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ABSTRACT The recent surge in the use of Deep Neural Networks (DNNs) has also made its mark in the
field of Audio Enhancement (AE), providing much better quality than the classical methods. Although, there
are dedicated audio processing DNNs, yet, many recent models of AE have utilized U-Net: a DNN based on
Convolutional Neural Network (CNN), fundamentally developed for image segmentation. It is found that the
useful features hidden in the time domain are highlighted when the audio signal is converted to a spectrogram,
which can be treated as an image. In this article, we will review the recent work, utilizing U-Nets for different
AE applications. Different than other published reviews, this review focuses entirely on AE techniques
based on image U-Nets. We will discuss the need for AE, U-Net comparison to other DNNSs, the benefits of
converting the audio to 2D, input representations that are useful for different AE applications, the architecture
of vanilla U-Net and the pre-trained models, variations in vanilla architecture incorporated in different E
models, and the state-of-the-art AE algorithms based on U-Net in various applications. Apart from speech
and music, this article discusses a wide range of audio signals e.g. environmental, biomedical, bioacoustics,
and industrial sounds, not covered collectively in a single article in previously published studies. The article
ends with the discussion of colored spectrograms in future AE applications.

INDEX TERMS CNNs, image processing deep neural networks, pre-trained networks, spectrogram, U-Net.

I. INTRODUCTION

Audio Enhancement (AE) is the process of improving the
audio quality by removing the noise (produced by the
surrounding sources or from the same source in the form of
echoes) and filling the gaps due to damage or intrusions [1].
Whether the audio is generated by the objects surrounding us
(e.g. people, animals, birds, wind, thunder, traffic, machines,
airplanes, musical instruments, etc.) or it is generated
artificially by using sophisticated methods (e.g. by [2], or [3]
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producing audio of high quality and fidelity), before the audio
reaches the listener, it is affected by the external factors
such as background noise, dereverberation, and competing
speakers, badly affecting its quality. This poses several
challenges to effective audio communication, especially for
machines and hearing-impaired listeners. The AE algorithms
ensure to restoration of the quality of audio in the face of
such challenges [4]. Thanks to the marvelous capabilities of
the human auditory system, people with normal hearing can
separate a sound of their interest from multiple simultaneous
sounds (cacophony) in a split second. However, people
with hearing problems generally face difficulty in doing so.
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AE is sometimes also required by normal-hearing listeners.
To separate the background music from vocals to be reused
for karaoke, extract the message from a noisy voice note,
recover a classical song from an old damaged gramophone
record, separate the contents of the speaker from videos
shot at the seashore or busy roads, detect anomaly from the
machine sound before the occurrence of fault in the noisy
industrial environment, and detecting the endangered species
and their number from the sounds recorded in forest are some
of the examples, where a normal listener would also require
AE. Also, with many new voice-controlled applications
emerging, the need to equip machines with robust human-
like hearing capability is increasing. Automatic detection of
rare events in the dark, automatic fall detection, pathology
classification from the auscultation sounds, environmental
sounds classification, and source localization for automatic
camera maneuver or alarming the rescue workers are a
few examples, where machine needs as resilient listening,
as humans are rewarded with. However, there is very little
probability that the required audio signal is free from the
corrupting background noise. Similarly, the efficiency of
automatic speech and speaker detection algorithms depends
heavily on the quality of input, which is usually deteriorated
by the presence of the surrounding noise. So, in all these
applications AE is the utmost necessity.

Since its inception in the mid of 1950s, deep learning
methods have been responsible for astonishing breakthroughs
in every sphere of life including computer vision, speech
recognition, natural language processing, bioinformatics,
finance and accounting, market predictions, drug design,
medical image analysis, climate science, material inspection
and gaming [5]. In the past, signal processing and machine
learning have been extensively used for AE. However the
recent trend of using Deep Neural Networks (DNNs) has
generated comparable or even more effective performance
than the traditional methods, provided a sufficient amount of
training data is available for these networks [6].

The two major types of Deep Neural Networks (DNNs)
are i) Recurrent Neural Networks (RNNs) and ii) Feed-
Forward Networks (FFNs) (or Multi-Layer Perceptrons
(MLPs)), the most popular being the Convolutional Neural
Networks (CNNs) [7]. RNNs were developed for processing
sequential data, such as text and speech, and have brought
significant improvement in speech recognition and natural
language processing applications, while, the idea of CNN
emerged during Hubel and Wiesel’s classic work on the
cat’s primary visual cortex [8] in 1962. That idea was
first put into realization in [9], and later refined in [10].
In both [9] and [10], it was used for image processing, and
to date, CNN architecture is enjoying the status of being
the most popular network among researchers, for processing
the images [11]. Different versions of CNNs were later
developed, which can process the 1D time series data (e.g.
audio, text, or accelerometer data) directly or on features
extracted from sound and the 3D data (e.g. video (sequence
of image frames), Magnetic Resonance Imaging (MRI) and
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Computerized Tomography (CT) scan). The original version
of CNN for processing the 2D images (both grayscale
and color) is generally called 2D CNN, while the other
two versions are called 1D and 3D CNNs respectively.
In subsequent discussion, the terms “image CNN”’ and ‘2D
CNN’ are used interchangeably highlighting the fact that the
initial goal of 2D CNN was image processing.

In recent years, a new version of DNN has evolved, which
merges the recurrent layers with the convolutional layers,
called Convolutional Recurrent Neural Networks (CRNN)
[12]. In CRNN, CNN is used for local feature extraction,
while RNN acts as a temporal summarizer, aggregating
these features over time to enable the network to take the
global structure into account [13]. CRNN, first proposed
in [12] for document classification, was later applied to image
classification [14] and AE [15].

U-Netis a special CNN-based deep architecture, consisting
of many convolutional layers. U-Net was initially proposed
for biomedical image segmentation [16] and since then
it has become hugely popular within the image/ video
processing community. U-Net acquires its name from its
architecture, which resembles the shape of an English letter
‘U’. Like CNNs, many variants of U-Net also exist, which
can even process the audio directly in the time domain
(e.g. Wave-U-Net [17], attention Wave-U-Net [18], or Tiny
Recurrent U-Net (TRU-Net) used in speech enhancement
model of [19]), but we will restrict our discussion to the
conventional U-Net, which accept only an image at its input.
The difference between an image CNN and an image U-Net
is that the image CNN predicts the class of the whole image,
while the image U-Net is used for the classification of each
pixel of an image. The process is known as ‘“‘segmentation”.
In this process, the grouping of pixels, belonging to the same
class, is done. In image CNNgs, the input is an image, while the
output is a string of characters (label), defining a unique class
for the entire image. In image U-Net, the input is an image,
while the output is a matrix of labels defining a unique class
for each pixel.

A. RELATED WORK

The most notable reviews of AE using DNNs are [4], [6],
[20], and [21] to [28]. While [4], [6], and [20] discuss
AE applications restricted to speech and music based on
a variety of DNNs, the model in [21] is focused only on
Deep Reinforcement Learning (DRL) models covering a
wide range of applications including Human-Robot Interac-
tion (HRI), music listening and generation, AE, emotions
modeling, spoken dialogue systems and automatic speech
recognition. The paper in [22] reviews the DNN-based AE
models used exclusively for automatic speech recognition
applications. The research [23] also reviews only speech
enhancement models using deep diffusion networks and [24]
is also dedicated to speech enhancement DNN models. The
review [25] again focuses on speech enhancement models
using audio-visual deep Kalman filter generative models.
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The paper [26] discusses the speech extraction models based
on different DNNs using audio, video, spatial, or voice
clues of the target. The work in [27] reviews only the
source separation application of AE using independent vector
analysis. The review in [28] is focused only on machine
learning and deep learning models used for AE in hearing
aids.

B. OUR CONTRIBUTION
The main contributions of this paper are summarized below.

« In this paper, we give a concise review and insight on
AE models, based on image U-Nets. Unlike previously
published reviews (e.g. [4], [6], [20], [22], [24],
and [26]), which cover all sorts of DNNs, we focus only
on image U-Net models used for AE. To the best of our
knowledge, this is the first such review of AE, using only
2D U-Nets, is presented.

« Also, as opposed to the earlier reviews, which are mostly
restricted to speech and music, our article covers a
wide range of acoustic signals, including environmental,
biomedical, bioacoustics, and industrial sounds, along
with speech and music. Here, we take a comprehensive
review of the AE models, based on image U-Nets,
for applications including source separation, denoising,
dereverberation, and inpainting only.

« In the end, we propose the use of colored spectrograms
for AE which although exist for classification AE tasks
but a novel idea for the AE tasks requiring image
segmentation.

In section II, we compare different audio-processing DNNs
with U-Net. In section IIT we briefly introduce the spectro-
grams. In section IV, we discuss the need to convert the audio
to spectrogram, while in section V the U-Net architecture
and the pre-trained audio and image processing models
are discussed. Section VI describes the modified architec-
tures and lists their benefits over the vanilla architecture.
Section VII describes the input representations commonly
used for U-Net-based AE models. In section VIII, a few
applications of AE and the State-Of-The-Art (SOTA) models
implementing them are described briefly. Section X gives
potential directions for future research and the article is
concluded in section 10.

Il. U-NET COMPARISON TO OTHER DEEP NETWORKS
FOR AUDIO ENHANCEMENT

Deep learning has altered dramatically the AE techniques.
Given a sufficient amount of training samples, the DNNs have
outperformed the traditional signal processing methods, espe-
cially under extremely low Signal-to-Noise Ratios (SNRs)
and non-stationary noise types [29]. As already pointed
out in the discussion above, the DNNs initially developed
for directly processing audio signals was Recurrent Neural
Network (RNN), but the standard RNN has the problem
of taking into account only short-term dependencies due to
exploding/ vanishing gradient problems. This problem was
resolved by the Long-Short-Term Memory (LSTM) network
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which uses memory cells to control the flow of information
and take care of the long-term dependencies [30]. However,
the conventional LSTM is unidirectional and cannot model
the future context. To address this issue, bidirectional LSTM
networks are introduced which keep in view the future con-
text along with the past context [30]. In 2014 Gated Recurrent
Unit (GRU) was introduced for processing sequential data
with slight modifications in the LSTM architecture [31].
The computational cost and complexity for all the above-
mentioned dedicated end-to-end time domain processing
networks dealing with data rates of more than 16 kHz
are very large due to the enormous memory requirements
to hold the long and short-term dependencies. On the
other hand, image processing networks (e.g. Convolutional
Neural Networks (CNNs) and image U-Nets) are focused
on processing data in a grid-like topology resulting in
much reduced computational cost, trainable parameters, and
memory requirements than the above-mentioned dedicated
audio processing architectures [32]. Since the take-off of
the modern deep learning era [33] in 2009 (after Stanford’s
Fei-Fei Li created ImageNet [34]) many state-of-the-art
network architectures and pretrained models have emerged
for image processing. Most AE models at that time did
not operate directly in the time domain but used the Time-
Frequency (TF) domain as inputs and outputs [35]. This
2D audio representation was easily transferrable to image-
processing deep learning networks. So, although there exist
dedicated audio processing DNNs that can process the
signal directly in the time domain, the main motivation
for using U-Net (in particular) or other image processing
networks (in general) for AE applications was to leverage
the extensive research in the fields of images to the field of
audio. U-Net; a DNN fundamentally developed for image
segmentation has reported high performance when used
for AE applications [36]. In the case of natural images,
displacement by a single pixel is not perceivable by the
human eye. However, in the frequency domain, even a
minor shift in the spectrogram has a disastrous effect on
listening perception. Similarly, a shift in the time domain
is audible as jitter and other artifacts. To preserve the high-
level details, the skip connections between the adjacent layers
of the same hierarchal level in the encoder and decoder of
U-Net play a key role in allowing low-level information
to flow directly from the high-resolution input to the high-
resolution output [37]. Such connections are not present in
auto-encoder and Variational Auto-Encoder (VAE) making
U-Net a better choice for AE tasks. In earlier models of
AE, only the magnitude spectrogram is enhanced using the
noisy phase for reconstruction. The phase is believed not to
be corrupted much under high SNR levels but it is highly
distorted under low SNR conditions [29]. The introduction
of deep complex U-Net has made it possible to incorporate
the phase information in the estimated audio, improving the
generated signal quality by a large amount over the models
using only the magnitude spectrograms [38]. The models
having U-Net encoder-decoder architecture and working in
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TF complex domain (e.g. [39] and [40]) have been shown to
outperform U-Net models working only on TF magnitudes,
VAEs, time domain generative models (e.g. SEGAN [41]),
time domain TASNet [42] models and its variants (e.g.
ConvTasNet [43]), and time domain encoder-decoder models
(e.g. Wave-U-Nets [17] and Demucs [44]) at extremely low
SNR conditions ranging from -30 to OdB and non-stationary
noise. They offer the best trade between the model size
and AE performance when compared to the time domain
generative models [29]. Recently diffusion-based generative
AE models become popular due to their ability to generalize
well with the unseen conditions of noise types, reverberations
and SNRs. In pioneer TF-based AE diffusion models U-Net
has been an integral part of their structure [23], as will
be described in section VIII. All the acoustics applications
discussed in this article (separation, inpainting, denoising,
and dereverberation) can be merged under the single umbrella
of denoising as they all are meant to remove the unwanted
sources (whether competitive (in case of source separation),
transient (in case of inpainting), diffuse (in case of denoising),
or the echoes (in case of dereverberation)) and the AE is
meant to restore the audio to as closed to its original generated
form as possible.

Ill. SPECTROGRAMS
Visible sound portrayal is the process of converting the audio
signal to an image or portrait. It attempts to perform an
analysis similar to that of an ear and presents the result in
an orderly manner to the eye [45]. It is believed, that the
sound (in time domain) entering the ear is broken down
into a collection of local Time-Frequency (TF) regions,
before being further processed by the brain [46]). Similarly,
in visible sound portrayal, Fourier analysis is performed
over small overlapping chunks, and the process is repeated
sequentially over a long vector of samples, resulting in
a graph, called the Short-Time Fourier Transform (STFT)
spectrogram or a standard spectrogram. For audio analysis,
the spectrogram is an excellent method of visualizing the
signal spectral contents and how they change over time [47].
The final STFT graph has time along the x-axis, frequency
along the y-axis, and the brightness or color (along the z-
axis) represents the strength of a frequency component at each
time frame [48]. In contrast, the standard Fourier transform
provides the frequency information averaged over the entire
signal interval. The spectrogram was invented in 1940, to help
break enemy codes and detect their submarines [45]. Soon,
it became a favorite choice for audio signal processing. While
there are many visible audio representations, the spectrogram
is so common among them, and other representations are
visually so much similar to it, that almost every representation
of sound in the form of an image, is termed as a ‘spectrogram’
in literature [48].

Treating the spectrogram as an image, and using the
dedicated image DNNs for its enhancement, is an idea
first conceived by Humphrey and Bello [49], who classified
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musical chords in 2012 by an image CNN. Since then many
AE techniques, have opted for the use of CNNs (DNNs
fundamentally developed for image/ video processing) by
converting the audio to a spectrogram and the results are
encouraging. The advantage of using the spectrogram-based
DNN models for AE includes a lesser number of trainable
network parameters and their lesser training cost than the
waveform-based models [50]. However, their usage for audio
signals requires an additional step of audio signal conversion
from 1D to spectrogram, as these networks require input in
the form of an image.

IV. NEED OF CONVERSION OF AUDIO FROM 1D TO 2D

In the time domain, once it is mixed, the desired audio signal
becomes entirely unidentifiable from the other interfering
signals as shown in Figure 1 (top row). So, separating it
from noise and reverberations (noise created by the source
itself) directly in the time domain is a difficult task. Although
there exist such deep learning networks e.g. TASNet [42] and
Wave U-Nets [17], which can enhance the signal directly in
the time domain, these methods are characterized by their
slow convergence, a large number of trainable parameters,
and heavy computational load [51].

In the case of speech, surprisingly, the conversion of an
audio mixture (consisting of desired signal and noise) from
the time domain to the Time-Frequency (TF) domain (i.e.
to a spectrogram) makes the target signal discernable, as the
simultaneous active speech sources rarely excite the same
frequencies at the same time [52]. This rule also applies
to the audio mixture of animal sounds [53]. As shown in
Figure 1 (top row), once mixed the individual sources S
and S, are indistinguishable in the time domain. However,
in the case of their TF representation, the spectrogram of
the audio mixture still has some identifiable portions of S;
(bounded by red boxes), which can be differentiated from S
even by the visual inspection of the mixture’s spectrogram.
However, this ease of differentiation between sources in the
TF domain decreases, if the number of sources or intensity of
reverberations increases.

In the case of music, the frequency bands of vocals and
different instruments are highly distinctive in the TF domain,
as shown by their spectrograms in Figure 2. Percussive
instruments, for example, drums have a much flatter spectrum
and are well localized in time. In the case of harmonic
instruments, e.g. guitar, only a few harmonics are energized
at any time, while the piano exhibits both the percussive
and the harmonic properties. Vocals, on the other hand,
exhibit a higher rate of pitch fluctuation as compared to
the instruments [54]. So, based on these distinctive features,
vocals or instruments are much more easily extracted from
the song (mixture of vocals and instruments) or music
(mixture of only instruments) in the TF domain, than in
the time domain. Also, the anomalous events, whether in
machines, open environments, or biomedical sounds are
easily detectable, when converted to the TF domain, as all
these applications require a sudden change in acoustic energy
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FIGURE 1. Time domain (top row) and time frequency domain (bottom row) representation of speech sources
and their resulting audio mixtures. The red boxes show the portions of S1, which are still identifiable in the
spectrogram of audio mixture.
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TABLE 1. Modified architectures of Image U-Net and their advantages.

Completely new architectures

Deep Complex U-Net

It is a specialized U-Net architecture that uses convolutional layers that can perform convolution operations on complex
numbers. The basic reason for their use is to process the phase information along with the magnitude of STFT, as the

phase plays a vital role in audio enhancement and recovery [38].

Conditioned U-Net with
FiLM (Feature-wise

Linear Modulation) layers

FiLM layers can be inserted at any depth in U-Net and carry out simple feature-wise affine transformations on the
neural network’s intermediate features based on the input given by the user [70]. The control mechanism is a neural
network that generates parameters for the FILM layers according to the input conditions. Instead of training multiple U-
Nets, each for an individual source in the audio mixture, a single network can be used for multiple sources [71].

However, the downside of this network is that it requires multiple passes of a data sample in a single epoch [50].

Multi-channel U-Net

As opposed to the conditioned U-Net the multi-channel U-Net architecture estimates multiple outputs simultaneously
from a single network without any conditioning or requiring the training of a single sample multiple times in an epoch
[50].

Dense Convolutional
Network (DesneNet)

As the convolutional networks become deeper, the information from the input usually washes out due to the vanishing
gradient descent problem. To avoid this problem shorter connections are created by connecting the output of each layer
to the successive layers creating a dense connectivity pattern called DenseNet [72]. They offer parameter efficiency,
easy training, and a regularizing effect reducing the overfitting on smaller datasets.

Attention Gated Control
(AGC)-U-Net)

Inspired by the human way of handling massive information collected by the eyes and the ears, focusing on important
features and discarding the irrelevant ones [73], the attention mechanism added on the skip connections in AGC-U-Net
architecture discards the noise and reduces the semantic gap between the low-level features on the encoding side and
the high-level features on the decoding side [74].

U-Net++ [75]

To fill the semantic gap between the encoder and the decoder of vanilla architecture, skip connections are redesigned
through a series of nested dense convolutional blocks. Making the feature maps similar at the encoder and decoder side

results in making the learning task easier for the optimizer.

Limited Upscale U-Net
(LUU-Net)

In vanilla U-Net, both time and frequency axes are restored to their original dimensions at the output of the decoder
side. However, the event detection tasks do not require the frequency axis restoration as the required information lies on
the time axis. So in LUU-Net only time scale is restored by limited upscaling of the frequency axis by using

asymmetric stride for decoder convolutional layers [68]. This results in an immense reduction in learnable parameters.

UP-Net

It is a two-level nested U-Net structure [76], which provides high resolution without increasing the computational and

memory costs as compared to the vanilla architecture.

Hyper-parameter modifications in the vanilla architecture

Dilated convolution layers

The dilated convolution layers use dilated filters. This filter expands the input by setting holes between its consecutive
elements [40]. This results in enlarging the receptive field and thus enables it to find long-term dependencies in the

input without increasing the number of parameters [40].

Leaky Integrate and Fire
(LIF) activation function

Instead of the continuous activations as present in the conventional DNNS, the LIF activation is discrete which offers
simplicity and computational efficiency [77].

Asymmetric filters

As the pitch usually occupies several frequency bands, the filter must be longer on the frequency dimension than in the
time dimension to better capture the spectral patterns of speech [66]. Using U-Net for ordinary images, the convolution

filters are usually symmetric but for speech asymmetric filters perform better [66].

Transformations in the bottleneck

Variational Auto-Encoder

In contrast to the deterministic characteristics of vanilla U-Net, the VAE in the bottleneck offers increased robustness

(VAE) towards out-of-distribution effects, such as reverberation and unknown noise types [65].
Bidirectional Long Short- The BLSTM in the bottleneck ensures the extraction of long-term temporal information present in audio.
Term Memory (BLSTM)

Cross-modal early fusion

This layer in the bottleneck concatenates the audio and video (weighted by attention matrix) features [78].

Intermediate layers on the encoding and decoding sides

Time-distributed and time-

The time-distributed blocks are used to extract the long-range correlations that exist along the frequency axis and the

[frequency-distributed time-frequency-distributed blocks are used to extract them along both the time and frequency axis of the spectrogram
blocks [39].

Convolution Attention In CA blocks time-attention mechanisms are combined with sequential convolutions to learn both global and local
(CA) blocks dependencies [79].

Recurrent-Neural-Network

The RA blocks in the skip connections increase the effective receptive field and explore the most efficient

(RNN) Attention (RA)
blocks and the Res Paths
(RPs)

representations with frequency-specific characteristics, while the presence of RP blocks avoids immediate integration
of low-level features on the encoder side with the high-level features on the decoder side by first reducing the semantic
gap between them [80].
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TABLE 1. (Continued.) Modified architectures of Image U-Net and their advantages.

Residual Blocks (RB)

[81].

When shift-based operations are performed on complex numbers in convolutional layers, imbalances are introduced

between real and imaginary components, leading to perceptual artifacts in the generated output. RB solves this issue

Multi-Lane Dimensionality
Reduction (MLDR)

module

MLDR module performs dimensionality reduction between 2D convolutional processes. It reduces the number of

trainable parameters through factorization of the multi-dimensional filter operation [82].

which is performed better in the TF domain than in the time
domain [55]. It is also found to be beneficial for the recovery
of missing audio, in case of loss by sudden intrusions.

V. U-NET ARCHITECTURE AND THE PRE-TRAINED
NETWORKS
U-Net architecture contains two paths, an encoder and a
symmetric decoder. In its basic architecture, the encoder
side is composed of multiple sets of three types of layers
i.e. 1) convolutional, ii) nonlinear, and iii) the pooling
layer [56]. The encoder path is the contracting path; where
the convolutional layers extract the features starting from
the very basic level e.g. edges and corners and continuing
with the more abstract ones, as the image moves down
the path [57]. The nonlinear layer (activation layer) is
responsible for saturating or limiting the generated output of
the convolutional layer. Although many types of activation
layers exist, the most common ones are sigmoid, Rectified
Linear unit (ReLu), leaky ReLu, softmax, Scaled exponential
Linear unit (SeLu), and tanh. As the image goes down the
encoder path, it is down-sampled by the pooling layers,
which in turn makes the computation faster by retaining the
important features and dropping the redundant (or nonuseful)
ones [56]. The opposite occurs in the decoding path, where
the output of the encoding path is upscaled gradually by
using the transposed convolution and upsampling layers
instead of the pooling layers, till it reaches the size of the
input image at the end of the decoding path. Drop-out and
batch normalization layers can be added in both paths to
avoid the overfitting problem and to attain training stability
respectively [55]. However, as the network depth increases,
more information gets lost, dropping to its minimum at the
bottleneck of U-Net, making it nearly impossible for the
decoder to reproduce the image with fine-grained details.
So, to overcome this problem, skip connections are provided
between the peer layers of the encoder and decoder sides.
They alleviate the problem of information loss by bypassing
the bottleneck and providing the decoder with the encoder’s
side high-resolution, fine-grained details. Removing the skip
connections would result in the creation of an auto-encoder;
a DNN in itself. Although the conventional U-Net has the
architecture described above, now more types of DNN layers
are being added to make U-Net more adaptable to audio
needs.

Like CNN, U-Net is also a supervised neural network,
requiring Ground Truth (GT) (annotation / label) for each
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pixel of the training image. GT is an ‘ideal’ result, we would
expect from our model to predict for a given pixel. During
training, the neural network matches its output with the
GT to adjust its parameters to achieve prediction accuracy.
Like all DNNs, the more data the U-Net is trained over, the
more it would generalize and maintain good performance
under unseen conditions. In the case of speech, large datasets
are present in English, while Western music also enjoys
large reservoirs. For other languages and Eastern music,
there is a limited reservoir of stored examples. Similarly,
in the case of environmental sounds, the size of the available
dataset is very small compared to the diversity of these
sounds. Artificially generating data and data augmentation:
i.e. slightly modifying the existing data e.g. by changing its
pitch, stretching in time, or spectral filtering reinforces the
otherwise smaller datasets [6].

Apart from the requirement of large datasets, training any
DNN is a computationally expensive and lengthy process.
In such cases, pre-trained networks already trained over large
datasets, are very useful, as they require far less data, time,
and computational resources than needed if the system is
trained from scratch. Using a pre-trained model on a new
problem is called transfer learning. Notable examples of pre-
trained image CNNs are AlexNet, DenseNet, GoogLeNet,
VGG-16, ResNet, and ZFNet. These models can be used
either for image classification in their default architecture or
for image segmentation, by replacing their output layers with
the decoder of U-Net.

The use of pre-trained networks for audio applications
started back in 2014 when Gwardys and Grzywczak [58] used
a pre-trained image DNN (an image CNN, which was trained
on a dataset with more than one million images; the winner
of the Large Scale Visual Recognition Challenge (ILSVRC)
2012) for music genre classification. Although pre-trained
networks are available for transfer learning in computer
vision problems, there are only a few such networks available
in the audio domain. One such network is speechVGG [19],
which adopted its architecture from image VGG and is trained
on large datasets of spectrograms of the most frequently
used words taken from the LibriSpeech dataset [59]. It can
be used for transfer learning in applications such as speech
inpainting, language identification, speech, noise and music
classification, and speaker identification or for estimating the
training loss for other DNNs. Other examples of audio pre-
trained models are YAMNet (Yet Another Mobile Network;
an audio classification network by Google) [47], TRILL
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(TRIpLet Loss network) [60], trained on Audioset [61]
and BOYLE-A (Bootstrap Your Own Latent for Audio)
[62], trained on Audioset [61] and FSD50K [63]. Training
on these large datasets enables these networks to learn
the distinguishing features of a wide range of human and
animal sounds, musical instruments and genres, and common
everyday environmental sounds [61]. Among all these pre-
trained networks, only speechVGG is trained and accepts the
input in the form of a spectrogram, while YAMNet, TRILL,
and BOYLE-A are trained on features extracted from the
audio.

VI. MODIFIED ARCHITECTURES

As found in many audio enhancement applications the vanilla
architecture usually does not generate an impressive audio
quality (although comparable or slightly better than the
machine learning algorithms e.g. [64], [65], [66], [67], [68],
and [69]) in the output. Therefore either additional layers
are added, skip connections are modified, hyper parameters
are adjusted or completely new architectures are proposed
in many recent AE models to improve the performance.
Here these modifications and their benefits are listed in
Table 1, while their complete details can be obtained from
their respective papers.

VII. INPUT REPRESENTATIONS FOR U-NET

For U-Net, the input must be in the form of an image
(grayscale or color) [83]. As the image itself is a tensor with a
2D shape and a varying number of channels (1 for grayscale,
3 for colored), any tensor of numbers with the dimensions of
an image can act as an input for U-Net, no matter it is visible
to the human eye as an ordinary image or not. Our discussion
in the next section will be restricted to those SOTA models
that can accept data only in the form of images. U-Net-based
AE models, which accept the audio itself or features extracted
from it in the form of a 1D signal are out of the scope of this
paper.

As already described, the most widely used image
representation for AE is the standard STFT spectrogram.
Although it is the simplest TF representation, it has a
few shortcomings including its failure to provide effec-
tive resolution for the wide band signals e.g. speech
and music [59], insufficient frequency resolution (which
prevents algorithms from separating closely spaced tones
required for the effective noise removal, the possibility of
creating unwanted modulations in channel extraction or time-
stretching applications), the introduction of artifacts resulting
in pre-echoes (audible as the swishy, non-focused sounding
of transients of percussive instruments e.g. drum) and its
purely linear frequency resolution, which is not compatible
with the human perception [84] as at higher frequencies,
human beings perceive sounds logarithmically, rather than
linearly. A melodic (Mel) spectrogram plots the frequency
on a logarithmic scale, and so conforms well to human
perception. The term ‘log-scaled’ spectrogram, commonly
used in literature is not the same as the Mel spectrogram.
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In the Mel spectrogram, log scaling of the frequency (y) axis
is done, while in a log-scaled spectrogram, the brightness (z)
axis is log-scaled. Both STFT and Mel spectrograms can be
log-scaled and are in common use, apart from their non-log-
scaled counterparts [85].

In spectrograms, there is a tradeoff involved in time and
frequency resolution, defined by the analysis window size,
which is defined as the smallest segment (chunk) of an
audio signal over which the Fourier transformation is applied.
This window keeps sliding over the upcoming samples and
provides time-localized frequency information. An increase
in the window size would increase the frequency resolution
and reduce the time resolution and vice versa [86]. The
window size is chosen by convention for most applications
and once chosen, is not considered further. A one-size-fits-
all approach does not make sense and sounds from different
sources or for different applications usually require tailored
window sizes [87]. The appropriate window size can either
be selected manually (e.g. based on some prior information
about the signal energy profile [87] or the distance between
the two closest sinusoids [59]), or by an adaptive mean (e.g.
based on some local characteristics of the signal [88]), which
requires no prior information about the input signal. However,
the adaptive selection method is computationally expensive,
as compared to the fixed-size window method.

Apart from STFT and Mel spectrograms, various other
2D representations, e.g. cochleagram, Constant Q Trans-
form (CQT), chromagram, tempogram, Auditory Image
Map (AIM), Stabilized Auditory Image (SAI), etc. are in
use [48] and many others from the TF gallery [89] e.g.
Wigner-Ville distribution, Empirical Mode Decomposition
(EMD), Hilbert-Huang Transform (HHT), Fourier Synchro-
Squeezed Transform (FSST) can be used in future AE
applications to decompose the audio into TF domain to
highlight the components of interest in the audio signal.
Every representation has its own method of calculation and
frequency resolution. As compared to the standard STFT,
all other TF representations are computationally expensive,
but the shortcomings of STFT (already mentioned above),
and the capability of highlighting the desired audio features
by others, favor their use [59]. The preference of any
particular representation for an application depends on its
ability to highlight the discriminatory features in the signal
of interest. Some features are readily visible in an ordinary
spectrogram (fixed-resolution/ standard STFT). For example,
in the case of overlapping events, the properties of each
event are more easily identifiable in multi-resolution STFT,
while they are diluted in the case of Mel-spectrograms,
while the CQT images are useful for music analysis ( [48]
and [49]). Similarly, few sounds like audio anomalies in
machines or open environments are better captured with Mel-
spectrograms. This is because, at low SNRs, they successfully
highlight the transition of sound generated by the occurrence
of an anomalous event [90], while the medical anomalies
are usually more easily identified by scalograms [91],
which depict better, the slowly varying signals, punctured
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FIGURE 3. Rare sound event detection. STFT spectrogram fails to capture the rare event precisely, while the Mel spectrogram
(left) and scalogram (right) have done so for the open environment and health anomaly sounds respectively, as shown by the
black boxes bounding the rare events. The STFT and Mel-Spectrograms are plotted by the MATLAB instructions
spectrogram(audio,[].[1.[1.Fs, 'yaxis’) [253], and melSpectrogram(audio,Fs) [254] respectively, where Fs is the sampling frequency.
The helperPlotScalogram function [255] is used for plotting the wavelet scalogram.

by the abrupt transients. The effectiveness of using these
representations for detecting anomalies (open environment
and medical pathological sounds) as compared to the ordinary
STFT is depicted in Figure 3.

In treating the spectrogram as an image, the question
arises, whether there exists any similarity between the two.
The answer is both yes and no. Like natural images, the
spectrograms of natural sounds have a built-in correlation
between the neighboring bins [6], but there exist additional
correlations at harmonics, which are not found in the case
of ordinary images. Furthermore, in contrast to images, the
energy distribution differs significantly between frequency
bands. This effect is countered by standardizing the spectro-
gram separately for each band [6].

VIIl. AUDIO ENHANCEMENT BY SEGMENTATION

2017 marks the beginning of using U-Net (a specialized
DNN for image segmentation) for AE when Jansson and
Humphrey [37] used it for separating the vocals from
instruments in a song. We believe that we were the first to use
U-Net for speech separation [64]. The authors of [92] were
the pioneers of using pre-trained model for speech inpainting.
Although the model of [93] has used U-Net as the generator
of Generative Adversarial Network (GAN) for the first time
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in speech denoising application, it was in the model [66], that
the U-Net was tested for the first time as a solo network for
speech denoising and dereverberation.

Common AE applications using image U-Net include
audio/ music generation, text-to-audio generation, bandwidth
extension, source localization, vocoders, pitch marking,
source separation, source inpainting, and source denoising/
dereverberation. However, we will restrict our discussion
to only the last three AE applications as depicted in
Figure 4. In this paper we will review SOTA models
employing image U-Nets for different AE tasks from 2017
(the beginning of U-Net for AE applications) to 2023. This
paper is not intended to compare the performance of different
models, as they are rarely trained and tested under similar
acoustic conditions (reverberation, SNRs, and noise types)
and over similar datasets. Neither the evaluation metrics
are common among them, except for the Music Source
Separation (MSS) task where most of the models use the
metrics of [94] for performance evaluation. We will only
compare these models in Table 2. For the rest of the tasks
discussed in this article, only the salient features including
the architecture, the input representation, and the dataset
used for training and testing are mentioned in Tables 3,
4, and 5, as reported in their corresponding papers. The
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TABLE 2. Comparison of different MSS models on common datasets.

—>

Model Musdb18 [103] Model MUSIC [104 Model URMP [105
SDR] SIR? SAR] SDR] SIR7 SAR?T SDR7 SIRT | SART
[71] 24 7.52 5.69 [98] NA 1502 | 1228 | [78] NA 541 1147
[50] 3.66 NA NA [78] 7.26 14 NA [100] 3.05 8.5 7.54
[39] 7.12 NA NA [100] 5.05 1093 [ 9.93
[96] 52 6.4 1198 | [101] 4.26 7.07 13
[98] 6.45 [74] 10.96 1791 | 12.77
[79] 55 75 2276
[102] 5 NA 5.1

*NA= Not Available

preference is given to the pioneering and the most recent
research.

A. SOURCE SEPARATION (SS)

We divide the Source Separation (SS) problem into three
main streams; a) Music Source Separation (MSS), b)
Zoological Source Separation (ZSS), and c) Speech Source
Separation (SSS). In most of the spectrogram-based methods,
the networks are trained either to estimate mappings to a
clean target spectrogram or to estimate masks (binary or
ratio (real or complex)), that classify every pixel of the
spectrogram [95]. These masks are then multiplied with the
spectrogram of the noisy mixture, to obtain the estimates of
the corresponding sources [50].

1) MUSIC SOURCE SEPARATION (MSS)

The goal of MSS is to design algorithms that can separate
vocals from instruments (called Singing Voice Separa-
tion (SVS)) or the instruments themselves. U-Net based
algorithms provide promising performance for both SVS
and MSS in general [39]. These algorithms have been
successfully used for music editing/remixing, music retrieval
for karaoke, singer identification and transcription of musical
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records. In case of music instrument separation, CQT has
shown superior performance, as compared to other types of
representations [6], as shown on the left side of Figure 5,
where the two instruments (drum and piano) are visibly more
separable in CQT representation than in any other. However,
for SVS, the use of standard STFT spectrogram is found to
be beneficial ( [85] and [96]).

a: AUDIO-BASED MSS

In [37], two U-Nets are used for SVS, which are trained on the
STFT spectrograms of the full song, along with the separate
STFT spectrograms of vocals and instruments, which act as
GT for each network. As already pointed out in the discussion
above it was the first DNN model, which has used U-Net
for AE, and provided a better quality output signal, with
fewer distortions and artifacts, when compared to other deep
learning models of MSS. The model of [71], in contrast
to [37], consists of a single U-Net trained on the STFT
spectrograms, multiple times in every training epoch; each
time with a source-specific conditioning. On the other hand,
the model of MSS [50] is a multi-task model, using the STFT
representation. However, unlike [37], only a single network
is trained for all sources, so its training parameters are equal
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TABLE 3. Source separating models.

Model

Application

Pre-
trained

model

Network

architecture

Input representation

Dataset used

Music source separation (MSS)

A. Jansson et al. Vocal/instrument separation x Vanilla U-Net STFT magnitude 1). MedleyDB [117]
[37] spectrogram 2).iKala[118]
G. M. Brocal et Vocals/Drum/bass/Rest separation x Conditioned U-Net and STFT magnitude Musdb18 [103]
al. [71] Feature-wise Linear spectrogram
Modulation (FiLM)
layers inserted the
encoder side
V. S. Kadandale 1). Vocal/instrument separation X Multi-channel U-Net STFT magnitude Musdb18 [103]
et al. [50] 2). Vocals/Drum/bass/Rest spectrogram
separation
W. Choi et al. Singing voice separation x Vanilla U-Net with Complex STFT Musdb18 [103]
[39] intermediate layers at spectrogram
both sides consisting of
either 1) Time
distributed blocks of
PHASEN [146] or
Time-frequency
distributed convolutions.
A. C. Hadria et Singing voice separation x Vanilla U-Net STFT magnitude Musdb18 [103]
al. [96] spectrogram
V. George et al. Drum separation x Vanilla U-Net with STFT magnitude 1). Demixing Secret Data
[98] dense block in the spectrogram (DSD) [119]
bottleneck 2). Musdb18 [103]
H. Zhao etal. Instrument separation ResNet for | Vanilla U-Net STFT magnitude MUSIC [104]
[99] video spectrogram
C.Ganetal. [78] | Instrument separation X Vanilla U-Net with STFT magnitude 1). MUSIC [104]
cross-modal early fusion | spectrogram 2). URMP [105]
module in the bottleneck 3). AtinPiano [120]
H. Zhao et al. Instrument separation X Vanilla U-Net with STFT magnitude 1). MUSIC [104]
[100] Feature-wise Linear spectrogram 2). URMP [105]
Modulation (FiLM)
layers inserted in the
bottleneck
R. Gao et al. Instrument separation ResNet for | Vanilla U-Net STFT magnitude 1).MUSIC [104]
[101] video spectrogram 2). AudioSet [61]
3). AV-Bench [121]
Y. Zhang et al. Instrument separation ResNet for | Attention Gate Control Mel-spectrogram MUSIC [104]
[74] video (AGC-U-Net) at the skip
connections
C. Huang et al. Instrument separation ResNet for | Vanilla U-Net with STFT magnitude 1). MUSIC [104]
[79] video Convolution-Attention spectrogram 2). Audio-Visual Event
(CA) blocks in (AVE) dataset [122]
bottleneck
S. Mo etal. Instrument separation ResNet for | Vanilla U-Net Log Mel spectrogram 1). MUSIC [104]
[102] video 2). VGG-Instruments [123]

3). VGGMusic [124]
4). VGGSound [124]
5). Kinetics-400 [125]
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TABLE 3. (Continued.) Source separating models.

Zoological sounds separation (ZSS)

P. C. Bermant et
al. [53]

Rhesus macaques, bottlenose
dolphins, and Egyptian fruit bats

separation and classification

X

Vanilla U-Net

1). Log-scaled STFT
spectrogram
2). STFT spectrogram

1). Macaque coo call
dataset [126].

2). Bottlenose dolphin
signature whistle dataset
[127].

3). Egyptian fruit bat

vocalization dataset [128].

C. Bergler et al.
[107]

Killer whale sound separation

Vanilla U-Net

Log-scaled STFT

spectrogram

Orchive [129]

T. Colligan et al.
[108]

Beetle courtships and whale songs

classification

Vanilla U-Net with 2D
convolutional layers

replaced by 1D

Mel spectrogram

1). Real recordings of
beetle songs

2) Whale detection
challenge 2013 [130]

Speech

source separation (SSS)

S. Gul et al. [64]

Speech separation

X

Vanilla U-Net

Spatial spectrograms

1). TIMIT [131]
2). MeGill [132]

and RP blocks

S. Guletal. [108] | Speech separation SONET Vanilla U-Net Spatial spectrograms TIMIT [131]
[64]
S. Basir et al. Speech separation x Vanilla U-Net STFT complex TIMIT [131]
[110] spectrograms
C. Pang et al. Multi-channel speech separation x Vanilla U-Net with Complex STFT 1). VOICES [133]
[111] dilated convolutions spectrograms 2). CHiME-3 [134]
3). WMIR [135]
R. Gao et al. Audio-visual speech separation ResNet for | Vanilla U-Net Complex STFT 1). VoxCeleb2 [136]
[112] video spectrograms 2). Mandarin [137]
ShuffleNet 3). TCD-TIMIT [138]
for audio 4). CUAVE [139]
5). LRS23 [140]
6). VoxCelebl [141]
Y. Wuet al. Audio-visual speech separation ResNet for | Vanilla U-Net Complex STFT 1). VoxCeleb2 [136]
[113] video spectrograms 2). Mandarin [137]
ShuffleNet 3). TCD-TIMIT [138]
for audio 4). CUAVE [139]
5). LRS23 [140]
6). VoxCelebl [141]
M. Yoshidaetal. | Audio-visual speech separation ResNet for | Complex U-Net Complex STFT Fair-Play dataset [142]
[114] video spectrograms
G. Dahy et al. Audio-visual speech separation x Vanilla U-Net Complex STFT BBC (LRS2) Dataset [143]
[40] spectrograms
J.W. Hwang et Audio-visual speech separation & x Vanilla U-Net with skip | Complex STFT 1). LRS2-BBC dataset [143]
al. [80] denoising connections having RA | spectrogram 2). Voice Bank

corpus [144]
3). DEMAND [145]

to a model trained for a single source. Also, unlike [71],
training the model multiple times in every epoch is not
required, for multiple sources. This model produces output
quality comparable to the dedicated and source-conditioned
models, with much less computational resources. Although
STFT itself is a complex matrix, unfortunately in most SS
models, the complex-valued phase is often neglected, due to
difficulty in its estimation and the SS models usually estimate
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magnitude masks, while reusing the noisy phase information
of audio mixture for the source retrieval on the assumption
that the phase is not highly affected by noise [95]. This
has clear limitations, especially under low SNR conditions,
where the difference between the clean and the estimated
target signals gets larger with decreasing SNR values [97].
The SVS model proposed in [39] uses deep complex U-Net
and complex-valued STFT spectrograms, to estimate the
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complex-valued Ratio Mask (cRM). As the DNN-based
models other than the pre-trained models require a lot of
training data, in [96] different augmentation techniques are
tested for the U-Net model designed for SVS. It is found
that the most effective augmentation technique for U-Net is
pitch shifting as compared to time stretching and formant
shifting. Few models also incorporate additional layers in the
conventional structure of U-Net to achieve better separation
e.g. the model in [98], dedicated to separating only the drum
sound from the polyphonic music mixture uses a dense block
at the bottleneck of U-Net. The dense block has cascaded
convolutional layers with each layer connected to all the
layers in front of it.

b: AUDIOVISUAL-BASED MSS

The natural synchronization that exists between vision and
sound provides a rich supervisory signal to localize and
separate the sounds in videos [99]. There are various MSS
models (e.g. [78], [99], [100], and [101]) using video in
addition to audio. These models use different networks for
processing the video while they all use U-Net for processing
the audio signal and accept the STFT spectrogram of the
audio mixture at their input. The model proposed in [99] is
useful for separating a mixture of two instruments. It uses
U-Net for audio separation and ResNet for video processing.
The model proposed in [78] uses the features extracted
from the body movements and processes them by Graph
Convolutional Network (GCN). The output of GCN is fused
to the middle part of U-Net for guiding the MSS. This
method proves very useful, especially for solving the harder
problem of homo-musical separation, where two or more
people are playing the same instrument in a single frame.
The model proposed in [100] incorporates motion cues
extracted from a deep dense trajectory network and injects
them in the middle of U-Net. This model is based on the
observation that if two people are playing the same instrument
simultaneously, the humans can separate their beats by
observing the movement of each person for a while. The MSS
model proposed in [101] is similar in structure to the model
of [99] except that it uses ResNet for processing video and
injects the features into the middle of U-Net. This model
proves beneficial for separating the sounds generated by
similar-looking instruments in an unlabeled video. The model
in [74] also uses ResNet for video feature extraction, but it
merges them with the output of U-Net instead of injecting
them in the bottleneck of U-Net. While the above-stated
audio-visual MSS models are masking-based, the model
proposed in [79] is a generative model that produces higher-
quality source separation as compared to the masking-based
models. The local pattern from the visual cues is extracted
by ResNet and the long-range time dependencies in audio
are extracted by the time-attention module and injected into
U-Net which primarily does the audio separation task. The
unified audiovisual MSS model for localization, separation,
and recognition [102] again uses conventional U-Net. The
video and location features of different sources collected by
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DNNs are injected in the middle part of U-Net to guide the
audio separation process.

The performance comparison of different MSS models
using the evaluation metric of [94] (Signal-to-Distortion
Ratio (SDR), Signal-to-Interference Ratio (SIR), and Signal-
to-Artifact Ratio (SAR) is given in Table 2. For all metrics,
higher is better. Only the models trained and tested on a
common dataset are compared with each other. The results
are reported directly from their papers. In any paper if
separate results have been given for all instruments and
vocals, the average of them is given in Table 2. In the
source separation task, among all the three metrics of [94],
SDR is the most important parameter showing the overall
degree of separation. It is the ratio of the signal energy
with the sum of interference, artifacts, and noise energies.
As clear from Table 2, for the Musdbl8 [103] dataset,
the model of [39] using the phase information in the
Time-Frequency distributions results in the output quality
enhancement, followed by the model [98] having a dense
block in its bottleneck. For the MUSIC [104] dataset, the
model of [74] reducing the semantic gap and introducing
the attention mechanism by AGC-U-Net has resulted in the
overall best performance than the competitive networks. For
the URMP [105] dataset, SDR is not reported for [78]. The
model of [78] (audio-visual model) offers better SAR and the
model of [100] has better SIR.

In short, the models using phase information, modified
architectures with the reduced semantic gap between encoder
and decoder, and complemented by visual modality. work
better than the audio-only models using the noisy phase and
vanilla architecture (e.g. [96], [99], and [101]).

2) ZOOLOGICAL SOUNDS SEPARATION(ZSS)
Due to lesser research in the bio-acoustic field, it remains
unclear which input representation is the most suitable one
for the machine learning bioacoustics applications [53]. The
choice of useful representation for bioacoustics signals may
vary according to the vocal properties of the particular
species, yet HHT and CWT are optimal representations for
detecting whale screams and bird songs respectively [89].
BioCPPNet [53] is a U-Net-based model for ZSS; across
diverse biological taxa. The separation results show that the
ordinary STFT is more useful than its log-scaled counterpart.
This model trains multiple U-Nets, each on an individual
species, and after training uses them for ZSS. ORCA-Party
Problem (OPP) (a term coined for the largest member of the
dolphin family — the killer whale (Orcinus Orca); akin to the
term Cocktail Party Problem (CPP) [106], used generally for
all types of SS) is solved in [97] by using the conventional
U-Net architecture of [16]. It takes the log-scaled STFT
spectrograms as input and generates eight different masks
for eight different kinds of ORCA sound activities. The
model of [107] is a generalized model for the classification
of different animal sounds designed originally for beetle
courtship sounds classification and later tested for whale song
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classification. The model uses an ensemble of U-Nets for
noise removal and classification of sounds is later done by
computing the median softmax value over all the members in
the ensemble.

3) SPEECH SOURCE SEPARATION (SSS)

a: AUDIO-BASED SSS

U-Net is used for binaural SSS in [64] by clustering the TF
units of the spatial spectrogram of the audio mixture. The
spatial spectrogram is a special spectrogram that contains
information about the spatial location of sources, contributing
to the audio mixture. This spectrogram is obtained by the
ratio of STFT of audio mixtures collected at the two ears.
Although this SSS model called ‘SONET’ was the first of
its kind, incorporating U-Net for audio SSS and spatial cues,
it fails to generate any noticeable improvement in speech
quality over the SOTA spatial cue-based machine learning
models. Also, this model is restricted for anechoic conditions.
This problem was resolved in [108] by using SONET
with Expectation Maximization (EM) (a machine learning
algorithm), which outperforms its constituent systems, both
under anechoic and reverberant conditions, as indicated by
the results of subjective listening tests in [109]. The most
interesting fact about the SSS model in [108] is that it
uses the anechoic pre-trained model ‘SONET’, without any
need for retraining, to tackle the echoes. SONET is also
used for speech dereverberation, as will be discussed in the
‘source denoising and deteverberation’ subsection. The SSS
model proposed in [110] concatenates the real and imaginary
components of the STFT matrix which is then processed
by ordinary U-Net instead of deep complex U-Net. This
model is designed to separate the mixture of male and female
speech only. The SSS model [111] is a multichannel speech
enhancement model that utilizes beamforming at the frontend
to discard the distractors and U-Net to produce separate
amplitude and phase spectrograms for each channel. The
output of U-Net is given to a post-filtering network which
captures contextual and spatial correlation information and
generates an estimated spectrogram.

b: AUDIO-VISUAL-BASED SSS

The audio-visual models utilizing U-Net also exist in the case
of SSS as there exists a strong link between how a person’s
face looks and how his voice sounds [112]. The most well-
known contribution in this direction using U-Net for SSS is
VisualVoice [112], where ResNet extracts the facial attributes
from the image and ShuffleNet extracts the features from the
lip movement in a video and injects them in the bottleneck
of the U-Net performing the SSS task. The model shows
superior performance over audio-only speech separation and
audio-visual source separation models using DNNs other
than U-Net but its major drawback is its high computational
cost which is reduced by [113] by incorporating various
quantization techniques on the network parameters. The
audio-visual SSS model [114] is an interesting model
that separates the off-screen sounds (whose sources are
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outside the video) from the on-screen sources using the
interaural cues. The audio collected from the binaural setup
is decomposed into left and right spectrograms, and each
spectrum is again split into real and imaginary components
resulting in four matrices which are stacked together and
input into the U-Net. The visual cues are collected from
the ResNet18 pre-trained model and concatenated with the
spatial cues of audio collected from the S&E model [115]
and injected in the bottleneck of U-Net to guide the separation
process. The SSS model of [40] is also an audio-visual model,
using deep complex U-Net for complex STFT spectrogram
processing. However, it requires the training of three different
DNNss to separate the two speakers. The first is a pre-trained
DNN called FACENET [116] for learning the facial features
of the target speaker obtained from the video stream, the
second is an RNN for learning the features of the target and
masker for the audio stream and the third is U-Net for learning
the spectral features from the spectrograms. As there exists
a semantic gap between low-level and high-level features of
the vanilla U-Net and its ability to handle only short-term
dependencies, the audio-visual SE model in [80] incorporates
RNN Attention (RA) blocks and the Res Paths (RPs) in
the skip connections to reduce these gaps and increase the
receptive field to enable it to find long-term dependencies.
In conventional AV models speech and video are processed
by separate encoders and then concatenated together before
entering the decoder side. This not only increases the number
of encoder parameters but also increases the burden on the
decoder. In [80] early fusion of audio and video is done
and a single encoder is used to avoid the above-mentioned
problems. The proposed algorithm outperforms vanilla U-Net
in terms of rejecting competitive speech and non-speech
noises at much reduced computational cost.

The salient features of the source separation models
discussed above are summarized in Table 3.

4) SOURCE INPAINTING

In dynamically changing noisy conditions, transient loud
noise intrusions can lead to inescapable loss of information.
Inspired by the image inpainting technique, where the
damaged or missing parts of an artwork are filled in; in
audio inpainting, the missing or severely degraded parts of
spectrogram of audio are retrieved. In the past, the signal
processing extrapolation schemes (e.g. [147]) were mostly
used for recovering from such data losses in the time domain.
In these methods, missing (i.e. the lost) samples are predicted
by the past and future samples e.g. in [148], [149], and [150].
But these methods fail to recover the samples, distorted
from random and irregular masks (intrusions) of arbitrary
shapes [151].

a: SPEECH

The source inpainting model of [151], using U-Net and
log-scaled complex STFT spectrograms, can recover time,
frequency, or random gaps of up to 40% in a spectrogram of
a one-second-long speech signal. SpeechVGG is used during
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the training phase for estimating the training loss of U-Net,
by comparing the predicted output spectrogram with the GT
and feeding this estimate back to U-Net to update its training
parameters. The model provides better speech quality and
intelligibility, in case of extreme loss, when compared to
the conventional inpainting methods. The model can recover
parts of the spectrogram that are being missing and distorted
by the additive noise or intrusions, that are as large as 400ms
(i.e. the duration of a syllable or a short word) and 3.2 kHz
in bandwidth. In the audio inpainting model of [92], long
audio gaps > 200ms are filled, by using the pre-trained image
network ResNet50 [152], after fine-tuning it with the masked
STFT spectrograms. The output spectrograms of recovered
speech are evaluated against the original spectrogram by
using the objective evaluation methods commonly used for
image and video inpainting algorithms such as the L1 loss and
the perceptual loss. This was the first model to incorporate
a pre-trained network for audio inpainting. The inpainting
model of [153] is based on a well-known pix2pix image
translation network [154] with a modified loss function, using
U-Net on its generator side. The system reconstructs only the
log-magnitude spectrogram while for phase reconstruction
Griffin-Lim [155] algorithm is used. This network is shown
to provide packet loss concealment of up to 120ms. The
speech inpainting model in [156] is similar in architecture
to [153] but it uses two strategies for phase reconstruction:
1) Phase Gradient Heap Integration (PGHI) [157] for the
areas with high magnitudes (usually lower frequencies)
and random phases for those with low magnitudes (mostly
for high frequencies) since the higher frequencies do not
contribute much to speech intelligibility. This reduces the
buzz introduced if only PGHI were applied or the buzz caused
by the [153] algorithm.

In the Internet of Things (IoT) era, wearable devices
generally rely on environmental energy harvesting to alleviate
the expensive maintenance overhead of battery recharging,
but due to weak and unstable power supplies from these
energy sources, these devices face intermittent failures. The
model of [38] employs U-Net and STFT spectrograms to
solve the intermittent speech loss problem, transmitted from
such devices. First, the interpolation of missing segments is
carried out in the time domain, followed by its spectrogram
inpainting by U-Net. The results show tremendous improve-
ment in quality, intelligibility, and Word Error Rate (WER) of
the recovered speech, for devices that turn off intermittently
for a duration as long as 128ms, after turning on only
for 71ms.

b: MmusIC

The repetition of distinct patterns (themes, melodies,
rhythms), makes the inpainting of long segments of music
much easier than the inpainting of an A-periodic signal, e.g.
speech [158]. The music inpainting model of [159], uses U-
Net as the generator of the Generative Adversarial Network
(GAN); another deep neural network, and splits the complex
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STFT spectrogram in two channels (real and imaginary) to
be given at input of the model, which inpaints successfully
the musical records, with pauses as long as 100ms. The
inpainting model of [160] uses deep complex U-Net and
complex-valued STFT spectrograms as input to estimate the
complex-valued Ratio Mask (cRM), to restore the gaps due to
hiss, clicks, thumps, and other common additive disturbances
from old analog gramophone discs. The inpainting model
proposed in [160] is also used in [161] for inpainting tape and
cassette recordings. The models proposed in [162] and [163]
are U-Net-based music inpainting models using CQT as their
input. The model in [162] is only designed for piano sound
for gaps up to 1.5s while that of [163] is for multi-instrument
dataset for gaps up to 300ms. In both models, the time
axis is downscaled by U Net while the frequency axis is
not compressed on the encoder side. It is observed in [162]
that for very long gaps, although the generated events are
often reasonable, they do not align with the musical context
so in [163], the CQT spectrogram is split into octave-wise
sub transforms and they are processed one-by-one down the
layers of U-Net. The instrument inpainting model in [81] is
also a U-Net-based model using ResBlocks, taken from the
ResNet. These blocks have local skip connections between
convolutions on each level resulting in a network being
capable of inpainting upto 1.6s duration of signal loss.

The salient features of the source inpainting models
discussed above are summarized in Table 4.

5) SOURCE DENOISING AND DEREVERBERATION
In the source separation task, the noise source (unwanted
signal) is focused, while denoising usually refers to the
methods of removing the noise of diffuse characteristics
e.g. noise in the market, café, random white noise, babble,
wind, and airplane sounds. Most of the classical denoising
techniques are based on statistical assumptions and so they
fail to generalize well for the intrusive and non-stationary
noise types. DNNs have made a breakthrough in this situation
because of their ability to remove most of the background
noise, regardless of its intensity and type [55].
Reverberation is also a kind of noise, produced by the
source itself [1]. It is also diffuse in nature [173] and so acts
as a diffuse noise source.

a: SPEECH

In the denoising model of [174], U-Net is trained on noisy
squared log magnitude spectrograms, using the cleaned ones
as GT, for single-channel speech enhancement. The U-Net
architecture is the same as the generator architecture of
pix2pix image GAN [154]. The denoising model of [93] again
implements U-Net similar in architecture to the generator of
pix2pix image GAN but with an ordinary STFT spectrogram.
The model in [93] outperforms other deep learning denoising
systems by offering better speech quality for AE applications
and offers fewer errors in Automatic Speaker Verification
(ASV) applications in the presence of white, café, airplane,

VOLUME 11, 2023



S. Gul, M. S. Khan: Survey of Audio Enhancement Algorithms

IEEE Access

TABLE 4. Source inpainting models.

Model Application Pre-trained Network Input Dataset used
model architecture representation
Speech inpainting
M. Kegler etal. | Speech inpainting SpeechVGG Both Speech VGG, Log-scaled complex LibriSpeech corpus [59]
[151] and Vanilla STFT spectrograms
Y. Chang et al. Speech and natural 1). VGG16 STFT magnitude 1). SC09 dataset of human voice [164]
[92] sounds inpainting 2). ResNet50 spectrogram 2). ESC-50 dataset of natural sound

[165]

C. Aironi et al.

Speech inpainting

Vanilla U-Net in

Log magnitude STFT

VCTK Corpus [166]

[153] generator of pix2pix | spectrogram

GAN [154]
H. Zhao et al. Speech inpainting X Vanilla in generator | Log magnitude STFT | LibriSpeech corpus [59]
[156] of pix2pix GAN spectrogram

[154]
Y.C. Linetal. Speech inpainting x Deep complex U- Complex STFT VCTK-DEMAND corpus [167]
[38] Net spectrograms

Music inpainting

Y. Lietal Music inpainting x Vanilla U-Net Complex STFT Public Domain Project [168]
[159] spectrograms
E. Moliner et Music inpainting x Vanilla U-Net Complex STFT 1.) The Great 78 Project [169]
al. [160] spectrograms 2). MusicNet dataset [170]

3). Orchestral and opera recordings [171]

[161]

I. Irigaray et al.

Tape and cassette
recordings

Vanilla U-Net with
intermediate layers
at both sides
consisting of
DenseNet blocks

STFT spectrogram

1). MusicNet [170] for clean audio
2). Real recorded data for noise

E. Moliner et
al. [162]

Piano inpainting

Vanilla U-Net with
intermediate layers
at both sides
consisting of
Residual Block
(RBlock)

CQT

MAESTRO dataset [172]

E. Moliner et
al. [163]

Music inpainting

Vanilla U-Net with
intermediate layers
at both sides
consisting of
Residual Block
(RBlock)

CQT

MusicNet dataset [170]

K. Liu et al.
[81]

Music inpainting

Vanilla U-Net with
intermediate layers
at both sides
consisting of
Residual Block
(RBlock)

Mel Spectrogram

1). MusicNet dataset [170]
2). MAESTRO dataset [172]

babble, and market noise, under moderate SNRs, ranging
from 5 to 15dB. In the model of [175], wind noise mixed with
single-channel speech recorded outdoors is removed from its
STFT spectrogram by U-Net. This wind noise subtraction
model shows superior performance than the minimum
statistics-based and nonnegative matrix factorization-based
methods, under various SNR conditions. Conventional U-Net
usually has a large number of trainable network parameters
(ranging from 10 million to 100 million), which makes
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real-time execution on a typical smart device unfeasible [176]
The denoising model proposed in [82], uses standard STFT
and lightweight U-Net architecture, proposed by Google’s
Inception V4 networks [177], and achieves performance
similar to conventional U-Net, while reducing the network’s
footprint size to 3.72% of the size of the conventional
U-Net [82]. To utilize the phase information, the model
in [97] uses similar architecture and complex STFT input
representation for speech denoising, as used by the SVS
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model [39]. The denoising model of [77] uses a spiking neural
network in U-Net architecture. The individual neurons in this
network emit a spike when their membrane potential reaches
the threshold value. It is a low-powered network useful
for cell phones. The noisy input magnitude spectrogram is
mapped to a cleaner version by the network and later the noisy
phases are combined to produce enhanced speech. The model
in [178] uses the conventional U-Net architecture for speech
enhancement and is found to be more effective under very low
unseen SNR values and unseen noise types than the method
using CNN.

In the dereverberation model of [1], U-Net is trained on the
reverberated STFT spectrograms of monaural speech, using
their clean counterpart as GT. However, the method fails
to generate good results at longer reverberation times. The
model of [179] is an online U-net structure for estimating
the inverse filter response of each reflection path at each time
unit, to better handle the time-varying reverberant conditions.
This model is trained on Convolutive Transfer Function
(CTF) coefficients arranged in a 2D matrix and provides
better dereverberation performance at different levels of
reverberation time, unseen type of room environment, and
static and time-varying reverberant conditions for simulated
and real rooms. The standard U-Net does not respond well
to the train/test mismatch acoustic conditions. Implementing
probabilistic bottleneck instead of deterministic in U-Net,
in the denoising and dereverberation model of [65], enables
it to adhere well to the unknown noise and reverberant
scenarios, than the standard U-Net. The model is trained on
log-scaled STFT power spectrograms.The use of symmetric
filters in U-Net makes sense for regular images, as there is
no difference between their x and y-axis. However, in the
dereverberation model of [66], it is found that designing
asymmetric filters, which have higher dimensions in the
frequency domain than in the time domain combat the echoes
better. The results on U-Net and GAN (using U-Net as
its generator), with asymmetric filters and log-scaled STFT
input representation, show reduced distortion in the output
speech signal. The model presented in [180] is a binaural
spatial cue-based dereverberation, using U-Net trained on
spatial spectrograms. This model exploits the fact that there
exists a distinction between the spatial cues of the direct path
and the spatial cues of reverberations ( [181] and [182]),
so they can be separated. As the spatial cues generated by
a source depend on its location, the moving sources or the
sources placed at locations, other than those in the knowledge
of a spatial cue-based dereverberation model, would not
be dereverberated properly. This model uses beamforming
at its front end, supported by U-Net at the backend,
to learn the spatial cues of echoes and direct paths. After
training, the beamformers are replaced with the binaurally
separated microphones. This model has surpassed both the
signal processing [183] and the RNN-based deep learning
approaches [184], in terms of providing higher intelligibility
and lesser distortion. As it is a spatial-cue-based algorithm,
so the network is sensitive to the speaker’s position. However,
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it is found that it is resilient to mild movements of the speaker
up to 15cms in either x, y, or z direction, in the vicinity of
its training position. Spectrum encoding as magnitude/ phase
has shown better performance in anechoic conditions than
its real/ imaginary representation which generalizes better in
reverberant conditions. The complex U-Net model proposed
in [185] is a denoising and dereverberation speech model
that uses a variational latent space model and magnitude
and phase spectrograms in the bottleneck of U-Net for
dereverberation. The DNN models usually do not generalize
well under unknown environments. This results in their poor
performance under unknown conditions. The U-Net-based
dereverberation and denoising model proposed in [67] is
similar to conventional architecture except for two LSTM
layers in the bottleneck park. It is a self-learning model
that learns the spatial features of the environment from
the input signal improving its adaptability under unknown
environments. The deep learning models usually do not
perform well when the recording conditions of the training
and the test datasets do not match. Non-Matrix Factorization
(NMF); a well-known machine learning technique, works
well for such unseen conditions. In the speech-denoising
model of [186], NMF is combined and jointly optimized with
the U-Net model having a Temporal Activation layer (TAU-
Net) to suppress temporal activations estimated by TAU-Net
in unseen noisy conditions. The model outputs speech with
better quality as compared to vanilla U-Net and SEGAN [41]
in unseen conditions. To capture long-term dependencies, the
U-Net-based SE model uses dilated convolutions to widen
the receptive fields and maintain the TF resolution of feature
maps at all levels of encoder and decoder. The system
produces output with better quality and intelligibility than the
LSTM and gated dilated convolutional networks.

The use of the generative diffusion model is a recent trend
in natural image generation [187]. They are shown to perform
better than GAN models, which capture less diversity and
are difficult to train, collapsing without proper selection of
hyper-parameters and regularizers, and difficult to scale and
apply for unseen domains [187]. GANs tradeoff diversity
for fidelity, producing high-quality samples but unable to
cover the whole distribution. Diffusion models are a class of
likelihood-based models that not only generate high-quality
images but also offer other desirable characteristics such
as distribution coverage, easy scalability, and a stationary
training objective. For audio tasks these models are used for
generating human-like natural language [188], highly diverse
speech [189] and music [190], and voice conversion [191].
Whether used for image or audio, the core idea behind
enhancement by diffusion model is to gradually convert the
clean data to pure noise by gradually adding Gaussian noise
to it in the forward process and then inverting the diffusion
process by estimating the noise signal in the reverse process
and using this estimated signal to restore the clean signal by
subtracting it from the noisy data step by step [192]. The
model of [193] has pioneered the use of diffusion network
for AE and the models proposed in [193] and [194] are
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based on direct processing of signals in 1D. The model
of [195] has used the diffusion networks for the first time
on spectrograms using deep Complex U-Net architecture
and has outperformed the models of [193] and [194]. Later
the models proposed in [192] and [196] have also used
spectrograms as input. The model proposed in [192] uses the
Deep Complex Convolution Recurrent Network (DCCRN)
architecture of [197], while the model of [196] uses the
Noise Conditional Score Network (NCSN++) of [198]
based on multi-resolution U-Net architecture. It exceeds the
model of [195] in performance. A complete review covering
diffusion networks for speech enhancement and generation
can be found in [23] so we will not cover these models any
further.

b: OTHER AUDIO APPLICATIONS

Apart from speech and music, other audio applications
e.g. anomaly detection by sound (whether in machine or
auscultation), source localization, or environmental sound
classifiers require audio denoising to achieve better accuracy.
Now, we discuss a few models for these applications using
U-Net for audio denoising.

c: SINGLE-TONE SOURCE LOCALIZATION

The multiple source localization model [199], uses 2D
beamforming colored maps as input representation, and
the corresponding 2D colored target maps as GTs, for
training the U-Net. The model produces an Average Root
Mean Square Error (RMSE) of just 2cm. This multi-source
localization model requires neither any prior information
about the number of sources to be localized, nor their
presence necessarily on or near the predefined grid points in
the coverage space of the beamformer. However, this model
is only tested for sources generating a single tone.

d: HEALTH CARE

The use of highly sensitive and stable instrumentation,
along with auscultation carried in optimal conditions, is rec-
ommended for reducing the noise, as its presence may
result in incorrect classification of the pathology. But it is
not always possible to obtain the ideal condition for the
measurement and therefore noise is unavoidable, requiring
denoising of the signal. The model in [200] tested both the
Denoising CNN (DnCNN) [201] and U-Net for denoising
the auscultation. The most interesting feature of this model
is that the input layer of U-Net accepts a 2D signal directly
in the time domain, without any transformation to the TF
domain, by reshaping the audio vector to a 2D matrix, while
the DnCNN is already designed to accept a 1D signal at
its input. U-Net shows better denoising and requires less
training time than the DnCNN. The model of [202] uses
deep complex U-Net and complex STFT spectrograms for
denoising of PhonoCardioGram (PCG) signal. The denoising
model of [203], instead of being tested under the synthetic
noisy conditions using Additive White Gaussian Noise
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(AWGN) noise, uses a more realistic approach and tests the
model under four different noises including AWGN, additive
pink Gaussian noise, speech, and real clinical background
noise. This model improves the performance of automatic
cardiac sound classification algorithms under very low SNR
conditions. Speech has been discovered as a useful biomarker
for the detection of COVID-19. The model proposed in [204]
is used to denoise speech using conventional U-Net which is
then classified for the absence or otherwise of COVID-19.
The detection performance is improved by 10% especially
under low SNR conditions as compared to the detection
system without speech enhancement. The model proposed
in [205] removes the clutter in ultrasound cardiac images
caused by reverberations produced by sound reflections from
echogenic structures such as subcutaneous fat, skin, bone,
lung, cartilage, intercostal muscle, and out-of-scan-plane
heart tissue. These reverberations appear as cloud-like diffuse
haze and can affect the accuracy of diagnosis [205]. The
model proposed in [205] uses U-Net and causal U-Net for
haze removal. Causal U-Net is suitable for real-time inference
while conventional U-Net is suitable for recorded data.

e: INDUSTRIAL SOUNDS

The ensemble model in [206] uses the log-scaled STFT
spectrogram and U-Net in the pre-processing step of
denoising the machine sounds. The U-Net is expected to
reconstruct (inpaint) normal data even if few cues are
available e.g. in noisy conditions. It generates an output
mask, which is used for the retrieval of anomalous events.
However, the system performance on the Detection and
Classification of Acoustic Scenes and Events (DCASE)
challenge 2022 industrial dataset [207] was poor, except for a
few machines. Similar to [206], the noise removal step of the
machine anomaly detection model, proposed in [208], uses a
log-scaled complex Mel spectrogram, as an input to a deep
complex U-Net. In [209], again U-Net is used not only in its
conventional architecture but also in its two modified forms:
1) Nested U-Net [210] (where additional encoder-decoders
are nested between the original encoder-decoders of the basic
U-Net) and 2) ResU-Net (where residual connections exist in
both the encoder and decoder side, which help in addressing
the problem of gradient vanishing and thus produces more
accurate results). These architectures provide much better
performance in detecting the rare sound event in the audios
of the industrial dataset of DCASE 2022 in case of extremely
low SNRs than the systems without the denoising frontends.
The models in [211] and [212] use U-Net and U-Net++
respectively for denoising the spectrograms of the sound
from the planetary gearboxes which are widely used in many
industrial categories such as mining, wind power generation,
metal forming, etc. These TF spectrograms are later used for
fault diagnoses. In [211] generalized S-transform is used for
generating the TF map from the accelerometer recordings.
Data was collected from the real environment, where the
speed of gearboxes varied continuously. Varying speed
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operations and a continuously changing environment are
more challenging for fault diagnosis. U-Net has outperformed
the classical methods in reducing the number of false
positives and the processing time, making it a better choice
for meeting the real-time requirements of fault diagnosis.
In [212], an improved version of U-Net++ using Tversky
loss [213] as an optimization objective is utilized for further
improving the segmentation F1 score from 0.942 (in [211])
to 0.949 (in [212]).

f: ENVIRONMENTAL SOUNDS

In the case of environmental sounds, it is rare for any sound to
be present alone. The model proposed in [214], first deploys
an image CNN for sound event detection from the STFT
spectrogram and then uses U-Net to predict the masks for
segmenting different sources from the mixture’s spectrogram.
It can separate up to 75 different environmental sounds.
However, this model works only for non-overlapping sounds
present in the audio mixture.

To separate the background from the foreground sound of
rare events, the sound event detection model of [68] uses
two U-Net architectures: 1) the conventional U-Net, and
2) a novel U-Net architecture called U-Net with Limited
Upsampling (LUU-Net) which applies limited upsampling
on the decoder side to restore the original time axis and
only a limited frequency axis. This saves the computational
cost by 40% as compared to the conventional U-Net without
any information loss as the onset and offset information
of the rare event lies on the time axis. The segmentation
masks obtained at the output of U-Net are used for
obtaining the type and the timing information of the event
from the weakly labeled dataset of DCASE 2018 tasks 1
[215] and 2 [216].

Another interesting of U-Net denoising is in underground
utility tunnels where the condensation in summer may cause
electric sparks in aged and corroded wiring which may result
in fire. Installing CCTV cameras may not always help due
to being expensive and due to the presence of blind spots so
an acoustic-anomaly detection system is presented in [217]
for detecting sparks. The spark sound is usually accompanied
by the noise of ventilation fans inside the tunnel, the sound
of falling water into the sump pit, and traffic noise over
the road, thus difficult to be identified. Conventional U-
Net is used for denoising the ambient sound which is
later classified for the presence or otherwise of electric
spark.

Supervised DNNs require both clean and noisy audio
samples for training. However, the real audio recordings
come with noises that cannot be separated to produce desired
training samples. Secondly, most DNNs are trained on
artificially created data using AWGN for noise that does
not represent natural noise. The bird sound denoising model
of [69] uses U-Net and U2-Net [76] to separate the noise
from the real recordings of the birds’ sounds by transforming
the audio into an STFT matrix. The sound files [76] have
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noises from the wind, waterfall, rain, and other natural
sources. The GT images required for training are obtained
by applying a threshold over the noisy areas of the STFT
absolute spectrogram. The results show that U-Net performs
better than U?-Net.

The salient features of the source denoising and
dereverberation models discussed above are summarized
in Table 5.

IX. POTENTIAL DIRECTIONS FOR FUTURE RESEARCH
Although a lot has been explored, few areas still open for
research using image U-Nets for AE can be summarized as
below.

o As already explained above, different applications
require different input representations. For example,
as shown in Figure 5(a), the CQT representation
is the most effective one in discriminating the two
instruments in an audio mixture, as compared to others.
Similarly, Mel spectrogram and scalogram are effective
for detecting anomalies in open environment and health
respectively (as shown in Figure 4). However, for large
classes of bioacoustics and environmental sounds, the
most appropriate representations are still missing [53].
Further investigation is required to find them for these
sounds.

« Exploring new pretrained models from the already
available large repository of networks trained for
computer vision for the task of MSS, music inpainting,
source dereverberation, and denoising where no such
significant examples of using them exist.

o Till now, for the AE tasks requiring spectrogram
segmentation, the spectrogram given at the input of
U-Net is merely a 2D matrix of numbers. This can
be regarded as a grayscale image. Although colored
spectrograms have been tried for the AE classification
tasks (e.g. [240] and [241]), to the best of our knowledge,
there is no such example we have found for spectro-
gram segmentation applications like audio denoising,
separation, or inpainting. The effect of changing the
color map of the spectrogram on human perception is
evident [48], and has already proved impactful in the
classification of lung sounds [240] and in automatic
speech emotion recognition (SER) [241]. It is also
visible from Figure 5(b) that ‘parula’ and ‘colorcube’
color maps of the CQT spectrogram show the contents
of each instrument better than the ‘prism’ color map,
which fails to provide any discrimination of two
sources whatsoever in the region of mixing. Similarly,
in Figure 6, the effect of using different color maps for
the speech denoising application is shown, where even
by visual inspection of clean and noisy spectrograms,
the noise is easily differentiable from the regions of
clean speech in ‘parula’ color map, mildly in ‘pink’,
and poorly in the ‘prism’ color-map. Now the question
arises, does working with colors instead of just using a
2D TF matrix make any difference in the performance of
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TABLE 5. Source denoising and dereverberation models.

sides consisting of Multi-Lane
Dimensionality Reduction
(MLDR) module

Model Application Pre- Network architecture Input Dataset used
trained representation
model
Speech denoising and dereverberation
A.E. Bulutet Speech denoising | X Generator of pix2pix [155] Squared log 1). Voice Bank corpus [144]
al. [174] magnitude 2). DEMAND [145]
spectrograms
D. Michelsanti Speech denoising | X Vanilla U-Net with STFT magnitude 1). TIMIT [131]
etal. [93] intermediate layers at both spectrogram 2). RSR2015 [218]
sides consisting of DenseNet
blocks
G.W.Lee et al. Speech denoising | X Vanilla U-Net FFT arranged in 2D 1). From Internet
[175] matrix 2). Recordings in soccer field and
parking area
K. M. Jeon et Speech denoising | x Vanilla U-Net with STFT magnitude 1). Voice Bank corpus [144]
al. [82] intermediate layers at both 2). DEMAND [145]

H. S.Choi et al.

Speech denoising

Deep complex U-Net

Complex STFT

1). Voice Bank corpus [144]

coefficients arranged
in 2D matrix

[97] spectrograms 2). DEMAND [145]
A. Riahi et al. Speech denoising | x U-Net with Leaky Integrate- Squared log 1). Voice Bank corpus [144]
[77] and-Fire (LIF) neuron model magnitude 2). DEMAND [145]
spectrograms
K. Akter et al. Speech denoising | x Vanilla U-Net with STFT magnitude TIMIT corpus [131]
[178] intermediate layers at both
sides consisting of attention
mechanism
K. Nakazawa et | Speech x Vanilla U-Net Squared log 1). Real speech recordings
al. [1] dereverberation magnitude 2). Simulated Room Impulse
spectrograms Responses (RIRs) [219]
H Chung et al. Speech X Vanilla U-Net Convolutive Transfer | 1). TIMIT corpus [131]
[179] dereverberation Function (CTF) 2). Simulated RIRs [220]

3). Real RIRs from the C4DM
database [221].

E. J. Nustede et

Speech denoising

Vanilla U-Net with dilated

Log-scaled power

Deep Noise Suppression Challenge

dereverberation

al. [65] + convolutions with variational spectrogram 2020 [222]
dereverberation bottleneck
O. Emst et al. Speech denoising | X Both U-Net with asymmetric Log-scaled REVERB challenge [223]
[66] + filters, and U-Net in generator | magnitude
dereverberation of GAN spectrograms
S. Gul et al. Speech denoising | x Vanilla U-Net Spatial spectrograms | 1). TIMIT [131]
[180] + 2). Real RIRs from the University of

Surrey [224].

et al. [225]

E.J. Nustede et | Speech denoising | x Complex U-Net with dilated Complex STFT 1). Deep Noise Suppression
al. [185] + convolutions and variational spectrogram Challenge 2020 [222]
dereverberation bottleneck 2). Voice Bank corpus [144]
3). DEMAND [145]
S. Gao et al. Speech denoising | X Vanilla U-Net with BLSTM Complex STFT LibriSpeech corpus [59]
[67] + bottleneck spectrogram
dereverberation
K. M. Jeon et Speech denoising | X Vanilla U-Net with BLSTM STFT magnitude 1). Voice Bank corpus [144]
al. [186] bottleneck 2). DEMAND [145]
T. Grzywalski Speech denoising | X Vanilla U-Net STFT magnitude 1). WSJO [226]

2). TIMIT [131]
3). Freesound [227]
4). Noisex [228]
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TABLE 5. (Continued.) Source denoising and dereverberation models.

S. Welker et al.
[195]

Speech denoising
+
dereverberation

Deep complex U-Net

Complex STFT
spectrogram

1). Voice Bank corpus [144]
2). DEMAND [145]

J. Richter et al.
[196]

Speech denoising
+

NCSN-++ [198]

1). Voice Bank corpus [144]
2). DEMAND [145]

detection

dereverberation 3). WSJ-0 [226]
Other audio applications
Lee etal. [199] | Source Vanilla U-Net Beamforming map Simulation
localization
T. S. Sharan et Denoising Vanilla U-Net 1D audio vector PhysioNet challenge 2017 [229]
al. [200] auscultation shaped to 160*256
sounds
A. Mukherjee et | Denoising Vanilla U-Net Complex STFT PASCAL heart sound recordings
al. [202] auscultation spectrogram [230]
sounds
C. Gonzalez et Denoising Vanilla U-Net STFT magnitude 1). [231]
al. [203] auscultation spectrogram 2). PhysioNet challenge 2017 [229]
sounds 3). LibriSpeech [59]
S. Liu et al. Speech denoising Vanilla U-Net STFT spectrogram 1). AudioSet [61]
[204] for COVID 19 2). DICOVA [232]

T. S. Jahren et
al. [205]

Clutter removal
in cardiac
ultrasound

Vanilla U-Net with

intermediate layers at both
sides consisting of Residual

Block (RBlock)

Log-scaled images

Real recordings

J. Yamashita et
al. [206]

Audio denoising
inpainting

Vanilla U-Net

Log-scaled
magnitude
spectrograms

DCASE 2022 Challenge Task 2 [207]

P. Daniluk et al.

Audio denoising

Deep Complex U-Net

Log-scaled complex

DCASE 2020 Challenge Task 2 [233]

underground
utility tunnels

[208] Mel spectrograms
Y. Shin et al. Audio denoising Vanilla U-Net Mel spectrograms DCASE 2022 Challenge [207]
[209]
P. Zhang et al. Fault diagnosis Both Vanilla U-Net , and U- S-Transform Real machine recordings
[211] in planetary Net++[210]
gearboxes
P. Zhang et al. Fault diagnosis Improved U-Net++ S-Transform Real machine recordings
[212] in planetary
gearboxes
Y. Sudo et al. Environmental Vanilla U-Net STFT spectrogram 1). ATRECSS — ATR English
[214] sound Speech Corpus For Speech Synthesis
classification and [234]
segmentation 2). RWCP Sound Scene Database
[235]
3). Freesound General-Purpose Audio
Tagging Challenge [236]
4). DCASE 2016 Task 2 [237]
5). RWC-music database [238]
6). Freesound [227]
S. Lee et al. Acoustic scene U-Net architecture with STFT spectrogram DCASE 2018 Challenge Task 1 [215],
[68] classification and Limited Upsampling (LUU- Task2 [216]
rare event Net)
detection
B.-J. Lee et al. abnormal sound Vanilla U-Net STFT spectrogram Artificially created
[217] detection in

Y. Zhang et al.
[69]

Birds sound
denoising and
speech and audio
denoising and
noise estimation

U%-Net

Absolute STFT
spectrogram

Xeno-canto [239]
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FIGURE 5. Effect of changing (a) the type, and (b) the color-map of CQT spectrogram on separation of instruments

audio enhancement networks? What if the spectrogram
is given as a colored image with 3 dimensions using
either Red Green Blue (RGB), YCbCr (Y’ is the luma
component and Cb and Cr are the blue-difference and
red-difference chroma components), or Hue Saturation
Value (HSV) color space? Does it make any impact
on the quality of enhanced audio by increasing each
pixel’s information from a single to a three-digit (one
for each of R, G, and B, or Y, Cb, and Cr or H, S,
and V) tuple? Different color spaces have proved their
worth in different applications. For example, in varying
illumination conditions and complicated backgrounds,
YCrCb is beneficial for face [242] and jaundice
detection [243], HSV for detection of broken stitches in
industrial sewing machines [244], fire detection [245],
and RGB for detection of cancer cells from biopsy
images [246] and anemia [247]. Although, by using
colored spectrograms as input to U-Net the network
parameters would certainly increase but will it reduce
the learning epochs of networks? These questions open
a new direction for future research, relying heavily
upon the extensive research and tools available in the
already-established field of processing colored images.
Our initial experiments with colors for speech denoising
show them to be highly effective in reducing the compu-
tational cost and time of the system’s training without
any depreciation in the model’s output speech quality
when compared with state-of-the-art systems [248].

o Using lightweight U-Net architectures for AE in
mobile applications. Examples of U-Net architectures

VOLUME 11, 2023

with fewer parameters useful for image segmentation
are 1) Efficient and Lightweight U-Net (ELU-Net)
(developed for medical image segmentation [249]),
2) Attention U-Net and SqueezeNet (ATT Squeeze) U-
Net (developed for forest fire detection [250]), 3) Lighter
U-net @128 (developed for lesion segmentation in
ultrasound images in [251]), and 4) lightweight U-Net
(developed for detection and segmentation of iron ore
green pellets in [252]).

X. CONCLUSION

In this article, we have presented a review, focused entirely on
the use of U-Nets for the AE applications. Although the con-
version of audio to time-frequency domain and its advantages
are already well established, treating these 2D representations
as images, and utilizing U-Net, is an approach, that has
outperformed many of the state-of-the-art signal processing
and machine learning algorithms for AE applications. The
use of U-Nets for AE is currently in its childhood, yet
it is enjoying explosive interest from researchers. In the
future, investigating the effect of different color maps and
color spaces of input representations, merging the 2D deep
learning models with other machine learning algorithms, and
exploring the most optimal input representation and more
lightweight variants and pretrained models of U-Net for
mobile devices will benefit more AE applications.
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