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ABSTRACT Visual surveillance requires robust detection of foreground objects under challenging envi-
ronments of abrupt lighting variation, stationary foreground objects, dynamic background objects, and
severe weather conditions. Most classical algorithms leverage background model images produced by
statistical modeling of the change of brightness values over time. Since they have difficulties using global
features, many false detections occur at the stationary foreground regions and dynamic background objects.
Recent deep learning-based methods can easily reflect global characteristics compared to classical methods.
However, deep learning-based methods still need to be improved in utilizing spatiotemporal information.
We propose an algorithm for efficiently using spatiotemporal information by adopting a split and merge
framework. First, we split spatiotemporal information on successive multiple images into spatial and
temporal parts using two sub-networks of semantic and motion networks. Finally, separated information
is fused in a spatiotemporal fusion network. The proposed network consists of three sub-networks, which
we note as MSF-NET (Motion and Semantic features Fusion NETwork). Also, we propose a method to train
the proposed MSF-NET stably. Compared to the latest deep learning algorithms, the proposed MSF-NET
gives 9% and 13% higher FM in the LASIESTA and SBI datasets. Also, we designed the proposedMSF-NET
to be lightweight to run in real-time on a desktop GPU.

INDEX TERMS Deep learning, foreground object detection, spatiotemporal information, visual
surveillance.

I. INTRODUCTION
Before the advent of deep learning, most visual surveil-
lance algorithms perform foreground object detection by
processing the change in brightness values. They usually
use background model images and update them periodically,
denoted as background subtraction (BGS) algorithms. How-
ever, it has a limitation of a significant detection error in
a challenging environment where stationary foreground and
dynamic background objects exist. Information on the type
of object in the spatial domain and whether things move in
the temporal domain is required to classify a background
and a foreground object in visual surveillance. Since these
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methods have difficulties extracting semantic information in
the spatial domain, performance loss may occur.

Recent deep learning-based methods show superior fore-
ground object detection performance. They can reflect global
features on images better. However, they have difficulties
reflecting temporal information due to memory size, while
traditional approaches can reflect temporal information by
updating the background model image. For this reason, deep
learning-based methods show poor detection performance for
a foreground object that has been stationary for a long time.
FgSegNet-v2 [2], which records the best performance in the
CDnet2014 [1] dataset, uses only the current image as input.
Such a spatial network can consider semantic information
well but is limited in not using temporal information. The
spatial network generally shows a good detection perfor-
mance in the same environment used for training. Still, the
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detection performance in an environment not used for training
is limited.

Deep learning-based methods treat temporal informa-
tion using multiple images as input or background model
images. They use various types of background model images
by median [3], [4], [5], BGS algorithm [6], [7], manu-
ally acquired reference image [8], [9], separate background
modeling process [10], and background image generation
module [11], [12], [13]. However, these methods have a lim-
itation in that a lot of performance degradation occurs when
the background image contains many errors. This paper pro-
poses a new integrated model that efficiently utilizes spatial
and temporal domains to solve the limitations.

The contribution of this paper is as follows.
1) Motion and Semantic Fusion Network (MSF-NET) is

proposed to effectively extract spatiotemporal information
in multiple input images for visual surveillance. MSF-NET
consists of three networks, separating spatial and temporal
information through a semantic network (SN) andmotion net-
work (MN). Finally, a spatiotemporal fusion network (STFN)
detects a foreground object by integrating information from
both networks.

2) The proposed MSF-NET is mainly composed of three
networks, which might cause difficulties in training them.
A method for practical training of the proposed model is pre-
sented. A semantic network can be trained using ground-truth
labels through the compact fusion module (CFM) without
additional processing.

3) The proposed MSF-NET has an excellent performance
in environments not used for training, and we show it
using various datasets. In addition, the proposed structure is
designed to be lightweight to enable real-time computation
on desktop GPUs.

II. RELATED WORKS
We categorize visual surveillance algorithms into traditional
approaches and deep learning approaches. Recent survey
papers [60], [61] provide good reviews.

A. TRADITIONAL APPROACHES
Stauffer and Grimson [14] proposed Gaussian Mixture
Models (GMM), a method based on multiple Gaussian dis-
tributions. In GMM [14], each pixel value is expressed as
multiple Gaussian distributions. Elgammal et al. [15] pro-
posed a probabilistic non-parametric algorithm using kernel
density estimation. Barnich and Droogenbroeck [16] pro-
posed the BGS algorithm ViBE. It detects foreground objects
by calculating the Euclidean distance between the pixel value
stored in the background model and the current pixel value.
ViBE+ [17] uses the adapted distancemeasure and threshold-
ing from the existing ViBE [16] and increases the detection
performance by adding a process to detect blinking pixels.

St-Charles and Bilodeau [18] proposed LOBSTER using
an LBSP descriptor [19]. LOBSTER [18] performs fore-
ground object classification by calculating LBSP within a
5 × 5 mask, unlike ViBE [16], which compares pixel values.

Haines and Xiang [20] proposed a foreground object detec-
tion algorithm based on Dirichlet process Gaussian mixture
models. SuBSENSE [21] and PAWCS [22] have actively
adjusted parameters, unlike ViBE [16] and LOBSTER [18],
which have fixed hyperparameters. This has a more robust
detection performance for dynamic and static foreground
objects. Laugraud et al. [23] proposed a method of robustly
generating a background image even when a foreground
object exists in more than half of the observation time range.
Panda andMeher [24] proposed a BGS algorithm using Color
Difference Histogram (CDH) and Fuzzy Color Difference
Histogram (FCDH) in a small local neighborhood.

Sajid and Cheung [25] proposed MBS, a BGS algorithm
that can respond to light changes, dynamic backgrounds, and
cameramovements. Bianco et al. [26] proposed IUTIS, which
improves detection performance by combining the results of
other foreground object algorithms. Berjón et al. [27] pro-
posed an algorithm that performs background and foreground
modeling for robust foreground object detection. Thismethod
uses a particle filter in the tracking process and automat-
ically selects an ROI to minimize the computational load.
Ortego et al. [28] proposed a hierarchical post-processing
framework that can improve the performance of BGS algo-
rithms. With this method, a classical algorithm such as GMM
showed a performance improvement of 10%. Still, there is a
limit to showing amodest performance improvement of about
2% in a relatively newer algorithm such as PAWCS [22].
Garg et al. [29] proposed a background modeling technique
that can be used in the traffic surveillance system. Compared
to the existing BGS algorithm, the operation speed is several
tens of times faster. Hossain et al. [30] proposed FAST-D,
a BGS algorithm consisting of a segmentation strategy,
dynamic threshold, and adaptive post-processing process.
FAST-D [30] has the highest processing speed and detection
performance among classical algorithms but is limited in that
it performs poorly compared to deep learning-basedmethods.

Most traditional algorithms use background model images
that are updated statistically. They can reflect temporal infor-
mation well but need help considering the spatial information
covering the whole image. In this paper, we reflect the spatial
information on an entire image using the spatial network.

B. DEEP LEARNING APPROACHES
Braham and Droogenbroeck [3] proposed ConvNets based
on LeNET [31]. It uses median computation to detect infor-
mation in the temporal domain. Therefore, there is a limit
that false detection may occur if a foreground object is in a
stationary state for more than half of the observation range.
Zhao et al. [11] proposed a two-stage network consisting of
a background reconstruction and foreground segmentation
network. Wang et al. [32] presented a new cascade architec-
ture CNN with a more robust detection performance than the
single CNN method.

Zeng and Zhu [33] proposed a Multiscale Fully Convo-
lutional Network (MFCN) using VGG-16 [34] as a back-
bone. MFCN is a structure that generates contrast features
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from each branch of VGG-16 and concatenates them in
the decoder part to generate the final foreground map.
Tezcan et al. [8] proposed DeepBS, which concatenates the
background and current images to create a foreground prob-
ability map through CNN. A more sophisticated background
image was created using the background pixel library pro-
posed by SuBSENSE [21] and used for foreground object
detection.

Lim and Keles [35] proposed FgSegNet, a spatial network
using the current image as input data. Lin et al. [6] pro-
posed an FCN that combines the current and SuBSENSE [21]
background images as input data. Zeng et al. [36] suggested
RTSS using the BGS algorithm and deep learning segmenter
together. The deep learning segmenter used ICNET [37]
and PSPNET [38]. Qui and Li [39] proposed a Fully
Convolutional Encoder-decoder Spatial-temporal Network
(FCESNet) composed of a feature encoder, a spatial-temporal
information transmission module, and a feature decoder.
FCESNet has a multi-input-multi-output structure and trans-
mits information in the spatial and temporal domains using
the ConvLSTM layer.

Lim and Keles [2] proposed FgSegNet-v2, a spatial net-
work using the current image as input data. It has an
encoder-decoder structure, and VGG-16 [33] is used as an
encoder. FgSegNet-v2 currently records the best performance
in the CDnet2014 dataset [1]. Patil and Murala [40] proposed
a Motion Saliency Foreground Network (MSFgNet) com-
posed of Submodules, Motion Saliency Network (MSNet),
and Foreground Network (FgNet). It is challenging to gen-
erate a correct background model image because it is
very lightly composed of two temporal pooling layers and
one convolution layer in the background image estimation
process.

Tezcan et al. [8] proposed a Background Subtraction
algorithm for Unseen Videos (BSUV-Net). Although
BSUV-NET shows excellent generalization performance
even in a new environment that is not used for training, there
is a limitation in that a certain level of user intervention is
required to obtain an empty reference frame. Akilan et al. [41]
proposed a framework to detect and track a vehicle in motion.
Detection is performed using [3], and feature values are
extracted in the relevant area.

Patil et al. [42] proposed a network composed of an
Edge Extraction Mechanism (EEM) and Dense Residual
Block (DRB) for the moving object segmentation task.
Kim and Ha [7] proposed a framework for inputting the
current image, several past images, and the background image
of SuBSENSE [21] into a U-NET type network. Mandal
and Vipparthi [4] proposed ChangeDet, which uses two
types of background model images. Mandal et al. [13] pro-
posed 3DCD that uses a background image generated by a
Gradual Reduction Background Estimation (GRBE). GRBE
consists of 3D convolution and 3D average pooling layers.
3DCD shows superior performance to the latest classical
and deep learning methods in an environment not used for
training.

FIGURE 1. Foreground and background object classification results
according to spatial and temporal information (a) dynamic vehicle
(b) dynamic fountain (c) stationary person.

Effective extraction of spatiotemporal information is
important for visual surveillance. Chen et al. [64] proposed
a spatiotemporal network that has a full spatial-temporal
multi-scale interactions on the vanilla UNet [46] encoder-
decoder structure. Perreault et al. [65] proposed FFAVOD to
do feature fusion for video object detection. They use shared
feature maps between nearby frames and feature fusion mod-
ule for video object detection. Dong et al. [62] proposed an
algorithm for universal moving object segmentation. First,
they learn the distribution from temporal pixels with a defect
iterative distribution learning network. Then, the stochastic
Bayesian refinement network, which learns the spatial corre-
lation, is applied to improve the binary mask. The proposed
method consists of three networks to deal with spatiotemporal
information. The spatial network uses a current image, the
temporal network uses multiple difference images, and the
last network integrates the outputs of two networks.

Deep learning-based approaches show improved results
than traditional BGS algorithms due to their ability to
consider spatial information. However, they have difficul-
ties reflecting temporal information and show performance
degradation in unseen environments. More details can be
found in recent survey papers [60], [61]. In this paper, we pro-
pose MSF-NET, which effectively combines spatiotemporal
information and performs better in unseen environments.

III. PROPOSED METHOD
Reflecting both the object’s motion in the temporal domain
and the semantic information of the object in the spatial
domain is essential for robust foreground object detection
in visual surveillance. As shown in Figure 1(a), we should
detect a vehicle under motion as a foreground object while
detecting the same vehicle as a background object when
it is stationary for a long time. From an object detection
viewpoint, a vehicle should be detected regardless of motion.
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FIGURE 2. The structure of MSF-NET. MSF-Net consists of three networks: semantic, motion, and spatiotemporal fusion network. The output of three
sub-networks is used for loss computation to train MSF-NET stably.

In visual surveillance, the same vehicle can be regarded as a
foreground or background object according to the duration
of the movement. As shown in Figure 1(b), objects such
as fountains or grass should be classified as background
objects regardless of their motion. In contrast, humans should
be detected as foreground objects irrespective of action,
as shown in Figure 1(c). In visual surveillance, foreground
object detection has different aspects than object detection,
as shown in previous cases. Therefore, temporal and spatial
information should be considered for the robust detection of
foreground objects in visual surveillance.

The proposed algorithm is based on a split and merge
framework for effectively using spatiotemporal information.
The final network consists of three sub-networks, as shown
in Figure 2. First, a semantic network extracts spatial infor-
mation on the current image. Motion network uses multiple
difference images as input to process temporal information.
Each past image is subtracted from the current image and
used as input.We use difference images because they can eas-
ily detect temporal difference compared to multiple original
images. Finally, features from two networks are integrated to
obtain the final foreground map.

Figure 2 shows the proposed MSF-NET structure that
consists of three sub-networks: semantic network, motion
network, and spatiotemporal fusion network. Three net-
works follow the U-Net [46] structure that has an efficient
design and has shown its performance in various applications.
Since the proposed network consists of three sub-networks,
we found a problem when we trained the network using
the loss term, including only the final output. This problem
is solved by considering the three networks’ output in loss

configuration. Generally, visual surveillance datasets provide
foreground maps as ground truth labels. Therefore, the out-
put of the semantic network in Figure 2 cannot be directly
used in loss computation. In contrast, outputs of motion
network and spatiotemporal fusion network can be directly
used in loss computation.We generate semi-foreground maps
through a compact fusion module that uses semantic network
and motion network outputs as input. Through this process,
we reflect the output of the semantic network in the loss
terms. Since all outputs of three sub-networks are reflected in
loss terms, it is possible to train the proposed network stably.

A. SEMANTIC NETWORK
We configure the semantic network by adopting U-NET [46],
which extracts local and global features through pooling
layers and skip connections. In the original U-NET [46], the
sizes of the input and output layers are different. In visual
surveillance, foreground object detection must consider the
entire image area. Therefore, we design the semantic network
with the same input and output size. Since three networks
are used in the proposed method, real-time processing on
the desktop GPU may be difficult when we use the model
size of the original U-NET [46]. We reduce the model size
of the semantic network by configuring layer depth to half
compared to the U-NET [46].

We only use a current image as the input of the semantic
network to prevent temporal information passes since we
want temporal information to be independently processed
in the motion network. As a result, the semantic network
can concentrate on extracting spatial features of a current
image without observing temporal information. We design
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the semantic network to extract only features of foreground
objects regardless of motion.

Most deep-learning networks use the last layer as output.
Still, we do not use the last layer of semantic and motion
networks in computing the foreground map. The semantic
map, the final result of the semantic network, acts as a con-
straint for training semantic features. The semantic network
has six outputs: five intermediate semantic features and one
final output, a semantic map. One from each of the five layers
in the semantic network is used to extract semantic features
at various sizes.

Figure 3(a) shows the structure of the semantic network.
SF and SM stand for semantic features and semantic map.
We use six tuples of output from the semantic network as
follows.

(SF1, SF2, SF3, SF4, SF5, SM ) = fNs (Ic) (1)

Ns represents the semantic network and Ic is a current
image. SF i represents the output of i-th layer of a semantic
network, and SM represents the semantic map as the final
output of the semantic network.
SF i(i = 1, . . . , 5) is used as the input of spatiotemporal

fusion network (STFN) as shown in Figure 2. We config-
ure STFN to use the output of the left part not the right
part, in U-Net, which corresponds to early fusion. For the
motion network, the same process of early fusion is applied.
We designed this early fusion configuration for SFTN to
use raw information rather than processed information by
semantic and motion networks. This conforms to our design
rule of MSF-NET leveraging split and merge framework.
In Figure 3(a), layers in blue correspond to SF i(i = 1, . . . , 5).
SM is used as input of compact fusion network (CFM).

B. MOTION NETWORK
Motion network also uses U-NET [46] structure like a seman-
tic network. But, the motion network uses multiple difference
images as input to focus on temporal information, not spatial
information. We split spatial and temporal information on
multiple successive images throughout this design. The pro-
posed algorithm uses one current image and 49 past images
as input data. In the motion network, 49 difference images
generated by subtracting the current and 49 past images are
used as input. Information loss in similar regions may occur
when we use different images, not original ones. Neverthe-
less, we use difference images as the input of the motion
network to focus on temporal information.

Since spatial information is already reflected in the seman-
tic network, information loss related to the spatial domain in
themotion network can be compensated.Most spatial domain
information can be removed through subtraction, but a small
amount of spatial domain information can still flow into the
motion network. Unlike the semantic network, where direct
loss computation using a foreground label is impossible,
the motion network can perform loss computation with a
foreground label.

Like a semantic network, we use six outputs from the
motion network. It generates five motion features and the
final output of a motion map. Figure 3(b) shows the structure
of the motion network.MF andMM stand for motion features
and motion maps, respectively. We use six tuples of output
from the motion network as follows.

(MF1,MF2,MF3,MF4,MF5,MM ) = fNm (I
d
1 , . . . ,IdN )

(2)

Nm represents motion network, and Idi represents a differ-
ence image between a current image and an i-th past image.
MF i represents the output of i-th layer of motion network.
MM represents a motion map that is the final output of the
motion network. Later,MF i(i = 1, . . . , 5) is used as input of
spatiotemporal fusion network (STFN) as shown in Figure 2.
Similar to semantic network, we use outputs from the left
part of the motion network as inputs of STFN. In Figure 3(b),
layers in red correspond to MF i(i = 1, . . . , 5). MM is used
as input of compact fusion network (CFM).

C. COMPACT FUSION NETWORK
The proposed method first divides spatiotemporal informa-
tion on multiple images into spatial and temporal domains.
The semantic network extracts features of foreground objects
in the spatial domain regardless of movement. For exam-
ple, a vehicle at rest is not a foreground object. Still, since
the vehicle belongs to candidates of foreground objects, the
semantic network needs to detect the features of the cor-
responding vehicle. However, in most visual surveillance
datasets, labels of object types are not provided. They provide
labels for foreground and background objects. Therefore,
it isn’t easy to train a semantic network with the capability of
classifying into multiple classes using the provided dataset.
We present a method to indirectly train the semantic network
using the semi-foreground map (SFM) by compact fusion
module rather than directly training the semantic network
using foreground labels provided by the dataset.

Figure 4 shows the structure of the proposed compact
fusion module (CFM). The internal operation in CFM is as
follows.

SFM = tanh
(
K ∗ SM ∗ up(16,16)

(
mp(16,16) (K ∗MM)

))
(3)

K represents a constant multiplied by a semantic and
motionmap set to 1.5. SM represents a semantic map and cor-
responds to the output of the semantic network in Figure 3(a).
MM represents the motion map and corresponds to the output
of the motion network in Figure 3(b). up(16,16) represents
up-sampling of 16 × 16 size and mp(16,16) represents max
pooling of 16 × 16 size.
The compact fusion module uses the semantic and motion

network outputs as inputs. Each input layer multiplies every
pixel by K. Then, for the motion map, we perform max
pooling with a 16 × 16 filter size, and finally, we apply
16× 16 up-sampling to have an equal size with the semantic
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FIGURE 3. The structure of semantic and motion network (a) semantic network (b) motion network.

FIGURE 4. The structure of the compact fusion module.

map. Finally, tanh follows by elementwise multiplication.
Since SM and MM have a value between 0 and 1, results
after elementwise multiplication would have a value between
0 and K 2. We denote the final result obtained by applying
tanh as a semi-foreground map. In the final stage, we select
tanh as the activation function because it has a sharp gra-
dient compared to sigmoid in the range between 0 and 1,
which is advantageous for backpropagation during training.
We design the output of CFM to act like a foreground prob-
ability map. Throughout this, we can use the output of the
CFM in loss computation by comparing it with the ground
truth foreground map.

The introduction of CFM into the proposed MSF-NET
is based on the following considerations, and we show the
validity of the CFM module in experimental results.

First, MSF-NET consists of three sub-networks: a seman-
tic network, a motion network, and a spatiotemporal fusion
network. For stable training of the proposed MSF-NET,
each output of three sub-networks is needed to participate
in loss computation. The output of the semantic network is

similar to the feature map of object classification. There-
fore, comparing it with the ground truth foreground map is
meaningless. We convert the output of the semantic map into
a semi-foreground map by fusing it with the output of the
motionmap usingCFM.We can use the semi-foregroundmap
in loss computation since it has a similar tendency to a ground
truth foreground map.

Second, we design a semantic network to focus on the fore-
ground object regions with an additional margin of nearby
areas of foreground objects. To this end, the motion map
is amplified using max pooling and up-sampling followed
by elementwise multiplication with a semantic map. The
introduction of the previous step is based on the following
considerations. When candidates of foreground objects are
stationary, the output of the motion network will be close to 0,
while the semantic network detects features on the object’s
part and gives output with a high value. If we multiply the
semantic map and motion map without max pooling and
up-sampling in the motion map, the result would always be 0.

Third, we configure CFM to have no trainable parameters.
When there are parameters in CFM, a semi-foreground map
having low cost is possible after training regardless of the
quality of the semantic map and motion map. To cope with
this problem, we configure CFM with no trainable parame-
ters. CFM acts as an auxiliary module to train the semantic
network.

D. SPATIOTEMPORAL NETWORK
We configure the semantic and motion networks in the pro-
posed MSF-NET to extract spatial and temporal features.
For the following reasons, more than semantic and motion
networks are required for robust foreground object detection.

The semantic network cannot observe temporal domain
information since we use only a current image as input. The
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FIGURE 5. The structure of spatiotemporal fusion network (STFN).

motion network has limitations in catching spatial domain
information since we use multiple difference images. Also,
the compact fusion module comprises multiplication, max
pooling, up-sampling, and non-linear functions without train-
able parameters, so it has limitations in generating a stable
foreground probabilitymap. Therefore, an additional network
that integrates spatial and temporal information is required.
We propose a spatiotemporal fusion network (STFN) for this
purpose.

Figure 5 shows the structure of STFN. Its design follows
U-NET [46] and provides a foreground map by process-
ing features from semantic and motion networks. Unlike
semantic and motion networks that receive a current image
and multiple difference images, STFN uses ten outputs
from semantic and motion networks to effectively integrate
spatiotemporal information as input.

The process of generating a foreground map by STFN is as
follows.

SMF i = Concatenate(SF i,MF i) (4)

FFM = fNstfn (SMF1, SMF2, SMF3, SMF4, SMF5) (5)

SMF i represent i-th semantic motion feature. SF i andMF i
is i-th semantic feature and motion feature and their locations
are displayed in blue and red in Figure 3. Nstfn represents
a spatiotemporal fusion network. FFM represents a final
foreground map.

In Figure 5, blue layers correspond to semantic features
received from the semantic network, and red layers represent
motion features obtained from the motion network. Layers
marked in purple represent the fusion layers of semantic

and motion features. STFN uses concatenated features from
semantic and motion networks as input. After convolution
twice, max pooling is used to reduce the layer size.

We can effectively use the spatial information received
from the semantic network and temporal information
obtained from the motion network. The expanding path in the
STFN is similar to semantic and motion networks.

E. LOSS TERM
The proposed MSF-NET comprises three networks: seman-
tic, motion, and spatiotemporal fusion. The configuration of
cost term only using the final foreground map of the spa-
tiotemporal fusion network does not guarantee stable training
of the proposed MSF-NET, found by experiments. In the
proposed method, we reflect the results of three sub-networks
directly or indirectly in cost computation to train the pro-
posed MSF-NET stably. The configuration of cost terms is
as follows.

Ltrain = LFFM + LSFM + LMM (6)

Lval = LFFM (7)

Ltrain represents the cost term used for training. LFFM is
a loss term by a final foreground map generated by STFN.
LSFM is a loss item using a semi-foreground map obtained by
a compact fusion module (CFM). LMM is a loss item using a
motion map, which is the output of the motion network. All
these three loss terms use binary cross entropy. The final loss
is the sum of three loss terms, and we equally reflect three
terms. Lval is validation loss, and it is used for the adjustment
of the learning rate during training.
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IV. EXPERIMENTAL RESULTS
The proposed method comprises three sub-networks: seman-
tic, motion, and spatiotemporal fusion network. Each network
is designed following the U-NET [46], and batch normal-
ization [47] is used after all convolution layers to improve
training speed and stability. He et al. initialization [48] was
used for the initialization of each layer. In the last convolution
layer of each network, the sigmoid function was used to set
the layer output to [0, 1], and ReLUwas used as the activation
function except for the output layer.

The proposed MSF-NET has 29,619,895 parameters,
among which 29,599,467 parameters are trainable. Adam
optimizer [49] was used for training. The batch size is set
to 4, and the initial learning rate is set to 0.001. When valida-
tion loss does not decrease more than five times, we reduce
the learning rate by half. In addition, if the validation loss
dropped less than ten times, we stopped training.

The proposed method uses 50 images from the past to the
present as input of MSF-NET. Most foreground object detec-
tion methods use a frame interval of 1. However, there is a
limitation in observing data over a long period when we use a
frame interval of 1. In the proposedmethod, the frame interval
is set to 10. Therefore, observation is possible for a total range
of 490 frames. By adjusting frame intervals during training,
we could obtain robust detection results in an environment
where a foreground object has been stationary for a long
time. This training method can be applied without additional
data augmentation. In ablation studies, experiments show
performance improvement by the proposed method.

Training a model using samples from a test environment
gives the best performance, but preparing labels requires
a lot of time and cost. For this reason, it is necessary to
design a model that can operate well in unseen environments.
Therefore, it is required to evaluate the detection performance
in a completely different environment not used for training.
Mandal and Vipparthi [4] proposed two evaluation methods
of Scene Independent Evaluation (SIE) and Scene Dependent
Evaluation (SDE) for visual surveillance. The SIE environ-
ment refers to an environment that separates training data and
evaluation data into separate scenes, and the SDE environ-
ment refers to an environment in which specific scenes are
internally divided into training data and evaluation data.

We use three datasets of CDnet2014 [1], LASIESTA [50],
and SBI [51] in experiments. We divide experiments into
two cases. Firstly, a model is trained with the CDnet2014 [1]
dataset, which has the largest number of samples among the
three datasets, and then evaluated on the LASIESTA [50]
and SBI [51] datasets. Secondly, we internally divide the
CDnet 2014 [1], LASIESTA [50], and SBI [51] datasets into
training and evaluation data, respectively. All experiments
were performed with a scene-independent evaluation (SIE)
method.

The CDnet2014 dataset [1] provides five labels: back-
ground, shadow, unknown motion, out of ROI, and fore-
ground. Since the shadow is regarded as a background object
in most visual surveillance datasets, we treat shadows as

background labels during training. Unknownmotion is a label
that exists on the outline of an object. Since the distinction
between foreground and background objects is ambiguous for
unknown motion and out of ROI label, we exclude them in
loss computation.

For evaluation metrics, we use Recall, Precision, FM, and
PWC, defined as follows.

Recall =
TP

TP+ FN

Precision =
TP

TP+ FP

FM =
2 × Precision×Recall
Precision+ Recall

PWC =
FP+ FN

TP+ TN + FP+ FN
×100

TP, TN, FP, and FN stand for true positive, true negative,
false positive, and false negative, respectively.

A. SIE EXPERIMENTS USING DIFFERENT DATASETS
We first train the proposed model using the CDnet2014 [1]
dataset, and evaluation is done using the LASIESTA [50]
and SBI [51] datasets. Since night and thermal images in the
CDnet2014 do not exist in the LASIESTA [50] and SBI [51]
datasets, we exclude them in training. Finally, we train the
proposed model using 23 scenes from five categories in the
CDnet2014 [1] dataset. For each scene, 80%was used as train
data, and 20% was used as validation data. A total of 42,345
imageswere used, of which 33,868were used as training data,
and 8,477 were used as validation data.

Firstly, evaluation is done using the LASIESTA [50]
dataset. In the LASIESTA [50] dataset, we evaluate using
20 scenes from 10 categories except scenes containing
camera movement.

Table 1 shows the comparison results of FM values by the
proposed method and other algorithms. In Table 1, four algo-
rithms are done in the SIE setup, and different algorithms’
results are based on training using the LASIESTA dataset.

Figure 6 compares foreground maps with the proposed
and other methods. Among comparison methods, 3DCD [13]
and FgSegNet-v2 [2] do training under the same condi-
tions as the proposed method. Fast-D [30], SuBSENSE [21],
Berjón et al. [27], and Haines and Xiang [20] is a classic
foreground object detection methods. SuBSENSE [21] was
evaluated using BGSlibrary [52]. Results of Fast-D [30],
Berjón et al. [27], and Haines and Xiang [20] are ones noted
in each paper.

The proposed method offers outstanding detection per-
formance with an average FM of 0.9487 and a mean false
detection rate (PWC) of 0.2336 in the LASIESTA dataset.
It amounts to a 9% higher FM than the latest deep learning-
based algorithm, 3DCD [13]. It amounts to 13% higher FM
than Fast-D [30], the latest classical algorithm.
Since the proposed method uses images from a wide range

of 490 frames as input, the model takes a little longer to adapt
to the light change environment where an instantaneous light
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TABLE 1. FM score comparison to other algorithms on the LASIESTA dataset.

FIGURE 6. Qualitative evaluation of the LASIESTA dataset.

change occurs. Therefore, there was a slight drop in the light
change environment of ‘I_IL’ in Table 1, but it showed the
second-best performance among other algorithms. In addi-
tion, the proposed method offers robust performance in
environments where objects have been stopped for a long
time, in bootstrap and challenging weather environments.

Next, we evaluate the proposed method using the SBI
dataset. We use the same trained model to evaluate the
LASIESTA [50] dataset. The SBI dataset consists of a total
of 14 scenes. Snellen and Foliage, which classify moving
leaves as foreground objects contrary to the convention of
visual surveillance, were excluded from evaluation. Also, the
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TABLE 2. Comparison of FM score with other algorithms on the SBI dataset.

FIGURE 7. Qualitative evaluation on the SBI dataset.

Toscana scene comprising six non-consecutive images was
excluded from evaluation since the proposed method uses
50 images as input.

Table 2 compares FM scores by the proposed method
and other algorithms. Figure 7 shows the result of
foreground object detection on the SBI dataset by the

proposed and other methods. Like experiments on the
LASIESTA dataset, 3DCD [13] and FgSegNet-v2 [2] were
trained using the same data as the proposed method.
Yang et al. [53], SuBSENSE [21], ReProCS [54], and
MEROP [55] belong to classic foreground object detection
methods.
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TABLE 3. Comparison of performance with other algorithms in CDne2014 internal conflict environment.

TABLE 4. Comparison of performance with other algorithms in LASIESTA internal conflict environment.

The proposed method gives 13% higher FM than
3DCD [13], the latest deep learning method. It has a 7%
higher FM than Yang et al. [53]. The proposed method shows
a good detection performance in most environments except
the Cavignal scene. The Cavignal scene is a challenging sce-
nario belonging to a bootstrap environment where stationary
foreground objects exist from the start frame. In the Cavignal
scene, FgSegNet-v2 [2] shows the best performance. The
proposed method gives miss-detection results at an early
stage of the Cavignal scene, but it can correctly detect later,
as shown in Figure 7.

The proposed method enables robust detection when the
object of interest is slightly moving. Still, detection perfor-
mances are degraded in the combined case of the Cavignal
scene and the bootstrap environment. However, as shown in
Cavignal #250 in Figure 7, the proposed method provides
accurate detectionwhen the object of interest moves. The pro-
posedmethod performswell in challenging environments like
the Candela scene, where a foreground object is stationary for
a long time, and Highway 1 and 2 scenes, where the camera
is slightly shaken.

B. SIE EXPERIMENTS USING THE SAME DATASET
In this section, we provide experimental results following the
SIE setup. CDnet2014 [1], LASIESTA [50], and SBI [51]
datasets are internally divided into training and evaluation
data and used for experiments. We follow the method in
3DCD [13] for internal division.
First, the CDnet2014 [1] dataset was internally divided,

and an evaluation was done. Among 12 categories in
CDnet2014 [1], 11 categories were used for experiments,
excluding the PTZ category obtained under camera motion.

One scene from each category is used for evaluation data, and
the remaining scenes are used for training data.

Table 3 shows the comparison results of the FM score
by the proposed method and other algorithms. Results of
different algorithms are used as ones noted in 3DCD [13]. The
proposed method gives an average FM score of 0.85, which
is 1% lower than 3DCD [13], having an average FM score of
0.86 on CDnet2014 [1]. The proposed method shows inferior
performance in the sidewalk (SW) scene of the camera jitter
category, and in the turbulence 1 (T1) scene, which involves
camera shakes.

On the other hand, for scenes excluding ones caused by
camera movement, the proposed method gives an average
FM score of 0.91 and a PWC of 0.57, and it amounts
to a 5% higher FM and 25% lower PWC score than
3DCD [13].
Next, the LASIESTA [50] dataset was internally divided,

and evaluation was done. LASIESTA dataset [50] consists of
10 categories and 20 scenes. For each category, scene 1 was
used for training, and scene 2 was used for evaluation. Table 4
compares FM scores by the proposed method and other deep-
learning algorithms. Results of different algorithms are used,
ones noted in 3DCD [13]. The proposed method shows a
13% higher FM score than the latest deep learning method
of 3DCD [13].
Finally, the SBI [51] dataset was internally divided, and

evaluation was done. Four scenes of candela, CAVIAR2,
cavignal, and highway2 were used for evaluation data, and
the remaining nine scenes were used for training data. Table 5
shows the comparison results of FM scores by the proposed
method and other algorithms. The proposed method offers a
dramatically 32% higher FM score than 3DCD [13].
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TABLE 5. Comparison of performance with other algorithms in SBI internal conflict environment (FM).

C. ABLATION STUDIES
We show the validity of sub-modules in the proposed
MSF-NET through ablation studies. We present experimental
results without using critical components of subtraction in
the motion network and CFM module. Also, we investigate
the effect of training MSF-NET under a frame interval of
one, not ten, which is used for the test. Experiments are
done after training using the CDnet2014 dataset [1], and then
evaluations are done using LASIESTA [50] and SBI [51]
datasets.

Tables 6 and 7 show comparison results of FM scores for
not using critical components in the proposed MSF-NET on
LASIESTA [50] and SBI [51] datasets. Figure 8 shows some
representative results according to ablation studies.

We get a relative 1% and 2% improvement in the
LASIESTA and SBI datasets when we use train interval
adjustment. That improvement can be regarded as one that
can be obtainable when initial values of parameters are ran-
domly chosen. Therefore, we can conclude that train interval
adjustment has negligible effects.

In the LASIESTA dataset, a clear performance improve-
ment can be noticed. In the SBI dataset, a clear performance
improvement like the LASIESTA dataset cannot be seen,
which requires further investigation.

In Figure 8, red boxes correspond to miss detection that
regards stationary background objects as foreground objects.
Using multiple difference images as input of motion net-
work and training the semantic network using CFM prevent
erroneous detection of stationary background objects as fore-
ground objects, as shown in Figure 8. In Figure 8, blue
boxes correspond to regions not detected as foregrounds,
which occurs when foreground objects are stationary for a
long time. We could partially solve this problem by adjust-
ing frame intervals during training and test time, as shown
in Figure 8.

D. LAYER VISUALIZATION
Figure 9 shows the output of some inner layers by the
proposed MSF-NET. The proposed method is based on a
split and merge framework comprising three sub-networks
of semantic, temporal, and spatiotemporal fusion networks.
Semantic network targets extract spatial information from
a current image. The temporal network wants to extract
temporal information on multiple difference images. These
two networks correspond to a split part. Finally, the fore-
ground map is obtained by a spatiotemporal fusion network

TABLE 6. The evaluation result of the FM score in the LASIESTA dataset
according to whether or not the proposed methods are applied.

TABLE 7. The evaluation result of the FM score in the SBI dataset
according to whether or not the proposed methods are applied.

corresponding to a merging part. As shown in Figure 9,
outputs of the motion network and semantic network con-
tain significant false positives. Motion network causes an
error that regards a stationary foreground object as back-
ground. A semantic network generates a mistake that reacts
to background objects. However, we can obtain decent
detection results through STFN regardless of the erro-
neous detection of each network. This shows the validity
of the proposed MSF-NET designed by a split and merge
framework.
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FIGURE 8. Ablation study qualitative evaluation result (red box: when the background is incorrectly classified as foreground, blue box: when the
foreground is incorrectly classified as background).

FIGURE 9. Visualization of inner layers of the proposed algorithm.

TABLE 8. Comparison of the number of parameters and computation
time with other algorithms.

E. COMPUTATIONAL COST
We compare the computation time of the proposed method
with the latest deep learning algorithms of 3DCD [13] and

FgSegNet-v2 [2]. The three models were implemented using
Keras, and experiments were done using a computer with
NVIDIA RTX2080Ti 11GB. Table 8 compares the number
of parameters and the number of frames processed per sec-
ond by the proposed and comparing methods. The proposed
method can process 60fps on RTX 2080Ti and has twice the
processing speed compared to 3DCD [13]. FgSegNet-v2 [2]
has twice the operation speed of the proposed method but
shows low foreground object detection performance.

V. CONCLUSION
In this paper, we proposed MSF-NET for robust fore-
ground object detection in visual surveillance. The pro-
posed MSF-NET consists of three sub-networks: a semantic
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network, a motion network, and a spatiotemporal fusion
network. It is designed by the following split and merge
framework. First, we split spatial and temporal information
on multiple successive images. A semantic network extracts
spatial features from a current image. A motion network
focuses on extracting temporal information by using multiple
difference images. Finally, a spatiotemporal fusion network
integrates spatial and temporal information by adopting early
fusion from the semantic and motion networks. Also, we pro-
pose a method for stably training the proposed MSF-NET.
We make all outputs of three sub-networks involved in cost
computation by introducing a semi-foreground map through
a compact fusion module having no trainable parameters.
Experimental results and ablation studies show the validity
of the proposed MSF-NET. However, the proposed method
could have better detection performance in an environment
where the camera is moving. For further research, we will
focus on solving this problem.
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