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ABSTRACT The concept of complex Pythagorean fuzzy set (CPFS) is recent development in the field of
fuzzy set (FS) theory. The significance of this concept lies in the fact that this theory assigned membership
grades ψ and non-membership grades ψ̂ from unit circle in plane, i.e., in the form of a complex number
with the condition (ψ)2 + (ψ̂)2 ≤ 1 instead from [0, 1] interval. This is an expressive technique for
dealing with uncertain circumstances. The aim of this study is to proceed the classification of the unique
framework of CPFS in algebraic structure that is field theory and examine its numerous algebraic features.
Also, we initiate the important examples and results of certain field. Furthermore, we illustrate that every
complex Pythagorean fuzzy subfield (CPFSF) generates two Pythagorean fuzzy subfields (PFSFs). We also
prove many useful algebraic aspects of this notion for aCPFSF. Moreover, we demonstrate that intersection
of two complex Pythagorean fuzzy subfields (CPFSFs) is also CPFSF. Additionally, we discuss the novel
idea of level subsets of CPFSFs and demonstrate that level subset of CPFSF form subfield. Additionally,
we improve the application of this theory to show the concept of the direct product of two CPFSFs is also a
CPFSF and produce several novel results on direct product ofCPFSFs. Finally, we explore the homomorphic
images and inverse images of CPFSFs.

INDEX TERMS Complex Pythagorean fuzzy set, complex Pythagorean fuzzy subfield, level subset of
complex Pythagorean fuzzy subfield, product of complex Pythagorean fuzzy sets, product of complex
Pythagorean fuzzy subfields.
AMS (MOS) Subject Classifications: 11E57,08A72,03E72.

I. INTRODUCTION
A field is an algebraic structure which play a significant
role in number theory, algebra and many other areas of
mathematics. Fields serve as development notions in various
mathematical domains. Field theory is an extremely helpful
mathematical area that is used an extensively in the study
of electronic circuits, coding theory, cryptography, cyber
security and combinatorial mathematics. McEliece [14]
introduced finite fields to both the engineering and computer
sciences in 2012. In addition, algebraic coding theory defined
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by the concept of finite fields was studied. Additionally,
covered finite fields in-depth in his treatment of coding theory
courses in Volkswage. Zadeh [1] pioneered the concept of
fuzzy sets (FSs) in 1965. The fuzzy set (FS) theory provides
an approach for scientifically describing the uncertainty
associated with human mental processes like intelligent and
thinking. In many real-world sectors, this innovative idea is
used to effectively simulate uncertainty. A membership value
(MV) with the range [0,1] defines a FS such that FS Q of a
classical set R is define as Q = {(s, ηQ(s)) : s ∈ R}, thus
ηQ : R :−→ [0, 1] is known asMV. This idea also help us to
find the better way to solve challenges in ordinary situations
through effective decision-making. The MV of a variable in
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a FS is a single integer between 0 and 1. In 1986, Atanassov
established intuitionistic fuzzy sets (IFSs). The intuitionistic
fuzzy set (IFS) is defined by the membership value MV
and non-membership value (NMV) with scale [0,1]. The
most broad description of a FS is an IFS. Numerous
areas, including decision-making, modelling theories, pattern
detection and medical diagnostics, can benefit from the
implementation of IFS. IFS is used in numerous fields,
such as neural network modelling, gas pipeline network
vulnerability analysis and medical diagnostics. Rosenfeld [2]
introduced the notion of fuzzy subgroups and created a
link between the concept of fuzzy theory and group theory.
In 1989, Biswas [5] initiated intuitionistic fuzzy subgroups
(IFSGs) and studied the fundamental results. Osman [6]
defined the t-fuzzy subfield in 1989 and different types of
its properties was prevalent. Additionally, the idea of t-fuzzy
subalgebra is presented, along with the idea of t-fuzzy vector
subspaces of a t-fuzzy subfield of a field. In 1990, Malik and
Mordeson [7] established some fundamental characteristics
of fuzzy subfields (FSFs) with certain field. Field extensions
characteristics were described in terms of their FSFs and
vice versa. As way of illustration, they demonstrated that
a field extension is finite dimensional KF iff the image of
each FSFs A of K such that {x ∈ K . . .A(1) ≥ A(1)} ⊇

F is finite. In 1992, Malik and Mordeson [8] presented
necessary and sufficient of extensions of fuzzy subrings and
fuzzy ideals. The idea of fuzzy algebraic field extensions
was introduced by Mordeson [9] in 1992. Also, identified
the conditions under an extension of a fuzzy algebraic field
has a distinct maximum fuzzy intermediate field that is
both fuzzy separable algebraically and fuzzy completely
inseparable. In 1992, Mordeson [10] demonstrated that each
fuzzy subfield of the additive group F is the direct sum
of its fuzzy subgroups. The sup property is present in the
fuzzy intermediate field (FIF) of such an expansion, which
is a property shared by all FIF with the sup property,
as explained by Volf [11] using intermediate fields with a
chain. A linguistic interval-valued intuitionistic fuzzy set
(IFS) withMVÂ and NMV expressed by the interval-valued
linguistic variables was proposed by Garg and Kumar [26]
in 2019 to negotiate with ambiguity and unclear details
during in the decision-making process. Before defining the
operational rules, score and accuracy functions of linguistic
interval-valued IFS, it begins with a brief discussion of part
of the analysis. Then, a number of aggregating operators
are suggested to aggregate the linguistic interval-valued IFS
intelligence on the basis of these operational principles.
To demonstrated the efficacy and validity of suggested
operators, some properties and inequalities are established.
Another method for solving multi-attribute group decision
making issues in the linguistic interval-valued IFS environ-
ment has been described and it is based on the proposed
operators. Using the basic arithmetic operations in 1989,
Buckley [4] defined the fuzzy complex numbers (FCNs)
and illustrated the closure of FCNs. In 2011, Sharma [13]

discussed the (α, β)-cut of IFS and defined the mapping of
two IFSs.
In 2013, Yager [19], [20] was the pioneered of a

Pythagorean fuzzy set (PFS), where the sum of the
squares of MV and NMV belongs to [0,1]. Therefore,
PFS has made a substantial contribution to our understand-
ing of problem-solving in decision-making. The ideas of
Pythagorean fuzzy isomorphisms and Pythagorean fuzzy nor-
mal subgroups were suggested in 2022 by Razaq et al. [43].
Also, investigated the basic properties of Pythagorean fuzzy
normal subgroups and showed the vital results of Pythagorean
fuzzy isomorphism. In 2023, Razaq et al. [38] discussed
the Pythagorean fuzzy sets on ring structure. Moreover,
defined the Pythagorean fuzzy ideals of a classical ring and
investigated some fundamental operations of Pythagorean
fuzzy ideals.

A powerful framework for defining novelmachine learning
techniques is a complex fuzzy set. In 2002, Ramot [12]
explored the novel idea of complex fuzzy sets (CFSs). The
membership function (MF) is the richness of the complex
fuzzy set (CFS). Instead of being restricted to the range [0,
1], as is the case with a typical fuzzyMF, this area covers to
the complex unit plane’s circle. As a result, the CFSs offers
a framework for mathematically expressing membership
in a set in terms of a complex number (CN). In 2013,
Alkouri and Salleh [17] introduced the complex intuitionistic
fuzzy set (CIFS), where the MF and non-membership
function (NMF) of CIFS have values in the complex plane’s
unit circle. A number of properties were studied together
with the introduction of two main procedures. Additionally,
by establishing a connection between the ideas of CIFS and
CFSs, they drawn a conclusion about the benefit of applying
these two procedures to the world of complex fuzzy numbers
(CFNs). In 2013, Akram [18] introduced the notion of bipolar
fuzzy soft Lie sub-algebras and investigated some of their
properties. Also initiated the concept of an (∈,∈ ∨q)-bipolar
fuzzy Lie sub-algebra and presented some of its properties.

In 2013, Thirunavukarasu et al. [16] used the idea of
complex fuzzy relation to illustrate a feasible application
that includes complex fuzzy representation of solar activity,
forecasting issues, time series, signal processing application
and compare the two national economies. A fuzzy subgroup
whose MF accepts values in the complex plane’s unit
circle is referred to as a complex fuzzy subgroup. In 2017,
Alsarahead and Ahmad [23] examined some of the traits
of the complex fuzzy subgroup and described it. Using the
idea of complex intuitionistic fuzzy subspace as a base in
2016, Husban [21] introduced a novel concept of complex
intuitionistic fuzzy subrings (CIFSRs) and expanded the
definition of intuitionistic fuzzy space from the real range of
MF and NMF, [0, 1], to the complex range ofMF and NMF
unit disc in the complex plane.Moreover, introducedCIFSRs
and studied their methodology as a result of this generaliza-
tion. In 2018, [25] explored certain structures of fuzzy Lie
algebras, fuzzy Lie super algebras and fuzzy n-Lie algebras.
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In 2019, Akram and Naz [27] introduced a novel idea of
complex Pythagorean fuzzy graphs (CPFGs). Also, initiated
the regular and edge regular graphs in a complex Pythagorean
fuzzy situation. Furthermore, described scenarios when the
graphic structure of characteristics is unclear. Also create a
powerful multi-attribute decision-making method based on
Pythagorean fuzzy graphs. In 2021, Ma et al. [36] presented
the complex Pythagorean fuzzy multi-criteria optimization
and compromise solution method, a novel approach to
multi-criteria group decision-making challenges. It is made
to deal with a lot of ambiguity and reluctance, which are
common in judgments made by people. Expert judgments
about the merits of each alternative and the relative weights
of the criteria can be expressed in language using the
CPF − VIKOR approach. In 2022, Xiao and Pedrycz [39]
studied quantum decisions from the negation perspective.
Specifically, complex evidence theory (CET) is considered
to be effective to express and handle uncertain information
in a complex plane.In 2022, Akram et al. [40] presented
a new study on the elimination and choice translating
reality (ELECTRE) family of approaches, which advances
and evolves outranking decision-making methodologies. Its
main goal is to explained the components and used of the
ELECTRE II approach for group decision making in a
complex Pythagorean fuzzy framework. In 2023, Xiao [45]
presented a new quantum model ofGQET, which provides a
new perspective to express and handle the generalized quan-
tum mass function with more explicit physical meanings.
In 2021, Alolaiyan et al. [35] established the existence of
(α, β)-complex fuzzy normal subgroups of a given group
and show that any complex fuzzy subgroup is a (α, β)-
complex fuzzy subgroup. In 2022, Alharbi and Alghaz-
zawi [37] introduced (ρ, η)-CFS and demonstrated the basics
examples of the group under (ρ, η)-CFS. Gulzar et al. [29]
introduced the innovative idea of complex intuitionistic fuzzy
subgroups (CIFSGs) and established that each CIFSGs
creates two intuitionistic fuzzy subgroups. With the help of
this philosophy, they developed the idea of level subsets of a
CIFS and go through all of its essential algebraic properties.
Furthermore, they demonstrated the existence of a subgroup
in the level subset of the CIFSGs. The homomorphic image
and pre-image of the CIFSGs are also investigated under
group homomorphism. The motivation and contribution of
the current work is given as follows

1) Ramot [12] pioneered the innovative idea ofCFSs. The
MF is an extension of the CFS. As a result of this
area being expanded to the circle of the complex unit
plane rather than being constrained to the interval [0, 1],
it provides a foundation for mathematically describing
set membership in terms of a complex number.

2) Alkouri and Salleh [17] presented the CIFS in which
theMF and NMF of the CIFS have values in the com-
plex plane’s unit circle. Gulzar et al. [29] introduced the
innovative idea of (CIFSGs) and discussed vital results

of group theory. Gulzar et al. [32] was introduced the
concept of direct product of twoCIFSRs and examined
its different algebraic properties. The level subsets of
the direct product of two CIFSs can also be developed.
Furthermore, the homomorphic image of the direct
product of subrings was explored.

3) Ullah et al. [30] purposed the idea of complex
Pythagorean fuzzy set (CPFS) and generalized some
distance measures. In comparison to FSs, IFSs, bipolar
fuzzy sets (BFSs), PFS,CFS and CIFS, the CPFS is
more appropriate and adaptable.

4) The idea of complex Pythagorean fuzzy set is not yet
apply on subfield. In this work, we apply the CPFS
on field theory, also discuss fundamental results, level
subset, homomorphic images, inverse homomorphic
images and direct product under the framework of
complex Pythagorean fuzzy subfield.

To achieve this the remaining article is structure as follows:
The essential definitions of CPFSs and PFSFs are the
foundation of section II, and important conclusions from this
innovative theory are crucial to our later study. In section III
we present the new concept of CPFSFs and describe their
fundamental characteristics. Every CPFSF generates two
PFSFs also prove in this section. We also establish the level
subset of CPFSs and argue that CPFSF level subsets define
subfields of fields. In section IV the homomorphic images
and homomorphic inverse images of CPFSF of certain
field is initiate. The direct product of CPFSFs is discuss
in section V along with an investigation of the algebraic
structures underlying this theory.
The following Figure 1 shows our proposed model complex
Pythagorean fuzzy subfield, a new algebraic structure at
the junction of fuzzy subfields (established since 1971)
and complex Pythagorean fuzzy sets. Various novel results
enhance the new theory.

II. PRELIMINARIES
Some definitions and notions that are essential for the
conception of later sections are examined in this section.
Definition 1 ([3]): An IFS S of universal set T form S =

{< ⊺, ϱS(⊺), ϱ̂S(⊺) >: ⊺ ∈ T}, where ϱS MV and ϱ̂S NMV
of ⊺ from [0, 1], such that 0 ≤ ϱS(⊺) + ϱ̂S(⊺) ≤ 1, ∀ ⊺ ∈ T.
Definition 2 ([5]): Suppose that S is an IFS of Ẇ, where

Ẇ is any group. Then, IFS is said to be an IFSG of Ẇ, if it
hold these properties:

1) ϱS(⊺ℏ) ≥ min{ϱS(⊺), ϱS(ℏ)},
2) ϱS(⊺−1) ≥ ϱS(⊺),
3) ϱ̂S(⊺ℏ) ≤ max{ϱ̂S(⊺), ϱ̂S(ℏ)},
4) ϱ̂S(⊺−1) ≤ ϱ̂S(⊺), for all ⊺, ℏ ∈ Ẇ.

Definition 3 ([15]): Every CIFS S of set T form S =

{< ⊺, θS(⊺), θ̂S(⊺) >: ⊺ ∈ T}, where the MF θS(⊺) =

ϱS(⊺)eiϕS(⊺) and it is described as θS : T → {z ∈ C :

|z| ≤ 1} and NMF θ̂S(⊺) = ϱ̂S(⊺)eiϕ̂S(⊺) and it is described
as θ̂S : T → {z ∈ C : |z| ≤ 1}, where C ∈ CNs.
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FIGURE 1. Flowchart of complex Pythagorean fuzzy subfield.

In order for the total of theMV and NMV to being restricted
within the complex plane’s unit disc, these MF and NMF
must acquire all of the MV and NMV, respectively, where
i =

√
−1 ϱS(⊺), ϱ̂S(⊺), ϕS(⊺), and ϕ̂S(⊺) are real valued such

that 0 ≤ ϱS(⊺) + ϱ̂S(⊺) ≤ 1 and 0 ≤ ϕS(⊺) + ϕ̂S(⊺) ≤ 2π.
In the interest of remaining simple, we’ll use throughout this
article θS(⊺) = ϱS(⊺)eiϕS(⊺), θN(⊺) = ϱN(⊺)eiϕN(⊺) as MF
and θ̂S(⊺) = ϱ̂S(⊺)eiϕ̂S(⊺), θ̂N(⊺) = ϱ̂N(⊺)eiϕ̂N(⊺) as NMF of
CIFSs S and N, respectively.
Theorem 1 ([5]): An IFSG is the intersection of two

IFSGs from the group Ġ.
Definition 4 ([17]): Suppose that S and N are CIFSs of T

and L, respectively. Then, intersection of CIFSs S and N is
described as:

S ∩ N = {< (⊺), θS∩N(⊺), θ̂S∩N(⊺) >}.

Where

θS∩N(⊺) = ϱS∩N(⊺)eiϕS∩N(⊺)

= min{ϱS(⊺), ϱN(⊺)}eimin{ϕS(⊺),ϕN(⊺)},

θ̂S∩N(⊺) = ϱ̂S∩N(⊺)eiϕ̂S∩N(⊺)

= max{ϱ̂S(⊺), ϱ̂N(⊺)}eimax{ϕ̂S(⊺),ϕ̂N(⊺)}.

Definition 5 ([17]): Suppose that S and N are CIFSs of
sets T and L, respectively. Then, union of CIFSs S and N
is defined as: S ∪ N = {< (⊺), θS∪N(⊺), θ̂S∪N(⊺) >}.

Where θS∪N(⊺) = ϱS∪N(⊺)eiϕS∪N(⊺)

= max{ϱS(⊺), ϱN(⊺)}eimax{ϕS(⊺),ϕN(⊺)},

θ̂S∪N(⊺) = ϱ̂S∪N(⊺)eiϕ̂S∪N(⊺)

= min{ϱ̂S(⊺), ϱ̂N(⊺)}eimin{ϕ̂S(⊺),ϕ̂N(⊺)}.

III. CHARACTERISTICS OF COMPLEX PYTHAGOREAN
FUZZY SUBFIELDS
In this section, we present CPFSFs and level subsets
of CPFSFs. Furthermore, we demonstrate that CPFSFs
generates two PFSGs. Also, initiate the CPFSF as a level
subset and illustrate that CPFSF level subset form subgroup
and examine some of this phenomenon’s algebraic features.
Definition 6: Suppose that S = {< ⊺, ψS(⊺), ψ̂S(⊺) >:

(ψS(⊺))2 + (ψ̂S(⊺))2 ≤ 1, ⊺ ∈ K} is a PFS. Then,
π -Pythagorean fuzzy set(π -PFS) Sπ described as Sπ =

{< ⊺, ψSπ (⊺), ψ̂Sπ (⊺) >: ⊺ ∈ K}, where the function
(ψSπ (⊺))

2
= 2π (ψS(⊺))2 and (ψ̂Sπ (⊺))

2
= 2π (ψ̂S(⊺))2

denote theMV and NMV of an element ⊺ of K, respectively
and fulfill the following properties 0 < (ψSπ (⊺))

2
+

(ψ̂Sπ (⊺))
2

≤ 2π.
Definition 7: Every π -PFS Sπ of field K is called π -

Pythagorean fuzzy subfield (π-PFSF) of K,∀ ⊺, Rk ∈ K if:
1) (ψSπ (⊺ − z̈))2 ≥ min{(ψSπ (⊺))

2, (ψSπ (ℏ))2} ,
2) (ψSπ (⊺ℏ))2 ≥ min{(ψSπ (⊺))

2, (ψSπ (ℏ))2} ,
3) (ψSπ (⊺

−1))2 ≥ (ψSπ (⊺))
2,

4) (ψ̂Sπ (⊺ − ℏ))2 ≤ max{(ψ̂Sπ (⊺))
2, (ψ̂Sπ (ℏ))2} ,

5) (ψ̂Sπ (⊺ℏ))2 ≤ max{(ψ̂Sπ (⊺))
2, (ψ̂Sπ (ℏ))2} ,

6) (ψ̂Sπ (⊺
−1))2 ≤ (ψ̂Sπ (⊺))

2.
Theorem 2: [13] Every π -PFS Sπ of field H is a π -PFSF

of H iff S is PFSF of K.
Definition 8: Suppose that S andN areCPFSs ofK. Then,
1) Homogeneous CPFS is defined as a CPFS with S,

if ∀ j̈, r̈ ∈ K, we have
a (µS(⊺))2 ≤ (µS(ℏ))2 iff (ζS(⊺))2 ≤ (ζS(ℏ))2,
b (µ̂S(⊺))2 ≥ (µ̂S(ℏ))2 iff (ω̂S(⊺))2 ≥ (ω̂S(ℏ))2.

2) Every CPFS S is said to be homogeneous CPFS by N,
if ∀ j̈ ∈ K, we have
a (µS(⊺))2 ≤ (µN(⊺))2 iff (ζS(⊺))2 ≤ (ζN(⊺))2,
b (µ̂S(⊺))2 ≥ (µ̂N(⊺))2 iff (ω̂S(⊺))2 ≥

(ω̂N(⊺))2.
We will refer to CPFS as homogeneous CPFS throughout
this article.
Definition 9: A CPFS S = {< (⊺, χS⊺, χ̂Sℏ) >: ⊺ ∈ K}

of field K is called a CPFSF, ∀ ⊺, ℏ ∈ K if
1) (ϒS(⊺ − ℏ))2 ≥ min{(ϒS(⊺))2, (ϒS(ℏ))2},
2) (ϒS(j̈ℏ))2 ≥ min{(ϒS(⊺))2, (ϒS(ℏ))2},
3) (ϒS(⊺−1))2 ≥ (ϒS(⊺))2,
4) (ϒ̂S(j̈ − r̆))2 ≤ max{(ϒ̂S(⊺))2, (ϒ̂S(ℏ))2},
5) (ϒ̂S(⊺ℏ))2 ≤ max{(ϒ̂S(⊺))2, (ϒ̂S(ℏ))2},
6) (ϒ̂S(⊺−1))2 ≤ (ϒ̂S(⊺))2.

In addition, we illustrate the definition of CPFSF as follow:
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1) (µS(⊺ − r̆))2ei(ζS(⊺−ℏ))2

≥ min{(µS(⊺))2, (µS(ℏ))2}ei min{(ζS(⊺))2,(ωS(ℏ))2},
2) (µS(⊺ℏ))2ei(ζS(⊺ℏ))2

≥ min{(µS(⊺))2, (µS(ℏ))2}ei min{(ζS(⊺))2,(ωS(ℏ))2},
3) (µS(⊺−1))2ei(ζS(⊺−1))2

≥ (µS(⊺))2ei(ζSℏ)2 ,
4) (µ̂S(⊺ − ℏ))2ei(ζ̂S(⊺−ℏ))2

≤ max{(µ̂S(⊺))2, (µ̂S(ℏ))2}ei max{(ζ̂S(⊺))2, (ζ̂S(ℏ))2}

5) (µ̂S(⊺ℏ))2ei(ζ̂S(⊺ℏ))2

≤ max{(µ̂S(⊺))2, (µ̂S(ℏ))2} ei max{(ζ̂S(⊺))2, (ζ̂S(ℏ))2}

6) (µ̂S(⊺−1))2ei(ζ̂S(⊺−1))2
≤ (µ̂S(⊺))2ei(ω̂S(⊺))2 , for all

⊺, ℏ ∈ K.
Theorem 3: Assume that S is a CPFS of field K. Then, S

is said to be a CPFSF of K if and only if
1) The FS S = {< ⊺, µS(ℏ), µ̂S(ℏ) >: 0 < (µS(⊺))2 +

(µ̂S(⊺))2 ≤ 1, ⊺ ∈ K} is a PFSF.
2) The π -FS S = {< ⊺, ωS(ℏ), ω̂S(ℏ) >: 0 < (ωS(⊺))2 +

(ω̂⊺(⊺))2 ≤ 2π, ⊺ ∈ K} is called π -PFSG.
Proof: Suppose that S is CPFSF and ⊺, ℏ ∈ H.

Then, (µS(⊺ − ℏ))2ei(ζS(⊺−ℏ))2
= (ϒS(⊺ − ℏ))2

≥ min{(ϒS(⊺))2, (ϒS(ℏ))2}
= min{(µS(⊺))2ei(ζS(⊺))2 , (µS(ℏ))2ei(ζS(ℏ))2}
= min{(µS(⊺))2, (µS(ℏ))2}ei min{(ζS(⊺))2, (ζS(ℏ))2}. Since, S is
homogeneous, so
(µS(⊺ − ℏ))2 ≥ min{(µS(⊺))2, (µS(ℏ))2}
and (ζS(⊺ − ℏ))2 ≥ min{(ζS(⊺))2, (ζS(ℏ))2}.

(µS(⊺ℏ))2ei(ζS(⊺ℏ))2

= (ϒS(⊺ℏ))2

≥ min{(ϒS(⊺))2, (ϒS(ℏ))2}

= min{(µS(⊺))2ei(ζS(⊺))2 , (µS(ℏ))2ei(ζS(ℏ))2}

= min{(µS(⊺))2, (µS(ℏ))2}ei min{(ζS(⊺))2, (ωS(ℏ))2}.

∵ S is homogeneous, so (µS(⊺ℏ))2 ≥ min{(µS(⊺))2,
(µS(ℏ))2} and (ζS(⊺ℏ))2 ≥ min{(ζS(⊺))2, (ζS(ℏ))2}.
Moreover, (µS(⊺−1))2ei(ζS(⊺−1))2

= (ϒS(⊺−1))2 ≥

(ϒS(⊺))2 = (µS(⊺))2ei(ζS(⊺))2

⇒ (µS(⊺−1))2 ≥ (µS(⊺))2 and, (ζS(⊺−1))2 ≥ (ωS(⊺))2.

(µ̂S(⊺ − ℏ))2ei(ζ̂S(⊺−ℏ))2

= (ϒ̂S(⊺ − ℏ))2

≤ max{(ϒ̂S(⊺))2, (ϒ̂S(ℏ))2}

= max{(µ̂S(⊺))2ei(ω̂S(⊺))2 , (µ̂S(ℏ))2ei(ω̂S(ℏ))2}

= max{(µ̂S(⊺))2, (µ̂S(ℏ))2}ei max{(ω̂Sℏ)2, (ζ̂S(ℏ))2}.

Therefore S is homogeneous, so
(µ̂S(⊺−ℏ))2 ≤ max{(µ̂S(⊺))2, (µ̂S(ℏ))2} and (ω̂S(⊺−ℏ))2 ≤

max{(ω̂S(⊺))2, (ω̂S(ℏ))2}.

(µ̂S(⊺ℏ))2ei(ω̂S(⊺ℏ))2

= (ϒ̂S(⊺ℏ))2

≤ max{(ϒ̂S(⊺))2, (ϒ̂S(ℏ))2}

= max{(µ̂S⊺ei(ω̂S(⊺))2 , (µ̂S(ℏ))2ei(ω̂S(ℏ))2}

= max{(µ̂S(⊺))2, (µ̂S(ℏ))2}ei max{(ω̂S(⊺))2, (ω̂S(ℏ))2}.

By homogeneity of S
(µ̂S(⊺ℏ))2 ≤ max{(µ̂S(⊺))2, (µ̂S(ℏ))2} and (ω̂S(⊺ℏ))2 ≤

max{(ω̂S(⊺))2, (ω̂S(ℏ))2}.
Furthermore,

(µ̂S(⊺−1))2ei(ω̂S(⊺−1))2
= (ϒ̂S(⊺−1))2 ≤ (ϒ̂S(⊺))2

= (µ̂S(⊺))2ei(ω̂S(⊺))2

(µ̂S(⊺−1))2 ≤ (µ̂S(⊺))2 and, (ω̂S(⊺−1))2

≤ (ω̂S(⊺))2.

Accordingly, S is a PFSF and S is π -PFSF.
Alternatively, assume that S is a PFSF and S is a π -PFSF.

Then,

(µS(⊺ − ℏ))2 ≥ min{(µS(⊺))2, (µS(ℏ))2}
(µS(⊺ℏ))2 ≥ min{(µS(⊺))2, (µS(ℏ))2}
(µS(⊺−1))2 ≥ (µS(⊺))2

(µ̂S(⊺ − ℏ))2 ≤ max{(µ̂S(⊺))2, (µ̂S(ℏ))2}
(µ̂S(⊺ℏ))2 ≤ max{(µ̂S(⊺))2, (µ̂S(ℏ))2}
(µ̂S(⊺−1))2 ≤ (µ̂S(⊺))2

(ζS(⊺ − ℏ))2 ≥ min{(ζS(⊺))2, (ζS(ℏ))2}
(ζS(⊺ℏ))2 ≥ min{(ζS(⊺))2, (ζS(ℏ))2}
(ζS(⊺−1))2 ≥ (ζS(⊺))2

(ζ̂S(⊺ − ℏ))2 ≤ max{(ζ̂S(⊺))2, (ζ̂S(ℏ))2}
(ζ̂S(⊺ℏ))2 ≤ max{(ζ̂S(⊺))2, (ζ̂S(ℏ))2}
(ζ̂S(⊺−1))2 ≤ (ζ̂S(⊺))2.

For this, we assume that

(ϒS(⊺ − ℏ))2

= (µS(⊺ − ℏ))2ei(ζS(⊺−ℏ))2

≥ min{(µS(⊺))2, (µS(ℏ))2}ei min{(ζS(⊺))2, (ζS(ℏ))2}

= min{(µS(⊺))2ei(ζS(⊺))2 , (µS(ℏ))2ei(ζS(ℏ))2}

= min{(ϒS(⊺))2, (ϒS(ℏ))2}.

For this, we consider

(ϒS(⊺ℏ))2 = (µS(⊺ℏ))2ei(ζS(⊺ℏ))2

≥ min{(µS(⊺))2, (µS(ℏ))2}eimin{(ζS(⊺))2, (ζS(ℏ))2}

= min{(µS(⊺))2ei(ζS(⊺))2 , (µS(ℏ))2ei(ζS(ℏ))2}

= min{(ϒS(⊺))2, (ϒS(ℏ))2}.

Also, we have

(ϒS(⊺−1))2 = (µS(⊺−1))2ei(ζS(⊺−1))2

≥ (µS(⊺))2ei(ζS(ℏ)2)=(ϒS(⊺))2 .
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Consider,

(ϒ̂S(⊺ − ℏ))2

= (µ̂S(⊺ − ℏ))2ei(ζ̂S(⊺−ℏ))2

≤ max{(µ̂S(⊺))2, (µ̂S(ℏ))2}ei max{(ζ̂S(⊺))2, (ζ̂S(ℏ))2}

= max{(µ̂S(⊺))2ei(ζ̂S(⊺))2 , (µ̂S(ℏ))2ei(ζ̂S(ℏ))2}

= max{(ϒ̂S(⊺))2, (ϒ̂S(ℏ))2}
(ϒ̂S(⊺ℏ))2

= (µ̂S(⊺ℏ))2ei(ζ̂S(⊺ℏ))2

≤ max{(µ̂S(⊺))2, (µ̂S(ℏ))2}ei max{(ζ̂S(⊺))2, (ζ̂S(ℏ))2}

= max{(µ̂S(⊺))2ei(ζ̂S(⊺))2 , (µ̂S(ℏ))2ei(ζ̂S(ℏ))2}

= max{(ϒ̂S(⊺))2, (ϒ̂S(ℏ))2}.

Further,

(ϒ̂S(⊺−1))2 = (µ̂S(⊺−1))2ei(ζ̂S(⊺−1))2

≤ (µ̂S(⊺))2ei(ζ̂S(⊺))2 = (ϒ̂S(⊺))2.

Thus, S is CPFSF.
The intersection of two CPFSFs is shown to be a CPFSF

in the following result.
Theorem 4: Intersection of two CPFSFs of field K is

CPFSF.
Proof: Let S and N be two CPFSFs of field K, for all

y, ℏ ∈ K. By Theorem 3, we get
The PFS {(y, µS(y), µ̂S(⊺)), 0 < (µS(⊺))2 +

(µ̂S(⊺))2 ≤ 1,∀ ⊺ ∈ H} and
{(⊺, µN(⊺), µ̂N(⊺)), 0 < (µN(⊺))2 + (µ̂N(⊺))2 ≤

1,∀ ⊺ ∈ H} are PFSGs of a field H. From Theorem 1,
we obtain {(⊺, µS∩N(⊺), µ̂S∩N(⊺)), 0 < (µS∩N(⊺))2 +

(µ̂S∩N(⊺))2 ≤ 1,⊺ ∈ H} is PFSG of a field H.

The π-PFS {(⊺, ζS(⊺), ζ̂S(⊺)), 0 < (ζS(⊺))2 +

(ζ̂S(⊺))2 ≤ 2π, ⊺ ∈ H} and {(⊺, ζN(⊺), ζ̂N(⊺)0 <

(ζN(⊺))2 + (ζ̂N(⊺))2 ≤ 2π,⊺ ∈ H} are π -PFSGs
of a field H. By Theorem 1 and 2, we obtain
{(⊺, ζS∩N(⊺), ζ̂S∩N(⊺), 0 < (ζS∩N(⊺))2 + (ζ̂S∩N(⊺))2 ≤

2π, ⊺ ∈ H} is π -PFSG of H.
Consider,

(ϒS∩N(⊺ − ν))2

= (µS∩N(⊺ − ν))2ei(ζS∩N(⊺−ν))2

≥ min{(µS∩N(⊺))2, (µS∩N(ν))2}emin{i(ζS∩N(⊺))2, (ζS∩N(ν))2}

[By homogeneity ofCPFS]

= min{(µS∩N(⊺))2ei(ζS∩N(⊺))2 , (ζS∩N(ν))2ei(ζS∩N(a))2}

= min{(ϒS∩N(⊺))2, (ϒS∩N(ν))2}

(ϒS∩N(⊺))2

= (µS∩N(y(⊺))))2ei(ζS∩N(y(⊺))))2

≥ min{(µS∩N(⊺))2, (µS∩N((⊺))))2}emin{i(ζS∩N(⊺))2, (ζS∩N((⊺))))2}

[By homogeneity ofCPFS]

= min{(µS∩N(⊺))2ei(ζS∩N(⊺))2 , (ζS∩N((⊺))))2ei(ζS∩N((⊺))))2}

= min{(ϒS∩N(⊺))2, (ϒS∩N((⊺))))2}

Moreover,

(ϒS∩N(⊺−1))2 = µS∩N(⊺−1))2ei(ζS∩N(⊺−1))2

≥ {µS∩N(⊺))2}e{i(ζS∩N(⊺))2}

(ϒS∩N(⊺−1))2 ≥ (ϒS∩N(⊺))2.

Assume that,

(ϒ̂S∩N(⊺ − (⊺)))2

= µ̂S∩N(⊺ − (⊺))2ei(ζ̂S∩N(⊺−ℏ)2

≤ max{(µ̂S∩N(⊺))2, (µ̂S∩N(⊺))2}emax{i(ζ̂S∩N(⊺))2, ζS∩N(⊺))2}

= max{(µ̂S∩N(⊺))2ei(ζ̂S∩N(⊺))2 , (ζ̂S∩N(⊺))2ei(ζ̂S∩N(⊺))2}

= max{(ϒ̂S∩N(⊺))2, (ϒ̂S∩N(⊺))2}

(ϒ̂S∩N(⊺(⊺))2

= (µ̂S∩N(⊺(⊺))2ei(ζ̂S∩N(⊺(⊺))2

≤ max{(µ̂S∩N(⊺)2, (µ̂S∩N((⊺))2}emax{i(ζ̂S∩N(⊺))2, ζS∩N((⊺))2}

= max{(µ̂S∩N(⊺))2ei(ζ̂S∩N(⊺))2 , (ζ̂S∩N((⊺))2ei(ζ̂S∩N((⊺))2}

= max{(ϒ̂S∩N(⊺))2, (ϒ̂S∩N((⊺))2}

Furthermore,

(ϒ̂S∩N(⊺−1))2 = (µ̂S∩N(⊺−1))2ei(ζ̂S∩N(⊺−1))2

≤ {(µ̂S∩N(⊺))2}e{i(ζ̂S∩N(⊺))2}

(ϒ̂S∩N(⊺−1))2 ≤ (ϒ̂S∩N(⊺))2.

Consequently, the proof is complete.
Remark 1: The union of two CPFSFs of field H may not

be CPFSF of field H.
The union of two CPFSFs may not be aÂ Â CPFSF,

as shown by the example below.
Example 1: Let Z13 be a field, where Z13

= {0, 1, 2, 3, . . . , 12}. Assume that S andN are twoCPFSF
of field Z13 and defined as

ϒS (q) =

{
0.3e

iπ
2 If q ∈ 3Z

0 otherwise.

ϒ̂S (q) =

{
0.2e

iπ
9 If s ∈ 3Z

0.5e
iπ
3 otherwise.

ϒN (q) =

{
0.2e

iπ
3 If n ∈ 2Z

0.02e
iπ
8 otherwise.

ϒ̂N (q) =

{
0.4e

iπ
8 If n ∈ 2Z

0.6e
iπ
2 otherwise.

.

It is simple to prove that S and N are two CPFSFs of
field Z13. By Definition 5 S ∪ N = {(q, ϒS∪N , ϒ̂S∪N )}.
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Therefore,

ϒS∪N (q) =


0.3e

iπ
2 If q ∈ 3Z

0.2e
iπ
3 If q ∈ 2Z − 3Z

0.02e
iπ
8 otherwise.

ϒ̂S∪N (q) =


0.2e

iπ
4 If q ∈ 3Z

0.4e
iπ
8 If q ∈ 2Z − 3Z

0.5e
iπ
3 otherwise.

.

Take n = 9 and ã = 4. Then ϒS∪N (9) = 0.3e
iπ
2 and

ϒS∪N (4) = 0.2e
iπ
3 , then ϒS∪N (9 − 4) = ϒS∪N (5) =

0.02e
iπ
8 and min{ϒS (9), ϒ̂N (4)} = min{0.3e

iπ
2 , 0.2e

iπ
3 } =

0.2e
iπ
3 . clearly, ϒS∪N (9 − 4) < min{ϒS (9), ϒ̂N (4)}. This

condition does not holds. Accordingly, S ∪N is not CPFSF
ofH.
Definition 10: Suppose that S = {< n, ϒS(n), ϒ̂S(n) >:

n ∈ H} is aCPFS ofH, for all c, ĉ ∈ [0, 1] and u, û ∈ [0, 2π ].
The level subset of CPFS is described as
S(ĉ,û)
(c,u) = {n ∈ H : (µS(n))2 ≥ c, (ζS(n))2 ≥ u, (µ̂S(n))2 ≤

ĉ, (ζ̂S(n))2 ≤ û}.
For û = 0 = u, we get, Sĉ

c = {n ∈ H : (µS(n))2 ≥

c, (µ̂S(n))2 ≤ ĉ} and for û = 0 = u, we get, Sû
u = {n ∈

H : (ζS(n))2 ≥ u, (ζ̂S(n))2 ≤ û}.
Theorem 5: Suppose that S be CPFSF of field H. Then

S(ĉ,û)
(c,u) is a subfield of field H, ∀ c, ĉ ∈ [0, 1] and u, û ∈

[0, 2π ], where (µS(e))2 ≥ c, (ζS(e))2 ≥ u , (µ̂S(e))2 ≤

ĉ, (ζ̂S(e))2 ≤ û, where e is the unit element and e ∈ H.
Proof: Consider S(ĉ,û)

(c,u), since e ∈ S(ĉ,û)
(c,u). Assume that any

two elements ⊺, ℏ ∈ S(ĉ,û)
(c,u). Then

(µS(⊺))2 ≥ c, (ζS(⊺))2 ≥ u, (µ̂S(⊺))2 ≤ ĉ, (ζ̂S(⊺))2 ≤ u,

and (µS(ℏ))2 ≥ c, (ζS(ℏ))2 ≥ u, (µ̂S(ℏ))2 ≤ ĉ, (ζ̂S(ℏ))2 ≤ û.

Now we suppose that,

(µS(⊺ − ℏ))2ei(ζS(⊺−ℏ))2

= (ϒS(⊺ − ℏ))2

≥ min{(ϒS(⊺))2, (ϒS(ℏ))2}

= min{(µS⊺)2ei(ζS(⊺))2 , (µS(ℏ))2ei(ζS(ℏ))2}

= min{(µS(⊺))2, (µS(ℏ))2} ei min{(ζS(⊺))2, (ζS(ℏ))2} .

∵ S is homogeneous, so

(µS(⊺ − ℏ))2

≥ min{(µS(⊺))2, b(µS(ℏ))2} = min{c, c} = c,

(ζS(⊺ − ℏ))2

≥ min{(ζS(⊺))2, (ζS(ℏ))2} = min{u, u} = u.

(µS(⊺(⊺))))2ei(ζS(⊺(⊺))))2

= ϒS(⊺(⊺))))2

≥ min{(ϒS(⊺))2, (ϒS(ℏ))2}

= min{(µS(⊺))2ei(ζS(⊺))2 , (µS(ℏ))2ei(ζS(ℏ))2}

= min {(µS(⊺))2, (µS(ℏ))2} ei min{(ζS(⊺))2, (ζS(ℏ))2} .

Therefore S is homogenous,

(µS(⊺(⊺))))2 ≥ min{(µS(⊺))2, (µS(ℏ))2} = min{c, c} = c,

(ζS(⊺(⊺))))2 ≥ min{(ζS(⊺))2, (ζS(ℏ))2} = min{u, u} = u.

Further,

(µ̂S(⊺ − ℏ))2ei(ζ̂S(⊺−ℏ))2

= (ϒ̂S(⊺ − ℏ))2

≤ max{(ϒ̂S(⊺))2, (ϒ̂S(ℏ))2}

= max{(µ̂S(⊺))2ei(ζ̂S(⊺))2 , (µ̂S(ℏ))2ei(ζ̂S(ℏ))2}

= max{(µ̂S(⊺))2, (µ̂S(ℏ))2} ei max{(ζ̂S(⊺))2, (ζ̂S(ℏ))2} .

By homogeneity, so

(µ̂S(⊺ − ℏ))2

≤ max{(µ̂S(⊺))2, (µ̂S(ℏ))2} = max{ĉ, ĉ} = ĉ,

(ζ̂S(⊺ − ℏ))2

≤ max{(ζ̂S(⊺))2, (ζ̂S(ℏ))2} = max{û, û} = û.

(µ̂S(⊺ℏ))2ei(ζ̂S(⊺ℏ))2

= (ϒ̂S(⊺ℏ))2

≤ max{(ϒ̂S(⊺))2, (ϒ̂S(ℏ))2}

= max{(µ̂S(⊺))2ei(ζ̂S(⊺))2 , (µ̂S(ℏ))2ei(ζ̂S(ℏ))2}

= max{(µ̂S(⊺))2, (µ̂S(ℏ))2} ei max{(ζ̂S(⊺))2, (ζ̂S(ℏ))2} .

By homogeneity, so

(µ̂S(⊺ℏ))2 ≤ max{(µ̂S(⊺))2, (µ̂S(ℏ))2} = max{ĉ, ĉ} = ĉ,

(ζ̂S(⊺ℏ))2 ≤ max{(ζ̂S(⊺))2, (ζ̂S(ℏ))2} = max{û, û} = û.

This implies that ⊺r̆ ∈ S(ĉ,û)
(c,u).

Also, (µS(⊺−1))2ei(ζS(⊺−1))2
= (ϒS(⊺−1))2 ≥ (ϒS(⊺))2 =

(µS(⊺))2ei(ζS(⊺))2

(µS(⊺−1))2 ≥ (µS(⊺))2 ≥ r and (ζS(⊺−1))2 ≥ (ζS(⊺))2 ≥

t (by homogeneity).
Moreover, we have
(µ̂S(⊺−1))2ei(ζ̂S(⊺−1))2

= (ϒ̂S(⊺−1))2 ≤ (ϒ̂S(⊺))2 =

(µ̂S(⊺))2ei(ζ̂S(⊺))2

(µ̂S(⊺−1))2 ≤ (µ̂S(⊺))2 ≤ ĉ and, (ζ̂S(⊺−1))2 ≤ (ζ̂S(⊺))2 ≤ t̂
⇒ ⊺−1

∈ S(ĉ,û)
(c,u). Hence, S

(ĉ,û)
(c,u) is subfield.

Theorem 6: Suppose that S(ĉ,û)
(c,u) is a subfield of H, then S

isCPFSF of H∀c ∈ [0, 1] and u ∈ [0, 2π ], where (µS(e))2 ≥

c, (ζS(e))2 ≥ u, (µ̂Se))2 ≤ ĉ, (ζ̂S(e))2 ≤ û, where e is the unit
element of H.
Proof: Let min{µS((⊺))2, µ(S(((⊺))))2} = c,

min{ζ S((⊺))2, ζ S((ℏ))2} = u, and
max{µ̂S(⊺)2, µ̂S(((⊺)))2)} = ĉ, max{ζ̂ S((⊺)2), ζ̂ S(((⊺))))2}
= û. Then we have µS((⊺)2) ≥ c, µ̂S(⊺)2 ≤ ĉ, ζ S((⊺)2) ≥

u, ζ̂ S((⊺)2) ≤ ûandµS(((⊺)))2) ≥ c, µ̂S(((⊺)))2) ≤
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ĉ, ζ S(((⊺)))2) ≥ u, ζ̂ S(((⊺)))2) ≤ û. This implies that
⊺ ∈ S(ĉ,û)

(c,u) and r̆ ∈ S(ĉ,û)
(c,u).

∵ S(ĉ,û)(c, u) is subfield, so ⊺r̆ ∈
(ĉ,û)
S (c, u). Then we have

(µS(⊺ − ℏ))2 ≥ c and (ζ S(⊺ − ℏ))2 ≥ u

(µ̂S(⊺ − ℏ))2 ≤ ĉ and (ζ̂S(⊺ − ℏ))2 ≤ û.

Implies that (µS(⊺ − ℏ))2 ≥ min{(µS(⊺))2, (µS(ℏ))2}
and (ζ S(⊺ − ℏ))2 ≥ min{(ζ S(⊺))2, (ζS(ℏ))2}

(µ̂S(⊺ − ℏ))2 ≤ max{(µ̂S(⊺))2, (µ̂S(ℏ))2}

and

(ζ̂ S(⊺ − ℏ))2 ≤ max{(ζ̂ S(⊺))2, (ζ̂S(ℏ))2} .
µS(⊺ℏ))2 ≥ c and (ζ S(⊺ℏ))2 ≥ u

(µ̂S(⊺ℏ))2 ≤ ĉ and (ζ̂S(⊺ℏ))2 ≤ û.

Implies that

(µS(⊺ℏ))2 ≥ minµS(⊺)2, (µS(ℏ))2

and

(ζ S(⊺ℏ))2 ≥ min{ζ S⊺, (ζS(ℏ))2}
(µ̂S(⊺ℏ))2 ≤ max{(µ̂S(⊺))2, (µ̂S(ℏ))2}

and

(ζ̂ S(⊺ℏ))2 ≤ max{(ζ̂ S(⊺))2, (ζ̂S(ℏ))2} .

Thus,

(ϒS(⊺ − ℏ))2

= (µS(⊺ − ℏ))2ei(µS(⊺−ℏ))2

≥ min{(µS(⊺))2, (µS(ℏ))2} eimin{(ζS(⊺))2,(ζS(ℏ))2}

= min{(µS(⊺))2ei(ζS(⊺))2 , (µS(ℏ))2ei(ζS(ℏ))2}

(ϒS(⊺ − ℏ))2

≥ min{(ϒS(⊺))2, (ϒS(ℏ))2} .
(ϒ̂S(⊺ − z̈))2

= (µ̂S(⊺ − z̈))2ei(µ̂S(⊺−z̈))2

≤ max{(µ̂S(⊺))2, (µ̂S(z̈))2}eimax{(ζ̂S(⊺))2,(ζ̂S(z̈))2}

= max{(µ̂S(⊺))2ei(ζ̂S(⊺))2 , (µ̂S(z̈))2ei(ζ̂S(z̈))2}

((ϒ̂S(⊺ − z̈))2

≤ max{(ϒ̂S(⊺))2, (ϒ̂S(z̈))2}

(ϒS(⊺ℏ))2

= (µS(⊺ℏ))2ei(µS(⊺ℏ))2

≥ min{(µS(⊺))2, (µS(ℏ))2} eimin{(ζS(⊺))2,(ζS(ℏ))2}

= min{(µS(⊺))2ei(ζS(⊺))2 , (µS(ℏ))2ei(ζS(ℏ))2}

(ϒS(⊺ℏ))2

≥ min{(ϒS(⊺))2, (ϒS(ℏ))2} .
ϒ̂S(⊺ℏ)

= µ̂S(⊺ℏ)eiµ̂S(⊺ℏ)

≤ max{µ̂S(⊺), µ̂S(ℏ)} eimax{ζ̂S(⊺),ζ̂S(ℏ)}

= max{µ̂S(⊺)eiζ̂S(⊺), µ̂S(ℏ)eiζ̂S(ℏ)}

ϒ̂S(⊺ℏ)
≤ max{ϒ̂S(⊺), ϒ̂S(ℏ)} .

Further, consider ⊺ ∈ H be any element. Let (µS(⊺))2 =

c, (ζ S(⊺))2 = u, ((µ̂S(⊺))2 = ĉ and ((ζ̂S(⊺))2 = û.
Then, (µS(⊺))2 ≥ c, and (ζ S(⊺))2 ≥ u, and ((µ̂S(⊺))2 ≤

ĉ, ((ζ̂ S(⊺))2 ≤ û is true. Implies that ⊺ ∈ S(ĉ,û)
(c,u).

∵ S(ĉ,û)
(c,u) is subfield. So, ⊺

−1
∈ S(ĉ,û)

(c,u) ⇒ (µS(⊺−1))2 ≥ c,
(ζS(⊺−1))2 ≥ u and (ζ̂S(⊺−1))2 ≤ ĉ, (ζ̂ S(⊺−1)2 ≤ û,⇒
(µS(⊺−1))2 ≥ (µS(⊺))2, (ζ S(⊺−1))2 ≥ (ζ S(⊺))2, and
(µ̂S(⊺−1))2 ≤ (µ̂S(⊺))2, (ζ̂ S(⊺−1))2 ≤ (ζ̂S(⊺))2. Consider
that,

(ϒS(⊺−1))2 = (µS(⊺−1))2ei(ζS(⊺−1))2

≥ (µS(⊺))2ei(ζS(⊺))2

= (ϒS(⊺))2.

(ϒ̂S(⊺−1))2 = (µ̂S(⊺−1))2ei(ζ̂S(⊺−1))2

≤ (µ̂S(⊺))2ei(ζ̂ S(⊺))2

= (ϒ̂S(⊺))2.

Corollary 1: Suppose that S is a CPFSF of any field
H. Then, Sĉ

c and Sû
u level subsets is a subfields of field

H, ∀ ˆ(c), (c) ∈ [0, 1] and û, u ∈ [0, 2π ], where (µS(e))2 ≥

c, (ζS(e))2 ≥ u and (µ̂S(e))2 ≤ ĉ, (ζ̂S(e))2 ≤ û, where e is
the unit element and e ∈ H.

IV. HOMOMORPHISM OF COMPLEX INTUITIONISTIC
FUZZY SUBFIELDS
The homomorphic image and pre-image of CPFSF are
defined in this section. We exceed few more CPFSF results
that are related to certain field homomorphism.
Definition 11: Suppose that K and F are two fields and

℧ : K → F is a homomorphism from K to F. Assume
that S and N are two CPFSF of fields K and F, respectively,
∀ ⊺ ∈ K, r̆ ∈ F. The set ℧(S)(⊺) = {⊺,℧(ϒS(⊺),℧(ϒ̂S)(⊺)}
is image of S, where

℧(ϒS)(⊺)=

{
sup{ϒS(⊺), PF ℧(⊺) = ⊺}, ℧−1(⊺) ̸= ∅

0, otherwise.

℧(ϒ̂S)(⊺)=

{
inf {ϒ̂S(⊺), PF ℧(⊺) = ⊺}, ℧−1(⊺) ̸= ∅

1, otherwise.

. The set ℧−1(N)(⊺) = {⊺,℧−1(ϒN)(⊺),℧−1(ϒ̂N)(⊺)} is
called pre image of N, where

℧−1(ϒN)(⊺) = (ϒN)(℧(⊺))

℧−1(ϒ̂N)(⊺) = (ϒ̂N)(℧(⊺)),∀ ⊺ ∈ K
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Theorem 7: [13] Suppose that K and F are two fields and
℧ : K → F is a homomorphism from K to F. Assume that S
and N are PFSF of fields K and F, respectively. Then ℧(S) is
PFSF of F and ℧−1(N) is PFSF of K.
Lemma 1: Suppose that K and F are two fields and ℧ :

K → F is a homomorphism from K to F. CPFS S and N are
two CPFSF of given fields. Then,

1) (℧(ϒS)(⊺))2 = (℧(µS)(⊺))2ei(℧(ϕS)(⊺))2 ,

for all ⊺ ∈ F,
2) (℧(ϒ̂S)(⊺))2 = (℧(µ̂S)(⊺))2ei(℧(ζ̂S)(⊺))2 ,

for all ⊺ ∈ F,
3) (℧−1(ϒN)(⊺))2 = (℧−1(µN)(⊺))2e(i℧

−1(ζN)(⊺))2 ,

for all ⊺ ∈ K,
4) (℧−1(ϒ̂N)(⊺))2 = (℧−1(µ̂N)(⊺))2ei(℧−1(ζ̂N)(⊺))2 ,

for all ⊺ ∈ K.
Proof: Suppose that

(℧(ϒS)⊺)2

= max{(ϒS(⊺))2, PF ℧(⊺) = ⊺}

= max{(µS(⊺))2ei(℧(ζS)(⊺))2 , PF ℧(⊺) = ⊺}

= max{(µS(⊺))2,PF ℧(⊺) = ⊺} ei max{((ζS)(⊺))2, PF ℧(⊺)=⊺}

= (℧(µS)⊺)2ei(℧(ζS)(⊺))2 .

Hence,

(℧(ϒS)(⊺))2 = (℧(µS)(⊺))2ei(℧(ζS)(⊺))2

Assume that

(℧(ϒ̂S)(⊺))2

= min{(ϒ̂S(⊺))2, PF ℧(⊺) = ⊺}

= min{(µ̂S(⊺))2e(i℧(ζ̂S)(⊺))2 , PF ℧(⊺) = ⊺}

= min{(µ̂S(⊺))2,PF ℧(⊺) = ⊺} eimin{((ζ̂S)(⊺))2, PF ℧(⊺)=⊺}

= (℧(µ̂S)(⊺))2ei(℧(ζ̂S)(⊺))2

Hence,

(℧(ϒ̂S)(⊺))2 = (℧(µ̂S)(⊺))2ei(℧(ζ̂S)(⊺))2 .

Consider,

(℧−1(ϒN)(⊺))2 = (ϒN(℧(⊺)))2

= (µN(℧(⊺)))2ei(ζN(℧(⊺)))2

= (℧−1(µN)(⊺))2ei(℧−1(ζN)(⊺))2 .

Consequently,

(℧−1(ϒN)(⊺))2 = (℧−1(µN)(⊺))2ei(℧−1(ζN)(⊺))2 .

Consider,

(℧−1(ϒ̂N)(⊺))2 = (ϒ̂N(℧(⊺)))2

= (µ̂N(℧(⊺)))2ei(ζ̂N(℧(⊺)))2

= (℧−1(µ̂N)(⊺))2ei(℧−1(ζ̂N)(⊺))2 .

Consequently,

(℧−1(ϒ̂N)(⊺))2 = (℧−1(µ̂N)(⊺))2ei(℧−1(ζ̂N)(⊺))2 .

The homomorphic image of CPFSF, according to the
result, is always CPFSF.
Theorem 8: Suppose that K and F are two fields and ℧ :

K → F is a homomorphism from K to F. PF S is a CPFSF
of field K. Then, ℧(S) is CPFSF of F.

Proof: Clearly, S = {< h̄, µS(h̄), µ̂S(h̄) >: h̄ ∈

K, µS(h̄), µ̂S(h̄) ∈ [0 1]} and S = {< h̄, ζS(ℏ), ζ̂S(h̄) >:

h̄ ∈ K, ζS(h̄), ζ̂S(h̄) ∈ [0 2π]} are PFSF and π -
PFSF, respectively. In the view of Theorem 3 and in the
view of Theorem 7 the homomorphic image of S = {<

h̄, µS(h̄), µ̂S(h̄) >: h̄ ∈ K, 0 < (ζS(h̄))2 + (ζ̂S(h̄))2 ≤ 1}
is PFSF and S = {< h̄, ζS(ℏ), ζ̂S(h̄) >: h̄ ∈ K, 0 <

(ζS(ℏ))2 + ζ̂S(ℏ)2 ≤ 2π} is π -PFSF ∀ h̄, ℏ ∈ F. Then,

(℧(µS)(h̄ − ℏ))2 ≥ min{(℧(µS)(h̄))2, (℧(µS)(ℏ))2}
(℧(µS)((h̄ℏ))2 ≥ min{(℧(µS)(h̄))2, (℧(µS)(ℏ))2}
(℧(µS)(h̄−1))2 ≥ (℧(µS)(h̄))2

(℧(µ̂S)((h̄ − ℏ))2 ≤ max{(℧(µ̂S)(h̄))2, (℧(µ̂S)(ℏ))2}
(℧(µ̂S)((h̄ℏ))2 ≤ max{(℧(µ̂S)(h̄))2, (℧(µ̂S)(ℏ))2}
(℧(µ̂S)(h̄−1))2 ≤ (℧(µ̂S)(h̄))2

(℧(ζS)(h̄ − ℏ)) ≥ min{(℧(ζS)(h̄))2, (℧(ζS)(ℏ))2}
(℧(ζS)(h̄ℏ))2 ≥ min{(℧(ζS)(h̄))2, (℧(ζS)(ℏ))2}
(℧(ζS)(h̄−1))2 ≥ (℧(ζS)(h̄))2

(℧(ζ̂S)(h̄ − ℏ))2 ≤ max{(℧(ζ̂S)(h̄))2, (℧(ζ̂S)(ℏ))2}
(℧(ζ̂S)(h̄ℏ))2 ≤ max{(℧(ζ̂S)(h̄))2, (℧(ζ̂S)(ℏ))2}
(℧(ζ̂S)(h̄−1))2 ≤ (℧(ζ̂S)(h̄))2.

By Lemma 1 [1], Since

(℧(ϒS)(h̄ − ℏ))2

= (℧(µS)(h̄ − ℏ))2)ei(℧(ζS)(h̄−ℏ))2 , ∀ h̄, ℏ ∈ F

≥ min{(℧(µS)(h̄))2, (℧(µS)(ℏ))2} ei min{(℧(ζS)(h̄))2,(℧(ζS)(ℏ))2}

≥ min{(℧(µS)(h̄))2ei℧(ζS)(h̄))2 , (℧(µS)(ℏ))2ei(℧(ζS)(ℏ))2}

= min{(℧(ϒS)(h̄))2, (℧(ϒS)(ℏ))2}.

Consequently,

(℧(ϒS)(h̄ − ℏ))2

≥ min{(℧(ϒS)(h̄))2, (℧(ϒS(ℏ)))2}
(℧(ϒS)(h̄ℏ))2

= (℧(µS)(h̄ℏ))2ei(℧(ζS)(h̄ℏ))2 , ∀ h̄, ℏ ∈ F

≥ min{(℧(µS)(h̄))2, (℧(µS)(ℏ))2} ei min{(℧(ζS)(h̄))2,(℧(ζS)(ℏ))2}

≥ min{(℧(µS)(h̄))2ei(℧(ζS)(h̄))2 , (℧(µS)(ℏ))2ei(℧(ζS)(ℏ))2}

= min{(℧(ϒS)(h̄))2, (℧(ϒS)(ℏ))2}.

Accordingly, (℧(ϒS)(h̄ℏ))2 ≥ min{(℧(ϒS)(h̄))2, (℧(ϒS(ℏ)))2}.
Moreover,

(℧(ϒS)(h̄−1))2 = (℧(µS)(h̄−1))2ei(℧(ζS)(h̄−1))2 , ∀ h̄ ∈ F
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≥ (℧(µS)(h̄))2ei(℧(ζS)(h̄))2

= (℧(ϒS)(h̄))2.

Thus, (℧(ϒS)(h̄−1))2 ≥ (℧(ϒS)(h̄))2.
From Lemma 1[2], we know that,

(℧(ϒ̂S)(h̄ − ℏ))2

= (℧(µ̂S)(h̄ − ℏ))2ei(℧(ζ̂S)(h̄−ℏ))2 , ∀ h̄, ℏ ∈ F

≤ max{(℧(µ̂S)(h̄))2, (℧(µ̂S)(ℏ))2} ei max{(℧(ζ̂S)(h̄))2,(℧(ζ̂S)(ℏ))2}

≤ max{(℧(µ̂S)(h̄))2ei(℧(ζ̂S)(h̄))2 , (℧(µ̂S)(ℏ))2ei(℧(ζ̂S)(ℏ))2}

= max{(℧(ϒ̂S)(h̄))2, (℧(ϒ̂S)(ℏ))2}.

In consequence,

(℧(ϒ̂S)(h̄ − ℏ))2

≤ max{(℧(ϒ̂S)h̄)2, (℧(ϒ̂S(ℏ)))2}
(℧(ϒ̂S)(h̄ℏ))2

= (℧(µ̂S)(h̄ℏ))2ei(℧(ζ̂S)(h̄ℏ))2 , ∀ h̄, ℏ ∈ F

≤ max{(℧(µ̂S)(h̄))2, (℧(µ̂S)(ℏ))2} ei max{(℧(ζ̂S)(h̄))2,(℧(ζ̂S)(ℏ))2}

≤ max{(℧(µ̂S)(h̄))2ei(℧(ζ̂S)(h̄))2 , (℧(µ̂S)(ℏ))2ei(℧(ζ̂S)(ℏ))2}

= max{(℧(ϒ̂S)(h̄))2, (℧(ϒ̂S)(ℏ))2}.

Consequently,
(℧(ϒ̂S)(h̄ℏ))2 ≤ max{(℧(ϒ̂S)(h̄))2, (℧(ϒ̂S(ℏ)))2}. Moreover,

(℧(ϒ̂S)(h̄−1))2 = (℧(µ̂S)(h̄−1))2ei(℧(ζ̂S)(h̄−1))2 , ∀ h̄ ∈ F

≤ (℧(µ̂S)(h̄))2ei(℧(ζ̂S)(h̄))2

= (℧(ϒ̂S)(h̄))2.

. Thus,

(℧(ϒ̂S)(h̄−1))2 ≤ (℧(ϒ̂S)(h̄))2.

Hence, the proof is demonstrated.
According to the following conclusion, CPFSF is the

inverse homomorphic image of CPFSF.
Theorem 9: Assume that K and F are two fields and ℧ :

K → F is a homomorphism from K to F. A CPFS N is a
CFSF of F. Then ℧−1(N) is CPFSF of K.

Proof: Consider that, N = {< h̄, µN(h̄), µ̂N(h̄) >: h̄ ∈

K, 0 < (µN(h̄))2 + (µ̂N(h̄))2 ≤ 1} is a PFSF and N = {<

h̄, ζN(h̄), ζ̂N(h̄) >: h̄ ∈ K, 0 < (ζN(h̄))2 + (ζ̂N(h̄))2 ≤ 2π} is
π -PFSF. Then, in the view of Theorem 3 and in the view of
Theorem 7 the inverse image of N = {< h̄, µN(h̄), µ̂N(h̄) >:

h̄ ∈ K, µN(h̄) and µ̂N(h̄) ∈ [0, 1]} is a PFSF and N = {<

h̄, ζN(h̄), ζ̂N(h̄) >: h̄ ∈ K, ζN(h̄) and ζ̂N(h̄) ∈ [0, 2π ]} is π -
PFSF, ∀ h̄, ℏ ∈ K.
Then,

(℧−1(µN)(h̄− ℏ))2 ≥ min{(℧−1(µN)(h̄))2, (℧−1(µN)(ℏ))2}
(℧−1(µN)(h̄ℏ))2 ≥ min{(℧−1(µN)(h̄))2, (℧−1(µN)(ℏ))2}
(℧−1(µN)(h̄−1))2 ≥ (℧−1(µN)(h̄))2

(℧−1(µ̂N)(h̄− ℏ))2 ≤ max{(℧−1(µ̂N)(h̄))2, (℧−1(µ̂N)(ℏ))2}

(℧−1(µ̂N)(h̄ℏ))2 ≤ max{(℧−1(µ̂N)(h̄))2, (℧−1(µ̂N)(ℏ))2}
(℧−1(µ̂N)(h̄−1))2 ≤ (℧−1(µ̂N)(h̄))2

(℧−1(ζN)(h̄− ℏ))2 ≥ min{(℧−1(ζN)(h̄))2, (℧−1(ζN)(ℏ))2}
(℧−1(ζN)(h̄ℏ))2 ≥ min{(℧−1(ζN)(h̄))2, (℧−1(ζN)(ℏ))2}
(℧−1(ζN)(h̄−1))2 ≥ (℧−1(ζN)(h̄))2

(℧−1(ζ̂N)(h̄− b̃))2 ≤ max{(℧−1(ζ̂N)(h̄))2, (℧−1(ζ̂N)(ℏ))2}
(℧−1(ζ̂N)(h̄ℏ))2 ≤ max{(℧−1(ζ̂N)(h̄))2, (℧−1(ζ̂N)(ℏ))2}
(℧−1(ζ̂N)(h̄−1))2 ≤ (℧−1(ζ̂N)(h̄))2

From Lemma 1[3], since

(℧−1(ϒN)(h̄− ℏ))2

= (℧−1(µN)(h̄− ℏ))2ei(℧−1(ζN)(h̄−ℏ))2 ,

∀ h̄, ℏ ∈ K
≥ min{(℧−1(µN)(h̄))2, (℧−1(µN)(ℏ))2}

eimin{(℧−1(ζN)(h̄))2,(℧−1(ζN)(ℏ))2}

≥ min{(℧−1(µN)(h̄))2ei(℧−1(ζN)(h̄),

(℧−1(µN)(ℏ))2ei(℧−1(ζN)(ℏ))2}

= min{(℧−1(ϒN)(h̄))2, (℧−1(ϒN)(ℏ))2}.

Therefore,

(℧−1(ϒN)(h̄− ℏ))2

≥ min{(℧−1(ϒN)(h̄))2, (℧−1(ϒN)(ℏ))2}
(℧−1(ϒN)(h̄ℏ))2

= (℧−1(µN)(h̄ℏ))2ei(℧−1(ζN)(h̄ℏ))2 ,

∀ h̄, ℏ ∈ K
≥ min{(℧−1(µN)(h̄))2, (℧−1(µN)(ℏ))2}

eimin{(℧−1(ζN)(h̄))2,(℧−1(ζN)(ℏ))2}

≥ min{(℧−1(µN)(h̄))2ei(℧−1(ζN)(h̄))2 ,

(℧−1(µN)(ℏ))2ei(℧−1(ζN)(ℏ))2}

= min{(℧−1(ϒN)(h̄))2, (℧−1(ϒN)(ℏ))2}.

Consequently,

(℧−1(ϒN)(h̄ℏ))2

≥ min{(℧−1(ϒN)(h̄))2, (℧−1(ϒN)(ℏ))2}.

Further,

(℧−1(ϒN)(h̄−1))2

= (℧−1(µN)(h̄−1))2ei(℧−1(ζN)(h̄−1))2 ,

∀ h̄ ∈ K

≥ (℧−1(µN)(h̄))2 ei(℧−1(µN)(h̄))2

≥ (℧−1(ϒN)(h̄))2.

As a result, we get

(℧−1(ϒN)(h̄−1))2 ≥ (℧−1(ϒN)(h̄))2.$
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By using the Lemma 1[4], we have,

(℧−1(ϒ̂N)(h̄− ℏ))2

= (℧−1(µ̂N)(h̄− ℏ))2ei(℧−1(ζ̂N)(h̄−ℏ))2 ,

∀ h̄, ℏ ∈ K
≤ max{(℧−1(µ̂N)(h̄))2, (℧−1(µ̂N)(ℏ))2}

eimax{(℧−1(ζ̂N)(h̄))2,(℧−1(ζ̂N)(ℏ))2}

≤ max{(℧−1(µ̂N)(h̄))2ei(℧−1(ζ̂N)(h̄))2 ,

(℧−1(µ̂N)(ℏ))2ei(℧−1(ζ̂N)(ℏ)2}

= max{(℧−1(ϒ̂N)(h̄))2, (℧−1(ϒ̂N)(ℏ))2}.

Consequently,

(℧−1(ϒ̂N)(h̄− ℏ))2

≤ max{(℧−1(ϒ̂N)(h̄))2, (℧−1(ϒ̂N)(ℏ))2}
(℧−1(ϒ̂N)(h̄ℏ)

= (℧−1(µ̂N)(h̄ℏ)ei(℧−1(ζ̂N)(h̄ℏ),∀ h̄, ℏ ∈ K
≤ max{(℧−1(µ̂N)(h̄), (℧−1(µ̂N)(ℏ)}

eimax{(℧−1(ζ̂N)(h̄),(℧−1(ζ̂N)(ℏ)}

≤ max{(℧−1(µ̂N)(h̄)ei(℧−1(ζ̂N)(h̄), (℧−1(µ̂N)(ℏ)ei(℧−1(ζ̂N)(ℏ)}

= max{(℧−1(ϒ̂N)(h̄), (℧−1(ϒ̂N)(ℏ)}.

Therefore, (℧−1(ϒ̂N)(h̄ℏ) ≤ max{(℧−1(ϒ̂N)(h̄), (℧−1(ϒ̂N)(ℏ)}.
Further,

(℧−1(ϒ̂N)(h̄−1))2 = (℧−1(µ̂N)(h̄−1))2ei(℧−1(ζ̂N)(h̄−1))2 ,

∀ h̄ ∈ K

≤ (℧−1(µ̂N)(h̄))2 ei(℧−1(µ̂N)(h̄))2

≤ (℧−1(ϒ̂N)(h̄))2

(℧−1(ϒ̂N)(h̄−1))2 ≤ (℧−1(ϒ̂N)(h̄))2.

The proof ends at this instance.

V. CHARACTERISTICS OF THE DIRECT PRODUCT OF
COMPLEX PYTHAGOREAN FUZZY SUBFIELDS
The innovative CPFSFs direct product framework is pre-
sented in this section. To define the direct product of CPFS,
we utilize the idea of CPFS. We demonstrate that the
direct product of two CPFSFs is a CPFSF and examine its
characteristics.
Definition 12: Suppose that S and N are two π -CPFSs of

sets K1 and K2, respectively. The Cartesian product of π -
CPFS S and N is defined as
(Sπ × Nπ )(j, ℏ) = {< (j, ℏ), φSπ×Nπ (j, ℏ), φ̂Sπ×Nπ (j, ℏ) > 0
< (φSπ×Nπ (j, ℏ))2 + (φ̂Sπ×Nπ (j, ℏ))2 ≤ 1},∀ j ∈ K1, ℏ ∈

K2.

Remark 2: Suppose that S and N are two π -PFSRs of K1
and K2, respectively. Then Sπ × Nπ is π-PFSR of K1 × K2.

Remark 3: A π -PFSR Sπ × Nπ of field K1 × K2 is a π -
FSR of K1 × K2 if and only if S × N is PFSG of K1 × K2

Definition 13: Suppose that S and N are two CPFSs. The
Cartesian product of given two sets defined by a function

S × N
= {< j, ℏ, ϒS×N(⊺, ℏ), ϒ̂S×N(⊺, ℏ) >},

(ϒS×N(⊺, ℏ))2

= (ϱS×N(⊺, ℏ))2ei(ϕS×N(⊺,ℏ))2

= min{(ϱS(⊺))2, (µN(ℏ))2}eimin{(ζS(⊺))
2,(ζN(ℏ))2},

(ϒ̂S×N(⊺, ℏ))2

= (µ̂S×N(⊺, ℏ))2ei(ζ̂S×N(⊺,ℏ))2

= max{(µ̂S(⊺))2, (µ̂N(ℏ))2}eimax{(ζ̂S(⊺))2,(ζ̂N(ℏ))2}.

For the purpose of simplicity, we will use citations
throughout this article.
(ϒS×N(⊺, ℏ))2 = (µS×N(⊺, ℏ))2ei(ζS×N(⊺,ℏ)2 and
(ϒ̂S×N(⊺, ℏ))2 = (µ̂S×N(⊺, ℏ))2ei(ζ̂S×N(⊺,ℏ))2 for the MF and
NMF, respectively, of cartesian product of CPFS S × N.

According to the following theorem, two CPFSFs have a
cartesian product of CPFSF.
Theorem 10: Let S and N be two CPFSFs of H1 and H2,

respectively. Then S × N is CPFSF of H1 × H2.
Proof: Let ⊺, ℏ ∈ H1 and ℏ, b̃ ∈ H2 be an elements.

Then (⊺, ℏ), (ã, b̃) ∈ H1 × H2.

Consider

(ϒS×N((⊺, ℏ) − (ã, b̃))2

= (ϒS×N(⊺ − ã, ℏ − b̃))2

= (µS×N(⊺ − ã, ℏ − b̃))2ei(ζS×N(⊺−ã,ℏ−b̃))2

= min{(µS(⊺ − ℏ))2, (µN(ℏ − b̃))2}

ei(min{(ζS(⊺−ℏ))2,(ζN(ℏ−b̃))2}

= min{(µS(⊺ − ℏ))2ei(ζS(⊺−ℏ))2 , (µN(ℏ − b̃))2ei(ζS(ℏ−b̃))2 )}

= min{(ϒS(⊺ − ℏ))2, (ϒN(⊺ − ℏ))2}
≥ min{min{(ϒS(⊺))2, (ϒS(⊺))2} ,

min{(ϒN(ℏ))2, ϒN(b̃))2} }

= min{min{((ϒS(⊺))2, (ϒN(ℏ))2} ,
min{(ϒS(⊺))2, (ϒN(b̃))2} }

≥ min{(ϒS×N(⊺, ℏ))2, (ϒS×N(ã, b̃))2}

(ϒS×N((⊺, ℏ) − (ã, b̃)))2

≥ min{(ϒS×N(⊺, ℏ))2, (ϒS×N(ã, b̃))2}.

(ϒS×N((⊺, ℏ)(ã, b̃)))2

= (ϒA×N(jã, (⊺))Qb))2

= (µS×N(jã, (⊺))b̃))2ei(ζS×N(jã,(⊺))
Qb))2

= min{µS(jℏ)2, µN(
˜
aQb)2}ei min{(ζS(jℏ))2,(ζN

˜
aQb)2}

= min{(µS(j, ℏ))2ei(ζS(⊺ℏ))2 , (µN(
˜
aQb))2ei(ζS(ãb̃))2}

= min{(ϒS(⊺ℏ))2, (ϒN(
˜
aQb))2}
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≥ min{min{(ϒS(⊺))2, (ϒS(⊺))2} ,

min{(ϒN(ã)2, (ϒN(b̃))2} }

= min{min{(ϒS(⊺))2, (ϒN(ℏ))2} ,
min{(ϒS(ã))2, (ϒN(b̃))2} }

≥ min{(ϒS×N(⊺, ℏ))2, (ϒS×N(ã, b̃))2}

(ϒS×N(⊺, ℏ)(ã, b̃))2

≥ min{(ϒS×N(⊺), ℏ)2, (ϒS×N(ã, b̃))2} .

Further,

(ϒS×N(⊺−1, ℏ−1))2

= (µS×N(⊺−1, ℏ−1))2ei(ζS×N(⊺−1,ℏ−1))2

= min{(µS(⊺−1))2, (µN(ℏ−1))2} eimin{(ζS(⊺−1))2,(ζN(ℏ−1)2)}

= min{(µS(⊺−1))2ei(ζS(⊺−1))2 , (µN(ℏ−1))2ei(ζS(y−1))2
}

= min{(ϒS(⊺−1))2, (ϒN(ℏ−1))2}

≥ min{(ϒS(⊺)2), (ϒN(ℏ))2}.

Consequently,

(ϒS×N(⊺−1, ℏ−1))2 ≥ (ϒS×N(⊺, ℏ))2.

Assume that,

(ϒ̂S×N((⊺, ℏ) − (⊺, b̃)))2

= (ϒ̂S×N(⊺ − ⊺, ℏ − b̃))2

= (µ̂S×N(⊺ − ⊺, ℏ − b̃))2ei(ζ̂S×N(⊺−⊺,ℏ−b̃))2

= max{(µ̂S(⊺ − ℏ))2, (µ̂N(ℏ − b̃))2}

ei max{(ζ̂S(⊺−ℏ))2,(ζ̂N(y−b))2}

= max{(µ̂S(⊺ − ℏ))2e(iζ̂S(⊺−ℏ))2 , (µ̂N(ℏ − b̃))2ei(ζ̂S(ℏ−b̃))2
}

= max{(ϒ̂S(⊺ − ℏ))2, (ϒN(ℏ − b̃))2}

≤ max{max{(ϒ̂S(⊺))2, (ϒ̂S(⊺))2} ,

max{(ϒ̂N(ℏ))2, (ϒ̂N(b̃))2} }

= max{max{(ϒ̂S(⊺))2, (ϒ̂N(ℏ))2} ,
max{(ϒ̂S(⊺)2), (ϒN(b̃))2} }

≤ max{(ϒ̂S×N(⊺, ℏ))2, (ϒ̂S×N(⊺, b̃))2}

(ϒ̂S×N((⊺, ℏ) − (⊺, b̃)))2

≤ max{(ϒ̂S×N(⊺, ℏ))2, (ϒ̂S×N(⊺, b̃))2}.

Assume that,

(ϒ̂S×N((⊺, ℏ)(ã, b̃)))2

= (ϒ̂S×N(⊺ã, (⊺))b̃))2

= (µ̂S×N(⊺ã, (⊺))b̃))2ei(ζ̂S×N(⊺ã,(⊺))b̃))2

= max{(µ̂S(⊺ℏ))2, (µ̂N(
˜
aQb))2} ei max{(ζ̂S(⊺ℏ))2,(ζ̂N(ãb̃))2}

= max{(µ̂S(⊺ℏ))2ei(ζ̂S(⊺ℏ))2 , (µ̂N(ãb̃))2ei(ζ̂S(ãb̃))2}

= max{(ϒ̂S(⊺ℏ))2, (ϒN(Qab̃))2}

≤ max{max{(ϒ̂S(⊺))2, (ϒ̂S((⊺))))2} ,

max{(ϒ̂N(ã))2, (ϒ̂N(b̃))2} }

= max{max{(ϒ̂S(⊺))2, (ϒ̂N(ℏ))2} ,
max{(ϒ̂S(ã))2, (ϒN(b̃))2} }

≤ max{(ϒ̂S×N(⊺, ℏ))2, (ϒ̂S×N(ã, b̃))2}

(ϒ̂S×N((⊺, ℏ)(ã, b̃)))2

≤ max{(ϒ̂S×N(⊺, ℏ))2, (ϒ̂S×N(ã, b̃))2}.

Further,

(ϒ̂S×N(⊺−1, ℏ−1))2

= (µ̂S×N(⊺−1, ℏ−1))2ei(ζ̂S×N(⊺−1,ℏ−1))2

= max{(µS(⊺−1))2, (µ̂N(ℏ−1))2} ei max{(ζ̂S(⊺−1))2,(ζ̂N(ℏ−1))2}

= max{(µ̂S(⊺−1))2ei(ζ̂S(⊺−1))2 , (µN(ℏ−1))2ei(ζ̂S(ℏ−1)2
}

= max{(ϒ̂S(⊺−1))2, (ϒ̂N(ℏ−1))2}

≤ max{(ϒ̂S(⊺))2, (ϒ̂N(ℏ))2} .

Consequently,

(ϒ̂S×N(⊺−1, ℏ−1))2 ≤ (ϒ̂S×N(⊺, ℏ))2.

Consequently, the demonstration is complete.
Corollary 2: . Let S1, S2, . . . ,Sℏ be CPFSFs of

K1, K2, . . . ,Kℏ, respectively. Then, S1 × S2×, . . . ,×Sℏ is
CPFSF of K1 × K2 × . . . × Kℏ.
Remark 4: Suppose that S andN are twoCPFSs ofK1 and

K2, respectively and S1 × S2 are CPFSF of K1 × K2. Then
it is not compulsory both S1 and S2 should be CPFSF of K1
and K2, respectively.
Remark 5: Suppose that S × N are two CPFSF of field

K1 × K2. Let e ∈ K1 and e′
∈ K2. Then,

(µS×N(e, e′))2 ≥ (µS×N(⊺, ℏ))2,
(ζS×N(e, e′))2 ≥ (ζS×N(⊺, ℏ))2,
(µ̂S×N(e, e′))2 ≤ (µ̂S×N(⊺, ℏ))2

(ζ̂S×N(e, e′))2 ≤ (ζ̂S×N(⊺, ℏ))2, ∀ ⊺ ∈ K1, ℏ ∈ K2.

Theorem 11: Suppose that S and N are two CFS of fields
K1 and K2. If S × N is a CPFSFof K1 × K2, the following
statements must all be true, at least one of them and let e ∈

K1 and e′
∈ K2. Then,

1) (µS(e))2 ≤ (µN(ℏ))2, (ζS(e))2 ≤ (ζN(ℏ))2 and
(µ̂S(e))2 ≥ (µ̂N(ℏ))2, (ζ̂S(e))2 ≥ (ζ̂N(ℏ))2, ∀ ℏ ∈ K2

2) (µN(e′))2 ≤ (µS(⊺))2, (ζN(e′))2 ≤ (ζS(⊺))2,
(µ̂N(e′))2 ≥ (µS(⊺))2, (ζ̂N(e′))2 ≥ (ζ̂S(⊺))2, ∀ ⊺ ∈ K1

Proof: Let S × N be a CPFSF of K1 × K2. On the other
hand, suppose that the propositions [1] and [2] are wrong.
Then, ∀ ⊺ ∈ K1 and ∀ ℏ ∈ K2 such that
1) (µS(e))2 ≤ (µN(ℏ))2, (ζS(e))2 ≤ (ζN(ℏ))2 and

(µ̂S(e))2 ≥ (µ̂N(ℏ)2),(ζ̂S(e))2 ≥ (ζ̂Nℏ)2 ∀ ℏ ∈ K2
2) (µN(e′))2 ≤ (µS(⊺), ζN(e′))2 ≤ (ζS(⊺))2 and

(µ̂N(e′))2 ≥ (µS(⊺))2,(ζ̂N(e′))2 ≥ (ζ̂S(⊺))2 ∀ ⊺ ∈ K1.
Consider,

(ϒS×N(⊺, ℏ))2

VOLUME 11, 2023 145647



M. H. Mateen et al.: New Algebraic Structure of Complex Pythagorean Fuzzy Subfield

= min{(µS(⊺))2, (µN(ℏ))2}

ei min{(ζS(⊺))2,(ζNℏ)2}

≥ min{(µS(e))2, (µN(e′))2}ei min{(ζS(e))2,(ζN(e′))2}

= (ϒS×N(e, e′))2.

and

(ϒ̂S×N(⊺, ℏ))2

= max{(µ̂S(⊺))2, (µ̂N(ℏ))2}

ei max{(ζ̂S(⊺))2,(ζ̂N(ℏ))2}

≤ max{(µ̂S(e))2, (µ̂N(e′))2}ei max{(ζ̂S(e))2,(ζ̂N(e′))2}

= (ϒ̂S×N(e, e′))2.

∵ S × N is CPFSF.
As a result, it stands to reason that at most one of the below

assertions must be true.
1) (µS(e))2 ≤ (µN(ℏ))2, (ζS(e))2 ≤ (ζN(ℏ))2 and

(µ̂S(e))2 ≥ (µ̂N(ℏ))2, (ζ̂S(e))2 ≥ (ζ̂N(ℏ))2, ∀ ℏ ∈ K2
2) (µN(e′))2 ≤ (µS(⊺))2, (ζN(e′))2 ≤ (ζS(⊺)2 and

(µ̂N(e′))2 ≥ (µS(⊺))2, (ζ̂N(e′))2 ≥ (ζ̂S(⊺))2, ∀ ⊺ ∈ K1

Theorem 12: Suppose that S and N CPFSs of K1 and
K2 and (µN(e′))2 ≥ (µS(⊺))2, (ζN(e′))2 ≥ (ζS(⊺))2,
(µ̂N(e′))2 ≤ (µ̂S(⊺), ζ̂N(e′))2 ≤ (ζ̂S(⊺))2 ∀ ⊺ ∈ K1, e′ is
identity of K2. If S × N is CPFSF of K1 × K2, then S is
CPFSF of K1.

Proof: Suppose that (⊺, e′), (ℏ, e′) are elements of K1 ×

K2. By given condition µN(e′) ≥ µS(⊺) and ζN(e′) ≥ ζS(⊺),
for all ⊺, ℏ ∈ K1 and e′

∈ K2.
Consider,

(ϒS(⊺ − ℏ))2

= (µS(⊺ − ℏ))2ei(ζS(⊺−ℏ))2

= min{(µS(⊺ − ℏ))2ei(ζS(⊺−ℏ))2 , (µN(e′
− e′))2ei(ζN(e′

−e′))2
}

= (µS×N((⊺, e′)(⊺, e′)))2ei(ζS×N((⊺, e′)(⊺,e′)))2

≥ min{(µS×N(⊺, e′), µS×N(⊺, e′))2}

ei min{(ζS×N(⊺, e′))2, (ζS×N(⊺, e′))2}

= min{min{(µS(⊺), µN(e′))2}, min{(µS(ℏ), µN(e′))2} }

ei min{min{(ζN(e′))2}, min{ζ, min{(ζS(ℏ), ζN(e′))2} }

= min{(ϒS(⊺), ϒS(ℏ))2}

Thus, (ϒS(⊺ − ℏ))2 ≥ min{(ϒS(⊺), ϒS(ℏ))2}

(ϒS(⊺ℏ))2

= (µS(⊺ℏ))2ei(ζS(⊺ℏ))2

= min{(µS(⊺ℏ))2ei(ζS(⊺ℏ))2 , (µN(e′e′))2ei(ζN(e′e′))2
}

= (µS×N((⊺, e′)(⊺, e′)))2ei(ζS×N((⊺,e′)(⊺,e′)))2

≥ min{(µS×N(⊺, e′))2, (µS×N(⊺, e′))2}

ei min{(ζS×N(⊺,e′))2,(ζS×N(⊺,e′))2}

= min{min{(µS(⊺), µN(e′))2} ,min{(µS(ℏ), µN(e′))2} }

ei min{min{(ζN(e′))2}, min{ζ, min{(ζS(ℏ))2, (ζN(e′))2} }

= min{(ϒS(⊺))2, (ϒS(ℏ))2}.

Thus, (ϒS(⊺ℏ))2 ≥ min{(ϒS(⊺), ϒS(ℏ))2} .
Further,

(ϒ̂S(⊺ − ℏ))2

= (µ̂S(⊺ − ℏ))2ei(ζ̂S(⊺−ℏ))2

= {max{(µ̂S(⊺ − ℏ))2ei(ζ̂S(⊺−ℏ))2 , (µ̂N(e′
− e′))2ei(ζ̂N(e′

−e′))2
}}

= {(µ̂S×N((⊺, e′)(ℏ, e′)))2}ei{(ζ̂S×N((⊺,e′)(ℏ,e′)))2}

≤ max{(µ̂S×N(⊺, e′))2, (µ̂S×N(ℏ, e′))2}

ei max{(ζ̂S×N(⊺,e′))2,(ζS×N(ℏ,e′))2}

= max{max{(µ̂S(⊺))2, (µ̂N(e′))2} ,

max{(µ̂S(ℏ))2, (µ̂N(e′))2} }

ei max{max{(ζ̂N(e′))2}, max{ζ, max{(ζ̂S(ℏ))2, (ζN(e′))2} }}

= max{(ϒ̂S(⊺))2, (ϒ̂S(ℏ))2}.

Thus, (ϒ̂S(⊺ − ℏ))2 ≤ max{(ϒ̂S(⊺))2, (ϒ̂S(ℏ))2} .
Further,

(ϒ̂S(⊺ℏ))2

= (µ̂S(⊺ℏ))2ei(ζ̂S(⊺ℏ))2

= {max{(µ̂S(⊺ℏ))2ei(ζ̂S(⊺ℏ))2 , (µ̂N(e′e′))2ei(ζ̂N(e′e′))2
}}

= {(µ̂S×N((⊺, e′)(ℏ, e′)))2}ei{(ζ̂S×N((⊺,e′)(ℏ,e′)))2}

≤ max{(µ̂S×N(⊺, e′))2, (µ̂S×N(ℏ, e′))2}

ei max{(ζ̂S×N(⊺, e′))2, (ζS×N(ℏ, e′))2}

= max{max{(µ̂S(⊺))2, (µ̂N(e′))2},

max{(µ̂S(ℏ))2, (µ̂N(e′))2} }

ei max{max{(ζ̂N(e′))2}, max{ζ, max{(ζ̂S(ℏ))2, (ζN(e′))2} }

= max{(ϒ̂S(⊺))2, (ϒ̂S(ℏ))2}

Thus,
(ϒ̂S(⊺ℏ))2 ≤ max{(ϒ̂S(⊺))2, (ϒ̂S(ℏ))2} .
Also, let

(ϒS(⊺−1))2

= (µS(⊺−1))2ei(ζS(⊺−1))2

= min{(µS(⊺−1))2ei(ζS(⊺−1))2 , (µN((e′)−1))2ei (ζN((e′)−1))2
}

= min{(µS(⊺−1))2, (µN((e′)−1))2} ei min{(ζS(⊺−1))2,(ζN((e′)−1))2}

= (µS×N(⊺−1), (e′)−1)2ei(ζS×N(⊺−1,(e′)−1))2

≥ (µS×N(⊺, e′))2ei(ζS×N(⊺,e′))2

= min{(µS(⊺))2, (µN(e′))2} ei min{(ζN⊺)2,(ζN(e′))2}

= min{(µS(⊺))2, (µS(⊺))2} ei min{(ζS(⊺))2,(ζS(⊺))2}

= (µS(⊺))2ei(ζS(⊺))2 = (ϒS(⊺))2.
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Consequently, we have
(ϒS(⊺−1))2 ≥ (ϒS(⊺)2.Moreover,

(ϒ̂S(⊺−1))2

= (µ̂S(⊺−1))2ei(ζ̂S(⊺−1))2

= max{(µ̂S(⊺−1))2ei(ζ̂S(⊺−1))2 , (µ̂N((e′)−1))2ei(ζ̂N((e′)−1))2
}

= max{(µ̂S(⊺−1))2, (µ̂N((e′)−1))2}

ei max{(ζ̂S(⊺−1))2,(ζ̂N((e′)−1))2}

= ( ˆ̂µS×N(⊺
−1), (e′)−1)2ei(ζ̂S×N(⊺−1,(e′)−1))2

≤ ( ˆ̂µS×N(⊺), e
′))2ei(ζ̂S×N(⊺,e′))2

= max{(µ̂S(⊺))2, (µ̂N(e′))2} ei max{(ζ̂S(⊺))2,(ζ̂N(e′))2}

= max{(µ̂S(⊺))2, (µ̂S(⊺))2} ei max{(ζ̂S(⊺))2,(ζ̂S(⊺))2}

= (µ̂S(⊺))2ei(ζ̂S(⊺))2 = (ϒ̂S(⊺))2.

As a result, we have (ϒ̂S(⊺−1))2 ≤ (ϒ̂S(⊺))2.
Thus, this represented our assertion.
Theorem 13: Let S and N two CPFSs of K1 and K2 such

that µS(e) ≥ µN(ℏ) and ζS(e) ≥ ζN(ℏ), ∀ ℏ ∈ K2 and e is a
unit element of K1. If S × N is CPFSF of K1 × K2, then N
is a CPFSF of K2.

Proof: Theorem 11 is used in the proof of this theorem.
Corollary 3: Suppose that S and N are two CPFSs of K1

and K2, respectively. If S × N is CPFSF of K1 × K2, then S
is a CPFSF of K1 or N is a CPFSF of K2.

VI. CONCLUSION
In this manuscript, we presented the unique framework,
CPFSF, level subset and intersection of CPFS. Every
CPFSF generates two PFSFs, which we have demonstrated
and examined in detail. In addition to proving that the level
subset of the CPFSF forms a subfield of the certain field
and also examined some of the level subset’s algebraic
features. Furthermore, we demonstrated that intersection of
two CPFSFs is also CPFSFs. We also showed the level
subset of the CPFSF form subfield and described the new
idea behind level subsets ofCPFSFs.Moreover, we expended
this theory to show the concept of the direct product of
two CPFSFs is also a CPFSFs and developed fundamental
results about direct product of CPFSFs. We initiated the
homomorphic image and homomorphic inverse image of
CPFSFs. Future work will involve extending the initial
strategy to various algebraic structures, which will then be
applied to various fields like ring theory field theory and
module theory.
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