −
1−cos(ωkTs)

wk
vyk

pyk +
1−cos(ωkTs)

wk
vxk +

sin(ωkTs)
wk

vyk
cos(ωkTs)vxk − sin(ωkTs)vyk
sin(ωkTs)vxk + cos(ωkTs)vyk

ωk

 (58)

Qk = L1



Ts3
3 0 Ts2

2 0 0

0 Ts3
3 0 Ts2

2 0
Ts2
2 0 Ts 0 0
0 Ts2

2 0 Ts 0
0 0 0 0 L2

L1
Ts

 (59)

The terms L1 and L2 are power spectral densities [4].
It is assumed that a radar obtains the position of the aircraft,

hence, the measurement model is defined as:

zk = Hkxk + wk (60)

wk ∼ N (0,Rk ) (61)

Hk =

[
1 0 0 0 0
0 1 0 0 0

]
(62)

In the considered scenario, similar to [39], an aircraft
maneuvers and its trajectory is generated using the CT
model. To highlight the advantage of the proposed framework
in handling model mismatch, two consecutive turns were
included in the target trajectory as shown in Figure 3. Since
the CT model represents a single turn, a sequence of turns
cannot be captured by this model, hence, such a sequence
leads to model mismatch. In the first 49 s of the simulation,
the aircraft turns with a turn-rate of 3°/s and afterwards,
it turns in the opposite direction at -3°/s. Therefore, the model
mismatch occurs in the trajectory at 50 s on-wards. In terms
of the parameters used to generate the trajectory, the sampling
time Ts was set to 1 s and the power spectral densities used
in the process noise covariance were set to L1 = 0.001 and
L2 = 1.75 x 10−5. It was assumed that only the position of
the aircraft was measured. The measurements were generated
with a noise standard deviation of 50 m. The initial x
and y positions of the aircraft were 1000 m and 1000 m,
respectively. The initial velocity in the x direction was
300 m/s and the initial turn-rate was 3°/s. For performance
evaluation, the synthetically generated trajectory of Figure 3
was used as the ground truth to compute the root mean square
error (RMSE) as a measure of estimation accuracy.

A. PERFORMANCE METRICS
Three types of performance metrics are utilized, one com-
putes the overall scalar state estimation RMSE of a specific
state variable, another computes RMSE across multiple state
variables, and the other computes the position and velocity
RMSE overtime.

Let xj be the jth state variable from the state vector xk . The
scalar RMSE of a specific state variable xj is computed as:

RMSExj =

√√√√ 1
M ∗ N

M∑
i=1

N∑
k=0

(x̂j
i
k|k − xjk )2 (63)

where M is the total number of Monte Carlo runs, N is the
total number of time steps in one Monte Carlo run including
the time step of the initial state, xjk represents the true value
of the state xj at time step k , and x̂j

i
k|k represents the estimate

of xj at time step k from Monte Carlo run i. A normalized
RMSE (NRMSE) is also calculated to compute the RMSE
over multiple state variables. Each state variable’s RMSE is
normalized by the range of the state variable because not all
states have the same range of values and units, and the range
is defined by |xmaxj − xminj |. The NRMSE is calculated as:

NRMSE =

n∑
j=1

RMSExj
|xmaxj − xminj |

(64)

where n is the number of states, xmaxj is the maximum value
of xj, and xminj is the minimum value of xj.
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FIGURE 3. True aircraft trajectory.

The position and velocity RMSE at time step k is calculated
as follows:

RMSEpk =

√√√√ 1
M

M∑
i=1

[(p̂ixk|k − pxk )2 + (p̂iyk|k − pyk )2] (65)

RMSEvk =

√√√√ 1
M

M∑
i=1

[(v̂ixk|k − vxk )2 + (v̂iyk|k − vyk )2] (66)

The terms pxk , pyk , vxk , and vyk represent the true x position, y
position, x velocity, and y velocity at time step k , respectively,
whereas, the terms p̂ixk|k , p̂

i
yk|k , v̂

i
xk|k , and v̂

i
yk|k , represent the

estimated x position, y position, x velocity, and y velocity,
at time step k from Monte Carlo run i, respectively.

B. SETTINGS AND PARAMETERS
To make a fair comparison, all filters were run using the
CT model with the same model parameters and the same
initial conditions. The filter parameters are listed in Table 2.
1-point initialization [4] was applied to initialize the state
and covariance of each filter. Using this initialization tech-
nique [4], the initial state and covariance were set to x̂0|0 =[
zx0 zy0 0 0 0

]T and P0|0 = diag(
[
σ 2
x σ

2
y v2max v

2
max ω

2
max

]
),

respectively. Where zx0 and zy0 are the initial x and y position
measurements received by the radar, respectively. σx and σy
represent the measurement noise standard deviation in each
coordinate, both are 50 m. vmax and ωmax are the maximum
velocity and turn-rate, which were set to 300 m/s and 3°/s,
respectively. The parameters of all filters were tuned such
that they provide optimal performance under the presence
of no model mismatch, thus, the parameters were chosen
to minimize the RMSE of each state for the first 49 s of
the simulation because there is no modelling error before
50 s. It was assumed that the modelling error that occurs
at 50 s on-wards is not prior knowledge. For tuning the
nonlinear KFs, it is conceptually clear that theQk andRk used
to generate the true trajectory and synthetic measurements
are optimal for the first 49 s. Hence, the process noise
covariance Qk in (59) was set with the same values for L1
and L2, which were used to obtain the ground truth. The
measurement noise covariance and sampling time Ts were

set as Rk = diag([502, 502]) and 1 s, respectively. For
the UKF parameters α, β, and κ , to see if other values
provide better performance compared to the default ones,
a Genetic Algorithm (GA) known as Non-dominated Sorting
Genetic Algorithm (NSGA-II) [41] was used to search for
parameter values that minimize the RMSE of each state
variable for the first 49 s of the simulation. This algorithm is
used to solve multi-objective optimization problems, where
the goal is to minimize multiple objective functions. Each
objective function in this case is the scalar RMSE of a state
variable. In this case, each scalar RMSE is calculated using
equation (63), but the only differences are that the number of
samples N and the number of runs M take different values.
N is set to the point that corresponds to 49 s since the goal
is to minimize RMSE in the presence of no modelling error
and M is set to 5. Since there are 5 state variables, there
are 5 objective functions. It was found that no significant
performance improvement is achieved using the optimal
parameter values obtained by NSGA-II to track the target for
the first 49 s compared to using the default values. The RMSE
of the state estimates were quite comparable to those of
default values with very marginal differences. Thus, α, β, and
κ were set to default values of 0.001, 2, and 0, respectively.
A value of 2 for β is optimal for Gaussian distributions as
stated in [7]. The measurement and system noise is Gaussian
for the first 49 s of the simulation, hence, β = 2 is optimal.
The UK-SVSF-L and UK-Tanh-SVSF-L use the same values
for α, β, and κ .
Parameters of the PF were also tuned such that the

performance is optimal when there is no modelling error,
thus, NSGA-II was used to minimize the RMSE of each state
for the first 49 s of the simulation. The optimal number of
particles and the minimum effective particle ratio were found
to be 1408603 and 0.8895, respectively. The multi-nominal
sampling strategy was chosen.

The three filters presented in [30] and [31] require a
full measurement matrix, hence, Rk is 5 × 5 for these
filters. For the filters presented in [31], the authors used
available measurements to derive artificial measurements of
unmeasured states to make Hk = I. Artificial velocity
measurements were obtained via numerical differentiation as
follows:

zvxk =
zxk − zxk−1

Ts
(67)

z
vy
k =

zyk − zyk−1

Ts
(68)

Note that backward differencing is done instead of forward
differencing in [31], since it is not practical to assume the
future measurement is available. zxk and zyk are the x and
y position measurements obtained from the radar at time
step k , respectively. These are obtained from equation (60).
zvxk and z

vy
k are the artificial x and y velocities, respectively.

The artificial turn-rate measurement was set to zero, with
zωk = 0°/s, as it is impossible to derive an artificial
measurement for it given position-only measurements.
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TABLE 2. Filter Parameters.

To obtain Rk , variances of the artificial measurements are

necessary, for zvxk and z
vy
k , they are equal to 2σ 2x

T 2
s

and
2σ 2y
T 2
s
,

respectively. Substituting the assumed values for σx , σy, and
Ts in these two relations results in 5000 for both. The variance
of the artificial turn-rate of 0°/s is set to (10−5)2 instead of
zero to maintain numerical stability in the filters. Therefore,
Rk = diag([502, 502, 5000, 5000, (10−5)2]) for the filters
of [30] and [31].

The boundary layer (BL) parameters were obtained
through minimizing the RMSE of each state variable
for the first 49 s using the NSGA-II to obtain optimal
parameters under the presence of no model mismatch.
In terms of the BL parameters, the proposed filters use

values of ψ z,max =
[
260.902 260.902

]T and ψy,max =[
3559.88 3559.88 110.54

]T , where the elements in ψ z,max
contain the upper limits on the BL widths for the x
and y position. The elements in ψy,max contain the
upper limits for the BL widths of the x and y velocity
as well as the turn-rate. For the three filters presented
in [30] and [31], the BL parameter was set to ψmax =[
260.902 260.902 376.975 376.975 110.54

]T , which con-
tains the upper limits on the BL widths for x and y
position, x and y velocity, and turn-rate. The reason that
the upper limit for the velocities were chosen to be lower
for these three filters (EK-SVSF-I, UK-SVSF-I, CK-SVSF)
compared to the proposed methods is that there is an artificial
measurement associated with the velocities in the former,
whereas for the proposed approaches, the upper limits are
much higher because the proposed filters did not take velocity
measurements. These are higher because the existence
subspace is large for states with no associated measurements
according to [42] when applying a reduced-order observer
to estimate unmeasured states. All proposed filters use a
reduced-order observer to estimate unmeasured states. Lastly,
for the two filters presented in [40], the BL widths must

be specified only for measured states, hence, the parameter
was set as ψ z =

[
260.902 260.902

]T . The convergence rate
parameters in all SVSF filters was set to 0.1I, which are
denoted by γ , γ z, and γ y in Table 2. The filters of [31]
and [30] use γ , and the proposed filters use γ z and γ y. The
strategies of [40] use γ z only. The transformation matrix T
used in the proposed filters was set to I. The number ofMonte
Carlo runs was 1000.

C. RESULTS
Table 3 shows the estimation RMSE for each state, equa-
tion (63) was used to obtain the scalar RMSE of each state.
The table also includes the NRMSE of each filter. According
to the last six rows of the table, the proposedmethods perform
the best for state estimation overall in terms of NRMSE,
which is explained in this sub-section. They provide superior
performance for estimating position and velocity based on
the scalar RMSE estimates of these states. Figures 4 and 5
show the position and velocity RMSE over-time for each
state estimator, equations (65) and (66) were utilized to obtain
these graphs. Prior to 50 s, which is before the aircraft turns
in the opposite direction, the EKF, UKF, CKF, and PF have
the best performance as shown in Figures 4b and 5b. This
is because there is not much modelling uncertainty before
50 s since the filter model is accurate. Thus, these filters are
expected to perform better when there is no model mismatch.

Once the target turns in the opposite direction, the
performance of the EKF, UKF, CKF, and PF starts to degrade
in Figures 4c, 4e, 5c, and 5e because the model they use is not
valid anymore, and this has a negative impact on robustness
and stability since these filters assume a precisely known
model. Since the CT model is used for only one turn and it
assumes the turn-rate to be nearly constant, it cannot model
multiple turns. Thus, filter model mismatch is present at 50 s
and beyond from the negated turn-rate. Figures 4c and 5c
show the position and velocity RMSE around the time the
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target turns in the opposite direction. It can be observed that
in both figures, as soon as the aircraft turns in the opposite
direction, the RMSE starts to increase at 50 s, which is due
to modelling error. In Figures 4a, 4e, 5a, and 5e the PF
becomes unstable because of model mismatch, resulting in
the highest NRMSE in Table 3. The PF also requires a strictly
known model likewise to the EKF, UKF, and CKF. All SVSF
variants perform better compared to the EKF, UKF, CKF,
and PF at 50 s on-wards for position estimation as shown in
Figures 4c and 4e as well as Table 3. This can be attributed to
their stability and robustness against modelling errors due to
using the switching gain. As illustrated in Figures 4d and 4e,
the gain causes the estimated position to converge closer
to the ground truth. In Figures 4b and 4d, in the zoomed
in parts, the RMSE of the filters using Tanh-SVSF-L is in
general slightly lower than the filters using SVSF-L due
to greater chattering attenuation from the Tanh-SVSF gain.
In [37], it is proven that the hyperbolic tangent function in
the Tanh-SVSF gain removes chatteringmore effectively than
the saturation function from standard SVSF gains. Next, the
EK-SVSF-I, UK-SVSF-I, and CK-SVSF-I have roughly the
same performance in these figures, which is why these three
filters have nearly the same NRMSE in Table 3. For velocity
estimation as shown in Figure 5d, the filters presented in [30]
and [31] do not estimate the velocity as accurately as other
filters due to the following reason. Although the filters
from [30] and [31] take advantages of EKF, UKF, and CKF
as well as the SVSF in [28], a limitation associated with these
approaches is that a full measurement matrix is required,
in other words, each state must be measured. To satisfy this
requirement, artificial measurements of unmeasured states
were created. Since the available measurements are position
only, artificial velocity measurements were generated via
numerical differentiation of the position as stated earlier.
Numerical differentiation results in a higher level of noise
in these measurements, leading to less accurate estimation.
Next, it is also required to have an artificial measurement
for the turn-rate, however, it is not possible to derive an
artificial turn-rate measurement using position only, thus, the
artificial measurement for turn-rate was set to zero. Since
the filters of [30] and [31] utilize the SVSF from [28],
the performance of this SVSF algorithm becomes poor in
estimating a state that does not have an actual or artificial
associated measurement. As a result, in Table 3, the turn-rate
estimation provided by these filters has the least accuracy.
Since the velocity is dependent on the turn-rate, this causes
the velocity to be estimated with the least accuracy. This is
why the NRMSEs of these three filters are higher compared
to the nonlinear KFs due to poorer velocity and turn-rate
estimation.

At 50 s on-wards, as shown in Figures 4d and 5d, when
there is model mismatch, the proposed approaches perform
better than the filters presented in [40] through taking
advantage of the SVSF as well as the EKF, UKF, and CKF.
When the computed boundary layer widths are lower than
the thresholds, the level of modelling uncertainty is lower,

TABLE 3. State Estimation RMSE.

thus, EKF, UKF, and CKF gains are applied.When the widths
are higher, the SVSF gains are used to take advantage of
the robustness and stability of SVSF. Even though the filters
of [40] do apply EKF and UKF features of linearization and
sigma points, the SVSF gain is still used to update the states.
In Table 3 and Figure 5e, at 50 s on-wards, the proposed
filters also outperform the nonlinear KFs and the PF for
velocity estimation again due to robustness against modelling
error and stability from SVSF’s switching gain causing the
estimate to converge closer to the true velocity. In Table 3,
filters of [30] and [31] provide the least accurate estimates of
turn-rate. This also reflects why the velocity is not estimated
as accurately compared to other methods in Figure 5d due
to the dependence of velocity on turn-rate. However, the
proposed SVSF-based methods estimate the turn-rate and
velocity more accurately than the filters in [30] and [31]. This
is due to employing a reduced-order observer approach to
estimate unmeasured states more robustly compared to the
filters of [30] and [31]. Therefore, the proposed approaches
estimate position and velocity more accurately than other
methods, and achieve a lower NRMSE compared to the
others. Lastly, the EK-Tanh-SVSF-L, UK-Tanh-SVSF-L, and
CK-Tanh-SVSF-L perform better than all filters overall
for position and velocity estimation as shown in Table 3.
In Figures 4d, 5c, and 5d, once model mismatch is present
after 49 s, the EK-Tanh-SVSF-L, UK-Tanh-SVSF-L, and
CK-Tanh-SVSF-L estimate the position and velocity themost
accurately compared to other filters. For position, as shown
in Figure 4d, the filters employing Tanh-SVSF-L perform
slightly better than the ones using SVSF-L between 59 s
and 67 s. For velocity estimation in Figure 5d, from 58 s to
65 s, the Tanh-SVSF-L-based filters perform slightly better
than the ones employing SVSF-L. Also, in Figure 5c, from
53-58 s into the simulation, the filters using Tanh-SVSF-L
outperform the filters employing SVSF-L. These filters
marginally outperform EK-SVSF-L, UK-SVSF-L, and CK-
SVSF-L regarding NRMSE, because they take advantage of
the Tanh-SVSF gains proposed in [37]. This allows these
methods to suppress chattering more effectively, because
in [37], it is proven that replacing the saturation function in
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FIGURE 4. Position Estimation RMSE.
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FIGURE 5. Velocity Estimation RMSE.
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FIGURE 6. 3-sigma bounds on position.
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FIGURE 6. (Continued.) 3-sigma bounds on position.

the standard SVSF gain with a hyperbolic tangent function
results in greater chattering reduction. This in turn improves
the estimation accuracy.

The 3-sigma bounds on the position and velocity are
shown in Figures 6 and 7, respectively. Note that to
make the comparisons between the bounds for each filter
easier to see visually, the bounds are not shown for all
filters because based on Table 3, the 6 proposed filters
have comparable performance with each other in terms of
NRMSE, the UK-SVSF-I achieves nearly the same tracking
accuracy as EK-SVSF-I and CK-SVSF-I, E-SVSF’s NRMSE
is marginally different from U-SVSF, and because CKF’s
NRMSE is comparable to UKF. Only the results of UKF, PF,
UK-SVSF-I, U-SVSF, and UK-SVSF-L are shown.

For the x and y position, it can be observed that in
Figures 6a and 6c, the true position is kept within the 3-sigma
bounds for all filters before the target turns in the opposite
direction at 50 s. Prior to 50 s, for both x and y position,
as illustrated in the zoomed in parts, the PF and UKF have
smaller gaps between their bounds compared to the SVSFs,
which is expected as the filter model is accurate, indicating
more accurate state estimates from the UKF and PF compared
to the others. Since the bars for the UKF and PF almost
overlap with each other in Figures 6a and 6c, the gap length
for both filters are almost the same. The gap between the
bounds for UK-SVSF-L is slightly larger than UKF because
this filter has the ability to apply the UKF when the level
of modelling error is lower. Since the filter model is precise
before 50s, the BL widths would be smaller and the level of
modelling error is expected to be low. Hence, theoretically,
it would apply the UKF gains more often, making the gap

between the bounds slightly larger than the gap for UKF. The
U-SVSF only applies SVSF gains, hence, it is not expected
to give the best performance when there is no modelling
error, making the gap between the bounds larger for this
filter in comparison to the PF, UKF, and UK-SVSF-L as
shown in the zoomed in parts of Figures 6a and 6c. The
UK-SVSF-I can also utilize UKF filtering, but the issue is
that it requires artificial measurements of unmeasured states,
which increases noise levels as numerical differentiation was
applied to obtain velocity measurements. It also requires a
turn-rate measurement, which is not possible to derive using
position-only measurements as stated earlier, and a limitation
associated with filters using SVSF-I is that the SVSF-I has a
poor performance in estimating states without an associated
real or artificial measurement. Since velocity is a function of
the turn-rate, this in turn causes the velocity to be estimated
poorly. Hence, this makes the gap larger compared to UKF,
PF, and UK-SVSF-L as illustrated in Figures 6a and 6c,
which indicates less precise tracking performance.
In Figures 6b and 6d, which is when modelling uncertainty
is present due to the target turning in the opposite direction,
based on the zoomed in parts, it can be seen that the bounds
for the UKF do not contain the true position. This is due to the
lack of robustness against modelling error for the UKF and
because the UKF is less stable. The 3-sigma bounds of the PF
do not keep the true position for majority of the time after 49 s
because of instability due to an inaccurate model. As shown
in Figures 6b and 6d, the gap between the sigma bounds also
rises overtime for the PF due to it becoming unstable, hence,
the confidence in the position estimate is declining, and this
indicates the estimate is becoming less accurate. Whereas,
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FIGURE 7. 3-sigma bounds on velocity.
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FIGURE 7. (Continued.) 3-sigma bounds on velocity.

based on the zoomed in parts in Figures 6b and 6d, for the
SVSFs, the true position is kept within the 3-sigma bounds
due to robustness against modelling error and stability.

Next, for the x and y velocity, based on Figures 7a and 7c,
which is when no modelling error is present, all filters keep
the true velocity within their 3-sigma bounds. Similarly, the
gap between the bounds for the UKF and PF are lower
compared to the SVSFs since there is no model mismatch
before 50 s. The PF and UKF have nearly the same length
for their gaps since the bars almost overlap as shown in
Figures 7a and 7c. The UK-SVSF-L has the ability to utilize
UKF filtering when the level of modelling error is low, which
is why the gap for it is slightly larger than UKF as discussed
in the previous paragraph. For majority of the time before
50 s, the UK-SVSF-I has a larger gap between the bounds
for both x and y velocity in comparison to the PF, UKF,
U-SVSF and UK-SVSF-L as shown in Figures 7a and 7c.
This is because it uses artificial velocity measurements from
numerical differentiation and because it uses a turn-rate of
zero as explained earlier, which then causes the velocity
and turn-rate to be estimated with the least accuracy. Once,
the target turns in the opposite direction, for the PF, based
on Figures 7b and 7d, for majority of the time after 50 s,
due to instability and lack of robustness, the gap between
the bounds is increasing overtime, thus, the confidence in
the velocity estimate declines. This indicates the velocity
estimate is becoming less precise. For the x velocity, as shown
in Figure 7b, between 61-63 s, the UKF keeps the true x
velocity within its bounds, afterwards, it goes outside the
bounds, and after a while, at 91 s on-wards, as shown in
the zoomed in figure, the true velocity is within the bounds.
Whereas, for the UK-SVSF-L, at 63 s on-wards, it keeps

the velocity in its bounds. Due to improved robustness and
stability, it keeps the true velocity within the bounds for a
longer period compared to UKF. Next, for the y velocity,
at 50 s on-wards, as shown in Figure 7d, for UKF, from
57-59 s, the true velocity is kept within the bounds, however,
between 60-66 s, it is not within the bounds. For UK-SVSF-
L, at 57 s and beyond, the true velocity is kept within the
3-sigma bounds. Hence, in this case, it also keeps the true
velocity within the bounds for a longer time due to stability
and robustness from the SVSF gain.

IV. CONCLUSION
In this paper, a general framework is formed that puts a
subset of existing SVSF methods under one umbrella. More
specifically, a new strategy to combine SVSF with other
state-of-the-art nonlinear filters is proposed. This results in
a set of six new combined SVSF filtering strategies, the
derivation and simulation results of all were presented. The
Luenberger SVSF (SVSF-L) and the Luenberger Tanh-SVSF
(Tanh-SVSF-L) were combined with EKF, UKF, and CKF.
These filters are abbreviated as EK-SVSF-L, UK-SVSF-
L, CK-SVSF-L, EK-Tanh-SVSF-L, UK-Tanh-SVSF-L, and
CK-Tanh-SVSF-L. Since existing SVSF strategies can be
discovered as special cases of the proposed filters, this allows
the framework to put existing strategies under one umbrella.
Moreover, another contribution is that the limitations of
these filters are relaxed. The proposed filters extend linear
SVSF algorithms, called Generalized Variable Boundary
Layer-Smooth Variable Structure Filter (GVBL-SVSF) and
Nonlinear Variable Boundary Layer- Smooth Variable Struc-
ture Filter (NVBL-SVSF) to non-linear systems, where the
number of measured states (outputs) is less than the number
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of states without having to generate artificial measurements.
These strategies also extend the domain of applicability of
filtering algorithms presented in [30] and [31] by relaxing the
requirement of having a square measurement matrix, since in
many applications not all states are measurable and it is not
always possible to create an artificial measurement of each
state as shown in this paper. Measuring all states may require
additional sensors, which may increase the cost of system
design, thus, relaxing the requirement of a full measurement
matrix reduces the system cost. A subset of existing SVSF
strategies can be viewed as special cases of the proposed
framework.

All six filters were evaluated to track a maneuvering
target. It was demonstrated that the new SVSF approaches
outperform the EKF, UKF, CKF, and PF due to their stability
and robustness against modelling error when using models
that are not representative of the target’s truemotion. The pro-
posed methods also estimate the target’s position and velocity
more accurately compared to some existing non-linear
SVSF strategies. Moreover, under modelling uncertainty,
the proposed filters that employ Tanh-SVSF perform the
best in terms of position and velocity estimation accuracy
because the Tanh-SVSF’s gains suppress the chattering more
effectively compared to standard SVSF gains.
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