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ABSTRACT In this paper, we propose a novel approach to enhance the generalization performance of deep
neural networks. Our method employs a hierarchical hypersphere-based constraint that organizes weight
vectors hierarchically based on observed data. By diversifying the parameter space of hyperplanes in the
classification layer, we aim to encourage discriminative generalization. We introduce a self-supervised
grouping method designed to unveil hierarchical structures in scenarios with unknown hierarchy
information. To maximize distances between weight vectors on multiple hyperspheres, we propose a
novel metric that combines discrete and continuous measures. This regularization encourages diverse
orientations, consequently leading to improved generalization. Extensive evaluations on datasets, including
CUB200-2011, Stanford-Cars, CIFAR-100, and TinyImageNet, consistently demonstrate enhancements in
classification performance compared to baseline settings.

INDEX TERMS Diversity promoting, hierarchical hyperspheres, inductive bias, regularization.

I. INTRODUCTION
The pursuit of improved generalization performance in
machine learning has led to the widespread adoption of
diversity-promoting learning techniques [1], [2]. In diversity-
promoting learning, maximizing the pairwise distance
between parameters can enhance their margin,1 which allows
projective representation to exhibit the desired discriminative
property. Specifically, in the domain of deep neural networks
addressing classification tasks, diversity-promoting learning
presents a key advantage intuitively. It helps the model
effectively generalize to diverse hyperplanes within similar
classes during training. This mitigates the risk of the model
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approving it for publication was Ines Domingues .
1It involves a different margin calculation compared to maximum-

margin hyperplanes, such as the Support Vector Machine (SVM), which is
determined based on the maximum distance to the nearest training sample of
each class [3].

becoming excessively specialized and ultimately contributes
to the reduction of the generalization gap.

This diversity-promoting approach aims to enhance
model performance by various means [1], [2], [4]. Tech-
niques include increasing distances between parameters [2],
increasing orthogonality [1], reducing parameter covari-
ance [5], or minimizing correlation on feature vectors [6].
Among these methods, diversity-promoting regularization,
specifically enforcing large diversity between projection
parameters, has shown promising results without altering
the underlying model architecture [2], [4], [5]. However,
optimizing the objective function with a covariance matrix
remains challenging [5]. Recent approaches have proposed
diversity-promoting regularization by minimizing the energy
of deep neural network parameters on a hypersphere.
They use either Euclidean or angular metrics to maxi-
mize pairwise distances, achieving improved generalization
[2], [4].
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Building on the known efficient regularization techniques
on the hypersphere [2], [4], we explore a novel integration
of three different learning strategies: hierarchical learning,
hyperspherical learning, and discrete metric learning. Firstly,
we introduce hierarchical learning to embed semantic
structure into the model. Drawing inspiration from the
efficient nature of human intelligence [7], we employ a
semantic taxonomy to arrangemultiple classes hierarchically,
thereby enhancing machine intelligence. The efficacy of
hierarchical learning has been demonstrated in previous
work [8], [9]. Secondly, we apply hyperspherical learning
to confine parameters (hyperplane) within a bounded space.
By representing parameters on hyperspheres, where points lie
at an equidistance from a centroid, we introduce a bounded
property facilitating the definition of a hierarchical structure
with multiple separated hyperspheres. Finally, we leverage
discrete metric learning to increase separability between
parameters. Representing vector points as a discontinu-
ous series with discrete representations enables isolation
with a certain margin, making it suitable for address-
ing disconnected/groupwise manifold space problems. For
categorization purposes, a discrete metric can force deep
networks to learn such representations. Discrete metric
spaces are expected to offer the advantage of reducing search
efforts to satisfy such constraints. Moreover, importantly,
enforcing equidistributed points with maximized pairwise
distances while preserving hierarchical semantics across
samples (classes) is a nontrivial task.

The key contributions of this paper are as follows:
• We propose a novel approach that applies hierarchical
structures, specifically hierarchical angular constraints,
to effectively regularize parameters defined on multiple
hyperspheres.

• We propose a self-supervised method for introducing
hierarchical hyperspheres, minimizing the need for
additional parameters, with only centroid parameters
indicating superclasses.

• Our exploration includes the use of a discrete angular
metric which provides a suitable measurement for
the multiple spaces. To maintain representation power,
we blend a discrete metric with a continuous metric.

• Through extensive experiments on widely recognized
benchmark datasets, we demonstrate the efficacy of our
proposed method, particularly in the context of visual
object classification.

II. RELATED WORKS
Diversity promotion in the embedding space or model
parameters is a widely adopted strategy in machine learning
to enhance generalization performance [1], [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13], [14]. This
approach operates at various levels, including the feature
level [1], [6], projection parameter level [2], [4], model
ensemble level [14], [15], latent space model level [4],
[14], and generative model level [12], [14]. However,
certain regularization methods entail additional optimization

effort. For example, enlarging pairwise distances between
features [1] requires computational efforts due to the
covariance matrix involved. In [5], unit-eigenvalue is utilized
through singular value decomposition, adding complexity
to the optimization process. Alternating direction method
of multipliers (ADMM) [2] is employed to optimize the
direction and magnitude of parameter vectors alternatively.

Regarding learning on a hypersphere, SphereCov (Hyper-
spherical Convolution) was proposed to replace the tradi-
tional inner-product-based convolution for learning angular
representations [16]. Furthermore, regularization techniques
leveraging diversity on a hypersphere have been intro-
duced, based on the concept of Minimum Hyperspherical
Energy [4].

In the context of hierarchical learning, previous works
like [17] and [18] have applied hyperbolic spaces to
embed data in deep neural networks, showcasing effective
representation learning while preserving latent hierarchies
compared to the Euclidean space. In contrast, our proposed
method focuses on regularization learning using hierarchical
hyperplane parameterization, which serves a distinct purpose
from those representation-focused approaches.

In the context of metric learning, various metrics can
be employed in a loss function. The Hamming distance
metric [19] adopts a discrete mapping from the input space
onto binary codes for metric learning. The unification of
training objectives for deep hashing by incorporating a
single classification objective is proposed in [20]. This is
demonstrated through the maximization of cosine similarity
between continuous codes and binary orthogonal targets
under a cross-entropy loss.

In summary, existing diversity-promoting methods pri-
marily focus on continuous distances or require additional
complicated optimization strategies (e.g., covariance matrix
or ADMM). Hyperspherical methods, on the other hand,
operate on a single hypersphere and concentrate on parameter
operations (e.g., SphereConv) or on continuous metric space
only. In the context of discrete metric learning, either discrete
or continuous metrics are adopted in a single training loss
function. In contrast to these existing methods, our proposed
methods function as a regularization for the parameters on
the last layer by reparameterizing the hyperplanes in multiple
hyperspherical spaces, which are hierarchically organized in
a discrete blended metric space.

III. HIERARCHICAL HYPERSPHERES: MODELING
DISCONNECTED MANIFOLDS
Real-world data often exhibit complex structures residing on
disconnected manifolds, where the global manifold is formed
by the disjoint union of multiple individual manifolds [21].
In this context, we propose addressing this challenge by
decomposing a single space into multiple separated hyper-
spheres. Building upon these ideas, we introduce our novel
approach, Hierarchical Hyperspheres, in the method section.
This approach enhances the modeling of disconnected
manifolds with the aim of improving performance and
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FIGURE 1. (a),(b), and (c) Multiple (hyper)spheres as quotient spaces of a topology space on Euclidean space might
be found by gluing process with identifying points. Those separated hyperspheres are assumed to be under the
quotient space conditions [10]. (d) Within an individual (hyper)sphere, projection parameters (weight vectors) in
deep neural networks are defined to preserve a hierarchical structure. ws and wc represent the surface and center
parameters (wsurface, wcenter), respectively. As described in IV-A1, the i -th parameter of group gk is defined as
w(gk , i ) := wsurface(gk , i ) − wcenter(gk ). The space can be formed in a series: (a)→(b)→(c)→(d).

facilitating the exploration of hierarchical structures in neural
network learning tasks.

A. CONSTRUCTION OF DISCONNECTED MANIFOLDS VIA
EQUIVALENT RELATIONS
As it is impractical to measure pairwise distances between
high-dimensional vectors embedding the hierarchical struc-
ture within a single space, we introduce an identification
space where multiple manifolds are isolated using equiva-
lence relations [10]. In this context, we denote the d-sphere,
Sd , as the set of points satisfying Sd = w ∈ Rd+1

: ∥w∥ = 1,
centered at the origin. By employing multiple identifying
relations, we construct several separated hyperspheres, each
characterized by a center parameter wc and a surface param-
eter ws. These parameters define a projection parameter w
that constitutes a hypersphere space, as illustrated in Fig. 1.
This construction facilitates the representation of hierarchical
structures within the data.

B. PRIOR DISTRIBUTION AND REGULARIZATION
To achieve a uniform distribution of parameters on the unit
hyperspheres, we sample the parameters from a Gaussian
normal distribution [22], [23]. This choice is motivated by
the spherical symmetry of the normal distribution [22], which
promotes a balanced spread of parameters.2 From a Bayesian
perspective, neural networks with Gaussian priors induce

2This spherical symmetry makes the normal distribution well-suited for
scenarios where we want a distribution that is isotropic, meaning that it
looks the same in all directions. In the context of sampling parameters for
hyperspheres, using a normal distribution helps ensure that the sampled
points are evenly distributed around themean, contributing to amore uniform
coverage on the hypersphere.

l2-norm regularization (weight decay) [24]. This regulariza-
tion further emphasizes the importance of enforcing parame-
ters to have Gaussian priors in hyperspherical learning within
neural networks. Notably, parameters calculated through the
difference arithmetic operation with two parameters on the
normal Gaussian distribution follow a normal difference
distribution.
In summary, our proposed Hierarchical Hyperspheres

approach offers an effective solution for modeling discon-
nected manifolds, enabling enhanced exploration of hierar-
chical structures, and contributing to improved performance
in neural network learning tasks.

IV. PROPOSED METHOD
In deep neural networks with constrained optimization, a reg-
ularization function R(θ ), with a regularization multiplier
λ > 0, is added to the loss function to form a single objective
function denoted asJR(θ ). This objective function comprises
a loss term L(x, θ ) and the regularization term. The goal is
to optimize JR(θ ) to find optimal values of parameters θ

minimizing the loss L. For classification tasks, commonly
used is the cross-entropy loss. This paper proposes a novel
regularization formulation R that preserves a hierarchical
structure (explained in Section IV-A).

When there are multiple layers, the set of parameters is
denoted as a set of matrices Wi, where each matrix is in
R(di−1+1)×pi . The elements ofWi are denoted bywj, and each
wj is a weight vector in Rdi−1+1. The index j ranges from
1 to pi, and i ranges from 1 to L, representing the layers
in a neural network. In this paper, we are focusing on the
weight parameters at the last layer L for the classification
task.
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FIGURE 2. A series of levelwise (l ) spheres with a radius (rl ) is shown: (a) A radius of an overall area converges to
r0

1−δ

(=
∑∞

l r0δl : the sum of radius series) as l goes to infinity where l denotes a level, r0 is their initial radius, and δ is the
ratio between radiuses (rl , rl−1),

rl
rl−1

< 1. (b) The radius of the overall area is bounded to the initial radius r0 of
spheres. This bears a resemblance to the process of repeat of Hypersphere packing which arranges non-overlapping
spheres within a containing space. (c) 2-sphere is defined following (b) which is appropriate to model a hierarchical
structure. This can be generalized with a hypersphere (Sd , d ≥ 3) in a higher dimensional space.

A. HIERARCHICAL AND HYPERSPHERICAL HYPOTHESES
We introduce a projection parameter (weight vector) denoted
as w ∈ Rd+1 to perform transformations on a vector
v ∈ Rd+1, resulting in an embedding space defined by a
Euclidean metric. The transformation can be represented as
v 7→ wT v ∈ Rd+1. To ensure that w resides on a d-sphere,
we impose the constraint ∥w∥ = 1, where ∥ · ∥ denotes the
Euclidean norm (l2-norm).
Geometrically, we redefine the parameter vector w as the

difference between two vectors: w := wsurface − wcenter,
where wsurface ∈ Rd+1 and wcenter ∈ Rd+1 represent the
surface and center parameters, respectively. The parameter
vector w lies on the d-sphere Sd (wcenter).3

1) HIERARCHICAL PARAMETERIZATION WITH LEVELWISE
AND GROUPWISE STRUCTURE
We consider a hierarchical structure comprising multiple
levels and multiple groups, denoted as l and gk respectively.
The hierarchical parameters are defined using both levelwise
and groupwise structures.

a: LEVELWISE STRUCTURE
The projection parameter w is defined at level l as
follows:

wl := wsurface,l − wcenter,l (1)

where wl lies on the d-sphere centered at wcenter,l . In this
paper, we work in a higher-dimensional space than shown in
Fig. 2.

In the levelwise setting, we represent the surface and
center parameters at level l additively, based on the center
parameter from the previous level l − 1: wcenter,l ←

wcenter,l−1 + wconnecting,l , where wcenter,l−1 is the accu-
mulated sum of connecting parameters from levels 1 to

3We denote the d-sphere as Sd (wcenter) := {wsurface −wcenter ∈ Rd+1 :
∥wsurface −wcenter∥ = 1}. Although we assume a radius of 1 for simplicity,
the parameter vector can have a radius r > 0.

l − 1 (wcenter,l−1 =
∑l−1

i=1 wconnecting,i), and wconnecting,l
denotes a connecting parameter from wcenter,l−1 to wcenter,l .
To simplify the notation, we use wl,l−1 to represent
wconnecting,l , and express the center vector at level l as
wcenter,l := wcenter,l−1 + wcenter,l,l−1, and the surface vector
aswsurface,l := wcenter,l−1+wsurface,l,l−1. Both the center and
surface parameters at the current level depend on the center
parameter at the previous level. Consequently, Eq. 1 can be
equivalently expressed as

wl := wsurface,l,l−1 − wcenter,l,l−1. (2)

We use the subscript l, l − 1 to indicate parameters at level
l connected from the center parameter at level l − 1. The
levelwise parameters wsurface,l,l−1 and wcenter,l,l−1 are later
used to define the groupwise structure.

b: GROUPWISE STRUCTURE
Using the group notation gk , we can rewrite the center
parameter wcenter,l,l−1 in Eq. 2 as wcenter(gk ). The d-sphere
of group gk is defined as Sd (wcenter(gk )). Each group forms
a group set with a levelwise setting, denoted as Gl :=
{gk}

|Gl |
k=1, where Gl ⊆ Yl−1, and Yl−1 denotes the batch

label set at level l − 1. Note that the group set Gl at
level l depends on the group set at level l − 1, denoted as
Gl−1 := {gk ′}

|Gl−1|
k ′=1 , where Gl−1 ⊆ Yl−2. This relationship

between group sets extends across levels.We provide an adja-
cency indication (or probability distribution) {0, 1}|Yl |×|Gl |

based on these groupwise relationships. Thus, the i-th
parameter of group gk on Sd (wcenter(gk )) is defined as
follows:

w(gk , i) := wsurface(gk , i)− wcenter(gk ), (3)

where wsurface(gk , i) and wcenter(gk ) on Sd (wcenter(gk ′ )) are
calculated based on a center parameter wcenter(gk ′ ) at level
l − 1. Here, i = 1, . . . , |gk |, and |gk | denotes the number of
surface parameter vectors in group gk .
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2) HIERARCHICAL-HYPERSPHERICAL REGULARIZATION
In this section, we define a regularization term using the
hierarchical parameters described above. The regularization
termR(θ ) is given as follows:

R(θ ) :=
∑
l

λl(Rl(w)+Rl(wcenter))+
∑
l

Cl (4)

whereRl(w) represents the regularization term for projection
parameters w(gk , i) ∀i within the same group gk , Rl(wcenter)
represents the regularization term for center parameters
wcenter(gk ) ∀k across groups on Sd (wcenter(gk ′ )) in the same
level l, λl > 0, and Cl applies geometry-aware constraints
across spheres.Rl(w) andRl(wcenter) are defined as follows:

Rl(w) :=
1
N

∑
{gk∈Gl }

2
Np

∑
{i̸=j∈gk }

d(w(gk , i),w(gk , j)) (5)

and

Rl(wcenter) :=
2
Nc

∑
{gi ̸=gj∈Gl }

d(wcenter(gi),wcenter(gj)) (6)

where N denote the total number of groups in Gl , defined as
N = |{gk ∈ Gl}|. Additionally, we define Np as the total
number of pairwise combinations within each group gk , given
by Np = |{i ̸= j ∈ gk}|(|{i ̸= j ∈ gk}| − 1). Similarly,
Nc represents the total number of pairwise combinations
between different groups in Gl , computed as Nc = |{gi ̸=
gj ∈ Gl}|(|{gi ̸= gj ∈ Gl}| − 1). In our context, d(·, ·) denotes
the distance metric used to measure the difference between
parameters, which is defined in Section IV-C.
When given a minibatch of inputs (mx: a set of

inputs {xi}), the regularization term becomes: E[R(θ)] =
1
|mx|

∑
xi∈mx

R(θ; xi). Here, R(θ; xi) represents the regular-
ization term evaluated on the input xi with the parameter
set θ .
The constraint term Cl helps construct geometry-aware

relational parameters between different spheres at the same
level and across levels. Multiple constraints are defined as
Cl :=

∑
k λkCl,k , where Cl,k is the k-th constraint between

parameters at the l-th and the (l − 1)-th level, and λk > 0 is
a Lagrange multiplier. We omit this constraint term in this
paper.

B. SELF-SUPERVISED HIERARCHICAL
PARAMETERIZATION
In this section, we present the self-supervised method for
calculating the adjacency indication which captures the
groupwise relations over different levels (as discussed in
Section IV-A1). The goal is to find superclasses (groups)
based on the inferred confusion probabilities of pairwise
categories, which reflect their uncertainty of discrimination.

1) GROUPWISE RELATIONS
Given the training data D along with their corresponding
target labels Yl at the l-th level, we create a group set
{gk}Kk=1, where K represents the number of groups, and

{gk}Kk=1 ⊆ Gl ⊆ Yl−1. Based on this group mapping, we can
define the cross-level adjacency from Yl to Yl−1.

2) INFERRED CONFUSION PROBABILITIES
Given a training set consisting of pairs {xi, yi}, i = 1 . . . n,
where xi ∈ D is the input vector, and yi ∈ {1, . . . ,K } ⊆ Yl
denotes the target label at the leaf level, with K being the
number of target categories. From a discriminative viewpoint,
we can infer the posterior probability p(y|x; θ ) over the
target label using the learned parameters θ of the deep
networks.

The confusion probability is defined as the conditional
(posterior) probability over labels other than the ground-truth
label (yi) for the given input vector (xi), i.e., p(ỹ|xi; θ ),∀ỹ ∈
{1, . . . ,K } \ yi, where |{1, . . . ,K } \ yi| = K − 1. If the
confusion probability between pairwise categories is large,
it indicates that the inference model either confuses a pair
of categories or those categories are semantically similar.
Based on this assumption, categories with high uncertainty
are assigned to the same group.

3) CONSTRUCTION OF THE CONFUSION PROBABILITY
MATRIX
We construct the confusion probability matrix M by calcu-
lating pairwise confusions over all given categories. Here,
M(yi, k) is given by

∑n
i=1

1
|k=yi|

Pr(yi, k) for all k . Here,
Pr(yi, k) := p(yi, k|xi; θ ), Pr(k, k) = 0, and k =

1, . . . ,K . Since the confusion probability matrix M is
asymmetric, we symmetrize it by taking the average of the
matrix and its transpose, i.e., M+MT

2 . Next, we focus on
the pairs from the upper triangle part of this symmetrized
matrix, excluding the diagonal elements, i.e., {Pr(i, j)| i <

j}. Among the (K−1)(K−2)
2 elements representing pairs of

different categories, we adopt a simple grouping strategy.
Pairs of categories with a confusion probability larger than
the threshold (e.g., the median value of the confusion
distribution) are grouped together for k = 1, . . . ,K .
Meanwhile, categories with confusion probabilities smaller
than the threshold form individual groups.

4) INFERENCE NETWORK AND LEARNING
In deep neural networks, we calculate the confusion prob-
ability matrix using the inference network (H ∼ θ) at
the leaf level, where H(xi) 7→ RK . Here, θ represents
the parameter set for H, which includes W, WL , and other
relevant parameters, and K denotes the number of categories
at the leaf level. To calculate the confusion probability, we use
a softmax function:

σ (x) := P(y = j |x) =
expH(x;WL(j))∑
k expH(x,WL(k)))

(7)

Next, using the threshold-based grouping algorithm
(explained in Algorithm 1), we segment the categories and
define stochastic groups with the number of groups K̃ . For
improved learning effectiveness, we introduce an inference
network for grouping (H̃ ∼ φ), where H̃(xi) 7→ RK̃ , and the
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FIGURE 3. While angular distances α between a pair of vectors {w1, w2}

and {w2, w3} have the same angle a > 0, the discrete metric D between
vectors are the different each other, 0.0 and 0.5. Thus,
d (w1, w2) < d (w2, w3) where a pair {w2, w3} has a different sign of
components on a horizontal axis but not that in a pair {w1, w2}.

parameter set for H̃ is denoted as φ. The parameter sets forH
and H̃ are separate, but the parameter setW is shared between
them. Thus, the inference involves bothH and H̃, denoted as
{H, H̃} ∼ {θ , φ}. The learning process is achieved through
minimizing the loss function:

argmin
θ ,φ

L(σ (H(xi)), yi)+ λgLg(σ (H̃(xi)), y′i) ∀i (8)

where L represents the cross-entropy loss, Lg is the
cross-entropy based grouping loss, λg > 0, and θ :=

{W,WL , . . . } and φ := {W,W′L , . . . } represent the
parameter sets for H and H̃ respectively. By utilizing the
given training samples and their target labels at the leaf level,
a hierarchical structure can be generated to a predefined
depth. In a stochastic gradient optimization setting, the
posterior inference and grouping are recursively repeated,
incorporating a combination of grouping, classification, and
regularization. This iterative process is expected to converge
to a near-optimal state, where the parameters at individual
levels are evenly distributed.

C. DISCRETE AND CONTINUOUS ANGULAR DISTANCE
METRIC
The discrete metric aligns well with our groupwise definition
introduced earlier. In Fig. 3, we observe that two pairs
of parameters can exhibit different discrete distances while
sharing the same continuous distances. This shows that the
discrete metric captures unique aspects of the parameter
distribution beyond the continuous distances.

To maximize the discrete distances between parameter
pairs, it is beneficial to have their individual dimen-
sions with different signs. This arrangement promotes
an isolated and diverse distribution of parameters, lead-
ing to larger discrete distances. By encouraging diver-
sity in the parameter space, the discrete metric can be
leveraged effectively in optimization and learning scenar-
ios, enhancing the learning process and enabling better
generalization.

A discrete angular distance can be derived from a discrete
product. The discrete product of a pair of parameter vectors
wi and wj in Rd+1 can be computed using the sign function
as follows:

D :=
1

d + 1

d+1∑
k

sign(wi(k)) · sign(wj(k)), (9)

where sign(w) :=

{
1, if w ≥ 0
−1, otherwise,

, −1 ≤ D ≤ 1,

and w(k) ∈ R denotes the k-th element of w. This is a
normalized version of the Hamming distance. The discrete
angular distance of the above product can be calculated using
the arccosine function: αD =

1
π
arccosD, where 0 ≤ αD ≤ 1.

Eq. 9 is formulated based on a binary discrete product
(referred to as D2). For a ternary discrete product (referred to
as D3), the function sign(x) with three terms is used, where
sign(x) ∈ {−1, 0, 1}.

1) PROPOSED BLENDED METRICS
However, the discrete distance could underestimate the
approximation of themodel distribution due to its limited rep-
resentation as the sign function is scale-invariant. To address
this, we propose to blend the discrete distance metric (αD =
1
π
arccosD) with a continuous angular distance metric (α =

1
π
arccos ( wi·wj

|wi||wj|
), 0 ≤ α ≤ 1) into a single metric. We use

Pythagorean means, which consist of the arithmetic mean
(A), the geometric mean (G), and the harmonic mean (H),
to combine the two distance metrics. Pythagorean means
using a pair of angular distances are defined as follows:

A(αD, α) :=
αD + α

2
,

G(αD, α) :=
√

αDα,

H (αD, α) :=
2αDα

αD + α
. (10)

In the angular distance4 using a pair of angles {αD, α},
we adopt a reversed form 1− d(αD, α) to maximize an angle
in the minimization formulation, instead of using (·)−s where
s = 1, 2, . . ., as used in the Thomson problem that utilizes
s-energy [25]. The cosine similarity using the pair of angles
is defined as follows:

cosA := cos (A(αD, α)π) = cos
(

αD + α

2
π

)
,

cosG := cos
(
G(αD, α)2π

)
= cos (αDαπ),

cosH := cos (H (αD, α)π) = cos
(

2αDα

αD + α
π

)
, , (11)

and these cosine similarity functions are normalized with
cos(·)+1

2 to have a value within the range [0, 1]. Finally,
Pythagorean means of cosine similarities can be calculated

4In 0 ≤ α ≤ 1, the angle and its cosine value have an inverse relationship:
0 ≤ α ≤ 1→ 1 ≥ cos (απ) ≥ −1.

VOLUME 11, 2023 146213



Y. Kim et al.: Deep Self-Supervised Diversity Promoting Learning

Algorithm 1 Self-Supervised Grouping Algorithm
Input: Data xi, label yi, i = 1, . . . , n
Initialize {W,WL} ∼ N (0, 1)
repeat
# Confusion probability matrix calculation
M←

∑n
i=1 P(yi, k)/|k = yi| ∀k

M← Upper-Triangle(Symmetric(M)),
# Find clusters
I := {(j,m) | (M > τ )} : an index set indicating high confusion,
τ ← median(M): threshold for selection,
G ← {}: a group list, k ′← 0: the number of superclasses, η: maximum number
for (j,m) ∈ I ∀j,m do

if j ̸∈ G then
G[k ′].append(j)

end if
if (m ̸∈ G) then
G[k ′].append(m) (← G[k ′].size() ≤ η condition can be added)

end if
k ′← k ′ + 1

end for
# Assign clusters for remained classes
for (k ̸∈ G) ∀k do
G[k ′].append(k)
k ′← k ′ + 1

end for
K ′← k ′ : The number of superclasses
y′i← G(yi) : Assign superclass label
InitializeW′L ∼ N (0, 1)
Training argminW̄ L+ λgLg, W̄ := {W,WL ,W′L}

untilMax #epochs

as follows:

A :=
cosαDπ + cosαπ + 2

4
,

G :=
(cosαDπ + 1)(cosαπ + 1)

4
,

H :=
(cosαDπ + 1)(cosαπ + 1)

cosαD + cosα + 2
. (12)

The metric functions defined in (10) and its variants satisfy
metric conditions: non-negativity, symmetry, and triangle
inequality. The distance using the above metric function
between any two parameter points is bounded because
the hypersphere is a compact manifold. These proposed
blended metrics (A, G, and H) are used in the experimental
section.

D. GRADIENT AND BACKPROPAGATION
As the sign function is not differentiable at the value 0,
we use the straight-through estimator (STE) [26] in the
backward pass of the neural networks for the sign function
in the discrete metric. The derivative of the sign function
is substituted with 1|w|≤1 in the backward pass, known as
the saturated STE. Similarly, as the derivative of arccos(x)

( −1√
1−x2

) is undefined at the value x = ±1, we apply clamping

to the cosine function to restrict x ∈ [−0.99, 0.99], where
x = cos (απ), and 0 ≤ α ≤ 1.

V. EXPERIMENTS
A. EXPERIMENTAL SETUP
1) DATASETS
We conducted experiments on the proposed method
using four publicly available datasets such as CUB200-
2011 [27], Stanford-Cars [28], CIFAR-100 [29], and TinyIm-
ageNet [30]. For CUB200-2011 and Stanford-Cars, we use
shorten names, CUB200 and Cars respectively, hereafter.
CUB200 and Cars datasets are for fine-grained visual
categorization (recognizing bird species or car models).
CIFAR-100 and TinyImageNet datasets are used for object
classification. The fine-grained visual categorization datasets
show low inter-class variances, but not in object classification
datasets. For CUB200 and CIFAR-100, we experimented
using given superclass labels which are defined by a human
annotator to compare with that using superclasses defined by
our self-supervised method. Statistics of datasets in detail is
provided in Table 5 in Appendix.
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TABLE 1. Test accuracy (%) along with different metrics for regularization on CUB200 using ResNet-18. Plain (Baseline) without additional regularization
shows 71.95 % accuracy. The top three accuracy values are presented in bold.

TABLE 2. Test accuracy (%) along with different metrics for regularization on Cars using ResNet-18. Plain (Baseline) without additional regularization
shows 87.05 % accuracy. The top three accuracy values are presented in bold.

TABLE 3. Test accuracy (%) along with different metrics for regularization on CIFAR-100 using ResNet-18 (without pre-training). Plain (Baseline) without
additional regularization shows 70% accuracy. The top three accuracy values are presented in bold.

TABLE 4. Test accuracy (%) along with different metrics for regularization on TinyImageNet using ResNet-18. Plain (Baseline) without additional
regularization shows 64.54 % accuracy. The top three accuracy values are presented in bold.

2) DEEP NEURAL NETWORK MODELS AND TRAINING
SETTING
We used the deep residual neural network (ResNet) [31]. For
the datasets, CUB200, Cars, and TinyImageNet, where an
input size is 224 × 224, the original ResNet5 (ResNet-18
and ResNet-50 shown in Appendix) is used. For CIFAR-
100, to fit their small size input (32 × 32 pixels) to ResNet,
a smaller kernel size (3 instead of 7) at the first convolutional
layer and a smaller stride (1 instead of 2) at the first
block than that from the original are used. Consequently,
the pretrained parameters are not used due to their network
modification.

In training of the deep neural network, the hierarchical
structure between a superclass and a subclass using the
self-supervised grouping algorithm in Section IV-B were
searched over all training samples. We used the stochastic
gradient descent (SGD) optimization with a minibatch for
training of the deep neural network. Even though the
global hierarchical structure is defined over training sample

5follows a model defined at the pytorch library.

distribution, a stochastic or partial hierarchical structure can
used if partial labels are shown within each mini-batch. Mini-
batches, 512, were used in the SGD optimizer. Even though
the SGD is known as an unbiased estimation, a stochastic
hierarchical structure could affect the overall approximation
performance upon the class distribution within the mini-
batch. We applied the hierarchical regularization in the FC
layer of the ResNet. Settings in more detail are provided in
Appendix.

3) BASELINE AND PROPOSED METHOD SETTING
We designate the configuration without hierarchical regular-
ization on the last layer of deep neural networks as the ‘Plain
(baseline)’. In our proposed methods (‘ours’), we incorporate
hierarchical regularization (Eq. 4) on the last layer. Within
‘ours,’ we employ two hierarchy construction strategies: one
utilizing given labels (‘Supervised’) and the other employing
labels obtained through the proposed self-supervised method
(‘Self-Supervised’).

For hierarchical regularization, we compare the proposed
blended metrics (A,G,H ) with the discrete metrics (D2, D3)
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FIGURE 4. Grouped images of CUB200 dataset are shown. Each row shows images from a superclass which contains
maximum seven and minimum three subclasses (21 superclasses are shown). (a) Supervised (human annotation)
categorization shown over 70 in total. (b) the proposed self-supervised categorization show over 72 in total found
where their test accuracy is 76.33 % shown. An individual image consists of 224 × 224 pixels.

and other continuous metrics such as Euclidean distance
with unit-length projection (‘U-Euc2’), angular distance
(‘Ang2’), and cosine similarity (‘Cos’) which are commonly
used in the related works [1], [2]. The continuous met-
rics with order 2 (in U-Euc2 and Ang2), derived from
Riesz s-energy, exhibit higher accuracy and are defined as
follows:

• U-Euc2:
∑

i̸=j ∥
wi
∥wi∥
−

wi
∥wi∥
∥
−2,

• Ang2:
∑

i̸=j arccos (
wi·wj
∥wi∥∥wj∥

)
−2

,

• Cos:
∑

i̸=j
wi·wj
∥wi∥∥wj∥

.

The Hamming distance-based angular metric described in
Eq. 9 is defined as a discrete angular distance with the
following formulations:
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FIGURE 5. Grouped images of CIFAR-100 dataset are shown. Each row shows images from an
individual superclass which contains minimum three subclasses (13 superclasses are shown).
(a) Supervised categorization over 20 superclasses in total. (b) The proposed Self-supervised
categorization over 48 superclasses are found where their test accuracy is 70.72 % shown.
We rearrange an order of rows with similar images to be located in the same row. Each individual
image consists of 32 × 32 pixels.

• αD2 =
1
π
arccosD2,

• αD3 =
1
π
arccosD3,

where D2 is a binary discrete product with {−1, 1}, and D3 is
a ternary discrete product with {−1, 0, 1}. For simplicity,
we use the notations D2 and D3 to represent the discrete
angular metric, rather than αD2 and αD3 .
For both ‘baseline and ‘ours’, we apply two types of

regularization: weight decay (l2) and energy minimization
(E) [4]. Weight decay is equivalent to an l2-norm constraint
in the SGD setting [32], represented as λf

∑
k ∥wk∥, where

wk ∈W and λf > 0. Energy minimization (E) [4] imposes a
constraint that maximizes angular distance [1], [4] (denoted
as ‘Energy’ minimization), expressed as λe

∑
i̸=j d(wi,wj),

where d(·, ·) is a pairwise distance, and λe > 0. The
performance differences between cases with E regularization
are detailed in the Appendix.

B. RESULTS
In this section, we present experimental results for last-layer
regularization using various metrics, including continuous
(U-Euc2, Ang2, and Cos), discrete (D2 and D3), and
proposed blended metrics (A, G, and H). Due to space limit,
we show some results including a test using ResNet-50 in
Appendix.

1) FINE-GRAINED CATEGORIZATION
In this experiment, we used fine-grained image datasets. One
is with birds (CUB200) and another is with cars (Cars) that
focus on single species of objects. A hierarchy (superclass)
of CUB200 is defined by the academic expert on birds
(70 superclasses over 200 subclasses in total).

As shown in Table 1, the proposed self-supervised
hierarchical regularization significantly improved the test
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accuracy over all metrics on ResNet-18. This is comparable
with the proposed hierarchical regularization using the
supervised superclass label. Compared to CUB200, as shown
in Table 2, the improvement of the proposed method is not
that significant using Cars. Cars dataset includes unclear
superclass categorization (e.g. Sedan, Coupe, Wagon, and so
on). Moreover, even though the discriminative appearance
to categorize is shown on rearmost part mostly, the images
show random parts of cars. Our proposed blended metric-
based methods showed better performance than that of other
cases.

2) OBJECT CLASSIFICATION
We present the test accuracy (%) of the compared methods
across different metrics for regularization on the last layer
using CIFAR-100 in Table 3 and TinyImageNet in Table 4,
respectively. As CIFAR-100 dataset provides the given
superclass labels (20 superclasses over 100 subclasses
in total), we compare the performance of the networks
using those supervised (grondtruth) labels and our proposed
self-supervised labels.

As shown in Table 3, the regularization with the proposed
metrics (A, G, and H) outperforms other cases on the
CIFAR-100 dataset. Compared to the baseline, our approach,
when utilizing certain continuous metric-based methods
and supervised label-based methods, exhibits degraded
performance. The use of supervised labels does not seem to
contribute significantly to the learning of the classification
objective on this dataset. Interestingly, classification per-
formance improved when employing self-supervised labels
compared to supervised labels. This observation suggests that
the hierarchy of objects may be based on factors such as
function rather than the appearance of the object, which is
directly associated with visual classification. The discrete
angular metric (D2 and D3) and blended based regularization
(A, G, H) based regularization demonstrates enhanced
generalization performance in terms of test accuracy com-
pared to other continuous metrics such as U-Euc2, Ang2,
and Cos.

As shown in Table 4, the compared methods show a
similar trend to that observed in CIFAR-100. Notably, the
proposed hierarchical regularization, based on the blended
metrics, demonstrates a relatively substantial improvement in
performance compared to the other cases.

3) ABLATION STUDY: SUPERCLASS-SUBCLASS PAIRS
IDENTIFIED BY THE PROPOSED SELF-SUPERVISED METHOD
Since the generalization performances using the supervised
labels and the labels found by the proposed self-supervised
method are comparable (as shown in Table 1 and Table 3),
we qualitatively examined images with pairs of superclass
and subclass. In Fig. 4 and Fig. 5, each row displays a set of
subclass images from the same superclass based on (a) super-
vised labels and (b) self-supervised labels. To facilitate
easy comparison, we arranged the rows containing subclass
images found by the self-supervised method near rows

from supervised labels where images are visually similar.
Notably, our self-supervised grouping method identified a
set of superclass-subclass pairs that showed similar images,
particularly on the CIFAR-100 dataset.

VI. CONCLUSION
In this paper, we proposed a novel diversity promoting reg-
ularization method aimed at maximizing pairwise distances
between parameters while preserving their hierarchical
structure.Within a deep learning framework, we redefined the
topology space by employing a hierarchical parameterization
using multiple hyperspheres. This hierarchical structure was
established in a self-supervised manner. On the hypersphere,
each projectionwas parameterized by a surface parameter and
a center parameter. To accommodate the multiple separated
spaces, we devised a discrete metric combined with a
continuous metric, aligning with their isolated property.
The projection parameters were enforced to be evenly
distributed on individual hyperspheres with equidistance
constraints.

Through extensive experiments on publicly available
datasets, including CUB200-2011, Stanford-Cars, CIFAR-
100, and TinyImageNet, our proposed method demonstrated
notable improvements in classification performance for
deep neural networks. As a potential avenue for future
exploration, our approach could be integrated with hierar-
chical representation learning techniques, such as hyperbolic
(or Poincaré) embeddings [17], [18]. By combining these
methods, we anticipate further enhancements and novel
insights into hierarchical model representations.

APPENDIX
A. DATASET ACQUISITION DETAILS
CIFAR-100 and CUB200 datasets include a given pair
of superclass and subclass labels. For CUB200, labels
of a superclass can be extracted from their filenames
following [27]. Table 5 shows statistics of benchmark datasets
used in the experimental sections.

B. DEEP NEURAL NETWORK MODELS AND TRAINING
DETAILS
We used ResNet which consists of the basic blocks or the
bottleneck blocks with output channels [64, 128, 256, 512] in
Conv. layers. A dimensionality of an input vector to the FC
layer is 512.

Parameters in our proposed method using ResNet are
optimized using the SGD with several settings: we fixed
1) the weight initialization with Random-Seed number ‘0’
in pytorch, 2) learning rate schedule [0.1, 0.01, 0.001], 3)
with momentum 0.9, 4) regularization: weight decay with
λf = 0.0005, energy λe = 0.1, and hierarchical λl = 0.1, and
5) grouping loss with λg = 0.1. A bias term in the FC layer
is not used. The images (CUB200, Cars, and TinyImageNet)
in training and test sets are resized to 256 × 256 size. Then,
the image is cropped with 224× 224 size at random location
in training and at center location in test. Horizontal flipping
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TABLE 5. Statistics of benchmark datasets.

TABLE 6. Test accuracy (%) along with different metrics for regularization on CUB200 using ResNet-50. Plain (Baseline) without additional regularization
shows 78.28 accuracy. The top three accuracy values are presented in bold.

TABLE 7. Test accuracy (%) along with different metrics for regularization on Cars using ResNet-50. Plain (Baseline) without additional regularization
shows 88.88 accuracy. The top three accuracy values are presented in bold.

TABLE 8. Test accuracy (%) along with different metrics for regularization on CUB200 using ResNet-18. Plain (Baseline) without additional regularization
shows 71.95 % accuracy. The top three accuracy values are presented in bold.

TABLE 9. Test accuracy (%) along with different metrics for regularization on Cars using ResNet-18. Plain (Baseline) without additional regularization
shows 87.05 % accuracy. The top three accuracy values are presented in bold.

TABLE 10. Test accuracy (%) along with different metrics for regularization on CIFAR-100 using ResNet-18 (without pre-training). Plain (Baseline) without
additional regularization shows 70% accuracy. The top three accuracy values are presented in bold.
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TABLE 11. Test accuracy (%) along with different metrics for regularization on TinyImageNet using ResNet-18. Plain (Baseline) without additional
regularization shows 64.54 % accuracy. The top three accuracy values are presented in bold.

TABLE 12. Test accuracy (%) along with different metrics for regularization on CUB200 using ResNet-50. Plain (Baseline) without additional regularization
shows 78.28 % accuracy. The top three accuracy values are presented in bold.

TABLE 13. Test accuracy (%) along with different metrics for regularization on Cars using ResNet-50. Plain (Baseline) without additional regularization
shows 88.88 % accuracy. The top three accuracy values are presented in bold.

is applied in training. While ResNet model for CIFAR-100
is trained from scratch without the pretrained weights for
300 epochs, other cases are trained using pretrained model
provided by pytorch library6 with 100 epochs. The learning
rate decay by 0.1 at [150, 225] epochs from an initial value of
0.1 if without the pretrained weights, and at [30, 60] epochs
from an initial value of 0.01 otherwise. The experiments are
conduced using GPU ‘‘NVIDIA TESLA P40’’. We used one
GPU for ResNet-18, and four GPUs for ResNet-50.

C. ADDITIONAL RESULTS ON RESNET-50
We show test accuracy (%) of the compared methods along
different metrics using ResNet-50 further using fine-grained
image datasets (CUB200 and Cars). In the SGD optimizer,
we used 128 of a minibatch size in four GPUs.

As shown in Table 6, the proposed self-supervised hierar-
chical regularization significantly improved the test accuracy
over all metrics on ResNet-50 similar to that of ResNet-18.
As shown in Table 7, our proposed self-supervised regulariza-
tion showed improved generalization performance compared
to the baseline method without hierarchical regularization.

D. ABLATION STUDY: IMPACT OF ANGULAR
DISTANCE-BASED (ENERGY MINIMIZATION)
REGULARIZATION
In line with the experiments detailed in the main
text, we consistently employed angular distance-based

6from https://download.pytorch.org/models/resnet18-5c106cde.pth

regularization [4] in conjunction with weight decay (l2). This
section specifically explores the effects of angular distance-
based regularization, referred to as energy minimization
(E) regularization, and compares its impact to the simpler
case utilizing l2-norm-based regularization (i.e., weight
decay). Our evaluation encompasses two scenarios: one
with only weight decay (l2) and another with weight decay
combined with energy minimization regularization (l2, E),
applied to parameters across all layers except the last
layer.

As depicted in the tables (Table 8, Table 9, Table 10,
Table 11, Table 12, and Table 13), the inclusion of
additional regularization (E) applied to all layers except
the last tends to improve test accuracy. Notably, when
our proposed metrics are implemented in the last layer,
they consistently outperform the other cases. Accuracy
values with gray color indicate the values shown in
Table 1, Table 2, Table 3, Table 4, Table 6, and Table 7,
respectively.
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