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ABSTRACT Various optimal control strategies based on dynamic programming (DP) have been devised
with the primary objective of energy conservation in the operation of Metro systems. Essentially, the DP
algorithms strive to define a speed profile that reduces energy consumption while meeting specific journey
distances and targeted travel times, thereby optimizing the operational speed of a train traversing between
stations within permissible limits. However, there has been a relative paucity of research dedicated to
ascertaining the ideal travel time for each station segment in an optimal manner. In this regard, this study
devised a DP methodology with the goal of optimizing both the speed and the travel time for each station
section, taking into account a predetermined total running time for a line composed of multiple stations under
single train circumstances. To verify its effectiveness, the proposed optimization approach was compared
with actual train operational data, encompassing recorded speeds and energy usage. Simulations were
carried out mirroring real-world constraints, and the resultant solution adheres to the same speed limitations,
distance, and travel time. Additionally, a methodology was introduced to account for any discrepancies
between the actual train system and the simulation model. This was validated by comparing the actual energy
consumption with the modeled energy consumption for each operational segment, demonstrating a modeling
error of less than 1%.

INDEX TERMS Dynamic programming, energy efficient operation, optimal control, optimization of speed
profile, urban rail transit, train.

I. INTRODUCTION
The significance of large-scale public transportation con-
tinues to grow, with urban rail systems earning increasing
recognition owing to their operational efficiency, safety, and
user-friendly features. As the urban population increases, the
use of road transport in inner cities also increases, a trend
that simultaneously increases energy consumption, pollution
of various forms, and traffic congestion. Urban rail systems
exhibit commendable efficiency in terms of energy consump-
tion, consuming merely one-ninth of that used by passenger
cars and half of that used by buses [1]. Despite this relative
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efficiency, railways do contribute to substantial energy use,
prompting a multitude of studies aimed at enhancing energy
efficiency in these systems. It has been reported that more
than 80% of the total operational energy in railways is con-
sumed by the train’s internal system, with the train traction
system alone constituting over 50% [2], [3]. Consequently,
this study focuses on factors affecting the energy efficiency
of urban rail vehicles within railway networks. Through the
modification of individual train speed profiles while adher-
ing to all operational constraints and without the need for
costly infrastructure upgrades, it is suggested that operational
energy efficiency can result in energy savings ranging from
5–20% [4], [5]. Pioneering research into the minimization
of travel energy to reduce the operational costs of trains
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was conducted by Ichikawa [6] in 1968. That seminal study
used numerical methods to address the optimization issue
of train speed trajectory. Following this, subsequent research
has been wide-ranging and can be broadly categorized into
analytical, numerical methods, and other methods. Analytical
approaches are based on optimal control theory [7], integrat-
ing the maximum principle for matters relating to energy
minimization. For instance, Howlett [8] employed the Pon-
tryagin principle to establish optimal control for an ungraded
track to minimize fuel consumption within a given run time,
consisting of a power, hold, coast, and brake sequence.

Khmelnitsky [9] devised a rigorous strategy for the imple-
mentation of traction and braking to curtail energy consump-
tion, accounting for varying grade profiles and adhering to
arbitrary speed constraints. The optimal solution was pro-
cured through a maximum principle analysis. Meanwhile,
Liu and Golovitcher [10] envisaged the operation of railway
cars as an optimal control problem, utilizing a combination of
five operational states to minimize energy consumption via a
process rooted in the maximum principle.

Various numerical strategies addressing energy conser-
vation challenges exploit diverse pathfinding algorithms
anchored in discrete state space [11]. An investigation
assessed the strengths and limitations of the three primary
methodologies: dynamic programming (DP) [12], the gra-
dient method [13], and sequential quadratic programming
(SQP) [14]. A study proposed a DP method to tackle issues
pertaining to constraints in three dimensions: time, distance,
and speed [15]. Concurrently, another study introduced a
weighted cost function in a two-dimensional space, encom-
passing distance and speed, to mitigate the computational
time burden induced by multiple dimensions [16]. An addi-
tional study segmented a train’s operational scenarios into
fourmodes (acceleration, cruising, coasting, and braking) and
optimized the sequence of these modes to compute the travel
trajectory for energy optimization [17].

Noteworthy studies include [18], which utilized Bellman’s
dynamic programming to optimize train running speed, min-
imizing total energy consumption. Calderaro et al. [19]
employed dynamic programming to identify a series of
pseudo-optimal speed cycles with the objective of reducing
the electrical energy required for traction. Bin et al. [20] opti-
mized the speed profile of a high-speed train on a railway line
with an unpowered neutral segment by deploying dynamic
programming.

Various heuristic algorithms have also been examined.
Kim and Chien developed a simulated annealing algorithm
to identify optimal train operation for energy consump-
tion minimization, taking into consideration factors like
track alignment, speed limit, and timetable adherence [21].
Xiang and Hong [22] fashioned a combined model to opti-
mize both the timetable and train speed profile utilizing a
genetic algorithm, resulting in energy savings of up to 25%.
Tang et al. [23] reduced the power consumption using a
genetic algorithm on a traditional electrical model, which
utilizes the regenerative energy between two trains [23].

Summarizing the findings of relevant previous studies
yields the following observations.

A. SHORTCOMINGS OF PREVIOUS RESEARCH
1) Previous studies have primarily focused on optimizing
the speed profiles for individual station-to-station segments
while determining the segment travel times, approaching
this aspect as a local optimization issue for each segment.
Additionally, the method of setting the segment travel times
during this process has not been clearly defined. Conse-
quently, research on the methods of optimizing the travel
times between stations across the entire railway route has
been scarce.

2) Previous studies have not entailed a comprehensive anal-
ysis of the accuracy issues in system modeling. Furthermore,
the research on mitigating the errors caused by discrepancies
between the model and the real system has been limited.

B. ADVANTAGES AND CONTRIBUTIONS OF THE
PROPOSED METHOD
1) This paper proposes a method to optimize the operation of
the entire railway route, considering the travel times between
each station, to achieve optimal operation across the entire
route. This holistic optimization approach is more efficient
than that presented in the previous studies and accounts for
the interactions between multiple stations.

2) New methods are introduced to address the inaccuracies
in system modeling. These methods identify and correct the
differences between the actual energy consumption of trains,
and the model-calculated energy usage by estimating the
unknown external forces acting on the vehicle model. This
improves the accuracy of the model and the performance of
optimization solutions.

3) This paper presents methods for energy consumption
and speed profile optimization for the entire operational line,
which have not been addressed in previous studies. The
results herein can help determine the range of the minimum
and maximum travel times, along with the energy consump-
tion for the entire route or each station segment, improving
the efficiency of the overall operations and reducing the
energy consumption and overall cost.

4) The results yielded by the proposed method are vali-
dated using real operational data, demonstrating a reduction
of approximately 14% in energy consumption compared to
existing operational methods. This demonstrates that the pro-
posed method is both realistic and effective.

Therefore, this study can overcome the limitations of the
previous studies and significantly contribute to the field by
providing innovative methods of enhancing the energy effi-
ciency of urban rail systems.

Reviewing prior research, it is evident that Pontryagin’s
minimum principle and dynamic programming optimization
are frequently deployed to navigate driving optimization
problems. Pontryagin’s minimum principle tends to be used
for simpler problems, while dynamic programming optimiza-
tion is favored formore complex systemmodels withmultiple
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constraints [16]. In the current study, the optimal speed profile
was determined using dynamic programming while account-
ing for several constraints. If the optimal travel speed between
each inter-station segment is computed in parallel based on
travel time, it can be documented as time-of-day energy data.
This segmented information can subsequently be harnessed
to optimize the operation of the entire section.

A two-phase procedure is herein proposed for the oper-
ational optimization design of the entire route. In the first
phase, we employ a weighted parallel dynamic program-
ming method [24]—applied to mixed cost functions of time
and energy—to design the speed profile necessary for opti-
mal travel for each station segment. This approach permits
us to acquire the optimal speed profiles and corresponding
energy consumption for various travel durations, which are
segmented between minimum and maximum travel times.

In the second phase, we reapply the DP method, this time
utilizing the travel time and energy data tables generated in
the initial step to optimize the operation of the entire line.
This optimization yields the hourly energy consumption for
the entire line, and the speed profile for each station from the
initial step is selected based on the total travel time.

The remainder of this paper is structured as follows.
Section II describes the train model to be optimized and the
power consumed during operation. This section also intro-
duces a strategy to rectify potential inaccuracies that may
arise during the modeling process. Section III provides a
detailed description of the proposed two-stage DP algorithm
for energy optimization across all operational segments.
Section IV offers a comparison of pre- and post-optimization
data to validate the efficacy of the suggested methodology.
The final section outlines the conclusions obtained from the
study.

II. RAILWAY SYSTEM
To develop a speed profile that minimizes the operational
energy of a train, a dynamic model of the train is necessary,
as is a definition and mathematical model of the exter-
nal forces acting on the train during motion. Additionally,
a power calculation equation is established to translate the
force used during transit into energy. The data used in this
paper are actual train journey measurements, incorporating
factors such as each measurement’s time, travel position,
train speed, speed limit, line voltage, current, weight, and the
distance between stations. The train operated in automated
train operation (ATO) mode without energy optimization.

A. MATHEMATICAL FORMULATION OF TRAIN MOTION
The train model in this study is hypothesized to be a single
point mass and is represented as follows:

ma = Ft − (Fr + Fg + Fx) (1)

where m denotes the mass of the train, a refers to the acceler-
ation of the train, and Ft symbolizes the traction and braking
force implemented by the propulsion and braking system. Fr
is the running resistance, which is influenced by the train’s

FIGURE 1. Torque curve.

travel speed. Fg is the gradient resistance, determined by the
slope of the track. Moreover, the force obstructing the train’s
motion, which varies based on running position elements
such as curve resistance and tunnel resistance, is defined as
Fx. This includes model inaccuracies that may arise because
of actual measurement errors, like unknown resistance and
gradients that depend on the travel position, which are not
defined in this mathematical model. The train’s traction and
braking forces are defined as (2), a function of the propulsion
and braking forces approximated based on the parameters of
the propulsion system. Fig. 1 presents a graph of the electric
motor torque curve and running resistance.

FtMax =


FacMax , vh ≤ Vac ∩ a ≥ 0
FacMax · Vac

/
vh, vh > Vac ∩ a ≥ 0

FdcMax , vh ≤ Vdc ∩ a < 0
FdcMax · Vdc

/
vh, vh > Vdc ∩ a < 0

(2)

where vh represents the train velocity (km/h), Vac is the speed
at which the motor transitions into the constant power region,
FacMax is the maximum torque in the constant torque region,
Vdc is the speed at which the motor enters the constant power
region during braking, and FdcMax is the maximum braking
torque in the constant torque region.

The running resistance, encompassing both rolling resis-
tance and air resistance, is calculated using the widely utilized
Davis equation [25] as follows:

Fr =

(
ar + br · vh + cr ·vh2

)
· mg/1000 (3)

where ar , br , and cr represent the train’s rolling characteristic
coefficients and g represents the gravitational acceleration.

The gradient resistance is computed using (4), which com-
bines the gradient of the train track and the weight of the train.
The observed gradient data is applied based on the train’s
track position.

Fg = mg · sin(θ (d)) (4)

where θ (d) represents the track gradient at the train’s current
travel position. Table 1 lists the parameters utilized in the train
model in this study.

B. TRAIN POWER AND ENERGY CONSUMPTION
A train dynamics model is deployed to calculate the
commonly-used train power consumption model. Initially,
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TABLE 1. Train model parameters.

as shown in (5), the power supplied to the train from the cate-
nary (Pline) is defined as the sum of the vehicle’s propulsive
power (Pt ) and the power consumed by onboard auxiliary
devices (Paux). Alternatively, it can be defined as the product
of the current (Iline) and voltage (Vline) in the catenary. Both
the line voltage and current are measured while the vehicle is
in motion at a sample time.

Pline = Pt + Paux = VlineIline (5)

As stipulated in (6), the power required to propel the train
(Pt ) is defined as the product of the traction force (Ft ) and
the train speed (v) [26]. Here, v represents the speed of the
train (m/s).

Pt = Ftv (6)

Consequently, the total power consumed by a train can be
defined as the sum of the power consumed for propulsion
and the power consumed by the train’s electrical auxiliaries,
as outlined in the following equation:

Pline = Ftv+ Paux (7)

where the total tractive force required to drive the train can be
defined as the force necessary to accelerate the train and the
external force applied from outside the train, as shown in (8).

Ft = ma+
(
Fr + Fg + Fx

)
=
Pline − Paux

v
(8)

Therefore, the connection between the total power con-
sumed and train traction can be encapsulated as follows:

Pline =
(
ma+ Fr + Fg + Fx

)
v+ Paux . (9)

In this study, the regenerative power produced during the
braking phase was excluded from the total energy calculation.
Our power computation concentrated solely on direct power
consumption, as the usage of regenerative energy is subject
to the allowable condition of the catenary line voltage, which
is influenced by other train accelerations on the track and the
state of regenerative braking.

C. ERROR CORRECTION FOR TRAIN SYSTEM MODELING
To evaluate the effectiveness of optimizing the operational
speed profile, it is essential to measure the variation in
operational energy before and after optimization. The most

accurate method to accomplish this involves applying it to an
actual train control system. However, during the optimization
algorithm development phase, it is vital to base the approach
on the most precise train model and line environment model
feasible. This practice facilitates the prediction of improved
optimization performance and augments the accuracy of the
optimization solution in the actual system. The development
of the optimal speed profile using the DP method leverages
the trainmodel of the line and themodel of various resistances
encountered by the train. The fidelity of these models has a
direct bearing on the precision of the optimal solution design.
Despite diligent efforts, there are inherent deficiencies in the
mathematical model that cannot be accurately represented,
such as train modeling errors and the slope, curvature, and
tunnel resistance at each position along the line.

In this study, a range of errors not accounted for in the
mathematical model were treated as a single disturbance.
We obtained the model errors by calculating the travel posi-
tion using the actual measured power and the applied model.
These errors were then incorporated into the modeling errors
to augment the optimization algorithm. Here, resistance ele-
ments comprise running resistance, which fluctuates with
speed regardless of the train’s travel position, and gradient
resistance and curve resistance, which are fixed according to
the characteristics of the travel position on the line. Assuming
a well-modeled running resistance mathematical model for
the train speed, the residual resistance is generated based on
the travel position. These resistance elements can be utilized
to compensate for modeling errors by estimating the resis-
tance model error by travel position using instantaneously
measured power on the train and the applied mathematical
model.

The forces that inhibit train operation function as intricate,
multifaceted disturbances contingent upon the train speed
or the intrinsic attributes of the operating route. Among the
key resistance elements, the running resistance (Fr ) oscillates
with speed due to the configuration or area of the train’s
frontage. Conversely, other resistances, such as curvature
resistance and gradient resistance, maintain stable values
owing to the characteristics of the line, depending upon the
train’s travel position. As a result, the disturbance can be
approximated using (10), which deploys the instantaneous
power consumption and resistance model equations at each
position along the vehicle’s line. In this case, instantaneous
power consumption is assessed by employing line voltage and
current data captured at each sample time and travel position
during train operation.

The power measured on the line is quantified as the sum-
mation of propulsion power (Pt ) and auxiliary power (Paux).
Hence, the power measured when the train is stationary,
i.e., when no propulsion power is consumed, is considered
the auxiliary power (Paux) in the train. Subsequently, the
auxiliary power (Paux) is subtracted from the total line mea-
surement power (Pline), and the resulting value is utilized as
propulsion power (Pt ). Here, the auxiliary power embodies
the energy consumed by supplementary electrical devices

VOLUME 11, 2023 146033



Y. S. Byun, R. G. Jeong: Optimization of Speed Profiles and Time Schedule

within the vehicle and is presumed to be a constant value that
remains unchanged over time. This facilitates the generation
of unmodeled resistance elements as data by travel position,
which can be integrated into the system model according to
the train’s travel position. In this context, d denotes the travel
position.

F̂x(d) = Ft
(
ma+ Fr + Fg

)
=
Pt
v

−
(
ma+ Fr + Fg

)
=
Pline (d) − Paux

v
−

(
ma+ Fr + Fg

)
(10)

Figs. 1 and 2 present a comparison of the actual power
measured during the journey between stations with the power
consumed by the train model over the same stretch, based
on the actual train speed. This comparison is intended to
illustrate the aptness of the train model and the actual train.
The patterns of power usage before and after the addition of
disturbances to the trainmodel validate the calibratedmodel’s
congruence with the actual vehicle.

The actual energy consumption between each station
in the test was compared with the energy consumption
derived from the implementation of the train’s mathemat-
ical model using measured train speed and power data.
Table 2 exhibits the test results for the seven sections,
corroborating that the discrepancy in total energy con-
sumption for each station segment is restricted within
a 1% threshold.

III. OPTIMIZATION OF OPERATION ENERGY ACROSS ALL
OPERATING SECTIONS
A. DYNAMIC PROGRAMMING METHOD
This section describes the utilization of DP in generating a
speed profile optimized for kinetic energy in an electric rail
vehicle. DP is a computational technique deployed to resolve
multi-stage decision problems. It is predicated on Bellman’s
Optimality Principle [12] and can deliver optimal solutions to
exceedingly intricate problems. In this study, the DP method
is applied in two stages to optimize the operation of the entire
line, encompassing multiple stations.

In the initial stage, a speed profile for each station
section is constituted to optimize the operation energy.
An optimization cost function is employed to balance the
operation energy and travel time in a multi-tier ratio, thereby
enabling the simultaneous generation of multiple speed pro-
files with minimal energy consumption per unit of travel
time [24].

In the subsequent stage, given a line composed of multiple
stations extending from the initial to the terminal station and
a target travel time to traverse the entire line, the DP method
is put to use. This is based on the optimal time and energy
data table gathered in the first stage for each station segment.
This process culminates in the optimal combination of trav-
eling speed profiles for each station section, adhering to the
target time while consuming the minimal possible amount of
energy.

FIGURE 2. Comparison between measured power and modeled power.

FIGURE 3. Comparison between real-world and calibrated model energy
consumptions.

1) SPEED PROFILE OPTIMIZATION FOR INTER-STATION
Trains travel a fixed distance between predetermined stations
on the track. In this scenario, DP is used to determine an
energy-efficient speed profile given a specific target travel
time. To implement DP, a two-dimensional space is con-
structed, representing the train’s distance traveled and its
speed. This space is discretized at regular intervals, with
the distance between stations and the maximum allowable
speed serving as reference axes. As illustrated in Fig. 4, each
intersection point between the distance and speed axes in
this discrete two-dimensional space is referred to as a node,
while the lines interconnecting these nodes are termed edges.
For each edge connecting two nodes, the energy and time
required to transition between them are estimated. Conse-
quently, the optimal solution involves identifying node points
at each location and minimizing the total cost of connecting
these nodes by considering the energy and time associated
with traversing each connecting node as dictated by the cost
function. This process unfolds during the journey from the
departure station to the destination station, with each corre-
sponding node representing the target speed for the train at its
specific travel position.

1. Establishing discrete spaces: Design and initialization.
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TABLE 2. Model error.

As illustrated in Fig. 4, train operations are represented
within a two-dimensional space defined by distance and
velocity. This space is discretized at regular intervals along
each axis. The x-axis represents the distance, with each dis-
crete step identified as a stage. Correspondingly, the y-axis
represents the velocity, with each stage representing a state
within the discrete space. The intervals for speed or distance
can be selected contingent on the requisite level of precision,
and the speed of the train at the departure and arrival locations
is stipulated as zero.

2. Designing a cost function with multiple weights
The time and energy necessary to traverse an edge connecting
two proximate nodes in the discrete space are calculated and
recorded by taking into consideration the change in speed
between the nodes, which is presumed to be constant over
the given distance. Furthermore, each corresponding edge
index retains the weighted aggregate cost derived from these
two values. In this context, the number of weight decompo-
sitions is multiplied by the number of weighted sum costs.
The average acceleration (am) between two adjacent nodes
is calculated using the speed at each node and the distance
between the nodes, as shown in (11). The average accelera-
tion obtained is applied to the acceleration (a) to calculate the
traction force in the aforedescribed model equation.

To compute the cost, we multiply the time (Ti) and energy
(Eh) required to travel between two nodes. As demonstrated
in (11), the travel time is determined by the average speed
between nodes (vm) and the distance between nodes (ds).
Meanwhile, the energy consumption can be estimated using
the force and speed necessary for movement between the
nodes, as depicted in (13).

am =
v2k+1−v

2
k

2d s
(11)

Ti =
ds
vm

(12)

Eh = (Pt+Paux) · Ti = (Ftvm + Paux) · Ti (13)

After acquiring the time and energy values for the rel-
evant edges, a cost function is implemented to determine
the optimal conditions that satisfy both the time and energy
requirements, as shown in (14). The cost function incorpo-
rates time and energy with weighting factors. In this scenario,
the weight comprises an array of values ranging from 0 to 1,
divided into multiple steps. Each weight represents a ratio of
time and energy allocation, with 0 representing the minimal
travel time and 1 representing the energy conservation. Con-
sequently, by altering these weights within the range of 0 to 1,
the sum of the travel time and energy consumption required
to reach the destination will fluctuate correspondingly. Alter-
native travel times and suitable speed profiles can be derived
by appropriately adjusting the weights.

Ck,k+1 =
Eh

Emax − Emin
α +

Ti
Tmax − Tmin

(1 − α) (14)

where Ck,k+1 denotes the weighted sum cost of energy and
time, representing the cost at that particular edge with multi-
ple weights applied. If the weights are provided as an array,
the cost is also treated as an array value. The weights are
defined as follows:

α = [α1α2 · · · αN ]T , α1 = 0, αN = 1,

αn+1 > αn, n = 1, 2, · · · ,N . (15)

Emax represents the maximum energy consumed during
node travel, Emin is the minimum interval energy, Tmax is
the maximum time taken to traverse a node, and Tmin is the
minimum node travel time.

3. Dynamic programming method for parallel processing
of multi-weighted cost

Once the path cost between each node is established, the
optimization problem across Nd stages aims to identify a
connectivity path between the nodes that minimizes the
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FIGURE 4. Speed profile according to dynamic program algorithm.

cumulative sum of the path costs Ck at each stage, as follows:

min
Nd∑
1

Ck . (16)

In the established two-dimensional planar network, each
node-to-node path is assigned a specific cost, factoring in
elements such as distance and speed. To ascertain the lowest
cost at each node, we utilize (17) to resolve the optimization
problem employing the DP method. At stage k , the minimum
cost, represented as J∗k , is recognized as the smallest aggre-
gate of the path cost (Ck,k+1) between stages k and k+1 and
the minimum cost (J∗k+1) from stage k+1 to the ultimate
stage Nd . Significantly, this computation commences at the
destination node (Nd ) and progresses towards the initial node
(k = 1) to pinpoint the minimum cost (J∗k ) and its corre-
sponding position index (I∗k ).

[J∗1×N
k (xk ), I

∗1×N
k ] = mincol[C

s×N
k,k+1(xk+1) + J∗s×N

k+1 (xk+1)]

(17)

where J∗k represents the minimum cost from stage k to the
final stage. It is an array comprising N minimum values, each
calculated according to a particular split weight, as depicted
in (18).While I∗k represents an array consisting ofN position
indices, each indicating the minimum value for each weight,
as demonstrated in (18). The term mincol stands for the pro-
cess of determining the minimum value for each column in
the matrix.

J∗1×N
k =

[
j∗α1 j

∗
α2

. . . j∗αN
]

(18)

I∗1×Nk =
[
i∗α1 i

∗
α2

. . . i∗αN
]

(19)

Cs×N
k,k+1 =

[
cs×1
α1

cs×1
α2

. . . cs×1
αN

]
(20)

J∗s×N
k+1 =

[
j∗s×1
α1

j∗s×1
α2

. . . j∗s×1
αN

]
(21)

The variable Ck,k+1 corresponds to the weighted cost
of each edge between stages k and k+1. This variable is
expressed as an s- by -N matrix, as illustrated in (20). Con-
versely, J∗k+1 denotes the matrix of optimal costs calculated
from node k+1 to the final destination. It is an s-by-N
matrix, each element of which aligns with multiple weights,

as exhibited in (21). In this instance, s represents the number
of states in each stage, equivalent to the number of nodes
along the speed axis.
To determine the most cost-effective path, the process ini-

tiates at the arrival point and advances towards the departure
point, recording the smallest node number at each stage until
the departure point is reached. The calculation for obtaining
the minimal node index is described below. It is important to
note that the starting and terminating nodes are excluded from
this process as their speed is set to zero.
Stage k: K-1 (the stage immediately preceding the end

of the distance axis)

Pk,s = I∗Tk , s = 0, 1, . . . , S : state index (22)

Here, k is the stage index, s is the state index, and I∗Tk the
transpose matrix of the number of least-cost nodes obtained
from (19).
Stage k: 1 ≤ k < K-1,

Pk+1,I∗Tk
=

[
Pk+1

(
i∗α1

)
Pk+1

(
i∗α2

)
· · ·Pk+1(i∗αN )

]
(23)

Within stage k , the optimal node index (Ik ) traces the pathway
among the highest-quality paths (Pk+1) stored in stage k+1.
The total number of optimal nodes (Pn), associated with the
optimal node (Ik ) from stage k to stage k+1, can be retrieved
from paths corresponding to the weight order, as demon-
strated in (24). In this case, ‘{}’ denotes the cell structure data,
while (N,:) signifies all column elements in the Nth row.

Pn =


Pk+1,I∗Tk

{1}(1, :)
Pk+1,I∗Tk

{2}(2, :)
...

Pk+1,I∗Tk
{N }(N , :)

 (24)

Here, Pn represents the path with the minimum cost
in stage k+1 for each weight. Therefore, the optimal path in
stage k is generated by appending the optimal path (Pn) of
stage k+1 to the optimal node (Ik ) of stage k , as expressed
in (25). This process is carried out in succession, progressing
towards the starting node.

Pk,s = [I∗Tk Pn] (25)

Ultimately, the minimum cost path extending from stage 1
to the final stage is extracted from the following equation:

P1,1 : optimal path. (26)

The optimal path, inclusive of the starting node, for each
weight is then completed using the following equation:

P0,0 = [1N×1PN×dK
1,1 ]. (27)

4. Generating the speed profile using the optimal node
Equation (27) represents the node number of the optimal

path at each stage. Therefore, when applying equal intervals
of speed, the optimal speed profile using the node number of
the optimal path can be expressed as follows:

V = [P0,0 × dv − dv] = [vN×1
0 vN×

1 · · · vN×1
dK ] (28)
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where dv = vk+1 − vk is the speed decomposition interval.

5. Determining time and energy for each speed profile by
weight

At this stage, the time (Ti) and energy (Eh) corresponding
to each node can be obtained by tracing the node numbers
from the optimal path acquired in (27), commencing from
the departure node. With this information, the total time and
energy required to traverse each station section for different
weights can be calculated, as shown in Table 3. The weights
between 0 and 1 were divided into 30 intervals. Table 3
presents the travel time and energy consumption for each
weight. Fig. 5 displays the optimal speed profile designed
for the 30 weights across the 7 station sections, taking into
account factors such as speed limits and line altitude.

2) OPERATION TIME SCHEDULE OPTIMIZATION
In the previous step, the travel time and speed profiles for each
station section were optimized. The ensuing step involves
selecting a speed profile between each station that achieves
the targeted travel time for the entire line, spanning from
the departure station to the terminal station, while minimiz-
ing energy consumption. This is achieved by utilizing the
data table of energy consumption predicated on travel time,
as presented in Table 3.

1. Designing the discrete space: allocating costs among
nodes

The optimal travel time and energy for each station section
were determined based on the weight splits in the cost func-
tion, as exhibited in Table 3. To find the energy path that is
optimal based on travel time for all operating sections, a net-
work structure of nodes needs to be conceived, as illustrated
in Fig. 6. The horizontal axis represents the stages, while the
vertical axis represents the states. Stations are sequentially
allocated in the odd stages of the horizontal axis, and the
travel time (t) and energy consumption (e) for each segment
are assigned to the states along the vertical axis, correspond-
ing to each section from Table 3. This network structure
allows for the optimization of the energy path based on travel
time for the entire system.

To preserve the integrity of node connections, a dummy
node is introduced between station nodes at even stages. The
left edge of this dummy node is assigned zero time and
zero energy cost to prevent any impact on the overall node
connection cost. In Fig. 6, the right edge of the dummy node
is associated with each state and signifies the designed dura-
tion and energy consumption for traveling between stations.
With 30 split weights and 7 sections in this study, a total of
15 stages and 30 states are included, comprising 8 dummy
nodes.

Each edge connecting the nodes records the energy con-
sumption for each travel time, along with the combined cost
that incorporates the weighted trade-off between travel time
and energy consumption. To parallelize the cost function,
the mixed cost is calculated using (29) at this stage. The
mixed cost recorded at each edge corresponds to an array

representing the split weights applied to the problem.

Wk,k+1 =
Sh

Smax − Smin
β +

Tsi
Tsmax − Tsmin

(1 − β) (29)

where Wk denotes the cost at a particular edge, with mul-
tiple weights dictating the ratio between time and energy.
If weights are employed as an array, the cost is also treated
accordingly as an array value. The weights are defined as
in (30).

β = [β1β2 · · · βN ]T , β1 = 0, βN = 1, βn+1 > βn,

n = 1, 2, · · · ,N (30)

Smax represents the maximum node travel energy, Smin
denotes the minimum interval energy, Tsmax signifies the
maximum node travel time, and Tsmin represents the
minimum node travel time.

Generating the minimum cost and optimal path from each
node in reverse: With the edge costs determined for the
network connecting the nodes in the two-dimensional plane,
the same DP method can be applied by following the steps
from (17) to (27).

As shown in (31), the final path obtained from this process
will include a dummy node (1Nx1) for each odd stage.

P0,0 = [1N×1PN×1
2 1N×1PN×1

4 1N×1
· · ·PN×1

14 1N×1] (31)

As a result, the final optimal path for each section, after
removing the dummy nodes, can be expressed as follows:

Pfinal = [PN×1
2 PN×1

4 PN×1
6 · · ·PN×1

14 ] (32)

where N represents the number of split weights.
Table 4 presents the results of the paths identified in

this study. The findings indicate the interval velocity profile
contexts for each cost function weight.

IV. RESULTS AND DISCUSSION
In this study, a dynamic programmingmethodwas introduced
to optimize energy consumption throughout all the opera-
tional segments. The operational optimization was conducted
for seven segments of a station line, and the optimization
performance was benchmarked against the actual energy
consumption data. Simulations were performed using both
real-world data and a modified model within a MATLAB
environment. The objective was to determine the optimal
travel time and speed profiles between each station while
adhering to the same constraints and total travel time as that of
the current line. During the actual operation, it took 794.5 s to
traverse the seven station sections. A two-stage travel energy
optimization method was employed to achieve operational
optimization, utilizing 801 parallel split weights. Thismethod
yielded the total travel time, energy consumption, and selec-
tion profile indices for each station section, as shown in
Table 4. The operational optimization helped in achieving a
travel time range between 648 and 1739 s, while considering
the station dwell time and operational buffer time.

Among the results, index 562 conformed to the actual
travel time of 794 s, demonstrating a travel time condition of
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TABLE 3. Optimal travel time and energy by weight in each section.

FIGURE 5. Optimal speed profile by time–energy weight in each station section.

791.3 s. In the simulation results presented in Table 4, when
theweight (β) is set to 0, it corresponds to the conditionwhere
the energy-related term in the cost function (Equation 28)
becomes zero. Consequently, the cost function is reduced
to a function that aims to minimize time, with only the
time-related term on the right side remaining. Therefore, this
condition represents a scenario where the entire operational
segment is driven as fast as possible within the train’s perfor-
mance limits. The highest speed profile is selected among the
generated profiles, utilizing the maximum acceleration and
deceleration, resulting in the shortest travel time of 648.27 s
and the maximum energy consumption. Conversely, when
the weight (β) is set to 1, it represents a condition where
only the energy-related term on the left side of the cost
function (28) remains, making it a condition that seeks to
minimize energy consumption. In this case, the travel time
is the longest at 1739.38 s, and the speed profiles for each
segment aim to minimize the energy consumption. In Table 4,

under the condition of weight 1, profile 29 was selected out
of 30 profiles in Section I. This was attributed to the fact that
profiles 29 and 30 yielded the same results during the search
process. The results ranging from 0 to 1 demonstrate that as
the weight increases towards 1, the significance of the energy
term increases, while the cost related to time decreases. This
gradually shifts the emphasis towards energy minimization,
resulting in longer travel times and reduced energy consump-
tion. At this point, the profile number selected for each station
segment can be easily identified. Notably, under the condition
of weight 1, the selected travel condition minimizes energy
consumption. However, beyond this point, increasing the
vehicle’s travel time does not reduce the energy consumption
and instead causes it to increase again. This phenomenon is
attributed to the energy consumption of the vehicle’s onboard
electrical devices, even when the vehicle is at a standstill.

Table 5 presents the results of optimizing the travel
times between the station sections and the speed profiles
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FIGURE 6. All station network for DP algorithm.

TABLE 4. Travel time and energy optimization by 801 split weights.

for each segment while satisfying the actual train travel
time of 794 s. This optimization was implemented to com-
pare the energy consumption and travel times for each
station section. In sections II and 6, the energy consump-
tion increased. However, based on the overall optimization
of the station segments, it is evident that when completing
the final journey, there is a reduction in the total energy
consumption by approximately 14% when compared to the
previous mode of operation. The results of this study were
obtained through a comparison of the power usage between
the actual operation on the real line, where the power
consumption was measured, and travel simulations were
conducted through the optimization method. Therefore, the
amount of energy saved varies based on factors such as the
number of stations or the conditions of the infrastructure

(grades, curves, etc.), as well as the characteristics of the
train (propulsion, braking, regenerative capabilities, rolling
resistance, etc.).

Fig. 7 is based on the recorded empirical data during the
operation and route design. Here, a speed of 0 corresponds
to the location of each of the eight stations. The figure depicts
the operational records of vehicles operated by ATO and
the speed profile results generated for each station, based
on the applied weight conditions. The thick blue line repre-
sents the actual operating speed of the train, while the bold
red line presents the optimized speed profiles obtained for
each station under the condition of equal travel time to the
actual operation. Since there are various gradient conditions
between the station sections, this enables us to determine
the locations at which deceleration and acceleration must be
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TABLE 5. Performance comparison by optimization (energy reduction: 14.39%, time reduction: 3 s).

FIGURE 7. Optimal speed profile and actual train speed.

performed to obtain the optimal speed profile for each weight
condition during the journey.

V. CONCLUSION AND SUMMARY
This study devised a dynamic programming method for
optimizing the travel energy of the entire line of operating
sections, along with individual station sections. It entailed
the meticulous design of optimal travel speed profiles to
cater to the minimum and maximum travel times of the
operating sections, considering the operational prerequisites
of several stations within each section. A two-stage dynamic
programming method was conceived to maximize the energy
efficiency of the entirety of the operating sections by concur-
rently processing multiple weighted cost functions. The first
stage entailed designing an optimal speed profile for each
station section, predicated on travel time. The second stage
involved architecting a node network for the dynamic pro-
gramming method to optimize the overall operation, utilizing

the data table from the first stage’s designed station region,
complemented by an optimization procedure. Furthermore,
the train system model required for the optimization design
process was supplied, along with a strategy to compensate for
model errors.

To offset model errors, the discrepancy between the mea-
sured power and the estimated power was identified as
a component originating from modeling errors or external
forces not encompassed by the model. This model error was
addressed by creating data predicated on the travel position
and interpolating it accordingly. The proposed method for
correcting model errors can be uniformly applied to urban rail
systems based on catenary lines on different routes. However,
the level of model errors may vary depending on the esti-
mation performance of external disturbances. To minimize
modeling errors, it is advisable to accurately model and apply
elements such as the running resistance based on varying
driving speeds, tailored to the trains on the specific route.
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To corroborate the proposed technique, operational data
gathered during the actual operational process was employed.
This data encompassed information such as the train’s posi-
tion on the line, line voltage, current, speed limit, vehicle
weight, and grade at distinct time intervals. Initially, the
model interpolation approach was leveraged to evaluate the
discrepancy between the design model and the implemented
system, substantiating that the total energy consumed by
each segment remained within a 1% margin under identi-
cal operational conditions. Moreover, to verify the optimal
travel speed profile design, a comparison was made of the
energy consumption when utilizing the optimized speed pro-
file under the same operational objectives and constraints as
the real data. Ultimately, through operational optimization,
a speed profile was designed that achieved approximately
14% energy savings compared to the prevailing operational
energy usage.

This study was not aimed at generating real-time optimized
speed profiles that consider the changing operational condi-
tions of the train. Instead, it aims to provide the target travel
times and target speed profiles during the initial timetable
design phase. The design of real-time optimal speed profiles
will be performed in future studies.
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