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ABSTRACT In recent years, Doppler-only sensors have demonstrated an excellent estimation performance
for target tracking. Most of the existing tracking algorithms that utilize Doppler sensors rely on the
assumption that sensors capture only measurement errors, disregarding measurement biases. However,
in many practical situations, there can be significant measurement biases, which can severely compromise
the performance of target state estimation. Recognizing this issue, the study proposes a new joint estimation
algorithm that is exclusively reliant on Doppler-only sensors. The proposed algorithm not only provides the
estimated results of the target state, but also the measurement bias of the Doppler sensor in use. The approach
unfolds in two stages: the first stage is to estimate the target state without considering the measurement
bias; the second is to perform bias compensation using the least squares method, and the target state and
measurement bias are jointly estimated by linearization of the measurement equation. To validate the efficacy
of this method, we analyzed the Cramer-Rao lower bound (CRLB) for measurement bias estimation and
designed simulations under both static and moving sensor scenarios to assess its performance. The results
indicate that the proposed algorithm can effectively estimate the target state, outperforming Kalman filter
(KF) in both themoving and static sensor scenario. The root mean square error (RMSE) of the bias estimation
can approach the CRLB.

INDEX TERMS Target tracking, Doppler sensor, measurement bias, space registration.

I. INTRODUCTION
The Doppler radar, characterized as a pulse mechanism
radar, leverages the Doppler effect to estimate the state
of a moving target. By employing spectrum separation
technology, Doppler radar can effectively suppress various
background clutter, and serve a pivotal role in fields such
as meteorological detection, missile guidance, and airborne
early warning [1]. The Doppler radar emits electromagnetic
wave signals into the external environment and receives
reflected echoes. Through analysis and processing of these
echoes, information regarding the state of the target can be
extracted. Conventional radar detection can only determine
the distance between the radar itself and the target, as well as
the azimuth and elevation angles. In contrast, Doppler radar
processes the frequency of the reflected signals to gauge the
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Doppler frequency shift, enabling the calculation of the radial
velocity information of the target. Doppler-only sensors can
detect and locate targets under all weather conditions, even
in complex and fluctuating battlefield environments. They
hold a crucial position in the national defense infrastructure
and serve as indispensable equipment in modern defense
systems [2].

Target detection and state estimation constitute are vital
components of radar-signal processing [3]. In the estimation
of the target state, measurements are gathered from deployed
sensors and subsequently employed to deduce the true state
of the target using optimization or filtering techniques [4].
A variety of measurements are provided by different types
of sensors. For MIMO (Multiple Input Multiple Output)
radar systems, TOA (Time-of-Arrival) measurements were
mentioned in [5]. The TOA can achieve higher positioning
accuracy because it reduces the influence of low azimuth
angle accuracy on localization accuracy. For medical image
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observation, DOA (Direction-of-Arrival) measurement was
mentioned in [6] and [7]. Merging the DOA and TOA
with filters can significantly improve the target localization
performance. The Doppler frequency shift is a commonly
used measurement for Doppler radar, which is simple to
evaluate and has been widely used [8], [9]. Target estimation
using Doppler-only shift measurement is an ancient problem
researched in various studies [10], [11]. The Doppler
sensor performs state estimation using a single-channel
antenna. Therefore, unlike TOA and DOA sensors, it does
not require the process of stringent data synchronization.
Meanwhile, the measurement model of the Doppler sensor
exhibits greater non-linearity, compared with TOA and DOA
measurements [21].

Even with fully calibrated Doppler sensors, numerous
challenges persist in target state estimation solely through
Doppler sensors. This can be explained as follows. Firstly,
the target state and the measurement share a high degree
of non-linear relationship, which complicates the task of
finding the optimal solution for the target state [13].
Secondly, factors, including observability [14] and sensor
deployment [17], significantly affect the performance of
target state estimation. In recent years, several studies have
been conducted on Doppler-only radar systems [15], [16].
In practical scenarios, the presence of measurement bias in
Doppler-only sensors can lead to a dramatic decrease in per-
formance, or even divergence in typical target state estimation
algorithms.

A feasible approach to calibrating Doppler measurement
bias is through extended dimension filtering, where the
dimensionality of the state variables is increased to jointly
estimate both the target state and measurement bias simul-
taneously [18]. The estimation of the measurement bias
is utilized to enhance the estimation of the target state,
with the augmented vector derived through the method of
maximum likelihood estimation. Existing approaches include
linearization methods based on Taylor series expansion [19]
and methods utilizing trajectory generator to estimate the
initial measurement bias [20]. Convenient methods for
simultaneously estimating the target state and measurement
bias remain to be investigated.

In summary, two important problems need to be solved
for Doppler-only sensor state estimation: One is to find an
appropriate measurement model, i.e. Doppler shift, to char-
acterize target motion; The other is to jointly estimate target
state and measurement bias. Hence, this paper focuses on the
issue of joint target state estimation and sensor registration
for Doppler-only sensors. The proposed algorithm in this
paper involves two main steps. Firstly, assuming that the
Doppler sensor has nomeasurement bias, an initial estimation
of the target states is conducted. Then bias compensation is
executed based on the obtained initial estimation. Secondly,
a linear-least squares estimation is established. The analytical
solution for this estimation can be effectively determined
through analysis and deduction. At the same time, the
Cramer-Rao Lower bound (CRLB) of collaborative target

tracking usingmultiple Doppler sensors is derived to compare
the estimation precision. Finally, the effectiveness of the
algorithm is verified through simulations in both static and
moving sensor scenarios.

The main contribution of this paper is to propose a
novel algorithm that can jointly estimate target state and
measurement bias for Doppler-only sensors in a satisfying
accuracy. The subsequent sections of this paper are organized
as follows. Section II describes the mathematical foundations
of the target motion model and Doppler sensor measurement
model. The preliminary content of target state estimation
is also introduced. In Section III, a new joint estimation
algorithm for the target state and measurement bias is
proposed, and the derivation of the Cramer-Rao lower bound
is illustrated. Simulations of different scenarios are presented
in Section IV to verify the performances of the proposed
joint estimation algorithm. Finally, conclusions are drawn in
Section V.

II. BACKGROUNDS
In this section, we first delineate the motion models of the
targets and the frequency measurement models pertinent to
the Doppler sensors in detail. Subsequently, we introduce
algorithms for target state estimation based on Doppler
sensors. This establishes themathematical foundations for the
proposed algorithm.

A. TARGET MOTION MODEL
This study focuses on the problem of tracking a given
non-cooperative target using Doppler sensors. Common
target motion models include the constant velocity model,
constant acceleration model, Singer acceleration model, and
constant turn rate model. In this study, it is assumed that the
target’s motion model can be approximated by the constant
velocity (CV) motion model, thereby deriving the following
target state transition equations.

xk+1 = Fxk + Gwk , (1)

where k denotes time, xk is the target state vector at time
k , F is the system state transition matrix, wk is the process
noise, and G is the noise matrix. The process noise wk
is a zero-mean white noise process, encompassing random
variations in velocity in both the x and y directions, with the
covariance matrix denoted as Q.

The target state at time k is defined as xk ≜
[xk , yk , ẋk , ẏk ]T, where xk , yk and ẋk , ẏk represent the posi-
tion and velocity of the target in the Cartesian coordinate
system, respectively. Under a two-dimensional constant
velocity motion, the definitions of the state transition matrix
F, noise transition matrix G, and covariance Q are as
follows.

F =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 , (2)
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G =


T 2

2 0
T 2

2 0
0 T
0 T

 , (3)

Q =

[
σα 0
0 σβ

]
, (4)

where T represents the sampling period, σα and σβ represent
the velocity variances along the x and y directions, respec-
tively. It is assumed that all Doppler sensors are synchronized
in time.

Furthermore, for convenience, we define the position
vector of the target as pk ≜ [xk , yk ]T and the velocity vector
as vk ≜ [ẋk , ẏk ]T. pk and vk can be composed of the state
vectors of the target. Clearly, xk = [pTk , v

T
k ]

T.

B. DOPPLER SENSOR MEASUREMENT MODEL
This study is based on a multi-sensor environment, whereM
Doppler sensors are deployed in a two-dimensional space to
estimate the target state. These sensors can be either static or
moving.

Define f ′
m (xk) as the frequency of the signal from the target

received by sensor m ∈ {1, . . . ,M} at time k ,

f ′
m (xk) = ft + fm (xk) + fdm + qm(k), (5)

where f is the target’s emitting signal frequency, fdm is
the fixed bias caused by sensor system errors, and qm(k)
represents the zero-mean Gaussian measurement noise. The
fm (xk) represents the target Doppler frequency shift, which
is obtained using the following formula according to the
Doppler effect equation:

fm (xk) =
1
λ

{(
pk − pm

)T∥∥pk − pm
∥∥

}
vk , (6)

where λ is the signal wavelength, and pm ≜ [xm, ym]T is the
known position of the Doppler sensor m, pk and vk are the
target’s position and velocity vectors, respectively.

Given that the target’s emitting signal frequency, denoted
as ft , is a constant, the Doppler frequency shift caused by
the target’s motion is more worthy of study. Therefore,
the measurement zm(k) from Doppler sensor m at time k
is defined as the difference between the received signal
frequency f ′

m (xk) and the target’s emitting signal frequency
ft .

zm(k) ≜ f ′
m (xk) − ft = fm (xk) + fdm + qm(k) (7)

Clearly, for a perfectly calibrated Doppler sensor, fdm =

0. Combining all the Doppler sensors, the Doppler fre-
quency shift measurement vector is defined as zk ≜
[z1(k), . . . , zM (k)]T.

C. TSE USING DOPPLER SENSORS
In the scenarios where the sensors have no measurement
bias (i.e., fdm = 0), the target state estimation process can
be simplified. This section briefly outlines the algorithm for

target state estimation using Doppler sensors and establishes
the foundation for the algorithm proposed in this paper.
By multiplying (7) by λ, we obtain the measured range rate
as follows.

ηm(k) = λzm(k) =

(
pk − pm

)T∥∥pk − pm
∥∥ vk + λfdm + λqm(k) (8)

For the case involving M Doppler sensors, multiple
formulas in (8) are stacked to yield the measured range rate
vector, which can be denoted as η(k).

η(k) = A
(
pk

)
vk + qk , (9)

where

ηk = [η1(k), η2(k), . . . , ηM (k)]T , (10)

A
(
pk

)
=

[ (
pk − p1

)∥∥pk − p1
∥∥ , . . . ,

(
pk − pM

)∥∥pk − pM
∥∥
]T

, (11)

qk = [q1(k), q2(k), . . . , qM (k)]T , (12)

the Gaussian vector qk with mean 0 and variance R = σ 2I is
obtained.

In (9), the target states pk and vk served as the estimation
parameters and can be solved with the least square method,
requiring individual solutions for each parameter. The
maximum likelihood function is expressed as follows.[

p̂k , v̂k
]

= arg min
pk ,vk

[(
ηk − A

(
pk

)
vk

)T R−1 (
ηk − A

(
pk

)
vk

)]
.

(13)

The estimation problem above is solved as described
in [22]. The following is a summary of the solution steps.

Firstly, the target position vector estimation is given by the
following expression.

p̂k = argmin
pk

ηTkPA
(
pk

)
ηk , (14)

PA
(
pk

)
= I − A

(
pk

) (
AT (

pk
)
A

(
pk

))−1
AT (

pk
)
. (15)

Here, the first predicted value of p̂k can be evaluated
through a grid search, followed by iterations through
gradient-based optimization. This ensures that p̂k converges
to the global optimal as much as possible.

Subsequently, the target velocity vector estimation can be
given by the following equation.

v̂k =

(
AT (

p̂k
)
A

(
p̂k

))−1
AT (

p̂k
)
ηk . (16)

III. METHODS
In this section, we describe the procedure for the joint
estimation of the target state and measurement bias using a
linear least squares problem formulation, under the scenario
where the Doppler sensors have a fixed bias, represented by
fdm ̸= 0 (for m = 1, . . . ,M ). Furthermore, we derive the
Cramer-Rao Lower bound (CRLB), a theoretical benchmark
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that delineates the minimum possible variance for an
unbiased estimator. This contributes to the evaluation of the
effectiveness of the algorithm.

A. JOINT ESTIMATION ALGORITHM BASED ON TIME
WINDOW
When there is a measurement bias fdm present in the Doppler
sensors, assuming that the measurement noise is much
smaller than the measurement bias, the performance of the
estimation method discussed in Section II.C deteriorates
significantly, potentially leading to estimation failure. There-
fore, further improvements are necessary.

Given that the least squares method requires the superposi-
tion of multiple equations to estimate the system parameters,
this study considers collecting Doppler frequency shift
measurements over L consecutive time steps. Assuming a
consecutive time step of k, . . . , k + L − 1, the problem in
this section is transformed into determining all the biases
fdm (for m = 1, . . . ,M ) of the Doppler sensors given
the Doppler measurements zk , . . . , zk+L−1 (which include
biases), while accurately estimating the target position vector
pk and velocity vector vk . According to (8), the Doppler
measurements are translated into ηk , . . . , ηk+L−1. For a
duration of t = 0, 1, . . . ,L−1, assuming a constant velocity
(CV) model for the target motion model, the following
formula can be obtained.

ηm(k + t) = λzm(k + t) (17)

=

(
pk + tT vk − pm

)T∥∥pk + tT vk − pm
∥∥ vk + λfdm + λqm(k + t),

hm (xk , t,T ) ≜

(
pk + tT vk − pm

)T∥∥pk + tT vk − pm
∥∥ vk . (18)

The proposed Algorithm in this paper operates as follows.
Initially, we employ the method outlined in Section II.C to
directly obtain the initial estimations of p̂k and v̂k from ηk .
Given that fdm is not zero, the estimations acquired are biased.
The true state of the target is expressed as

pk = p̂k + p̃k , vk = v̂k + ṽk , (19)

where p̃k and ṽk represent the biases induced by fdm and
measurement noise.

Given that p̂k and v̂k can be resolved from (14) and (16),

we obtain the state estimate x̂k =

[
p̂Tk , v̂

T
k

]T
(with bias).

Through linearization, the Doppler measurement ηm(k + t)
can be expressed as

ηm(k + t)≈ ĥm(k) +Hm(k + t)
[
p̃k
ṽk

]
+ λfdm + λqm(k + t),

(20)

ĥm(k) = hm
(
x̂k , 0,T

)
(21)

where the Jacobian matrix Hm(k + t) is given by

Hm(k + t) =
∂hm (xk , t,T )

∂xk

∣∣∣∣
xk=

[
p̂Tk ,v̂Tk

]T (22)

The Jacobian matrix can be partitioned into

Hm(k + t) =

[
Hp T
m (k + t),Hv T

m (k + t)
]T

, (23)

whereHp
m(k+ t) andHv

m(k+ t) are obtained as (24) and (25),
shown at the bottom of the next page, where

αm(k + t) = α̂k + tT ˆ̇αk − αm, (26)

βm(k + t) = β̂k + tT ˆ̇βk − βm, (27)

ϕm (xk , t,T ) =
∥∥p̂k + lT v̂k − pm

∥∥ , (28)

where α and β represent the x and y directions, respectively.
in the Cartesian coordinate system.

It is evident that (20) incorporates the three parameters that
need to be estimated, namely p̃k , ṽk , and fdm. Consequently,
we can easily construct the input matrix C, output matrix d ,
and variable matrix θ as follows. Finally, the least-squares
equation is obtained as shown in equation (32).

C =



Hp
1(k + 1) Hv

1(k + 1) 1 0 · · · 0
...

...
...

...
...

...

Hp
1(k + L − 1) Hv

1(k + L − 1) 1 0 · · · 0

Hp
2(k + 1) Hv

2(k + 1) 0 1 · · · 0
...

...
...

...
...

...

Hp
2(k + L − 1) Hv

2(k + L − 1) 0 1 · · · 0
...

...
...

...
...

...

Hp
M (k + 1) Hp

M (k + 1) 0 0 · · · 1
...

...
...

...
...

...

Hp
M (k + L − 1) Hp

M (k + L − 1) 0 0 · · · 1



,

(29)

d =



η1(k + 1) − ĥ1(k)
...

ηM (k + 1) − ĥM (k)
η1(k + 2) − ĥ1(k)

...

η1(k + 2) − ĥM (k)
...

ηM (k + L − 1) − ĥ1(k)
...

ηM (k + L − 1) − ĥM (k)



, (30)

θ ≜
[
p̃k , ṽk , f̂d1, . . . , f̂dM

]
, (31)

Cθ = d. (32)

Therefore, the estimate of θ̂ can be obtained from the
solution of (31).

θ̂ =

(
CTC

)−1
CTd. (33)

Up to this point, the final estimated values for the target
position and velocity are p̂k + θ̂ (1 : 2) and v̂k + θ̂ (3 : 4),
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respectively, whereas f̂d1, . . . , f̂dM = θ̂ (5 : M +4) represents
the bias value of the Doppler sensor. Finally, Algorithm 1
summarizes the procedure proposed in Appendix B.

B. CRAMER-RAO LOWER BOUND
M Doppler sensors are deployed at appropriate locations,
and a sufficient length of the time window L is employed.
To derive the CRLB, the presence of measurement noise q is
taken into consideration in (32). Moreover, the Jacobi matrix
C is evaluated from the true target state, which is labeled C̃
in this section. Therefore, (32) can be rewritten as follows,

C̃θ + λq = d, (34)

q =

[q1(k), . . . , qM (k), . . . , q1(k + L − 1), . . . ,

qM (k + L − 1)]T , (35)

where q is stacked by the qm(k + t − 1) for each time and
sensor. Consequently, the following expression describes the
constraint of the covariance matrix of unbiased estimator
θ̂ . The algorithm performs better when the variance of the
estimator is closer to the Cramer-Rao bound.

E
{
(θ̂ − θ )(θ̂ − θ )⊤

}
≥ J−1, (36)

J =
C̃

⊤
C̃

λ2σ 2 , (37)

where J denotes the Fisher Information Matrix (FIM).

IV. SIMULATION RESULTS
In this section, simulations in different scenarios are
conducted to verify the proposed algorithm for the joint
estimation of the target state and measurement bias. Static

sensors are deployed in one scenario, and moving sensors are
adopted in the alternative scenario. The simulation results are
compared with the CRLB to verify the effectiveness of our
algorithm.

A single target is assumed to move at a constant speed in
a given two-dimensional(2D) area. Five Doppler sensors are
deployed within this area to track the target. The parameters
of the target movement are as follows. The process noise in
x and y direction is denoted by σα = σβ = 0.001 m2/s2,
the sampling period is T = 0.01 s, and the target emitting
signal frequency is 310 MHz. The standard deviation of the
measurement noise is denoted by σ = 2 Hz. The initial state
of the target is x0 = [−100 m, −100 m, 210m/s, 210 m/s].
The Doppler sensors bias vector is configured as fd =

[40 Hz, −30 Hz, 40 Hz, −50 Hz, 20 Hz].
By using different window lengths L to evaluate the per-

formance of the measurement bias. The following expression
defines the estimation error of measurement bias.

f̃dm =

∣∣∣fdm − f̂dm
∣∣∣ ,m = 1, . . . ,M . (38)

where f̃dm represents the estimation error of measurement
bias, fdm denotes the true value of the measurement bias, and
f̂dm denotes the estimated value of the measurement bias.
By using different times of estimation errors to evaluate

the performance of the target state estimation, we consider
the estimation errors, including the target position errorp and
target velocity errorv at the initial time of the measurement
window. The evaluations of errorp and errorv are as
follows.

errorp =

√
(p− p̂)T(p− p̂), (39)

errorv =

√
(v− v̂)T(v− v̂), (40)

Hp
m(k + t) =

(
ϕ2
m(x̂(k), t,T ) − α2

m(k + t)
)

ˆ̇α(k) + α(k + t)βm(k + t) ˆ̇β(k)

ϕ3
m(x̂(k), t,T )(

ϕ2
m(x̂(k), t,T ) − β2

m(k + t)
)

ˆ̇β(k) + ξm(k + t)βm(k + t) ˆ̇α(k)

ϕ3
m(x̂(k), t,T )

 (24)

Hv
m(k + t) =



ϕ2
m(x̂(k), t,T )

(
αm(k + t) + tT ˆ̇β(k)

)
− tT

(
α2
m(k + t) ˆ̇α(k) + αm(k + t)βm(k + t) ˆ̇β(k)

)
ϕ3
m(x̂(k), t,T )

,

ϕ2
m(x̂(k), t,T )

(
βm(k + t) + tT ˆ̇β(k)

)
− tT

(
β2
m(k + t) ˆ̇β(k) + αm(k + t)βm(k + t) ˆ̇α(k)

)
ϕ3
m(x̂(k), t,T )


(25)
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FIGURE 1. Comparison of Bias estimation between RMSE and CRLB for different time windows L (static sensors).
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FIGURE 2. Sensor locations and target trajectory (static sensors).

where p and v represent the actual position vector and velocity
vector of the target, respectively, at the initial time of the
measurement window.

In order to measure the performance of the proposed
algorithm more scientifically, the results of the Kalman filter
are compared. Kalman filter is a classical state estimation
algorithm, which is applied in various fields. However,
it should be noted that this paper focuses on joint estimation,
and the Kalman filter cannot solve it alone.

The number of Monte Carlo simulations is set to 100, and
the root mean square error (RMSE) is used to evaluate the
estimation errors of the Monte Carlo simulations.

A. STATIC DOPPLER SENSORS SCENARIO
The five Doppler sensors are symmetrically distributed
in a specific two-dimensional area, with the following
coordinates: [−250m, 0m], [−250m, 250m], [250m, 250m],
[250m, 0m], [0m,−250m]. The simulation scenario for col-
laborative tracking using static Doppler sensors is illustrated
in Fig. (2).

To illustrate the effectiveness of our proposed algorithm,
the estimation performances of measurement bias employing
different lengths L of the time window are compared, and
the CRLBs are borrowed as competitors. Fig. (1) shows the
RMSE of the bias estimation for each sensor. As the length
of the time window L increases, the performance of the
bias estimation improves. Since the time window length L
represents how much data is used for estimation, such an
improvement is expected.

Fig. (3) shows the RMSE of the target state estima-
tion. JTSE (Joint Target State Estimation) represents the
result of the proposed algorithm with bias-compensated.
KF represents the result of Kalman filter. TSE (Target
State Estimation) represents the result of the proposed
algorithm with uncompensated. At the same time t , the
estimation results of JTSE, KF, and TSE are compared.
It is evident that both the position RMSE and velocity
RMSE decrease substantially, and achieve better performance
compared to KF. This demonstrates that the algorithm

FIGURE 3. Comparison of RMSE between JTSE, KF, and TSE for different
times (static sensors).

FIGURE 4. Sensor trajectories and target trajectory (moving sensors).

presented in this paper enhances the performance of the target
state estimation for biased Doppler-only sensors. The ep of
final convergence is less than 5m, and ev is less than 3m/s.
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FIGURE 5. Comparison of Bias estimation between RMSE and CRLB for different time windows L (moving sensors).
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FIGURE 6. Comparison of RMSE between JTSE, KF, and TSE for different
times (moving sensors).

B. MOVING DOPPLER SENSORS SCENARIO
To verify the effectiveness of our algorithm in the
scenario of multiple moving Doppler sensors, additional
simulations are conducted. The simulation parameters of
the target motion model remain consistent with those
listed in the previous subsection. The initial positions
of the five Doppler sensor platforms in two-dimensional
space remain the same. The states of each sensor
are initialized as follows: [−250m, 0m, 20m/s, 0m/s]T,
[−250m, 250m, −20m/s, 0m/s]T, [250m, 250m, 10m/s,
0m/s]T, [250m, 0m, −10m/s, 0m/s]T, [0m,−250m, 0m/s,
20 /s]T. The initial state of the target and the configurations
of the measurement bias vector remain unchanged. The
simulation scenario with moving Doppler sensors is shown
in Fig. (4).

Similarly, in the scenario with moving sensor platforms,
the performances of bias estimations with the CRLB under
different lengths of measurement windows L are compared.
The RMSE of eachmeasurement bias estimation is illustrated
in Fig. (5).

The comparison of JTSE (Bias-compensate), KF, and TSE
(Uncompensate) is shown in Fig. (6). As in the previous
subsection, the estimation results of the bias compensation
and those of the no-bias compensation are compared. It is
proven that the algorithm proposed in this paper can
also significantly improve the performance of target state
estimation when the Doppler-only sensors are not static.

V. CONCLUSION
A novel joint estimation algorithm for the target state and
measurement bias is proposed in this study to address
the problem of estimation precision for biased Doppler-
only sensors. Doppler shift is used as the measurement.
First, a preliminary estimation of the target state is carried
out, without considering the existing measurement bias of
the Doppler-only sensors. After the preliminary estimation,
the measurement equation containing the measurement bias
is linearized using a time window. The target state and
measurement bias are obtained using the least-squares
method. Moreover, the Cramer-Rao lower bound of bias
estimation is investigated in this study aswell. The superiority
of our proposed algorithm is verified by simulations in two
different scenarios, i.e., static Doppler sensors and moving
Doppler sensors. Simulation results show that compared
with other state estimation algorithms without measurement
bias compensating, e.g., Kalman filter, the performance of
both position and velocity RMSE of our algorithm is better.
In different scenarios, the position RMSE can be reduced
by 6m, and the velocity RMSE can be reduced by 5m/s.
Future work might lie in the following potential directions:
using the proposed algorithm in three-dimensional scenarios,
developing algorithms that can obtain the joint estimation
of the target state and measurement bias recursively based
on approaches such as the Kalman filter, and expanding
our algorithm to the scenarios in which there are multiple
maneuvering targets.

APPENDIX A
ABBREVIATIONS
The following abbreviations are used in this manuscript:

MIMO Multiple Input Multiple Output
TOA Time of Arrival
DOA Direction of Arrival
KF Kalman Filter
JTSE Joint Target State Estimation
TSE Target State Estimation
FIM Fisher Information Matrix
CV Constant Velocity
CRLB Cramer-Rao Lower Bound
RMSE Root Mean Square Error
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APPENDIX B
ALGORITHM 1
Algorithm 1 Joint Estimation Algorithm of Target State and
Measurement Bias
Input: zk , . . . , zk+L−1, s1, . . . , sM , λ,M ,L, k;
Output: p̂k , v̂k , f̂d1, . . . , f̂dM ;
1: for all i = k, k + 1, · · · , k + L − 1 do
2: PA

(
pk

)
= I − A

(
pk

) (
AT (

pk
)
A

(
pk

))−1
AT (

pk
)
.

3: p̂k = argminpk ηTkPA
(
pk

)
ηk

4: v̂k =
(
AT (

p̂k
)
A

(
p̂k

))−1
AT (

p̂k
)
ηk .

5: Construct C i, d i according to (29)-(32);
6: end for
7: C = [Ck ;Ck+1; · · · ;Ck+L−1]
8: d = [dk ; dk+1; · · · ; dk+L−1]
9: θ̂ =

(
CTC

)−1
CTd

10: p̂k = p̂k + θ̂ (1 : 2),
11: v̂k = v̂k + θ̂ (3 : 4),
12: f̂d1, . . . , f̂dM = θ̂(5 : M + 4)
13: return p̂k , v̂k , f̂d1, . . . , f̂dM .
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