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ABSTRACT Due to vast data in information era,direct data driven control is more widely studied all
over the world, i.e. designing the unknown controller directly from the measured input-output data,while
avoiding the modeling process for the unknown plant. For completeness, after classical model reference
control is introduced from our own understanding, i.e. controller design, statistical analysis, algorithm and
regularization,we propose a complete synthesis analysis for direct data driven control from some different
points, for example, algorithm, statistical analysis and adaptation, so making direct data driven control suit
for different environments and paving new roads for further research. To prove our obtained theoretical
results, one aircraft flight control system is applied to implement the main essence of direct data driven
control strategy.

INDEX TERMS Model reference control, direct data driven control, statistical property, regularization,
adaptation.

I. INTRODUCTION
During many engineering applications, an accurate mathe-
matical description of the actual physical plant is needed
for latter analysis and controller design. The behavior of
the considered plant of interest is modeled from the first
principle laws or system identification, meaning a detailed
knowledge of the interesting plant is essential to derive a
mathematical model from these physical laws. However,
many physical plants have complex system structure, so it
is very hard to model them using the first principle laws.
Instead, a system identification approach can be used to
describe the intrinsic behavior of the considered plant.
Whatever the physical modeling or system identification
approach is used to construct one mathematical model for
our considered unknown plant, then the obtained model
is deemed as one model basis for latter task mission, for
example, controller design, anomaly detection, fault isolation
etc. generally, above description means two steps, i.e. the
first systemmodeling and second controller design. Although
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controller design is our terminated goal, but system model is
necessary through spending lots of time and energy resource,
being called as model based control.

During our new and convenient lives in new era, informa-
tion showing in data science blows up with time increases,
meaning all our features are contained in the related data,
such as figure, face, gene, voice, etc, so the useful feature
can be extracted from these data when it is needed, thus
making our lives more convenient. By the way, the main
essence of above system identification is similar to extract the
useful information for that unknown plant. More specifically,
after collecting the left and right input-output data with
respect to the considered plant, system identification is to plot
one continuous or discrete curve, fitting the collected input-
output data, i.e. curve fitting problem, that is denoted as one
mathematical equation or model. This idea on constructing
mathematical model for unknown plant from the input-output
data is extended to design controller only through the
input-output data directly, being called direct data driven
control. Generally, direct data driven control designs the
unknown controller to get one original controller from data
science directly, while avoiding the first system modeling
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step. As the final goals for system identification and direct
data driven control are same with each other, i.e. one for
system modeling and the other for controller, so all related
methods about how to extract the useful information from
our collected data for system identification are benefit for
our studied direct data driven control in this new paper. The
reason about why direct data driven control is more popular
than classical model based control in academy is that more
subjects appear to support it, for example, machine learning,
deep learning, reinforcement learning, adaptation etc.

Due to the widely studied fact about direct data driven
control in academy and engineering respectively, lots of
research on it are ongoing. Reference [1] calls it as model
free control, while combining the adaptation to analyze the
stability property. Data driven dissipativity analysis and its
computation approach are done in [2] and [3]. The dual
combinations with direct data driven and model predictive
control are proposed together in [4], and other innovative
statistical properties are analyzed continuously, such as
stabilization and optimality [5], data informativity [6]. Data
informativity guarantees the enough rich for the measured
data,so that the intrinsic principle of the considered plant
is excited persistently [7], being applied into one algebraic
regulator problem [8]. In recent years, behavior theory
is introduced into direct data driven control to yield one
new control strategy, i.e. data enable predictive control
in [9], where the future outputs are expressed as one
linear combination form with respect to the finite inputs
and outputs within one finite time interval [10] and [11].
Due to the similar relations for system identification and
direct data driven control, many identification methods are
suited for direct data driven control, for example, maximum
likelihood estimation in data driven control [12], robust
parameter estimation for robust data driven controller [13],
meaning the designed data driven controller from the noisy
environment.Other than above mentioned recent references
on direct data driven control strategy, we also study it from
different aspects in these years, and achieve some new
contributions, being formulated as follows.

(1) optimization algorithm,
(2) statistical analysis,
(3) optimal input signal design,
(4) construct one regularized cost function,
(5) combination with other classical control strategies.
Specifically, [14] gives a complete statistical analysis for

one kind of direct data driven control, i.e. virtual reference
feedback tuning control, and adaptive idea is combined
with direct data driven control together to form adaptive
iterative correlation tuning control [15]. Instead direct data
driven control is benefit for engineering applications, for
example, UAV flight system in [16]. Generally, all of above
references tell us research on direct data driven control
is worth in both academia and industry, thus bring our
new paper. More new contributions are embedded into data
driven control from theory and application in [17], for
example, differential game, differential geometry, adaptation

and persistent excitation. Stability analysis about data driven
control is given in [18], which depends on Lyapunov based
approach. When idea of data driven strategy is used to design
one unknown nonlinear controller, approximate nonlinearity
cancellation is introduced in [19], and detectable stage costs
are considered in combining data driven andmodel predictive
control [20].

Based on our previous contributions about direct data
driven control from the detailed controller design within
an ideal situation, this new paper continues to complete
our ongoing research, and formulates some interesting
issues. More specifically, our previous contribution does
not consider the external noise or disturb, so the yielded
controller is an ideal one. This new paper breaks this ideal
case, and extends direct data driven control to more general
case. For the sake of completeness, the considered closed
loop system structure is given with one unknown plant, and
unknown controller simultaneously, then our main mission is
to design this controller to guarantee the real output track the
expected or desired output, i.e. the goal of perfect tracking.
Firstly, classical model reference control strategy is applied
to be our reviewed model based control, that designs one
controller through solving one optimization problem, relating
with the unknown plant and expected performance. Consider
this optimization problem with the unknown controller as the
decision variable, one explicit form about controller and its
statistical analysis are all analyzed completely. To improve
the computational speed, i.e. applying the existed convex
optimization algorithm, we derive one condition to guar-
antee the constructed optimization problem be one feasible
convex optimization problem. Secondly, after describing the
dependence on that unknown plant and to avoid the system
modeling process, our considered direct data driven control
is proposed from different points, such as the explicit form,
statistical analysis, optimal input signal. Furthermore, direct
data driven control is combined with the adaptive idea, i.e.
forming adaptive direct data driven control. Thirdly, these
two different control strategies, i.e. classical model reference
control and direct data driven control are used in aircraft flight
system, while letting aircraft fly according to the orders from
the ground station. After comparing the simulation results,
the merit of direct data driven control is proven in case of
large data set.

This paper is organized as follows. In section II, closed
loop system is considered with unknown plant and unknown
controller simultaneously and our main work is also
described. Section III introduces classical model reference
control strategy in more detail, such as algorithm, statistical
analysis, convex condition and regularization. To avoid
the traditional modeling process, direct data driven control
scheme is proposed in section IV, where algorithm, statistical
analysis and its adaptive form are all studied. Comparison of
these two different control strategies are done in aircraft flight
system to guarantee aircraft fly along the desired trajectory.
Section VI formulates the main conclusion and points out our
next work.
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Generally, the main contributions in this continuous paper
are listed as follows.

(1) The detailed controller design process are explained
for classical model reference control and direct data driven
control together.

(2) To improve the readability, some developments are
given to obtain one accurate controller estimate. Then this
paper generalizes and formulates our previous contributions.

(3) The detailed application of direct data direct control
into aircraft flight system is given to combine the theoretic
analysis and engineering application.

II. SYSTEM STRUCTURE
Consider the following closed loop system structure with one
unknown plant and unknown controller,plotted in Figure 1.
It is similar to one aircraft flight control system, being
described int latter section V more detailed.

FIGURE 1. Closed loop system structure.

where in above Figure 1, P(z) is the unknown plant, z is the
shift operator.C(z) is one unknown feed forward controller,
i.e.{P(z),C(z)} are unknown. r(t) is one external excitation
signal, being used to excite the whole closed loop system.
d(t) is also one external disturbance or noise, not being
neglected in academy and practice. {u(t), y(t)} correspond to
the input-output signal for that unknown plant P(z). Error
signal e(t) means the deviation between external input r(t)
and feedback output y(t),i.e. e(t) = r(t) − y(t).

Observing Figure 1, after simple computations, the follow-
ing obvious equations are yielded.{

cy(t) = P(z)u(t) + d(t)
u(t) = C(z)e(t) = C(z)[r(t) − y(t)]

(1)

i.e.

y(t) = P(z)C(z)[r(t) − y(t)] + d(t)

y(t) =
P(z)C(z)

1 + P(z)C(z)
r(t) +

1
1 + P(z)C(z)

d(t) (2)

The problem of controller design for Figure 1 is to design
that unknown feed forward controller C(z) from different
points,i.e. perfect tracking, robustness and adaptation, etc.

III. CLASSICAL MODEL REFERENCE CONTROL
The goal of model reference control guarantees the closed
loop output response track one expected or desired reference
model M (z), while satisfying other control performances.

A. CONTROLLER DESIGN
Consider the main goal of model reference control, more
specifically, we want that closed loop transfer function from

FIGURE 2. Model reference control scheme.

external input P(z) to closed loop output y(t) is same with
reference model M (z), given in priori, i.e.

P(z)C(z)
1 + P(z)C(z)

→ M (z) (3)

Equation (3) is shown in Figure 2.
where from Figure 2, we have

ε(t) = y(t) − y0(t) =
P(z)C(z)

1 + P(z)C(z)
r(t)

+
1

1 + P(z)C(z)
d(t) −M (z)r(t)

= [
P(z)C(z)

1 + P(z)C(z)
−M (z)]r(t)

+
1

1 + P(z)C(z)
d(t) (4)

Combining equation (3),(4) and the main goal of model
reference control, the optimal feed forward controller C(z)
is designed from one optimization problem, i.e.

C(z) = argminC(z)∥
P(z)C(z)

1 + P(z)C(z)
−M (z)∥22 (5)

where ∥.∥ is the commonly used Euclidean norm.
To get one explicit form for controller C(z), we take the

partial derivative with respect to controller C(z) and set the
derivative equal to zero, then we have

[
P(z)C(z)

1 + P(z)C(z)
−M (z)]

P(z)
[1 + P(z)C(z)]2

= 0 (6)

i.e.

1 −
1

1 + P(z)C(z)
−M (z) = 0

P(z)C(z) =
1

1 −M (z)
− 1 =

M (z)
1 −M (z)

(7)

so the final controller is that

C(z) =
1
P(z)

M (z)
1 −M (z)

(8)

where from above equation (8), we see after given that
reference model M (z), and identified that considered plant
P(z), the optimal controller C(z) is yielded to satisfy the
control goal,i.e. equation (3).

Furthermore, due to the dependence of controller C(z) on
plant P(z), classical model reference control is also model
based control strategy, as plant P(z) appears in that explicit
form of controller C(z).
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B. STATISTICAL ANALYSIS
For the sake of completeness, the quality of that final
controller C(z) is needed to evaluate. Assume one ideal
controller C0(z) exist to satisfy that.

P(z)C0(z)
1 + P(z)C0(z)

= M (z) (9)

i.e.

1 −M (z) = 1 −
P(z)C0(z)

1 + P(z)C0(z)

=
1

1 + P(z)C0(z)
(10)

substituting equation (9) and (10) into equation (8), it holds
that

C(z) =
P(z)C0(z)

1 + P(z)C0(z)
1 + P(z)C0(z)

1
1
P(z)

= C0(z) (11)

Equation (11) means our final controller, showing in
equation (8), is equal to that assume ideal controller,
while guaranteeing the condition (3), i.e.perfect tracking or
matching.

C. ALGORITHM
When to solve that optimization problem (5), lots of classical
optimization algorithms can be applied directly, such as
Newton algorithm, gradient algorithm, conjugate algorithm
etc. To let the final controller be one optimal controller, i.e.
C(z) = C0(z), we can resort to the nice convex optimization
algorithm, in case of a convex cost function.

Making use of the property of convex cost function about
its second derivative must be positive, we continuously
derivative that cost function twice, i.e.

1
[1 + P(z)C(z)]3

− 3
P(z)C(z)

[1 + P(z)C(z)]4

+
2M (z)

[1 + P(z)C(z)]3
≥ 0 (12)

Multiplying [1 + P(z)C(z)]4 on both sides of above equa-
tion (12) to get.

Making use of the optimality necessary condition to
differentiate with respect to P(z) and setting the derivative
equal to zero, we have

1 + P(z)C(z) − 3P(z)C(z) + 2M (z)(1 + P(z)C(z)) ≥ 0

C(z)[2P(z) − 2M (z)P(z)] ≤ 1 + 2M (z)

C(z) ≤
1 + 2M (z)

2P(z) − 2M (z)P(z)
(13)

Equation (13) gives a condition about guaranteeing the
constructed cost function (5) be convex, so the final
controller, solving by each optimization in form (8), is one
optimal controller.

D. REGULARIZATION
Above description about optimal controller design is around
that desired condition (3), but disturbance or noise e(t) exists
really, so it is necessary to reject the bad effect coming from
disturbance e(t).
Combining equation (3) and the bad effect from distur-

bance e(t), here we consider them together, i.e. designing
one optimal controller while satisfying the following two
conditions.

P(z)C(z)
1 + P(z)C(z)

→ M (z)

1
1 + P(z)C(z)

→ 0 (14)

Then one improved optimization problem is constructed to
design the optimal controller within the case of above two
conditions.

C(z) = argminC(z)∥
P(z)C(z)

1 + P(z)C(z)
−M (z)∥22

+λ∥
1

1 + P(z)C(z)
∥
2
2

= argminC(z)[
P(z)C(z)

1 + P(z)C(z)
−M (z)]2

+λ[
1

1 + P(z)C(z)
]2 (15)

In equation (15), the second term is called the regularization
term, being to restrict the bad effect from disturbance.
Regularization parameter λ is chosen by designers.

After simple but tedious calculation, the optimal controller
is given by

C(z) =
1
P(z)

M (z) + λ

1 −M (z)
(16)

substituting equation (9) into above equation (16), we have.

C(z) =
1
P(z)

P(z)C0(z)
1+P(z)C0(z)

+ λ

1 −
P(z)C0(z)

1+P(z)C0(z)

= C0(z) + λC0(z) +
λ

P(z)
(17)

Continuing to substitute equation (17) into that first condi-
tion, i.e.

P(z)C(z)
1 + P(z)C(z)

−M (z) = 1 −
1

1 + P(z)C(z)

−
P(z)C0(z)

1 + P(z)C0(z)

= −
1

1 + P(z)C(z)
+

1
1 + P(z)C0(z)

=
P(z)[λC0(z) +

λ
P(z) ]

[1 + P(z)C(z)][1 + P(z)C0(z)]
(18)

Equation (18) tells us the goal of perfect tracking is not
impossible in case of two conditions, but one minimum value
about that improved cost function (15) is obtained, i.e. one
trade off between perfect tracking and disturbance rejection.
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FIGURE 3. Direct data driven control scheme.

IV. DIRECT DATA DRIVEN CONTROL
Observing Figure 1 or cost functions (5), (15), plant P(z)
exists in all above mathematical derivation. Moreover, those
two final controllers (8) and (16) are dependent on unknown
plant P(z), meaning we must identify that unknown plant P(z)
firstly, and substitute its explicit or implicit forms in the final
controller.

A. ALGORITHM
To avoid the identification process for the unknown plant
P(z) and achieve our terminate goal of designing unknown
controller C(z), here this section proposes our considered
direct data driven control, whose idea is plotted in Figure 3.

To show the main essence of direct data driven control
and avoid the identification process for the unknown plant,
only observed input-output, corresponding to the unknown
controller are applied to design the controller directly, i.e.
extracting some useful information from the observed input-
output data. Two sensors are placed on the left and right
side of controller C(z), whose output is u(t) and input is
e(t) = r(t) − y(t). Furthermore, reference model M (z)
means y(t) = M (z)r(t),then the input signal r(t) satisfies
r(t) = M−1(z)y(t), so the input-output data with respect to
controller C(z) are formulated as follows.

{e(t), u(t)} → {r(t) − y(t), u(t)}

→ {M−1(z)y(t) − y(t), u(t)}

→ {(M−1(z) − 1)y(t), u(t)} (19)

Based on above input-output data, direct data driven control
works to design one optimal controller only through data
{u(t), y(t)}, while considering the property of perfect tacking,
i.e.

C(z) = argminC(z)
1
N

N∑
t=1

[u(t) − C(z)y1(t)]2;

y1(t) = (M−1(z) − 1)y(t) (20)

where N is the total number of observed data.
Observing equation (20),{u(t), y(t)}Nt=1 are collected by

some physical sensors, M (z) is the given reference model,
only C(z) is unknown, and unknown plant P(z) does not
exist. When to obtain one explicit form for optimal controller,
by differentiating with respect to C(z) and setting the

derivative equal to zero, we have

2
N

N∑
t=1

[u(t) − C(z)y1(t)]y1(t) = 0;

y1(t) = (M−1(z) − 1)y(t) (21)

i.e.

N∑
t=1

u(t)y1(t) = C(z)
N∑
t=1

y1(t)y1(t);

C(z) = [
N∑
t=1

y1(t)y1(t)]−1[
N∑
t=1

u(t)y1(t)]

=
φuy1 (w)
φy1 (w)

=
(M−1(z) − 1)φuy(w)
(M−1(z) − 1)2φy(w)

=
φuy(w)

(M−1(z) − 1)φy(w)
(22)

where φy(w), φuy(w) are auto spectrum and cross spectrum
between input-output {u(t), y(t)}Nt=1, i.e.

φy(w) = lim
N→∞

1
N

N∑
t=1

yT (t)y(t)

φyu(w) = lim
N→∞

1
N

N∑
t=1

yT (t)u(t)

without loss of generality, the detailed algorithm for direct
data driven control is listed as follows.

Algorithm 1
Step 1: Given one reference model M (z) in priori.
Step 2: Collect the input-output data {u(t), y(t)}Nt=1 with
respect to that unknown controller C(z).
Step 3: Compute two kinds of power spectral
{φy(w), φuy(w)}.
Step 4: Set the designed controller be that

C(z) =
φuy(w)

(M−1(z) − 1)φy(w)

Step 5: Testify whether above controller C(z) is good,
through satisfying the following condition.

e(t) = u(t) − C(z)(M−1(z) − 1)y(t) → 0

or return to step 2.

Above algorithm gives a rough controller by using the
idea of direct data driven control, that only depends on
input-output data {u(t), y(t)}Nt=1 and reference model M (z).

B. STATISTICAL ANALYSIS
To testify the statistical property about optimal controller
C(z) in equation (22),we take the expectation operator on both
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sides of equation (22) to get.

E[C(z)] =
E[φuy(w)]

(M−1(z) − 1)E[φy(w)]
(23)

where the following equation are used in deriving equa-
tion (23) and assume the covariance of disturbance d(t)
be σ 2.

y(t) =
P(z)C(z)

1 + P(z)C(z)
r(t) +

1
1 + P(z)C(z)

d(t);

u(t) =
C(z)

1 + P(z)C(z)
r(t) −

C(z)
1 + P(z)C(z)

d(t);

φuy(w) =
P(z)C2(z)

[1 + P(z)C(z)]2
φr (w) −

C(z)
[1 + P(z)C(z)]2

σ 2
;

φy(w) =
P2(z)C2(z)

[1 + P(z)C(z)]2
φr (w) +

1
[1 + P(z)C(z)]2

σ 2
;

E[r(t)d(t)] = 0;

M (z) =
P(z)C0(z)

1 + P(z)C0(z)
;

M−1(z) − 1 =
1

1 + P(z)C0(z)

Then after simple computations, equation (23) is simplified
as that

E[C(z)] = C0(z) −
[P(z)C0(z) + 1]σ 2

P2(z)C2
0 (z)φr (w) + σ 2

(24)

Here φr (w) denotes the input power spectral. The second term
is the bias term, meaning that optimal controller is a biased
controller. By the way, external input r(t) and disturbance e(t)
are uncorrelated.

An interesting problem about reducing this bias term is
solved through choosing an approximate input power spectral
φr (w), so that our designed controller C(z) is one unbiased
controller, i.e. E[C(z)] = C0(z). The process of choosing an
approximated input power spectral corresponds to the subject
of optimal input design, i.e.

argminφr (w)
1

φr (w)
subject to φ1(w) ≤ φr (w) ≤ φ2(w) (25)

or its equivalent form as

argminφr (w)
[P(z)C0(z) + 1]σ 2

P2(z)C2
0 (z)φr (w) + σ 2

subject to φ1(w) ≤ φr (w) ≤ φ2(w) (26)

where {φ1(w), φ2(w)} are upper and lower bound for input
power spectral. Based on our previous contribution, one
explicit form for input power spectral φr (w) is derived
through our own derivations.

C. ADAPTATION
Here this last section proposes to combine the adaptive
idea, i.e. adaptation, into solving that optimal controller C(z)
recursively in real time way.

As

C(z) = [
N∑
t=1

y1(t)y1(t)]−1[
N∑
t=1

u(t)y1(t)];

y1(t) = (M−1(z) − 1)y(t) (27)

In case of the total number or observed input-output data be
t , regressor variable ϕ1(t) and unknown parameter vector θ

are defined as follows

Ct (z) = [
t∑
i=1

y1(i)y1(i)]−1[
t∑

t=1

u(i)y1(i)]

= F(t)[
t∑
i=1

u(i)y1(i)]

F−1(t) =

t∑
i=1

y1(i)y1(i) (28)

Ct (z) means the designed controller C(z) is related with
the total number of observed input-output data t , using one
recursive form as that

Ct+1(z) = F(t + 1)[
t+1∑
i=1

u(i)y1(i)];

F−1(t + 1) =

t+1∑
i=1

y1(i)y1(i)

=

t∑
i=1

y1(i)y1(i) + y1(t + 1)y1(t + 1)

= F−1(t) + y1(t + 1)y1(t + 1) (29)

Expressing Ct+1(z) as a function of Ct (z) to get

Ct+1(z) = Ct (z) + 1Ct+1(z) (30)

i.e.

Ct+1(z)=F(t + 1)[
t∑
i=1

u(i)y1(i) + u(t + 1)y1(t + 1)]

=F(t + 1)[F−1(t)Ct (z)+u(t + 1)y1(t + 1)];

F−1(t + 1)Ct (z) = F−1(t)Ct (z)

+ y1(t + 1)y1(t + 1)Ct (z);

F−1(t)Ct (z) = F−1(t + 1)Ct (z)

− y1(t + 1)y1(t + 1)Ct (z) (31)

Then

Ct+1(z) = F(t + 1)[F−1(t + 1)Ct (z)

− y1(t + 1)y1(t + 1)Ct (z) + u(t + 1)y1(t + 1)]

= Ct (z) + F(t + 1)y1(t + 1)

× (u(t + 1) − Ct (z)y1(t + 1)) (32)
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This result is that

Ct+1(z) = Ct (z) + F(t + 1)y1(t + 1)ε(t + 1);

ε(t + 1) = u(t + 1) − Ct (z)y1(t + 1);

F(t + 1) = F(t) −
F(t)y1(t + 1)y1(t + 1)F(t)
1 + y1(t + 1)F(t)y1(t + 1)

(33)

where equation (33) shows one recursive expression in
deriving that optimal controller with time increases. The
merit of recursive form is to implement the recursive
algorithm in real time way.

Generally, adaptive direct data driven control scheme is
plotted in Figure 4.

Here the adaptive idea is introduced with our considered
direct data driven control strategy, so that the designed
controller can be adjusted with the varying environment, for
example, varying control structure, varying plant and others.

V. AIRCRAFT FLIGHT CONTROL SYSTEM
This section gives some simulations to prove our proposed
theories in this paper.
The leader-follower flight mode is shown in Figure 5, where
according to the desired formation in priori, UAV group
need to keep the given formation structure online, then the
followers continuously obtain the leader’s speed, heading
angle and altitude information, so the followers will adjust
their own positions to keep the same with the leader.
Generally, the control principle of UAV formation flight is
summarized as follows.

Control principle of UAV formation flight
Step 1: the leader sends some flight orders to the
followers through data communication, such as heading
angle, speed or velocity, and formation commands or
orders.
Step 2: the followers calculate the formation error
signal, while considering the previous results.
Step 3: the followers calculate the current distance
between the two adjacent UAVs, according to the
information, sent from the leader.
Step 4: calculate the deviation signals about velocity
and heading angle between the leader and followers,
then generate the corresponding control rules and send
the flight orders to the followers, making the followers
fly along the desired trajectory.

During the aircraft formation simulation, three aircrafts
exist, i.e. one leader and two followers, and the simulation
time interval is 160 second. The original position, horizontal
velocity, and heading angle are denoted respectively. The
whole flight stages are divided into two stages. The first
stage is in [0, 80], and the second stage is in [80, 140].More
specifically, within the first stage, the leader fly in a straight
and level flight with a constant velocity, and its heading
angle is 0. Similarly, in the second stage, the leader will

FIGURE 4. Adaptive direct data driven control scheme.

FIGURE 5. Leader-follower mode.

FIGURE 6. Flight control structure.

rotate around 100 at a constant angular velocity, but its flight
velocity remains the same.

The above four steps are the following formation flight
control structure in Figure 6.

To avoid the identification process for that follower, two
sides of data are collected around the formation controller,
after one order from leader is sent or excite the nonlinear
closed loop system. This order from leader is chosen a
constant or one special signal, i.e. square wave, showing in
Figure 7. The corresponding output signal is measured and
plotted in Figure 8. Based on the input signal and output
signal in Figure 7 and Figure 8, our mission is to design
one nonlinear form for that formation controller. Through
using our proposed direct data driven control strategy, one
approximated linear controller is applied to replace that
nonlinear formation controller.

Specifically, the commonly used linear affine form is used
here, i.e.

u(t) = a0 +

4∑
i=1

aie(t) (34)
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FIGURE 7. The applied input signal.

FIGURE 8. The observed output signal.

i.e. the controller C(z) is expressed as that.

C(z) = a0 + a1z+ a2z2 + a3z3 + a4z4 (35)

and the given transfer function M (z) is that

M (z) =
0.5z2 + 2z+ 0.5

z3 − 1.6z2 + 0.8z+ 1
(36)

Then our mission is to change to design these four
above unknown parameters {a0, a1, a2, a3, a4} from the
input-output measured data. It corresponds to one data fitting
problem, i.e. designing three parameters to guarantee the real
output be same with the output in Figure 8.

In practice, leader sends one order to those two followers,
i.e. telling two followers to fly around leader. The flight
trajectory of leader is the desired or expected flight path.
After two followers receive the order from the leader, then
two followers will modify their flight situations, and track
the leader as soon as possible. According to the leadera̧ŕs
flight trajectory, the formation controllers will design the
above four parameters, so that the two followers will fly near
to the leader. Figure 7 shows the whole flight trajectories
for the leader and two followers, and the horizontal velocity

FIGURE 9. The whole flight trajectories for UAV group.

FIGURE 10. The horizontal velocity varying curve.

FIGURE 11. The heading angle varying curve.

varying curve and heading angle varying curve are all plotted
in Figure 10 and Figure 11. From these three Figures, we see
after two followers receive the order from the leader, they
will fly near to the leader, then achieving the tracking goal
perfectly. This tracking performance can be proven during the
later 40 second, where three flight trajectories are closed to
each other.

Furthermore, to make the simulation more efficient,
Figure 12 shows two flight trajectories. One is the flight
trajectory for the leader, and the other corresponds to one
followera̧ŕs trajectory. To connect it with our theoretical
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FIGURE 12. Two flight trajectories for leader and follower.

analysis, we call the leadera̧ŕs trajectory as the desired
trajectory, and the followera̧ŕs trajectory is the real trajectory.
As these two trajectories approach closely after some
seconds, during which the leader and follower communicate
in data link.

VI. CONCLUSION
Although lots of research on direct data driven control exist,
our new paper gives a complete synthesis analysis about it
and proposes some new directions for latter considerations,
for example, statistical analysis, real time optimization
algorithm, regularization and adaptation. Based on our own
contributions, we find that regularization is suited for perfect
tracking, and adaptation is benefit for time varying controller,
i.e. guaranteeing the designed controller varies with the
different environments. In future, our main work will concern
on nonlinear data driven control.
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