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ABSTRACT This paper presents a diplexer design that generates a pair of fundamental and harmonic
frequencies. The diplexer is based on a capacitively loaded resonator that is able to reconfigure its frequency
pair with respect to capacitive loading. The system shows a fundamental and harmonic frequency pair
of 5 GHz and 10 GHz without any capacitive loading and 2.5 GHz and 5 GHz when loaded with a 1pF/0.5 pF
capacitor pair. The complete system is fabricated and tested where good agreement is obtained between the
measured and computed results. The testing is performed for the two states of the diplexer, when the diplexer
is unloaded and after loading it with the capacitor pairs. For both unloaded and loaded scenarios, the proposed
design produces a maximum insertion loss of 0.6 dB with an isolation of at least 35 dB at the corresponding
operational frequencies. The structure is also able to provide a minimum return loss of 25 dB at each port.
The proposed diplexer is then integrated with a frequency doubler chip and the full system maintains an
acceptable efficiency along with a high conversion gain of approximately 15 dB.

INDEX TERMS Diplexer, frequency doubling, resonators, miniaturization, capacitively loaded diplexer.

I. INTRODUCTION

The massive development of the Internet of Things has neces-
sitated the design and implementation of new communication
modules [1], [2], [3], [4] and sensing devices [5], [6], [7], [8],
[9], [10], [11]. These devices are responsive to a variety of
stimuli including human activity recognition [5], structural
monitoring [6], and smart agriculture/farming [7]. In addi-
tion, the importance of wireless sensing in monitoring various
parameters such as solar energy [8], biomarkers [9], humid-
ity [10], or temperature [12] has been well established. All
these Internet of Things devices that are implemented for
communication or sensing may require diplexers at their core.
Diplexers can be integrated in the design of tunable mul-
tifunction devices using silicone [12], or voltage-controlled
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meta-structure using liquid crystal [13] for communication
purposes. Moreover, they can be implemented in sensing
using electromagnetically induced absorption structures [14].

The purpose of this work is to introduce a capacitively
loaded miniaturized diplexer that finds its application in
harmonic radars. Harmonic radars and transponder-based
systems have been proposed to solve the issues related to sin-
gle frequency sensing architectures [15]. More specifically,
when a radar interrogates a transponder at a fundamental
frequency of fp, the receiving transponder accepts the sig-
nal and transmits it back at a higher harmonic (mainly 2f;
[16]), which can be in turn detected by the original transmit-
ting radar. Such technology [17] has advanced significantly
since its emergence with many applications that can ben-
efit from its implementation [18], [19], [20]. The adopted
fundamental frequency varies depending on the application
and technology. For example, the avalanche detector in [20]
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utilizes 0.917 GHz as a fundamental frequency whereas
insect tracking applications [21], [22] operate using maritime
radar frequencies (fo &~ 9.4 GHz) or at the ISM band (fy being
2.45,5.8, or 5.9 GHz [23], [24]).

In this paper, a radio frequency resonator-based diplexer
is proposed. Capacitively loading the diplexer enables its
operation at a different frequency without modifying the
structure’s electrical length. In addition, the diplexer is inte-
grated with a frequency doubler to achieve an on-demand
harmonic frequency generation. Hence, for every pair of
capacitive loading with a capacitive ratio of 2, the diplexer
generates a different fundamental frequency as well as its
corresponding harmonic frequency.

The proposed diplexer relies on generating the harmonic
frequency on an active integrated frequency multiplier chip.
The choice of a multiplier chip instead of a Schottky diode
enables the circuit to evade the high conversion losses of the
diode and ensures that high-power levels can be achieved.
As a result, in this paper, we present a radio frequency
diplexer that features two states of operation. The first state
occurs when the diplexer is unloaded by any capacitor, thus
ensuring an operation at 5 GHz and 10 GHz. The second state
is when a pair of capacitors are integrated within the diplexer
circuit. Such integration enforces the diplexer to operate over
a lower frequency along its harmonic. Hence, this system is
triggered by a variety of capacitive loading pairs and exhibits
its detection through a generation of a unique fundamental
frequency along its harmonic.

Port3

(a) (b)

FIGURE 1. (a) The detailed dimensions of the proposed diplexer structure
to sustain frequency doubling generation, (b) The corresponding
fabricated prototype.

Il. PROPOSED DIPLEXER DESIGN

The proposed RF diplexer is composed of one single
common resonator section that is designed to ensure fre-
quency operation at fy and 2fp [25]. The diplexer is a
modified stepped impedance resonator with a simplified
topology composed of only two transmission lines. The mod-
ified topology is incorporated to ensure that it achieves a
reconfigurable response when loaded by a capacitive load.
In fact, the variable impedance resonator with the modified
impedances and dimensions achieves similar performance
as the half-wavelength stepped impedance resonator. In this
case, the impedance ratio k = Z>/Z; is > 1, which guarantees
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the generation of the fundamental as well as the first har-
monic. Fig. 1(a) shows the detailed design of the presented
diplexer where Z; is the impedance of the transmission line
with a width of 0.92 mm and fed by port 1 and it is connected
to output port 2. Z is the impedance of the transmission line
with a width of 1.26 mm and connected to the output port 3.
The two output ports (ports 2 and 3) are connected to the core
element through transmission lines of varying characteristic
impedances. The choice of the appropriate impedances is
tailored to achieve good matching at each output port and to
enable an on-demand frequency generation. To that extent,
this proposed modified topology reduces the number of res-
onators while maintaining the proper filtering properties of
the structure.

The diplexer is designed using the dielectric substrate
RO4003C with a dielectric constant of 3.55, a thickness of
0.81 mm, and a loss tangent of 0.0027. Port 1 is the common
port and must be strongly coupled to ports 2 and 3 at fy and
2fy, respectively. Ports 2 and 3 must always be isolated at both
frequencies. In addition, it is important to note that the loca-
tions of the three ports around the resonator are optimized.
By tuning the distances of the ports from the edges of the
resonator (i.e., x1, x2, and x3 in Fig. 1(a)), a desired operating
pair of frequencies can be achieved while ensuring strong
coupling and suppression of the desired modes simultane-
ously. In this work, we have determined x1 = 1.88 mm, x2 =
2.59 mm, and x3 = 4.25 mm. The detailed dimensions of the
various parts that compose the diplexer are also included in
the layout of the structure in Fig. 1(a). It is important to note
that all the physical dimensions are varied iteratively until
an acceptable behavior is obtained. More specifically, the
main goal is to ensure that port 1 is simultaneously matched
at 5 GHz and 10 GHz whereas ports 2 and 3 are matched
at 5 GHz and 10 GHz respectively. Also, ports 1 and 2 are
coupled at 5 GHz; ports 1 and 3 are coupled at 10 GHz while
simultaneously ensuring that ports 2 and 3 are isolated at both
frequencies.

A. SENSING THE CAPACITIVE LOADS

The diplexer is loaded at the resonator’s edge with two
capacitors (C1, C2) to study their effect. To ensure that the
structure operates at exactly fy and 2fy, the ratio C»/ Cj is
enforced to be always equal to 2. The two capacitors (Cy, C3)
are integrated along the two open ends of the structure as
also highlighted in Fig. 1(a). The grounding of the two inte-
grated capacitors is done through three 0.2 mm diameter
vias that connect the circuit to the substrate’s bottom ground
layer. The diplexer in the unloaded scenario is designed
by accounting for the metallic pad along the three 0.2 mm
diameter vias that are used to ground one end of the two
integrated chip capacitors. Accordingly, the corresponding
parasitic capacitance is accounted for during the design pro-
cess of the unloaded structure. Fig. 2(a) shows the simulated
transmission coefficients between port 1 and port 2 while
Fig. 2(b) shows the transmission coefficients between port 1
and port 3. These transmission coefficients are generated
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FIGURE 2. (a) The transmission coefficients for different load capacitor
values between ports 1 and 2, and (b) ports 1 and 3.

after loading the diplexer with different values of capacitors.
It can be noticed that capacitive loading results in lowering
the structure’s frequency of operation. For example, loading
the diplexer with C; = 0.5 pF and C, = 1 pF decreases its
operating frequency from 5 GHz and 10 GHz to 2.5 GHz
and 5 GHz, thus reducing it by half. In addition, the transmis-
sion coefficient results indicate that the higher the capacitance
values are, the lower the frequencies become. Accordingly,
by varying the pair of capacitors an on-demand generation of
different fundamental and harmonic frequencies is achieved.
The operation of the proposed diplexer is validated under the
two modes of operation shown in Fig. 3. More specifically,
itis tested when it is kept open without any capacitive loading
and after integrating the two capacitor pairs of 0.5 pF and
1 pF. Accordingly, one diplexer is fabricated for testing as
shown in Fig. 1(b). The comparison between the simulated
and measured S-parameters are presented in Fig. 4. More
specifically, Fig. 4(a) shows the various S-parameters when
the diplexer is not loaded by any capacitors. The diplexer
operates at 5 and 10 GHz with almost complete transmission
between port 1 and port 2 at 5 GHz while this behavior is
obtained between port 1 and port 3 at 10 GHz. On the other
hand, Fig. 4(b) shows the comparison between the simulated
and measured S-parameters after loading it with the (0.5 pF,
1 pF) capacitors pairs.

The structure retains its functionality while shifting its
frequency of operation to 2.5 and 5 GHz, respectively. Hence,
by monitoring the operational frequencies of the diplexer,
the capacitive pair loading can be deduced. The agree-
ment between the simulated and measured results proves the

VOLUME 11, 2023

validity of the proposed approach in achieving a miniaturized
diplexer through a capacitive loading effect. It is important
to note that the fabricated diplexer shows similar measured
performance behavior to the data presented in Fig. 2 for the
different values of the pair of capacitors.

A comparison between the proposed diplexer herein and
commercially available ones is summarized in Table 1(a).
In addition, Table 1(b) compares the work presented in this
paper and other recent work available in the literature. Such
comparison considers various parameters including the oper-
ational frequencies, the insertion loss of the design as well
as the corresponding return loss, and the adopted technol-
ogy used in the fabrication of the prototype. It is important
to note that the proposed design stands in its ability to
achieve an on-demand frequency doubling by reconfiguring
its capacitive loads. Such capacitive loading also achieves a
miniaturized design in comparison to an unloaded structure
operating at the same span of frequencies.

Port1 Port1

Port3 Port3

(a) (b)

FIGURE 3. The two investigated modes of operation of the proposed
diplexer: (a) Unloaded state, (b) Loaded with a capacitor pair of
0.5pF and 1 pF.

Ill. FREQUENCY DOUBLING SENSING

To further validate the operation of the proposed capacitively
loaded miniaturized diplexer, a frequency doubler is con-
nected between the two output ports of the design presented in
section II. The corresponding frequency doubler chip used in
this work is “XX1002-QH” from MACOM [29]. This chip
combines an active doubler with an output buffer amplifier
that delivers constant power over a range of input powers.
The integrated frequency doubler requires a single positive
bias supply of 5V. Fig. 5(a) shows the complete circuitry
consisting of the proposed diplexer and the chip’s landing
pads along with the biasing network needed to supply the
required DC current.

The design of the diplexer along with the integration of the
frequency doubler chip were performed using ADS Keysight
electromagnetic simulation and co-simulation in the layout.
The integrated chip consists of three working ports: RF input,
RF output, and a biasing port. The rest of the pins are
grounded. To connect the frequency doubler to the diplexer,
extensions of ports 2 and 3 are carefully designed and their
line widths are optimized to maintain a 50 2 matching at
the end of lines after adding the chip. These multi-section
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TABLE 1. The comparison of the proposed design with (a) commercial
diplexers and (b) available diplexers in the literature.

(@)

Reference Low-Pass High-Pass Return Insertion Isolation | Reconfi
Port (GHz) | Port (GHz) Loss (dB) Loss (dB) (dB) gurable
ZDSS-5G6G [26] DC-5 6-20 8 3 20 No
AEA4300 [27] DC-4.3 4.7-9 10.88 1 50 No
DPX162690DT [28] 1.88-1.92 2.496-2.69 16.5 1.2 13.4 No
Our Work 2-3/4-5.5 4-6/8-11 25 0.6 35 Yes
®)
Center Frequency | Reconfig Insertion Return
Reference (GHz) urable | Loss @B) | Loss @B) Technology
[30] 1.8/2.1 No 0.7 23 Waveguide
[31] 1.5/2.7 No 1.5 20 Multi-layer PCB
[32] 1.51,241/1.92,2.85 No 0.55 15 PCB
Our Work 510/2.5,5 Yes 0.6 25 PCB

transmission lines are optimized to ensure a good matching
for the two cases when the diplexer is unloaded and then
loaded with C; = 0.5 pF and C, = 1 pF capacitors. The
corresponding fabricated circuit is presented in Fig. 5(b).

In the proposed overall design, port 1 connects to the
diplexer’s input, through which the fundamental signal is
injected into the circuit. Due to the strong coupling between
ports 1 and 2 of the diplexer, the injected fundamental signal
fo reaches port 2. Subsequently, it goes through the doubler
chip and generates the second harmonic which reaches port 3.
At the second harmonic frequency, 2fy, ports 3 and 1 are
strongly coupled. Accordingly, the second harmonic signal
reaches port 1 and is extracted from the diplexer. The smooth
signal transmission also relies on the strong suppression of
the fundamental and second harmonics between ports 2 and
3 of the diplexer.

As illustrated in the fabricated prototype shown in
Fig. 5(b), there is only one port handling both the receiving
and transmitting signals. A scattering parameter measure-
ment is first carried out at this port to ensure that impedance
matching is maintained at the corresponding frequencies
after incorporating the frequency doubler with and without
the two integrated capacitors. In fact, when the diplexer is
loaded with 0.5 pF and 1 pF, port 1 is always matched at
2.5 GHz and 5 GHz with an Si; magnitude of —10.81 dB
and —10.53 dB respectively. On the other hand, when the
diplexer is open (no capacitors connected), port 1 remains
matched at 10 GHz but is no longer matched at the funda-
mental frequency of 5 GHz. The diplexer is perfectly matched
at 4.45 GHz and 8.9 GHz with a reflection coefficient of
—24.5 dB and —21 dB. These two frequencies become the
new operating frequencies when (1) no capacitors are con-
nected to the diplexer and when (2) the diplexer is connected
to the frequency doubler chip.

Since one port is shared by the transmitting and receiv-
ing signals, a directional coupler is necessary to detect the
output second-harmonic power level during testing. Fig. 5(c)
displays the block diagram of the measurement setup includ-
ing the power transfer at the two frequencies. The signal
generator connects to port 2 of the bi-directional coupler
where the signal at the fundamental frequency fy is gen-
erated. This signal reaches port 1 of the coupler which is
connected to the input port of the diplexer. The diplexer’s

145444

-30 |" — Measured -30 — Measured
| - - Simulated - - Simulated

5 6 7 8 9 0 1 4 5 6 7 8 9 0 1
Frequency (GHz) Frequency (GHz)

9

— Measured

= =Simulated

5 6 7 8 9 10
Frequency (GHz)

-30 — Measured -30 — Measured| *.”
- - Simulated ! - - Simulated

1 2 3 4 5 6 1 2 3 4 5 6

Frequency (GHz) Frequency (GHz)

-30 — Measured

= -Simulated
1 2 3 4 5 6
Frequency (GHz)

o o
2, =
o 20 ~ -20
™ M
] ]
-30 — Measured -30 1\ |—Measured| 7
- - Simulated Y |- -simulated

1 2 3 4 5 6 1 2 3 4 5 6
Frequency (GHz) Frequency (GHz)

FIGURE 4. The simulated and measured S-parameters of the proposed
diplexer: (a) when no capacitors are connected (b) with C1 = 0.5 pF and
C2=1 PF.

doubler chip generates the second harmonic signal 2fy and is
coupled to port 3 of the coupler, which is in turn connected to
the spectrum analyzer where the generated second-harmonic
power level is displayed. The experimental realized setup is
presented in Fig. 5(d) where a 20 dB directional coupler oper-
ating between 1 GHz and 20 GHz is employed to carry the
measurements. It is important to mention that the frequency
doubler requires a minimum of —3 dBm of input RF power.
This measurement is performed to validate the operation of
the proposed design in sensing applications such as harmonic
radar for both the unloaded and loaded scenarios.
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FIGURE 5. (a) The layout of the diplexer with the integrated frequency
doubler (Dimensions: w1 = 1.18, w2 = 1.9, w3 = 2.16, w4 = 1.7, w5 =
1.15, w6 = 1.63, in mm), (b) The corresponding fabricated prototype,

(c) The diagram for testing the operation of the proposed diplexer, (d) The
corresponding experimental setup, (e) The spectrum analyzer display for
a —3 dBm input power at 4.45 GHz when the diplexer is not loaded, (f) at
2.5 GHz when the diplexer is loaded.

Fig. 5(e) illustrates the spectrum analyzer display when a
—3 dBm fundamental frequency signal is injected into the
proposed diplexer. More specifically, when no capacitors are
connected to the diplexer, a harmonic signal with a power
level of —8.8 dBm is observed at 8.9 GHz while a —38 dBm
signal is observed at the fundamental frequency of 4.45 GHz.
On the other hand, when the diplexer is loaded with C; =
0.5 pF and C> = 1 pF capacitors, the harmonic signal power
at 5 GHz is —8 dBm and the fundamental signal power is
—27 dBm at 2.5 GHz as shown in Fig. 5(f). Such performance
proves that this diplexer is triggered by the capacitive loading
that is translated into a shift in frequencies. A conversion gain
of almost 15 dB is achieved for both investigated scenarios.
This is obtained by including the coupling coefficient of the
coupler used in the experimental setup along with all the
insertion losses of the coupler and the RF cables in addition
to the reflection coefficient at the input of the coupler at the
corresponding frequencies.

IV. CONCLUSION

In this paper, a new radio frequency diplexer that leverages
capacitive loading as a trigger to shift its fundamental and
harmonic frequencies is presented. The diplexer is designed
to enable an on-demand generation of second harmonic fre-
quencies from an integrated frequency doubler chip. This
behavior is achieved by loading the proposed diplexer with a
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pair of capacitors. These two capacitors must retain a ratio of
2 to ensure the appropriate functioning of the overall system.
To prove the validity of the design in sensing applications
such as harmonic radars, an active frequency doubler chip
is integrated into the proposed capacitively loaded diplexer.
The design is fabricated and tested where good agreement is
found between the simulated and measured data.
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