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ABSTRACT Assessing image aesthetics is a challenging computer vision task. One reason is that aesthetic
preference is highly subjective and may vary significantly among people for certain images. Thus, it is
important to properly model and quantify such subjectivity, but there has not been much effort to resolve
this issue. In this paper, we propose a novel probabilistic framework that can model and quantify subjective
aesthetic preference based on the subjective logic. In this framework, the rating distribution is modeled as
a beta distribution, from which the probabilities of being definitely pleasing, being definitely unpleasing,
and being uncertain can be obtained. We use the probability of being uncertain to define an intuitive metric
of subjectivity. Furthermore, we present a method to learn deep neural networks for prediction of image
aesthetics, which is shown to be effective in improving the performance of subjectivity prediction via
experiments.

INDEX TERMS Deep learning, image aesthetic assessment, subjectivity, subjective logic, aesthetic

uncertainty.

I. INTRODUCTION

Image aesthetic assessment is to automatically evaluate the
image in the aesthetic viewpoint, i.e., how aesthetically
pleasing to human viewers an image will be. It is a
challenging computer vision task since it requires to imitate
high-level aesthetic perception of humans, but it can be useful
in many applications including image search and retrieval,
recommender systems, image enhancement, etc.

In order to obtain the aesthetic ground truth of an image,
it is usual to ask a group of raters to provide aesthetic scores
for the image. In the binary classification task, the image
is considered as aesthetically pleasing if the mean score is
higher than a threshold, and as unpleasing otherwise. It is also
possible to set a regression task where the mean rating score is
predicted. However, these tasks do not consider the diversity
in the raters’ opinions. In Fig. 1, two example images and
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their distributions of the rating scores from raters are shown,
which are from the AVA dataset [1]. The two images have
similar mean scores (about 5.92), so that they have the same
target mean rating score for mean rating regression and the
same class label for binary classification. However, these
do not capture the different levels of diversity in the raters’
opinions between the two cases. While the distribution of
ratings in Fig. 1a is concentrated around the mean score, that
in Fig. 1b is spread widely over the whole score range. Thus,
in the case of Fig. 1b, the results of the mean rating regression
and binary classification may be disagreed by a significant
proportion of users.

Therefore, it is necessary to consider subjectivity in
aesthetic assessment. In the image aesthetic assessment, the
subjectivity can be said to be the degree to which people’s
aesthetic evaluations of an image differ. Understanding and
predicting aesthetic subjectivity can be beneficial in practical
applications. For instance, in an image recommendation
system considering aesthetics, images that are expected to
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FIGURE 1. Example images and their distributions of the rating scores
given by raters. The two images have similar mean rating scores
(5.9167 and 5.9174 respectively) but different degrees of subjectivity.

have high subjectivity could be excluded from the set of
recommended images in order to improve general users’
satisfaction with the recommendation. However, only a
limited number of existing studies have dealt with the issue
of subjectivity. The most widely used way to measure the
subjectivity is to compute the standard deviation (STD) (or
variance) of the rating scores given by multiple viewers.
However, it has an issue in terms of interpretability because
the meaning of its scale is not sufficiently intuitive. Similar
metrics exist, such as mean absolute deviation around
median [2], which are suffer from the same problem.

In this paper, we propose a novel probabilistic framework
for modeling and quantifying the subjectivity of image
aesthetics based on the subjective logic [3]. In this framework,
the rating distribution of an image is modeled as a beta
distribution, from which the probabilities of being definitely
pleasing, being definitely unpleasing, and being uncertain can
be obtained simultaneously. In particular, the probability of
being uncertain defines an intuitive metric of subjectivity,
named aesthetic uncertainty. Unlike the existing subjectivity
metrics, it is a probability measure, which can be easily
interpreted. Furthermore, we present a method for predicting
image aesthetics by modeling the rating distribution as
the beta distribution. In addition, it is demonstrated that
users’ satisfaction can be enhanced by predicting whether
the aesthetic level of an image is uncertain due to high
subjectivity.

The paper is organized as follows. The related work
is surveyed in Section II. In Section III, the subjectivity
modeling of image aesthetics is described. Section IV
presents our method to predict the image aesthetics by the
subjectivity modeling. Section V presents the experiments to
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evaluate the performance of our method. In Section VI, the
results with analysis are shown. Finally, conclusions are given
in Section VII.

Il. RELATED WORK

A. IMAGE AESTHETIC ASSESSMENT

In literature, three tasks have been mainly considered for
automatic aesthetic assessment of images: binary classi-
fication, mean score regression, and rating distribution
prediction. The binary classification task distinguishing
pleasing vs. unpleasing images has been considered most
popularly. There exist several methods, from those using
handcrafted features [4], [5], [6] to deep learning-based
methods [7], [8], [9], [10]. To obtain more informative results
than binary class information, the mean rating regression
task has been addressed [11], [12], [13]. Prediction of the
whole rating distribution has been also considered [14], [15],
[16], [17], [18], [19], [20], which is the most challenging but
has potential to provide the most comprehensive information
regarding the aesthetic characteristics of the given image.
In this paper, we consider all these tasks and also the
subjectivity regression task.

B. SUBJECTIVITY OF IMAGE AESTHETICS

Subjectivity is a clearly distinguished issue in image aesthet-
ics compared to other image-based problems such as object
classification. While the class of an object in an image can
be objectively determined, subjective judgement is involved
in image aesthetics, and thus an image preferred by certain
viewers is not necessarily pleasing to some other viewers.
Park and Zhang [21] modeled the human aesthetic evaluation
process by a dynamic system and showed that the response
time for aesthetic evaluation of an image is related to the
subjectivity level of the image in terms of STD. Kim et al. [22]
analyzed the relationship between subjectivity (expressed
by STD) and user comments, which showed that several
factors such as unusualness and coexistence of aesthetic
merits and demerits are involved in determining the level of
subjectivity of an image. There also exist studies suggesting
personalized image aesthetic assessment techniques that
reflect the information of a specific user [12], [23], [24], [25],
[26], [27], [28].

The rating distribution itself can give the information
regarding subjectivity (as in Fig. 1) but only implicitly [2].
Therefore, there is a need to explicitly quantify subjectivity
as a scalar value. However, there is not much progress in
this research direction. STD has been mostly used [14],
[29]. Kang et al. [2] defined additional subjectivity metrics
including the mean absolute deviation around the median
(MAD), distance to uniform distribution (DUD), and distance
from the maximum entropy distribution (MED). However, all
these metrics have a limitation in interpretability because they
have neither upper limits nor interpretable scales (except 0).
Our work addresses this issue and proposes an intuitive metric
of subjectivity.
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FIGURE 2. Image aesthetics via the subjectivity modeling. The fitted beta
distributions and the corresponding triples of (b, d, u) on the equilateral

triangle are shown in (a) and (b), respectively. For comparison, the means
and STDs of therating distributions are shown in (c).

ill. PROPOSED METHOD FOR SUBJECTIVITY MODELING
The proposed framework is based on the subjective logic [3].
The subjective logic is a probabilistic reasoning for modeling
subjective opinions involving uncertainty. An aesthetic rating
chosen from a range of scores (e.g., 1 to 10) is a multinomial
opinion. However, if the rating scale is normalized between
0 and 1, the rating can be considered as a probability of
aesthetic pleasingness in the binary classification [11], i.e.,
a binomial opinion indicating the subjective belief about
pleasingness. Then, the opinion is represented by three
components [3]: b (belief mass), d (disbelief mass), and u
(uncertainty mass), which correspond to the probabilities of
being definitely pleasing, being definitely unpleasing, and
being uncertain, respectively. These components have values
between O and 1, and satisfy b +d + u = 1. As a result,
the aesthetics of an image can be represented as a point on an
equilateral triangle as shown in Fig. 2b.

The binomial opinion can be modeled by a beta distribution
whose probability density function (PDF) is given by

e, By = ——x"1(1-x)f7" (1)

B(a, B)
where 0 < x < 1, o and B are shape parameters, and B(«, )
is a normalization constant ensuring fol fsa,B)dx = 1.

When the rating distribution of an image is given, a beta
distribution is fitted to the distribution by finding the optimal
values of o and B that minimize the difference (e.g., earth
movers’ distance (EMD)) between the given and fitted
distributions.
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FIGURE 3. Examples of unimodal and multimodal aesthetic rating
distributions (after score normalization) and the fitted beta distributions.

Finally, the three probabilities (b, d, and u) can be obtained
from the fitted values of « and 8 as follows [3]:
b= ,d:ﬁ_l,u: 2 )

o+ p o+ B o+ p

Fig. 2 shows examples of fitted beta distributions and their
representations in the equilateral triangle of b, d, and u.
The image corresponding to the red-colored distribution in
Fig. 2a would be considered as aesthetically pleasing by most
people, which is reflected in the large value of b and the
small value of u in Fig. 2b. The blue-colored case in Fig. 2a
is judged to have an intermediate level of aesthetics without
much disagreement among people, which is represented by
the small value of u and the similar values of b and d
in Fig. 2b. The green-colored case would be classified as
pleasing if binary classification is performed, but it involves
high subjectivity; thus, u appears to be large while b > d.

The beta distribution is unimodal, while an original rating
distribution may be multimodal. An example case is shown in
Fig. 3b, along with the fitted beta distribution. For the images
in the AVA dataset [1] used in our experiments, we conduct
the dip test of unimodality [30] and find that 94.56% of
the images have unimodal distributions, whereas only 5.14%
and 0.30% are bimodal and trimodal, respectively. Note
that some of the multimodal distributions may be due to
noise in the ratings, which can be reduced by the unimodal
modeling. Thus, we can say that fitting to beta distributions
is reasonable.

oa—1

A. AESTHETIC UNCERTAINTY (AESU)

While the rating distribution itself contains the information of
subjectivity, it is practically useful to obtain a single-valued
metric quantifying the level of subjectivity from the distri-
bution. For this, we define a new metric called aesthetic
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(e) AesU

FIGURE 4. Five images showing the highest subjectivity determined by each subjectivity measure in the descending
order of subjectivity. Suggestive images are pixelated.

uncertainty (AesU), by u obtained from the subjectivity intuitively grasp the level of subjectivity, whereas the scales
modeling. It has several advantages compared to the existing of the existing metrics (such as STD, MAD, DUD, and
metrics. Since AesU is a probability within [0, 1], one can MED) are not sufficiently intuitive. In addition, AesU can be
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FIGURE 5. Ways of measuring the loss of the predicted beta distribution.
(1) The predicted shape parameters are converted to a rating distribution,
which is compared to the ground truth rating distribution in terms of
EMD. (2) RMSLE is measured between the predicted shape parameters
(¢pred > Bpred) and the ground truth shape parameters (egr, Bgr)
(oﬁtained by fitting to the ground truth rating distribution). (3) EMD is
measured between the triplet (b, d, u) calculated from (apreq ; Bpred) and
that from ((!GT, ﬁGT)'

interpreted together with the other two probabilities (b and u)
as discussed in Fig. 2b, which is difficult with the mean and
STD (or, MAD, DUD, MED) of ratings.

Fig. 4, shows five images with the highest subjectivity
determined by each subjectivity measure among the test set
of the AVA dataset. Most of these images are suggestive
or atypical in terms of contents, perspective, composition,
or contrast. It is observed that STD and AesU show similar
results with four common images, whereas zero, two and one
images are common between STD and each of MAD, DUD,
and MED, respectively. Additionally, the Pearson correlation
coefficient between STD and AesU for the whole test dataset
reaches 0.91. Thus, it can be seen that AesU has reliability
comparable to STD.

IV. PREDICTING IMAGE AESTHETICS WITH BETA
DISTRIBUTION
Based on our aesthetic modeling framework, we propose
a method to train a neural network model for prediction
of image aesthetics. Unlike existing methods [14], [15],
[16], [17], we do not need to obtain a predicted rating
distribution because the ground truth rating distribution is
modeled by the beta distribution as in the previous section,
which can be fully described by « and 8. Therefore, it is
sufficient to make the neural network predict « and 8 of
the beta distribution. Then, all tasks, including prediction of
subjectivity measures as well as binary classification, mean
rating regression, and rating distribution prediction, can be
performed.

For training of the model, we design three candidates for
the loss function, which are illustrated in Fig. 5. First, the
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root mean squared log error (RMSLE) between the shape
parameters of the beta distribution fitted to the ground truth
rating distribution (agr, Bgr), and those predicted by the
model, (@pred, Bprea)- Here, RMSLE is used instead of mean
squared error (MSE) or root mean squared error (RMSE) in
order to effectively handle the shape parameters that become
larger by orders of magnitude occasionally for some images.
Second, the predicted shape parameters are converted to
the corresponding rating distribution, which is compared
to the ground truth rating distribution in terms of EMD.
Finally, the three probabilities (b, d and u), which are easily
calculated by Eq. (2), can be used. In other words, EMD
between (b, d, u) from the predicted beta distribution and
that of the ground truth beta distribution is used as the loss.
We compare these candidates experimentally, from which we
decide to use the third one (see Section VI-A).

V. EXPERIMENTS

A. DATASET

We use the AVA dataset [1]. It contains photos and their
aesthetic ratings from challenges of DPChallenge.! The
dataset is composed of 256,000 images. 236,000 images are
for training and 20,000 are for test.

B. FITTING RATING TO BETA DISTRIBUTION

Before the training step, we convert the rating distribution
to beta distribution. We use an optimization function to
minimize EMD between the original rating distribution and
the fitted beta distribution.

C. BACKBONE MODELS

We use popular generic CNN models and a latest image aes-
thetic assessment model as backbone models for our exper-
iments. The former includes VGG16 [31], ResNet-50 [32],
and ConvNeXT [33], and MaxViT [18], and the latter corre-
sponds to the hierarchical layout-aware graph convolutional
network (HLAGCN) [17]. HLAGCN models the complex
relations among interesting regions in the input image using
a graph convolutional network. MaxViT is a transformer
model that considers the global context by using a multi-
axis attention. We use the tiny structure of ConvNeXT and
MaxViT (noted as ’-T’) because of the limitation of the
computing power.

D. APPROACHES
A model produces two output values (the shape parameters of
a beta distribution, i.e.,  and ). For comparison, we employ

the conventional approach that directly predicts the rating
distribution [14], [15], [16], [17].

E. PERFORMANCE MEASURES
We consider various tasks of image aesthetic assessment,
and use appropriate performance measures for each task by

1 http://www.dpchallenge.com
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TABLE 1. Results of subjectivity regression in terms of (a) PLCC, (b) MAE.

Backbone Approach ‘ STD MAD MED DUD  AesU
VGG16 Conventional (rating distribution) | 0.2390 0.2391 0.3041 0.3273 0.2286
Proposed (beta distribution) 0.2526 0.2437 0.3072 0.3358 0.2478

ResNetS0 Conventional (rating distribution) | 0.2897 0.2755 0.3647 04111 0.2783
Proposed (beta distribution) 0.2688 0.2538 0.3356 0.3959 0.2647

HLAGCN Conventional (rating distribution) | 0.2801 0.2661 0.3538 0.3538 0.2693
Proposed (beta distribution) 0.2913 0.2817 0.3600 0.3907 0.2902

ConvNeXT-T Conventional (rating distribution) | 0.3417 0.3291 0.4046 0.4465 0.3181
Proposed (beta distribution) 0.3499 0.3504 0.4129 0.4558 0.3538

MaxViT-T Conventional (rating distribution) | 0.3246 0.3097 0.3931 0.4457 0.3060
Proposed (beta distribution) 0.3302 0.3254 0.3966 0.4435 0.3327

(a) PLCC as the performance measure. The higher the value is, the better the performance is.
Backbone Approach | STD MAD MED DUD  AesU
Conventional (rating distribution) | 0.1649  0.1587 0.0541 0.0609 0.0351

VGGI6 Proposed (beta distribution) 0.1783 0.1504 0.0555 0.0561 0.0328
ResNetS0 Conventional (rating distribution) | 0.1485 0.1472 0.0526 0.0572 0.0346
Proposed (beta distribution) 0.1900 0.1520 0.0566 0.0529 0.0323

HLAGCN Conventional (rating distribution) | 0.1536 0.1508 0.0532 0.0619 0.0344
Proposed (beta distribution) 0.1852 0.1503 0.0556 0.0531 0.0320

ConvNeXT-T Conventional (rating distribution) | 0.1452 0.1436 0.0515 0.0551 0.0343
Proposed (beta distribution) 0.1544 0.1417 0.0515 0.0550 0.0330

MaxViT-T Conventional (rating distribution) | 0.1480 0.1454 0.0519 0.0564 0.0339
Proposed (beta distribution) 0.1788 0.1463 0.0537 0.0517 0.0314

(a) MAE as the performance measure. The lower the value is, the better the performance is.

TABLE 2. Results of binary classification, mean rating regression, and rating distribution prediction. The accuracy is used as the performance measure of
the binary classification. PLCC and MAE are used as the performance measure of the mean rating regression. EMD is used for the rating distribution
prediction.

Backbone Approach Binary classification Mean rating Distribution
pp Accuracy 1 PLCC+ MAE| | EMD |
VGG16 Conventional (rating distribution) 0.7781 0.6559  0.4509 0.0504
Proposed (beta distribution) 0.7843 0.6494  0.4484 0.0507
ResNetS0 Conventional (rating distribution) 0.8057 0.7166  0.4099 0.0448
Proposed (beta distribution) 0.7990 0.7041  0.4199 0.0481
HLAGCN Conventional (rating distribution) 0.7958 0.7049 0.4184 0.0458
Proposed (beta distribution) 0.8011 0.7103  0.4142 0.0475
Conventional (rating distribution) 0.8171 0.7472  0.3876 0.0426
ComvNeXTT | proposed (beta distribution) 0.8188 0.7527 03845 |  0.0447
MaxViT-T Conventional (rating distribution) 0.8173 0.7475  0.3870 0.0426
Proposed (beta distribution) 0.8114 0.7437  0.3907 0.0454
following the previous studies [2], [14]. Primarily, we con- tasks: binary classification, mean score regression, and rating
duct the subjectivity prediction task, where we use STD, distribution prediction.
MAD, DUD, MED, and AesU as the subjectivity measure. Our method produces a predicted beta distribution (in
We also consider the widely used image aesthetic assessment the form of its shape parameters o and g). Except AesU,
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TABLE 3. Comparison of the ways to measure the loss (see Fig. 5).

Loss STD MAD MED DUD AesU
PLCC t MAE | |PLCC 1 MAE ||PLCC 1t MAE | |PLCC 1 MAE | |PLCC t MAE |
(1) EMD of rating distribution | 0.3417 0.1452 | 0.3291 0.1436 | 0.4046 0.0515| 0.4465 0.0551 | 0.3181 0.0343

(2) RMSLE of Beta (a, 8)
(3) EMD of Beta (b, d, u)

0.3595 0.1531

0.3483 0.1417 | 0.4053 0.0514 | 0.3911
0.3499 0.1544 | 0.3504 0.1417 | 0.4129 0.0515 | 0.4558 0.0550 | 0.3538 0.0330

0.0586 | 0.3558 0.0329

(a) Subjectivity regression

Loss Binary classification| Mean rating | Distribution
Accuracy T PLCCT MAE || EMD |
(1) EMD of rating distribution 0.8171 0.7472 0.3876 | 0.0426
(2) RMSLE of Beta («, 5) 0.7933 0.6901 0.4288 | 0.0486
(3) EMD of Beta (b, d, u) 0.8188 0.7527 0.3845| 0.0447

(b) Binary classification, mean rating regression, and rating distribution prediction

which is directly available from the shape parameters using
Eq. (2), the subjectivity measures are obtained from the rating
distribution converted from the predicted beta distribution or
the ground truth rating distribution.

For the binary classification task, the classification accu-
racy is used. The threshold of the two classes is set to
a score of 5 in the scale of 1 to 10 as in [7], [8], [9],
and [10]. The performance of mean rating regression is
measured in terms of Pearson linear correlation coefficient
(PLCC), and mean absolute error (MAE) between the ground
truth mean ratings and the predicted mean ratings. The same
measures are also used for the subjectivity regression task.
For distribution prediction, we use EMD between the ground
truth and predicted distributions.

F. IMPLEMENTATION DETAILS

All experiments are conducted on a PC that has AMD
Ryzen 5 5600X CPU, 128GB of RAM, NVIDIA Geforce
RTX 3090 24GB GPU, and Microsoft Windows 10.
We use Python 3.9.7, PyTorch 1.10.1, CUDA 11.3,
and cuDNN 8.0.

We divide the training dataset further into 223,000 training
images and 13,000 validation images. The images are resized
to 256 x 256 and randomly cropped to 224 x 224. and a
random horizontal flip is applied for data augmentation.

To train the models, we use the SGD optimization with a
batch size of 48, a Nesterov momentum parameter of 0.9 and
a weight decay parameter of 5 x 10™*. The learning rate is
reduced by 5% every 10 epochs. The models are trained for
100 epochs, but if the validation loss does not decrease for
30 epochs, the learning is stopped.

VI. RESULTS

Table 1 shows the results of our main task, i.e., subjectivity
regression, for STD, MAD, MED, DUD, and AesU. The
proposed approach shows improved performance compared
to the conventional approach in most cases. When the
backbone models are compared, ConvNeXT-T performs the
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best, and MaxViT-T also performs well. For ConvNeXT-T,
the PLCC improvement by the proposed approach over
the conventional one is 4.8% on average, with the max-
imum improvement by 11.2% for AesU. These results
demonstrate that the proposed approach using the beta
distribution is effective to learn the subjectivity of image
aesthetics. In particular, the proposed subjectivity modeling
plays a key role by reducing the noise in the raw rating
distribution.

We additionally show the results of the other tasks, i.e.,
binary classification, mean rating regression, and rating
distribution prediction, in Table 2. The proposed approach
shows the performance comparable to that of the conven-
tional approach. In particular, the proposed approach for
ConvNeXT-T shows the best performance among various
experimental conditions except the rating distribution predic-
tion. The performance of the rating distribution prediction
is lower for the proposed approach than the conventional
approach in all cases, which appears to be due to the error
in approximation with the beta distribution.

A. COMPARISON OF LOSSES

We conduct experiments to compare the three ways to
measure the loss, which are explained in Section IV. Table 3
shows the comparison results for ConvNeXT-T. For the
subjectivity regression (Table 3a), EMD of rating distribution
shows the lowest performance, while the other two are
comparable. For the other tasks (Table 3b), RMSLE of
(o, B) performs worse than the other two showing similar
performance. Overall, EMD of (b, d, u) shows the best
performance. Through this, we can see that AesU, along with
b and d, expresses aesthetic rating characteristics better than
the rating distribution for model training.

B. APPLICATION OF AESU
We illustrate an application scenario where our subjectivity
modeling can be beneficial.

VOLUME 11, 2023
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FIGURE 6. Class boundaries of the ternary classification on the
equilateral triangle of b, d, and u. The center point is set to the median
value of each component for the training dataset, which is

(b, d, u) = (0.429, 0.457, 0.119).

Consider an application where aesthetic binary classifica-
tion of images is performed to predict whether each image
will be aesthetically “pleasing” or “unpleasing”. Even if
an image is predicted to be aesthetically pleasing in terms
of the mean rating, if a nonnegligible proportion of users
would disagree on the prediction, then it would be better
not to present the image as pleasing to users in order
to maximize the users’ satisfaction. In other words, using
ternary classification that includes the third class “‘uncertain”
can increase user satisfaction.

We perform ternary classification to classify an image as
pleasing, unpleasing, or uncertain, based on the three proba-
bilities obtained from our subjectivity modeling framework.
The boundaries between the three classes are defined on the
equilateral triangle of the three probabilities as shown in
Fig. 6. The center point where the boundaries meet is set by
the median values of b, d, and u for the training dataset. One
may consider to simply set it to (b, d, u) = (1/3,1/3,1/3),
but we found that the number of images in each class becomes
significantly unbalanced. Thus, we use the median values
instead.

We simulate the two rules, i.e., the conventional binary
classification and our ternary classification, on the test data of
the AVA dataset using the trained ConvNeXT-T model. Each
of the ratings is considered as a rater. The performance of
the two rules is measured by the satisfaction ratio, which is
calculated as the average proportion of raters whose ratings
(pleasing or unpleasing) are the same to the prediction result.
The obtained satisfaction ratios are 63.70% and 65.52% for
the baseline rule and our rule, respectively. This improvement
demonstrates the effectiveness of our framework in this
application.

VII. CONCLUSION

We proposed a probabilistic framework for modeling image
aesthetics, particularly considering proper quantification of
the subjectivity. The framework allowed us to model the
rating distribution as a beta distribution and to obtain the
probabilities of being definitely pleasing, being definitely
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unpleasing, and being uncertain simultaneously. Through the
framework, the image aesthetic prediction performances are
improved. The probability of being uncertain was used to
define AesU, which is an intuitive subjectivity metric and also
as reliable as STD. Through the experiments, it was shown
that AesU is valuable as a subjectivity metric. In the future
work, we plan to further explore applications exploiting the
uncertainty of image aesthetics.
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