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ABSTRACT Identifying the number of transmit antennas and the channel order is an important step
in recovering the original information for a non-cooperative communication system. Traditional methods
overestimate the number of transmit antennas and the channel order due to the coupling effect. This paper
proposes a novel joint identification scheme to determine the number of transmit antennas and the channel
order, which consists of two stages. Specifically, in the first stage, an improved weighted Gerschgorin disk
identifier is developed to obtain the number of transmit antennas using frequency domain signals. In the
second stage, we first derive an equivalent time-domain model to improve the utilization of the receiver
antenna, and then a novel test statistic followingF distribution is constructed to perform the sequential binary
hypothesis testing. Finally, the channel order is obtained using the estimated number of transmit antennas
in the first stage. The simulation results show that the proposed joint identification scheme significantly
outperforms the existing approaches.

INDEX TERMS Antennas, additive white noise, cognitive radio, frequency division multiplexing,
information security, multipath channels, receivers, signal detection, transmitters, wireless communication.

I. INTRODUCTION
Signal identification is a technology for identifying the
unknown transmission parameters of a signal. Application
areas include spectrum monitoring, cognitive radio, physical
layer authentication, network security, and the industrial
Internet of Things [1], [2], [3], [4], [5], [6], [7], [8]. With
the rapid development of multiple-input multiple-output
orthogonal frequency division multiplexing (MIMO-OFDM)
systems in the last decade, signal identification in the
transmission paradigm has attracted extensive attention
because it can significantly reduce the pilot overhead by
estimating the transmission parameters [9], [10], [11], [12],
[13], [14], [15]. In this paper, we focus on the identification
of the number of transmit antennas and the channel order in
the MIMO-OFDM system, which are the essential steps for
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the subsequent information recovery. The existing work [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30], [31] addresses these two issues separately,
and thus cannot be employed for MIMO-OFDM systems
with the multiple channel paths. This is mainly because
the existing work is based on the fundamental assumptions
that 1) the channel order is 1 for the identification of the
number of transmit antennas, or 2) the number of transmit
antennas is 1 for the identification of the channel order. Thus,
when relaxing these assumptions, the identification of the
number of transmit antennas and the channel order needs to
be redesigned.

A. RELATED WORK
Identifying the number of transmit antennas can be regarded
as an extension of source number detection in the array signal
processing. For the identification of the number of transmit
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antennas, the existing literature [16], [17], [18], [19], [20],
[21], [22], [23], [24] mainly falls into two classes: methods
using the information theory criterion and those using the
feature extraction. These methods require that the channel
order is 1. In other words, the number of transmit antennas
is overestimated with probability 1 for the MIMO-OFDM
system with multiple channel paths. For methods using the
information theory criterion, the number of transmit antennas
is identified using the Akaike information criterion (AIC) and
the minimum description length (MDL) [16]. Furthermore,
the performance of the AIC and the MDL identifiers is
evaluated for the spatially correlated MIMO system [17],
which shows that the received spatial correlation does not
affect the identification performance. However, both the AIC
and the MDL identifiers have the following shortcomings:
1) they only work under the mild signal-to-noise ratio (SNR)
conditions; 2) they are sensitive to the timing and frequency
offsets; 3) when the channel order is greater than 1, the two
identifiers overestimate the number of transmit antennas.

Compared with the information-theoretic methods, the
feature-based algorithms [18], [19], [20], [21], [22], [23], [24]
can identify the unknown number of transmit antennas with
a lower complexity. Using the pilot signal, an identification
method of the number of transmit antennas is proposed for
the OFDM system, in which only one receive antenna is
required for the receiver. Subsequently, an estimator based on
the second- and fourth-order decision statistics is proposed
to obtain the number of transmit antennas without the pilot
signal, where the statistics are constructed using the feature
of the time-varying block fading channels [19]. Considerable
work focuses on the identification of the number of transmit
antennas by using the sample covariancematrix. For example,
in the earlier work [20], the one-step predicted eigenvalue
threshold (PET) algorithm is proposed to estimate the number
of signals by finding the upper threshold of the eigenvalues
of the sample covariance matrix. Many hypothesis-testing-
based algorithms are proposed to estimate the number of
transmit antennas [21], [22], [23], which perform better
under a wide range of SNR and sample lengths than the
previous algorithms such as AIC, MDL, and PET. Recently,
great progress has been made in identifying the number of
transmit antennas based on the deep learning, which obtains
the source number by formulating the source detection
as a multi-class classification problem solved using deep
learning frameworks. The normalized upper triangle of the
autocorrelation matrix [24], the subspace-rank features [25],
the eigenvalues of the normalized covariance matrix [26],
the eigenvalue preprocessing [27], and the logarithmic
eigenvalue [28] are extracted for the input features. The deep-
learning-based methods can obtain a significant performance
improvement compared to the methods based on non-deep-
learning. However, all of the above methods overestimate the
number of transmit antennas with a probability 1 when the
channel order is greater than 1. In contrast to the existing
methods, we propose an improvedweightedGerschgorin disk
identifier to detect the number of transmit antennas using

the frequency domain signal, which can combat the effect of
multiple channel paths.

The channel order (or the number of the channel paths)
is required to be obtained accurately before the channel
estimation and equalization algorithms. Existing literature
[29], [30], [31], [32], [33], [34], [35] focuses on the channel
order identification of a single antenna transmitter. Thus,
the existing methods often overestimate the channel order
for multiple antenna transmitters. A generalized misspec-
ified Cramer-Rao bound for the channel estimation under
the channel order misspecification is introduced via the
moore-penrose inverse operator [29]. Channel order identifi-
cation is also a basic pattern analysis problem, which can be
solved using the information theory criteria, such as the AIC
and the MDL. However, the information-theory-criterion-
based approaches often underestimate or overestimate the
channel order. Various channel order identification methods
have been proposed in the literature to obtain the channel
order with the higher identification accuracy [30], [31], [32],
[33], [34], [35]. For example, the subspace [30], [31], [32],
the autocorrelation function [33], the hypothesis test [34],
[35], and the cumulant features [36] are exploited to identify
the unknown channel order. Despite a variety of schemes for
the channel order identification, they can only operate in a
single-antenna transmitter.

B. MAIN CONTRIBUTION
Because the existing methods handle the identification of
the number of transmit antennas and the channel order
separately, they suffer from serious overestimation problems
in MIMO-OFDM systems with multiple channel paths.
Different from the existing methods, we propose a novel
joint identification scheme for the number of transmit
antennas and the channel order in the MIMO-OFDM
system, which well addresses the overestimation problem
caused by the coupling of the multiple antennas and the
multiple channel paths. Specifically, an improved weighted
Gerschgorin disk identifier is proposed in the frequency
domain, which introduces a diagonal matrix based on the
second moment of the circle center and an adaptive threshold.
Subsequently, the number of transmit antennas is coarsely
identified in each subcarrier, and then the fine solution is
determined by the max-win strategy over all subcarriers.
Furthermore, we derive an equivalent time-domain model for
the MIMO-OFDM system to improve the receive antenna
utilization and construct a test statistic following the F
distribution. Using the sequential binary hypothesis testing,
the value of an expression containing the number of transmit
antennas, the channel order, and the number of observations
can be determined. As a consequence, the channel order can
be detected using the identified number of transmit antennas
in the frequency domain. Themajor contributions of our work
are summarized as follows:

• Propose a joint identification scheme of the number
of transmit antennas and the channel order for the
MIMO-OFDM system. The proposed scheme can
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FIGURE 1. System model for the non-cooperative MIMO-OFDM communication with the multiple channel paths, where
the multiple antenna transmitter sends the OFDM modulation signal and the unauthorized multiple antenna receiver
determines the number of transmit antennas and the channel order using a well-designed identifier.

combat the coupling effect, and shows the excellent
identification performance even at a very high SNR.
In contrast, the traditional methods based on the
information theory criteria or the subspace fail at a high
SNR.

• Design an improved weighted Gerschgorin disk iden-
tifier to obtain the number of transmit antennas in the
frequency domain, where the diagonal matrix based
on the second moment of the circle center and an
adaptive threshold are designed to accurately determine
the position of the signal and error disks. The results
show that the improved weighted Gerschgorin disk
identifier outperforms the traditional approaches.

• Derive an equivalent time-domain model for the
MIMO-OFDM system to improve the utilization of
the receiver antenna. Furthermore, a novel test statistic
following the F distribution is constructed to identify
the channel order in the time domain by performing
the sequential binary hypothesis testing. The proposed
identifier is asymptotically consistent and has a higher
identification accuracy than the existing methods.

The remainder of this paper is organized as follows.
Section II introduces the system model. In Section III,
we analyze the frequency model and propose an improved
weighted Gerschgorin disk identifier. The equivalent
time-domain model and the identifier based on F distribution
are proposed in Section IV. In Section V, we analyze the
performance of the proposed identifier. Section VI concludes
this paper.

II. SYSTEM MODEL
In this section, the system model is first introduced. Then,
we analyze the reasons why the number of transmit antennas
and the channel order cannot be well identified in the
MIMO-OFDM system.

Consider a non-cooperative MIMO-OFDM communica-
tion system, as shown in Fig. 1, where Nt transmit antennas
and Nr receive antennas are employed in the transmitter and
the unauthorized receiver, respectively. Assume thatNr > Nt.
The received signal y(n) ∈ CNr at the unauthorized receiver

is written by

y(n) =

L−1∑
l=0

H(l)x(n− l) + w(n), n ∈ IN (1)

where IN = {1, 2, . . . ,N } denotes a shorthand of the
index set; x(n) ∈ CNt is the transmitted nth signal sample;
H(l) ∈ CNr×Nt is the lth channel fading matrix; L represents
the channel order; N is the number of observed samples;
w(n) ∈ CNr is the white noise, which follows the independent
identically distributed (i.i.d) zero-mean circularly symmetric
complex Gaussian (CSCG) distribution with the variance σ 2.

Let H = [H(0),H(1), . . . ,H(L − 1)] and x̃(n) =

[xT(n), xT (n− 1), . . . , xT(n− L + 1)]T, where T denotes the
transpose. Then, the equation (1) can be further expressed as

y(n) = Hx̃(n) + w(n), n ∈ IN . (2)

Furthermore, the statistical covariance matrix of the received
signal is formulated by

Γ = E
(
y(n)y(n)†

)
(3)

= HRxH†
+ σ 2INr (4)

where Rx = E(x̃(n)x̃(n)†) is the covariance matrix of the
transmitted signal; E(·) denotes the expectation with respect
to all randomness; INr is the Nr by Nr identity matrix;
† denotes the Hermitian transpose. Then, the eigenvalue
decomposition (EVD) of the statistical covariance matrix Γ

is expressed by

Γ = UΛU† (5)

where U is the unitary matrix formed by the eigenvectors
of Γ and Λ denotes the diagonal matrix consisting of the
eigenvalues of Γ . Then, the ith eigenvalue λi of Γ satisfies λ1 ≥ λ2 · · · ≥ λNtL+1 = · · · = λNr = σ 2, Nr > NtL

λ1 ≥ λ2 · · · ≥ λNr , otherwise.

(6)

We can see from (6) that NtL can be estimated from the
cardinality of the largest eigenvalues of Γ when Nr > NtL is
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satisfied. However, in practice, we can only obtain the sample
covariance matrix with finite sample sizes N , i.e.

Γ s =
1
N

N∑
n=1

y(n)y(n)†. (7)

Thus, the ith eigenvalue λs
i of Γ s satisfies

λs
1 ≥ λs

2 · · · ≥ λs
NtL+1 ≥ · · · ≥ λs

Nr
, Nr > NtL

λs
1 ≥ λs

2 · · · ≥ λs
Nr
, otherwise.

(8)

It can be observed from (8) that NtL cannot be determined
from the cardinality of the largest eigenvalues of Γ s even
when Nr > NtL is satisfied. This is because the smallest
Nr −NtL eigenvalues in (8) are different. In fact, the existing
methods such as the AIC, the MDL, and the PET methods
provide a solution for the estimation of NtL when Nr > NtL
is satisfied. However, the previous work cannot determine
the number of transmit antennas Nt and the channel order L,
respectively. In our work, the goal is to determine the number
of transmit antennas and the channel order simultaneously
with finite sample sizes only when Nr > Nt is satisfied.

III. FREQUENCY DOMAIN MODEL AND IMPROVED
WEIGHTED GERSCHGORIN DISK IDENTIFIER
In this section, we first extend the time domain model of
the MIMO-OFDM system to the frequency domain. Then,
the Gerschgorin disk theorem is introduced. Furthermore, the
number of transmit antennas in each subcarrier is identified
by the improved weighted Gerschgorin disk identifier, which
introduces a diagonal matrix based on the second moment
of the circle center and an adaptive threshold. Finally, the
number of transmit antennas is determined using themax-win
strategy over all subcarriers.

A. FREQUENCY DOMAIN MODEL
Assume that a block has M OFDM symbols and
the number of the subcarrier is P. Let X(p,m) =

[X1(p,m),X2(p,m), . . . ,XNt (p,m)]
T denote the mth trans-

mitted symbol of the pth subcarrier, where m ∈ IM and
p ∈ IP. For the pth subcarrier, the transmitted signal with
M symbols can be expressed by

Xp = [X(p, 1),X(p, 2), . . . ,X(p,M )] (9)

=


X1(p, 1) X1(p, 2) · · · X1(p,M )
X2(p, 1) X2(p, 2) · · · X2(p,M )

...
...

. . .
...

XNt (p, 1) XNt (p, 2) · · · XNt (p,M )

 . (10)

Let Y (p,m) = [Y1(p,m),Y2(p,m), . . . ,YNr (p,m)]
T be the

mth received symbol of the pth subcarrier. The received signal
in the frequency domain can be denoted by

Yp = [Y (p, 1),Y (p, 2), . . . ,Y (p,M )] (11)

=


Y1(p, 1) Y1(p, 2) · · · Y1(p,M )
Y2(p, 1) Y2(p, 2) · · · Y2(p,M )

...
...

. . .
...

YNr (p, 1) YNr (p, 2) · · · YNr (p,M )

 . (12)

The channel frequency response of the pth subcarrier is
formulated as

Hp =


H1,1(p) H1,2(p) · · · H1,Nt (p)
H2,1(p) H2,2(p) · · · H2,Nt (p)
...

...
. . .

...

HNr,1(p) HNr,2(p) · · · HNr,Nt (p)

 (13)

where

Hi,j(p) =

L−1∑
l=0

h[i,j]l e−j2π
pl
P , i ∈ INr , j ∈ INt (14)

where h[i,j]l denotes the power gain of the lth path between
the ith receive antenna and the jth transmit antenna. The
frequency domain model is written by

Yp = HpXp + wp, p ∈ IP (15)

where wp is the white noise, which follows i.i.d zero-mean
CSCG distribution with the variance σ 2

p . Thus, the sample
covariance matrix in the pth subcarrier can be formulated by

Γ
[p]
s =

1
M

M∑
m=1

YpY†
p, p ∈ IP. (16)

The statistical covariance matrix is approximated by com-
puting the average of the sample covariance matrices with
M → ∞, i.e.

Γ p = lim
M→∞

Γ
[p]
s (17)

= lim
M→∞

1
M

M∑
m=1

YpY†
p, p ∈ IP. (18)

Then, we can obtain the equation (19) using EVD, i.e.

Γ p = UpΛpU†
p, p ∈ IP (19)

where Up is the unitary matrix with Nr × Nr dimensions and

Λp =


σ 2
p INr + diag

(
λ(p, 1), . . . ,λ(p,Nt), ε(p,Nt + 1),

. . . , ε(p,NtL), 0NtL+1 . . . , 0Nr

)
, Nr > NtL,

σ 2
p INr + diag

(
λ(p, 1), . . . ,λ(p,Nt), ε(p,Nt + 1),

. . . , ε(p,Nr)
)
, otherwise

(20)

where ε represents the error term caused by the multiple
channel paths. Even if M → ∞ is satisfied, the noise
subspace is difficult to determine because of the error term.
Thus, the traditional methods such as the AIC, the MDL,
and the PET overestimate the number of transmit antennas.
Specifically, the traditional methods are still effective at a
low SNR but the performance is degraded. While at a high
SNR, the traditional methods fail. This is because the higher
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FIGURE 2. Eigenvalues of the sample covariance matrix for the time
model and the frequency model in different signal-to-noise ratio
conditions: (a) signal-to-noise ratio with 5 dB, and (b) signal-to-noise
ratio with 20 dB.

the SNR, the greater the difference between the error term
and the noise power. Fig. 2 shows that the eigenvalues of
the sample covariance matrix in the time domain and the
frequency domain models for Nt = 4, Nr = 15, and
L = 3. We can see that, when the SNR is 5 dB, whether the
time domain model or the frequency domain model is used,
the eigenvalue of the sample covariance matrix only has an
obvious jumping point. Furthermore, the value of NtL can
be obtained in the time domain model, and the value of Nt
can be accurately obtained in the frequency domain model
by using the traditional methods. As a comparison, when
the SNR is 20 dB, there is only one step point in the time
domain model, and the value of NtL can be obtained through
the step point. There are two jumping points in the frequency
domain model and the jumping point in the index 12 is more
obvious, so the traditional methods will overestimate the
value ofNt asNtL. In the following, we theoretically consider
how to determine the value of Nt using the covariance
matrix Γ p over all subcarriers only when Nr > Nt is
satisfied.

B. GERSCHGORIN DISK THEOREM
Gerschgorin disk theorem is often used to determine the
locations of eigenvalues from the matrix E with Q × Q
dimensions. Let

gi =

Q∑
j=1,j̸=i

|ei,j|, i ∈ IQ (21)

where ei,j is the element at the ith row and the jth column of
the matrix E. Then, the ith diskOi is defined as the collection
of points in the complex plane whose distance to ei,i is at most
gi, i.e.

Oi = {z ∈ C : |z− ei,i| ≤ gi} (22)

where ei,i and gi are the Gerschgorin center and the
Gerschgorin radius, respectively. In [37], the authors proved
that the eigenvalues of matrix E are contained in the union of
disks Oi, i ∈ IQ.

C. IMPROVED WEIGHTED GERSCHGORIN DISK
IDENTIFIER
In this section, we propose an improved weighted Ger-
schgorin disk identifier to determine the number of transmit
antennas, where a diagonal matrix based on the second
moment of the circle center and an adaptive threshold are
carefully designed. The weighted Gerschgorin disk identifier
increases the discrimination of the signal, error, and noise
disks by the similarity transformation of the designed
diagonal matrix. Furthermore, we construct an adaptive
threshold based on the circle center to determine the value
of Nt. The decision strategy based on the adaptive threshold
is as follows: The decision starts with the signal disks and
is stopped once the step is found. Finally, we determine the
number of transmit antennas over all subcarriers using the
max-win strategy, i.e., the value of Nt with the maximum
number of votes is chosen as the decision.

The block representation of the matrix Γ p in the equation
(17) can be formulated by

Γ p =


r1,1(p) r1,2(p) · · · r1,Nr (p)
r2,1(p) r2,2(p) · · · r2,Nr (p)
...

...
. . .

...

rNr,1(p) rNr,2(p) · · · rNr,Nr (p)

 (23)

=

[
Γ̃ p r
r† rNr,Nr (p)

]
, p ∈ IP (24)

where Γ̃ p is a matrix of the first Nr − 1 rows and the first
Nr − 1 columns of Γ p, and r is the column vector formed by
the first Nr − 1 rows of the Nrth column in the matrix Γ p.
Then, we can obtain the equation (25) using the EVD of Γ̃ p,
i.e.

Γ̃ p = ŨpΛ̃pŨ
†
p, p ∈ IP (25)

where Ũp = [ũp,1, ũp,2, . . . , ũp,Nr−1] denotes the unitary
matrix with (Nr − 1) × (Nr − 1) dimensions and Λ̃p =

diag(γ1, γ2, . . . , γNr−1) is the diagonal matrix consisting of
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the eigenvalues of Γ̃ p and γ1 > γ2 > · · · > γNr−1.
Let

U ′
p =

[
Ũp 0
0 1

]
, p ∈ IP. (26)

Then, we transform the matrix Γ p to Γ ′
p, i.e.

Γ ′
p = (U ′

p)
†Γ pU ′

p (27)

=

[
Ũ

†
p0̃pŨp Ũ

†
pr

r†Ũp rNr,Nr (p)

]
(28)

=



γ1 0 · · · 0 ρ1

0 γ2
. . .

... ρ2
...
. . .

. . . 0
...

0 · · · 0 γNr−1 ρNr−1
ρ∗

1 ρ
∗

2 · · · ρ∗

Nr−1 rNr,Nr (p)

 , p ∈ IP (29)

where ∗ denotes conjugate. Assume that L = 1, then, ρi =

0 when i = Nt+1,Nt+2, . . . ,Nr−1, while ρi ̸= 0, when i =
1, 2, . . . ,Nt. This is because the noise eigenvectors ũp,i, i =

Nt+1,Nt+2, . . . ,Nr−1 are orthogonal to the vector r and the
signal eigenvectors ũp,i, i = 1, 2, . . . ,Nt are non-orthogonal
to the vector r. Because the unitary transformation of the
covariance matrix does not change the eigenvalues of Γ p,
according to this Cauchy-poincar theorem, we can obtain

σ 2
p + λ(p, 1) ≥ γ1 ≥ σ 2

p + λ(p, 2) ≥ γ2 ≥ · · · ≥

σ 2
p + λ(p,Nt) ≥ γNt ≥ σ 2

p = γNt+1 = · · · = γNr−1.

(30)

From the Gerschgorin disk theorem, |ρi| and γi are the
radius and the circle center of the first Nr − 1 Gerschgorin
disks of matrix Γ ′

p, respectively. Thus, the signal collection
with larger Gerschgorin radii contains exactly Nt largest
signal eigenvalues, and the noise collection with the smaller
Gerschgorin radii contains the remaining noise eigenvalues.
Furthermore, we can determine the number of transmit
antennas by counting the number of non-zero radii. However,
under the multiple channel paths, i.e, L > 1, the collection of
the radius of the Gerschgorin disks is

{

The signal disks︷ ︸︸ ︷
ρ1, . . . , ρNt ,

The error disks︷ ︸︸ ︷
ε′Nt+1, . . . , ε

′
NtL ,

The noise disks︷ ︸︸ ︷
0NtL+1, . . . , 0Nr−1},

Nr > NtL,

{

The signal disks︷ ︸︸ ︷
ρ1, . . . , ρNt ,

The error disks︷ ︸︸ ︷
ε′Nt+1, . . . , ε

′

Nr−1}, otherwise

(31)

where ε′ denotes the error term caused by the multiple
channel paths. Here, we design a diagonal matrix based on
the second moment of the circle center. The diagonal matrix,
namely, the weighted matrix, is represented by

Ψ =

[
Ψ 1 0
0 ψ

]
(32)

Algorithm 1 ImprovedWeightedGerschgorin Disk Identifier
Input: Received signal y;
1: Compute Γ

[p]
s using (16);

2: Calculate Γ ′
p using (27);

3: Compute Γ ′′
p using (33);

4: Construct the adaptive threshold ϱ(k) using (35);
5: Obtain the collection {N 1

t ,N
2
t , . . . ,N

P
t };

6: Choose the value with maximum votes as the number of
transmit antennas.

where Ψ 1 = diag(γ 2
1 , γ

2
2 , . . . , γ

2
Nr−1), ψ =

∑Nr−1
i=1 γ 2

i .
Then, the similarity transform of Γ ′

p is performed using the
weighted matrix Ψ , i.e.

Γ ′′
p = Ψ Γ ′

pΨ
−1 (33)

=



γ1 0 · · · 0
γ 21
ψ
ρ1

0 γ2
. . .

...
γ 22
ψ
ρ2

...
. . .

. . . 0
...

0 · · · 0 γNr−1
γ 2Nr−1
ψ
ρNr−1

ψ

γ 21
ρ∗

1
ψ

γ 22
ρ∗

2 · · ·
ψ

γ 2Nr−1
ρ∗

Nr−1 rNr,Nr (p)


. (34)

Because ψ =
∑Nr−1

i=1 γ 2
i ,

γ 2i
ψ

< 1. Furthermore, γ1 >

γ2 > · · · > γNr−1 holds, thus the discrimination among the
signal disks, error, and noise disks increases by the similarity
transform according to the equation (33). Next, we construct
an adaptive threshold based on the circle center without the
artificial adjustment. The adaptive threshold is expressed by

ϱ(k) = ρ′(k) −
γ 2
k+1∑Nr−1
i=1 γi

Nr−1∑
i=1

ρ′(i)
Nr − 1

, k ∈ INr−2 (35)

where ρ′(k) =
γ 2k
ψ
ρk denotes the radius of the transformed

Gerschgorin disks, and the decision starts with the signal
disks and is stopped once the step is found, i.e., ϱ(k) < 0.
Then, the value of the number of transmit antennas in the pth
subcarrier N p

t = k − 1. Finally, we determine the number
of transmit antennas over all subcarriers using the max-win
strategy, i.e., the value of N̂t with the maximum number
of votes is chosen as the decision. The improved weighted
Gerschgorin disk identifier is summarized in Algorithm 1.

IV. EQUIVALENT TIME-DOMAIN MODEL AND IDENTIFIER
VIA F DISTRIBUTION
In this section, we first derive an equivalent time-domain
model for the MIMO-OFDM system to improve the utiliza-
tion of the receiver antenna. Then, we propose an identifier
based on F distribution. Finally, we prove the asymptotic
consistency of the proposed identifier.

A. EQUIVALENT TIME-DOMAIN MODEL
Consider K successive samples of the received signal
sequence in the jth receive antenna, then the channel matrix
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from the ith transmit antenna to the jth receive antenna with
K × (K + L − 1) can be formulated by

H i,j =

hi,j(0) · · · hi,j(L − 1)
. . .

. . .

hi,j(0) · · · hi,j(L − 1)

 . (36)

Thus, the channel matrix can be expressed by

H̄ = [HT
1 ,H

T
2 , . . . ,H

T
Nr
]T (37)

where H j = [H1,j,H2,j, . . . ,HNt,j]. Let yK (n) =

[y1(n), . . . , y1(n − K + 1), y2(n), . . . , y2(n − K +

1), . . . , yNr (n), . . . , yNr (n − K + 1)]T, n ∈ INs , which is
constructed by stacking K successive samples of the received
signal sequence over all Nr receive antennas. Then, the
equivalent time-domain model for the MIMO-OFDM system
can be represented as

yK (n) = H̄xK (n) + v(n), n ∈ INs (38)

where xK (n) = [x1 (n), . . . , x1 (n− K − L + 1), x2 (n), . . . ,
x2(n − K − L + 1), . . . , xNt (n), . . . , xNt (n − K − L +

1)]T, and v(n) is the white noise following i.i.d zero-mean
CSCG distribution with the variance σ 2. Thus, the statistical
covariance matrix of yK can be expressed by

Ω = lim
Ns→∞

1
Ns

Ns∑
n=1

yK (n)yK (n)
†. (39)

As discussed in Section II, the eigenvalues of Ω are first
obtained by EVD, and then the value of Nt(K + L − 1) can
be determined by the cardinality of the largest eigenvalues of
Ω if NrK > Nt(K + L − 1) is satisfied, i.e.

K >
Nt(L − 1)
Nr − Nt

. (40)

The inequality (40) implies Nt(K + L − 1) can be estimated
theoretically with Nr > Nt instead of Nr > NtL.

B. IDENTIFIER VIA F DISTRIBUTION
Next, the goal is to determine the value of L. We propose
a hypothesis-testing-based identifier, which obtains a high
identification accuracy even at a low SNR. The eigenvector
space of Ω is formulated as

D = [d1, . . . , dNt(K+L−1)︸ ︷︷ ︸
Dx

, dNt(K+L−1)+1, . . . , dNrK︸ ︷︷ ︸
Dw

]

= [Dx,Dw] (41)

whereDx is the signal subspace andDw is the noise subspace.
Using the principle of orthogonality of the signal space and
the noise space, we obtain

ỹ(n) = D†yK (n) (42)

= D†H̄xK (n) + D†v(n) (43)

=

[
D†
xH̄xK (n) + D†

xv(n)
D†
wv(n)

]
. (44)

FIGURE 3. Empirical cumulative distribution and theoretical cumulative
distribution of the test statistic Tq with 200, 800, 1200, and 2000 samples.

We can see from (44) that ỹ is divided into two parts: the
first part consists of the signal and the noise while the second
part only contains the noise. We assume that there are κ noise
components, κ = 2, 3, . . . ,Nr. Take a noise samples for the
(q − 1)th noise component and take b noise samples for the
qth noise component, q = 2, 3, . . . , κ . Then, we have∑a

n=1 |ỹq−1(n)|2

σ 2 ∼ χ2(a) (45)∑b
n=1 |ỹq(n)|2

σ 2 ∼ χ2(b) (46)∑a
n=1 |ỹq−1(n)|2∑b
n=1 |ỹq(n)|2

∼ F(a, b). (47)

Let

Tq =

∑a
n=1 |ỹq−1(n)|2∑b
n=1 |ỹq(n)|2

(48)

where Tq is the test statistic, which does not require the
prior knowledge of the noise power. In practice, we can
only obtain the sample covariance matrix with finite sample
sizes. To demonstrate the validity of the constructed Tq, the
empirical cumulative distribution function (CDF) of Tq and
the theoretical CDF are plotted in Fig. 3 for the different
sample sizes. As shown in Fig. 3, when the number of
samples increases, the distribution of the test statistic Tq
approaches the theoretical distribution, which illustrates that
Tq is reasonable and has a strong reliability even when the
number of samples is finite. Nt(K+L−1) is then determined
through a series of binary hypothesis tests. The decision
criterion is represented as

Tq < Tα, under H0 (49)

Tq ≥ Tα, under H1 (50)

where the hypothesis H0 represents the qth component
belongs to the signal subspace and the hypothesisH1 denotes
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FIGURE 4. Identification performance comparison for the proposed joint
identification scheme (JIS), the conventional Akaike information criterion
(AIC) [16], the minimum description length (MDL) [16], and the predicted
eigenvalue threshold (PET) [20]: (a) number of transmit antennas Nt,
(b) expression Nt(K + L − 1), and (c) channel order L.

the qth component belongs to the noise subspace. The
threshold Tα based on the miss probability is set as

P(F(a, b) < Tα|H1) = α (51)

where α is the miss probability. Finally, the channel order L
is determined using the obtained number of transmit antennas
in the frequency domain. The proposed identifier based on F
distribution is summarized in Algorithm 2.

Algorithm 2 Identifier via F Distribution

Input: y and N̂t;
1: Initialize κ = 2, α, a, b, and K ;
2: Compute Tα using (51);
3: Compute the signal and noise subspace using (43);
4: Let q = κ and calculate Tq using (48);
5: If Tq ≥ Tα , let κ = κ + 1, and repeat step 4 and 5;

Otherwise, stop test;
6: Compute the channel order L =

NrK−κ+1
N̂t

− K + 1.

Remark 1: It is important to highlight that our scheme
can identify the number of the transmit antennas and the
channel order without the prior knowledge of noise power.
Specifically, the signal subspace is explored to determine the
number of transmit antennas using the proposed weighted
Gerschgorin disk identifier, in which the only input to the
identifier is the received signal, as shown in Algorithm 1.
Furthermore, we design a test statistic based on F distribution
to determine the channel order. Different from the traditional
chi-square distribution, F distribution is used by dividing two
chi-square distributions. Thus, the proposed identifier via F
distribution does not require the prior knowledge of noise
power, as shown in Algorithm 2.

C. ASYMPTOTIC CONSISTENCY
Theorem 1: The identifier via F distribution is asymptoti-

cally consistent when a = b = Ns, i.e.

lim
Ns→∞

P(τ̂ = Nt(K + L − 1)|a = b = Ns) = 1 (52)

where τ̂ is the estimated value of Nt(K + L − 1).
Proof: When Ns = a = b → ∞, then F(a, b) =

F(∞,∞) = 1, thus we obtain

lim
Ns→∞

Tα = 1. (53)

Under the hypothesisH0, we have NrK −Nt(K +L−1)+
1 ≤ q ≤ Nr. Let q = NrK − Nt(K + L − 1) + 1, we get

lim
Ns→∞

Tq = lim
Ns→∞

∑Ns
n=1 |ỹq−1(n)|2∑Ns
n=1 |ỹq(n)|2

< 1 (54)

Thus,

lim
Ns→∞

P(Tq < Tα|H0) = 1. (55)

Under the hypothesisH1, we have 2 ≤ q ≤ NrK −Nt(K +

L − 1), then

lim
Ns→∞

Tq = lim
Ns→∞

∑Ns
n=1 |ỹq−1(n)|2∑Ns
n=1 |ỹq(n)|2

= 1 (56)

so,

lim
Ns→∞

P(Tq = Tα|H1) = 1. (57)
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According to (55) and (57), we obtain

lim
Ns→∞

P(τ̂ = Nt(K + L − 1)|a = b = Ns) = 1. (58)

□

V. SIMULATION RESULTS
In this section, we first describe the simulation param-
eters. Then, we compare the identification performance
of the proposed approaches with the AIC, the MDL and
the PET algorithms in [16] and [20]. Finally, we evaluate
the robustness of the proposed identifier to the number of
transmit antennas, and the number of the channel paths,
and the identification error. The probability of the correct
identification, denoted by Pc, is used as the metric of the
identification performance.

A. SIMULATION SETUP
The transmitted data is modulated as quadrature phase-
shift-keying (QPSK) symbols with the spatial multiplexing
transmission scheme. The length of FFT is set to 64 and the
size of the cyclic prefix is 10. The number of OFDM symbol
in a block is 100. The miss probability is set to 0.015. The
performance metric is obtained based on 2000 Monte Carlo
trials.

B. PERFORMANCE ANALYSIS
Fig. 4 illustrates the identification performance of the
proposed schemes, along with the existing methods in [16]
and [20] with Nr = 15, L = 4, Nt = 5, and K =

4. To ensure fairness, all methods are evaluated using the
same domain of the received signal. In other words, the
number of transmit antennas is identified using the frequency
domain signal, whereas the channel order is obtained using
the time domain signal. It is clear that the proposed joint
identification scheme (JIS) achieves a high identification
accuracy for both the number of transmit antennas and the
channel order even at a relatively low SNR and a very
high SNR. Specifically, we observe from Fig. 4(a) that
the improved weighted Gerschgorin disk identifier in the
joint identification scheme obtains the best identification
performance among the existing methods over all the SNRs.
Our improved weighted Gerschgorin disk identifier can
achieve the identification accuracy Pc = 1 when SNR >

−3 dB whereas the traditional methods cannot work when
SNR > 15 dB. Note that the weighted Gerschgorin disk
identifier in [32] fails over all SNR and thus is not shown
in the figure. Fig. 4(b) shows the identification performance
for Nt(K +L−1). We can see that the proposed identifier via
F distribution in the joint identification scheme outperforms
the MDL and the PET methods over all SNRs. Although
the proposed identifier does not perform as well as the AIC
method at a low SNR, the identification accuracy of the
AIC method cannot reach 1 in a high SNR. In Fig. 4(c),
the identification accuracy of the channel order is evaluated.
It can be seen from Fig. 4(c) that, the probability of the correct

FIGURE 5. Correct identification probability evaluation for the proposed
joint identification scheme (JIS) in cases of different numbers of transmit
antennas: (a) number of transmit antennas Nt, and (b) channel order L.

FIGURE 6. Correct identification probability evaluation for the proposed
joint identification scheme (JIS) in cases of different channel orders:
(a) number of transmit antennas Nt, and (b) channel order L.

identification of the proposed joint identification scheme
reaches 1 while the existingmethods in [16] and [20] all fail at
a high SNR. This is because the rank of the covariance matrix
of the received signal increases under the multiple transmit
antennas and themultiple channel paths in theMIMO-OFDM
system. Thus, these results demonstrate that the proposed
scheme can effectively detect the number of transmit antennas
and the channel order simultaneously in the MIMO-OFDM
system. Regarding the computational load, the complexity
of our scheme mainly comes from EVD, which is similar
to conventional algorithms such as AIC [16], MDL [16],
and PET [20]. In our work, the quadrature right-triangle
(QR) algorithm is used in the EVD. Thus, the computational
complexity of the estimation of Nt and L is order of O(N 3

r )
and O(K 3N 3

r ), respectively. This means that our method has
the same low complexity as the conventional algorithms.

Fig. 5 shows the identification performance of the pro-
posed scheme with different numbers of transmit antennas.
As expected, the identification performance of the number
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FIGURE 7. Correct identification probability evaluation for the proposed
joint identification scheme (JIS) in cases of different normalized
frequency offsets: (a) number of transmit antennas Nt, and (b) channel
order L.

FIGURE 8. Normalized mean absolute error evaluation of the channel
order for the proposed joint identification scheme (JIS) in cases of
different identification errors of the number of transmit antennas.

of transmit antennas and the channel order decreases as the
number of transmit antennas increases. This is because an
increase in the number of antennas leads to a reduction in
the noise subspace. In Fig. 6, the identification performance
of the proposed scheme with different channel orders is
evaluated. Encouragingly, increasing the channel order has
little effect on the identification accuracy of the number of
transmit antennas. This result indicates that the improved
weighted Gerschgorin disk identifier is robust to the channel
order. This is because the well-designed diagonal matrix
based on the second moment of the circle center and an
adaptive threshold can combat the error term caused by
multiple channel paths. However, the identification perfor-
mance of the channel order degrades as the channel order
increases. Fig. 7 shows the identification performance of the
proposed scheme with different frequency offsets. We can see
that, the identification performance of our scheme does not
vary as the frequency offset, which means that the proposed

scheme is robust to the frequency offset. Fig. 8 shows the
normalizedmean absolute error (NMAE) of the channel order
with different identification errors of the number of transmit
antennas. It can be seen that, as the identification error of
the number of transmit antennas increases, the NMAE of
the channel order increases. Furthermore, we note that the
underestimation leads to a larger NMAE of the channel order
than the overestimation of the number of transmit antennas.

VI. CONCLUSION
In this paper, a novel joint identification scheme of the
number of transmit antennas and the channel order was
proposed for the MIMO-OFDM system, which can address
the coupling effect. The proposed joint scheme exploited
the time and frequency domains of the received signal.
First, an improved weighted Gerschgorin disk identifier was
designed to detect the number of transmit antennas using
the frequency domain signal. The equivalent time-domain
model for the MIMO-OFDM system was then derived to
improve the utilization of the receiver antennas. Furthermore,
a novel identifier based on F distribution was proposed to
estimate Nt(K + L − 1). Finally, the channel order was
determined using the number of transmit antennas obtained
in the frequency domain. Extensive simulation results showed
that the proposed scheme exhibits the excellent performance
and outperforms existing approaches. Since the proposed
scheme can well combat the coupling effect due to the
transmit antenna and themultiple channel paths, it is expected
to be widely used in practical MIMO-OFDM systems.
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