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ABSTRACT This paper presents a novel reference architecture for blockchain-enabled federated learning
(BCFL), a state-of-the-art approach that amalgamates the strengths of federated learning and blockchain
technology.We define smart contract functions, stakeholders and their roles, and the use of interplanetary file
system (IPFS) as key components of BCFL and conduct a comprehensive analysis. In traditional centralized
federated learning, the selection of local nodes and the collection of learning results for each round are
merged under the control of a central server. In contrast, in BCFL, all these processes are monitored and
managed via smart contracts. Additionally, we propose an extension architecture to support both cross-device
and cross-silo federated learning scenarios. Furthermore, we implement and verify the architecture in
a practical real-world Ethereum development environment. Our BCFL reference architecture provides
significant flexibility and extensibility, accommodating the integration of various additional elements, as per
specific requirements and use cases, thereby rendering it an adaptable solution for a wide range of BCFL
applications. As a prominent example of extensibility, decentralized identifiers (DIDs) have been employed
as an authentication method to introduce practical utilization within BCFL. This study not only bridges a
crucial gap between research and practical deployment but also lays a solid foundation for future explorations
in the realm of BCFL. The pivotal contribution of this study is the successful implementation and verification
of a realistic BCFL reference architecture. We intend to make the source code publicly accessible shortly,
fostering further advancements and adaptations within the community.

INDEX TERMS Blockchain, federated learning, blockchain-enabled federated learning (BCFL), reference
architecture, Ethereum test network deployment, decentralized identifier (DID), client selection, client
evaluation, smart contracts, data privacy, security.

I. INTRODUCTION
The field of machine learning is often hampered by the
challenge of data availability [1], [2], [3]. Additionally, data
providers, who are typically reluctant to share their data
without incentives, may hinder progress and even lead to the
termination of projects [4]. Accordingly, as the adoption of
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the Internet of Things (IoT) broadens and data collection
from edge devices intensifies, the discourse has shifted
towards harnessing this data while protecting the personal
information of data providers. In this context, federated
learning has emerged as a promising solution because it can
offer improved artificial intelligence (AI) models in a way
that data privacy is maintained despite utilizing valuable data
from client devices [5], [6]. However, federated learning still
faces challenges, including the lack of punitive measures for
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clients who deliberately disrupt the learning ecosystem [7],
[8], potential issues associated with centralized learning such
as the single point of failure problem [9], and the inability
for learners to claim and verify their ownership of locally
generated models [10]. Furthermore, it is particularly critical
to address system heterogeneity in federated learning [11],
taking into account the diverse characteristics of themultitude
of devices involved.

The integration of blockchain with federated learning is
a rapidly evolving area of research, aimed at addressing the
aforementioned limitations [10], [12], [13], [14]. However,
there is a conspicuous scarcity of practical applications
that have been rigorously tested within real-world contexts.
Notably, existing studies have predominantly focused on the
theoretical facets of integrating these technologies, yet have
not thoroughly examined the constraints and challenges asso-
ciated with its practical deployment. To bridge this research
gap, in this paper, we develop a novel reference architecture
for blockchain-enabled federated learning (BCFL). This
architecture is specifically designed to facilitate practical
research and real-world implementation, thereby providing
an actionable blueprint for future BCFL applications. To this
end, we introduce an incentive system underpinned by smart
contracts and employ decentralized identifiers (DIDs) for
authentication. Our main contributions include:

• Designing a BCFL reference architecture and imple-
menting and verifying it in a practical Ethereum
development environment,1

• Defining and conducting a comprehensive analysis
of smart contract functions, stakeholder roles (e.g.,
job creators, evaluators, and trainers), and the use of
interplanetary file system (IPFS) for sharing learning
models among federated learning participants,

• Proposing an extension architecture to support cross-
device and cross-silo federated learning scenarios,

• Developing a method for ID access and management for
federated learning participants through integration with
a DID access system, and

• Reviewing operating costs through a comparison of
deployment costs in the Ethereum test network and the
local simulation network of BCFL.

The rest of the paper is organized as follows. Section II
provides an examination of the key terms and introduces
some related works. In Section III, we present a detailed
explanation of our proposed approach, including the overall
workflow and the roles of each component. Section IV
showcases the experimental results conducted in a real-world
environment. Finally, Section V concludes the paper.

1Our decision to use Ethereum stems primarily from its extensive
developer community and comprehensive library, which facilitates the most
universal construction of decentralized applications (DApps) in the Web3
environment. Additionally, the widespread adoption of the Ethereum virtual
machine (EVM) across many blockchain networks makes it easier to deploy
smart contracts written in Solidity on various chains. This compatibility and
ease of application greatly influenced our choice.

II. BACKGROUND AND RELATED WORK
A. FEDERATED LEARNING
The concept of federated learning was first introduced
by Google in 2017 as a solution to the challenge of
training machine learning models with distributed data [5].
Federated learning is a machine learning strategy in which
multiple entities collaboratively train a shared model without
needing to exchange their raw data. More specifically,
this approach processes data locally on individual devices,
thereby eliminating the need for data collection or centralized
storage in a server. As a result, it can significantly reduce
server resource usage and ensure data privacy [6], [15],
[16], [17]. These benefits have contributed to the growing
popularity of federated learning. As its core, federated
learning harnesses distributed computing power by enabling
individual devices to contribute to the training of the shared
model. This approach not only maintains data privacy and
security but also facilitates the development of models that
are specifically tailored to the unique needs of each device.

Since its inception, federated learning has made substantial
strides, with researchers proposing various techniques to
tackle its challenges. Early approaches relied on simple
averaging algorithms tomerge updates frommultiple devices,
but recent advancements have demonstrated that performance
can be enhanced by the aid of client and data selection
algorithms [18], [19]. These developments have signifi-
cantly improved the practicality and efficiency of federated
learning, with numerous research results demonstrating its
application in diverse fields such as healthcare, finance, and
transportation. Despite being in its early stages, federated
learning holds immense potential as it offers a novel way
to enhance machine learning model performance while
preserving data privacy and security. Given that federated
learning involves local training on devices with different data
distributions and quantities, it is essential to conduct research
on addressing data heterogeneity. Consequently, there is an
active and vibrant research community focused on studying
non-independent and identically distributed (non-IID) data
environments [18], [19], [20].

Although federated learning is one of the most active
research areas and holds great potential, practical deployment
and commercialization are still in their early stages partly due
to various technical challenges. To fill the gap, as research
expands and is applied to various fields, various open-source
libraries are emerging to compare, analyze, and apply these
new algorithms [21], [22]. It offers a new way to improve the
performance of machine learning models while maintaining
data privacy and security. Federated learning is expected to
emerge as an important technology in the coming years.

B. BLOCKCHAIN
Blockchain technology is a distributed ledger technology that
enables secure, transparent, and distributed transactions [23].
It has gained significant attention across various industries
due to its innovative features and capabilities. Blockchain
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creates a permanent and unalterable record of transactions,
making it an ideal solution for industries requiring trust,
security, and transparency.

Essentially, blockchain is a digital ledger of transactions
that is maintained by a network of computers called nodes.
Each node in the blockchain network maintains a copy of
the ledger, and all changes are verified by consensus among
the nodes. Once a transaction is recorded on the blockchain,
it cannot be changed or deleted, thus ensuring data integrity
and immutability [24].

One of the most significant advantages of blockchain
technology is its decentralized nature [25]. This elimi-
nates the need for intermediaries or central authorities,
allowing all transactions to be transparent and accessible
to all network members. Thanks to such an advantage,
blockchain technology is being applied to various use cases
requiring data integrity and traceability, such as financial
transactions [26], [27], supply chain management [28], [29],
voting systems [30], identity management [31], [32], and
healthcare [33].

In conclusion, blockchain technology is an innovative
and disruptive technology that provides safe and distributed
solutions to various industries. It is an area of active research
and application due to its unique features that make it an
ideal solution for industries that require trust, security, and
transparency. It is also noted that the intersection between
AI and blockchain technology has the potential to transform
various industries by enhancing their security, transparency,
and overall efficiency.

C. BLOCKCHAIN-ENABLED FEDERATED LEARNING (BCFL)
BCFL, an emerging paradigm in machine learning, has
attracted interest due to its potential in various areas, such as
IoT and healthcare applications [34], [35]. By integrating the
principles of federated learning and the security features of
blockchain technology, BCFL facilitates data to be collected
and processed locally on individual devices rather than
being stored centrally, with the secure and transparent
transaction recording of blockchain technology. Thereby, this
combination allows for secure and efficient data and model
sharing between multiple parties without a central authority,
potentially overcoming challenges associated with traditional
machine learning methods, such as data privacy and security
issues.

Specifically, within this framework, the role of blockchain
lies in decentralizing the traditional federated learning
structure, thereby eliminating the single point of failure
issue associated with a central server and ensuring data
immutability. This advancement yields technical benefits
that enhance trustworthiness and transparency among partic-
ipants. As discussed in [10], the integration of blockchain
with federated learning could revolutionize the conven-
tional federated learning structure, by transforming it into
a decentralized federated learning ecosystem that can
safeguard personal information without the reliance on a

central server. In [36], it is also pointed out that the
susceptibility to errors in the aggregation of global models
by a centralized federated learning server is a concern,
suggesting that adopting BCFL could be one alternative
solution. Consequently, by employing BCFL, it is possible
to address these concerns, offering an enhanced degree
of security and private data protection in a decentralized
fashion.

A notable example of BCFL is TrustFed [37], a cross-
device scenario-based framework designed to provide fair-
ness and trust to participants. It is implemented using
blockchain smart contracts and statistical anomaly detection
techniques. Not only this, there are various other studies that
emphasize the importance of data preservation [38], [39],
[40], [41], [42]. Moreover, the synergy between federated
learning and blockchain finds significant applications in
various network environments. For instance, the authors
in [43] explored cross-silo federated learning to ensure
privacy protection using cryptocurrency in edge networks.
In a similar vein, the study in [10] introduced a fundamental
concept of a system that combines conventional federated
learning with blockchain, thereby proposing a fresh paradigm
with potential application areas in mobile edge computing
(MEC) networks.

Beyond the aforementioned applications, BCFL also
manifests significant potential within medical services in
distributed environments. The work presented in [44] aims
to enhance data availability, security, and transparency
by integrating a distributed data storage system (DDSS),
blockchain, and hybrid computing. It is noteworthy that this
methodology notably diverges from our BCFL reference
architecture, which will be detailed later, wherein we
emphasize a modular approach, structuring the specific
roles that stakeholders should undertake in accordance with
the systematic workflow intrinsic to BCFL. This design
highlights the scalability and flexibility of our reference
architecture, rooted in its modular fashion.

Furthermore, employing BCFL introduces another signif-
icant advantage: the implementation of automated reward
mechanisms via smart contracts. This approach can help
deter potential malicious participants commonly encountered
in traditional federated learning ecosystems, including those
who contribute counterfeit data during the training process.
The authors in [45] highlight a critical gap in traditional
federated learning systems, namely the absence of adequate
incentives to encourage the sharing of decentralized training
data and computational resources. To address this and estab-
lish a decentralized, publicly auditable federated learning
ecosystem founded on trust and incentives, they recommend
adopting blockchain technology. Similarly, the authors in [46]
underscore the necessity of reasonable incentives, noting
that without them, participants may hesitate to engage in
the learning process. Moreover, the study emphasizes the
pressing demand for incentive strategies to deter malicious
participants aiming to degrade the model’s performance.
In response to this challenge, they suggest an incentive
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scheme that assesses participants based on reputation and
contribution metrics.

Building on the concept of incentives in BCFL, recent
developments have put a spotlight on the intricacies of the
incentive and reward mechanism. One of the complexities
arises from the distributed nature of BCFL, where partici-
pants contribute to learning for their associated edge devices,
making it very difficult to directly monitor the behavior
of participants. To address this issue, the authors in [47]
leveraged competition theory from the field of economics
to provide a mathematical and systematic solution to the
reward mechanism. This innovative solution exemplifies
the ongoing efforts to refine BCFL’s incentive structures.
Simultaneously, the urgency for more secure and efficient
data-sharing methods in a variety of industries, including
healthcare, finance, and e-commerce, propels the advance-
ment of BCFL technologies. The burgeoning data volume
and escalating privacy concerns make this decentralized
approach an increasingly critical solution. Anticipated future
developments in BCFL are likely to include the introduction
of new algorithms and protocols aimed at enhancing security
and efficiency further. As more organizations recognize the
potential benefits of this approach, BCFL is poised to gain
mainstream acceptance in the realms of machine learning
and data sharing. Nonetheless, the path towards widespread
BCFL implementation is not without hurdles, as evidenced
in that available resources to realize BCFL remain relatively
limited despite the significant advances in the architecture
design [48] and open-source projects [49], [50].

D. DECENTRALIZED IDENTIFIERS (DID)
DID, gaining attention in recent years, is a method for
managing and protecting digital identity in a decentralized
manner [51], [52]. It employs a unique identifier to create a
verifiable, reliable, and tamper-proof digital identity, which
is independent of control by any central authority.

One crucial feature of DID is the distribution of ownership
and control of digital identities across multiple parties, coun-
teracting the control typically held by a single organization or
legal entity. This distribution is possible thanks to blockchain
technology, providing a distributed, transparent mechanism
for managing identities and transactions. Within this frame-
work, privacy stands out as one of DID’s most significant
aspects. Specifically, unlike traditional identity management
systems where central authorities collect and store personal
information, potentially leading to data breaches and privacy
violations, DID ensures privacy by enabling individuals to
manage their personal data and decide when and with whom
to share. As a result, the data can be shared only with trusted
parties when necessary.

In DID systems, personal information is stored in a
distributed, encrypted format, presenting a higher level
of privacy and security compared to conventional identity
management systems. As the digital landscape evolves,
there is a growing demand for secure, decentralized identity

management solutions. DID is emerging as a promising
solution, allowing individuals greater control over their
personal information, thereby enhancing their privacy and
security.

Moreover, the integration of DID with verifiable creden-
tials (VCs) offers enhanced privacy and security compared
to centralized systems, granting users more control and
preventing large-scale data breaches common in centralized
databases. These features align with the core objectives
and values of BCFL, which emphasizes learning within
distributed environments and reinforcing individual data
ownership.

Notably, regarding security threats, DID with VCs can be
instrumental inmitigating threats such as Sybil attacks, where
malicious entities create and distribute some fake identities
to compromise systems. Specifically, DID coupled with VC
stands as a forward-looking identity authentication method
suited for distributed environments, synergizing with BCFL
and similar cutting-edge, advanced technologies.

E. INTERPLANETARY FILE SYSTEM (IPFS)
IPFS is a distributed peer-to-peer (P2P) file system that
addresses limitations of the traditional centralized internet
system, thereby providing a technical solution for secure and
rapid transmission of distributed data. IPFS usually employs
a hash-based file system (HFS) for file storage and connects
with the blockchain technology to ensure file uniqueness and
enhance the security of distributed data storage [53], [54].

IPFS can be utilized for a variety of purposes, the most
common being file sharing and distributed web hosting. The
reason for this is that IPFS allows files to be shared using
the distributed technology of the blockchain without needing
to locate the original files. Additionally, IPFS can also host
websites in a distributed manner similar to a content delivery
network (CDN), utilizing its distributed technology. These
innovative solutions hold significant potential to enhance the
security and safety of the internet.

III. BCFL REFERENCE ARCHITECTURE
In this section, we first outline the structure of our proposed
architecture, which comprises two phases encompassing six
stages, and provide detailed information about each stage.
We then engage in an in-depth discussion on the smart
contract functionalities within the architecture. Following
this, we explore the cross-device and cross-silo scenarios and
discuss the functions of stakeholders along with the design
of other modules. Lastly, we conclude this section with a
discussion on the concept of the DID and VC certification
system.

A. OVERVIEW OF THE SIX-STAGE BCFL WORKFLOW
Fig. 1 offers an at-a-glance view of the six stages encom-
passed within our BCFL workflow, which is categorized into
two distinct phases. The initial phase includes job creation
and trainer recruitment, while the second phase involves
the iterative execution of four stages: training, evaluation,
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FIGURE 1. Overall workflow of BCFL, segmented into two phases
encompassing six stages.

client selection and aggregation, and token distribution.
These latter four stages are repeated for a predetermined
number of global rounds, ensuring comprehensive training
and evaluation. Transitioning to a detailed perspective, Fig. 2
presents a comprehensive diagram that cross-references
the key entities with their respective roles. Horizontally,
it categorizes the essential entities into four distinct types: the
BCFL system, stakeholders, IPFS, and blockchain. Vertically,
it identifies the types of participants: job creators, trainers,
evaluators, and aggregators. This intricate portrayal not only
underscores the interactions between different entity types
but also illuminates the layered complexity of roles within
the proposed BCFL ecosystem.

We now turn our attention to the essential entity types
themselves, and thereafter, we will discuss the details of
each of the six stages. Note that these stages represent the
functional steps through which our proposed BCFL reference
architecture operates, delineating the sequence of processes
that the job undergoes from creation to completion, inclusive
of the dissemination of rewards.

• The first entity type, the BCFL system, provides users
with fundamental functionalities via web applications or
similar platforms. It includes providing an environment
for trainer recruitment through the user interface,
supporting the registration process, and more.

• The second entity type comprises stakeholders, who are
the actual users that participate in the learning process.
Within our architecture, these participants include job
creators, trainers, evaluators, and aggregators. Their
specific roles and functions at each stage are depicted
in Fig. 2.

• The third entity type, IPFS, serves as the repository for
storing the outcomes of the learning process.

• Lastly, the blockchain constitutes the fourth entity
type, serving as the foundation for smart contracts that
oversee the learning process. Included within this are the
BCFL contract, which orchestrates federated learning-
related functions; the Token contract, which manages

transactional functions based on ERC-20 tokens; and
the DID contract, which handles DID authentication
functions.

Having outlined the essential entity types, we will proceed in
the following subsections to detail the six stages of the BCFL
workflow, referencing the pertinent aspects of Fig. 2.

1) STAGE 1: JOB CREATION
A client initiates a BCFL task, which prompts the job creator
to generate a quote based on the client’s specifications.
This quote details the type of deep learning model to be
used, the configuration of learning hyperparameters, the
desired number of trainers, the number of global rounds, the
genesis model,2 etc. The job creator then deploys the genesis
model and registers the task. The deployment process entails
uploading the model’s parameters to IPFS and then recording
the returned content identifier (CID) on the blockchain.
An essential part of this process is interacting with the smart
contract through a cryptographic wallet, which is necessary
for recording the details on the blockchain. It should be noted
that the client who requests the job might be a distinct entity
or might also take on the role of job creator. For visual
reference, this job creation stage is depicted in Fig. 2, ranging
from block 1 to block 4.

2) STAGE 2: TRAINER RECRUITMENT
Trainers should be able to review the training task via a
dedicated web application and estimate the potential benefits
(tokens) they can earn. Specifically, based on the training
configuration created by the job creator (block 4), trainers
assess their suitability for the task and, if appropriate, request
participation through the application. The BCFL system
manages the list of applicants and continually monitors
the learning process outcomes. The system also filters out
malicious trainers by scoring their behavior and creates
a allowlist of approved trainers, thereby maintaining the
integrity of the learning process. This persistent monitoring
and filtering are crucial to safeguard against the recurrent
negative influence of malicious trainers, preventing their
participation in other federated learning tasks. For identity
verification, the trainers can use a VC JSON web token
(JWT) or, alternatively, issue a new DID and VC. During
this process, the BCFL system validates the participants’
information and securely stores the authentication data,
enabling trainers to accrue corresponding bonus points.
This trainer recruitment stage, including the verification and
allowlisting process, is depicted in Fig. 2, ranging from block
5 to block 5-2.

3) STAGE 3: TRAINING
Once the trainer recruitment stage is complete and all trainers
are ready, the smart contract updates the training status to the

2Inspired by the term ‘genesis block,’ which denotes the first block mined
in any cryptocurrency, we have coined the term ‘genesis model’ to refer to
the initial model to be distributed under the BCFL framework.
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FIGURE 2. Detailed representation of the complete BCFL system architecture.

training phase and signals the start of training. The trainers
then begin by downloading the genesis model. This step is
achieved by first invoking a function in the smart contract that
returns the genesis model’s CID, followed by the acquisition
of the model parameters from IPFS using that CID. With the
genesis model in hand, the trainers commence training with
their own datasets. Following this, they register their local
model updates on both the IPFS and the smart contract. The
registration process mirrors the job creator’s initial upload
of the genesis model, as depicted in block 3 in Fig. 2, with
the addition of key supplementary information logged in the
smart contract. This information serves to identify which
trainer contributed to the update and the specific global round
it pertains to, among other details. This training stage spans
from block 6 to block 8 in Fig. 2.

4) STAGE 4: EVALUATION
Upon completion of the training stage in a global round, the
evaluator reviews the status of the smart contract to decide if
the evaluation stage can commence. At the beginning of this
stage, the evaluator downloads the local model parameters
submitted by the trainers. This process exactly mirrors
how local trainers acquire the genesis (or global) model,
as depicted in block 6. The evaluator then carries out the
evaluations with pre-prepared data. Before this, the evaluator

retrieves DID authentication client information from the
BCFL system and awards bonus points to trainers verified
through DID (who can be called DID-authenticated trainers).
For awarding these bonus (contribution) points, a variety
of algorithms are available, and an appropriate method can
be chosen for each specific BCFL task. When it comes to
recording the trainers’ scores, the evaluator compiles the
information, including the score, the trainer’s wallet address,
and the CID, and then registers it in the smart contract. This
structured approach to compiling and recording ensures that
both the BCFL system and the aggregator can easily reference
the scores. After the evaluations are finalized, the evaluator
documents the model-specific scores for each trainer in the
contract. This evaluation stage extends from block 9 to block
11 in Fig. 2, covering the process from the downloading
of model parameters to the documentation of the evaluation
outcomes.

5) STAGE 5: CLIENT SELECTION AND AGGREGATION
This stage corresponds to blocks 12 through 14 in Fig. 2.
It is important to note that the client selection process, which
pertain to blocks 11, is optional part and are not strictly
mandatory for implementing the our BCFL architecture.
If the client selection process is undertaken, the next
round’s participants can be determined based on scores
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recorded in the smart contract, according to a specific
pre-determined or predefined protocol that may vary in
definition. Subsequently, the aggregator interacts with the
smart contract to retrieve lists of the trainers, model CIDs,
and contribution points for the recorded models. Employing
algorithms like FedAvg [5], the aggregator then synthesizes
the local models provided from the trainers into a unified
global model. This global model is then recorded in both IPFS
and the smart contract, a process that can be implemented
in the same manner as model uploads in blocks 3 and 6.
Additionally, at the end of the aggregation stage within a
round, the aggregator assesses clients based on their scores
and records the list of trainers who qualify for the next round
in the contract, thereby notifying them of their continued
participation.

6) STAGE 6: TOKEN DISTRIBUTION
In this stage, the job creator utilizes a pre-deployed token
contract to distribute tokens to trainers, with the distribution
amounts determined by the score list. These tokens are
intended to act as stakes in the final global model. These steps
are represented by blocks 14 and 15 in Fig. 2.

B. SMART CONTRACT
The smart contract oversees the overall workflow and
handles critical information throughout the process. Table 1
enumerates the functions required in the contract for the
BCFL cross-device scenario.3 Below is a detailed description
of each function.

1) ROUND CONTROL
In BCFL, there generally is not a separate server to manage
the learning process. Hence, the smart contract needs to han-
dle the registration andmanagement of information in a round
and its duration. The round control module contains these
functions, enabling stakeholders to continuously monitor the
current round and the remaining time during the learning
process. A round is deemed completed once the evaluation
and aggregation for that round are finished, and the process
then advances to the next round.

2) CLIENT SELECTION
In client selection, managing the trainers for each round
based on evaluation results is essential. After the aggregator
performs client selection in a specific round, the system
needs to register the wallet addresses of eligible trainers. This
function should be set up such that the trainers can easily
verify it. At the start of the round, trainers can check their
status to see if they are valid participants, and based on the
status value they receive, they can decide whether to continue
participating in the BCFL process.

3In this study, we will consider not only a cross-device scenario but also a
cross-silo scenario. Detailed explanations of these scenarios will be provided
later in Section III-C.

3) EVALUATION
The evaluator assesses the performance of the local models
submitted by trainers and records the evaluation results in
the smart contract. The smart contract should be capable
of storing the CID of the local model, its corresponding
score, and the trainer information for the model. To ensure
access control, the evaluator’s access to the evaluation score
should be restricted using measures like solidity modifiers.
Once the evaluation of all local updates in a specific round
is completed, the evaluation completion status value should
be changed to allow other trainers to progress to the next
training stage. While it is possible to change the evaluator,
such changes are restricted to unavoidable cases.

4) GLOBAL MODEL SAVING
After the client selection process is completed, the aggregator
should be able to upload the CID of the aggregated global
model through the contract.

5) TRAINING
During the training process, trainers download the global
model, train it using their own data, and subsequently upload
the trained model to IPFS. Consequently, the smart contract
should include functions to store and retrieve the CID of the
global model and the updated CID of the local model for the
corresponding round.

6) TRAINING INITIATION
The job creator’s role includes defining whichmodel to use as
the genesis model at the beginning of the training process, and
recording the CID of the initial version of the model, which
is uploaded through IPFS, in the contract. This ensures that
all participants have access to this model for training.

7) TOKEN DISTRIBUTION
Trainers seek to be rewarded for their contributions. The
token distribution function facilitates this process by linking
ERC-20 and other token interface contracts, allowing the
issuance of tokens that can be traded on an actual network.
These tokens hold value, such as operating as a stake in the
final global model. These tokens hold value, serving various
purposes such as acting as a stake in the final global model.

8) FL PROGRESS MANAGEMENT
In addition to the functions listed above, the following
functions are crucial for effectively managing the progress
and status of the federated learning training:

• After all the trainers are recruited, the smart contract
receives a notification signaling that the federated
learning training is ready to start.

• A status check is performed to verify whether a
particular trainer has successfully uploaded the CID of
its local model for the current round. This check ensures
that there are no abnormalities in the training process
and that each trainer’s contribution is accounted for.
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TABLE 1. Function classification and description for the BCFL cross-device scenario in the smart contract.

FIGURE 3. Workflow illustration of the cross-device scenario in BCFL.

• To evaluate the contribution of the local models for
the corresponding round, a list of model CIDs that
have completed training is necessary. This list helps in
assessing the impact of the trained models and further
analysis and aggregation.

C. CROSS-DEVICE AND CROSS-SILO SCENARIOS
Fig. 3 depicts the overall workflow of the cross-device
scenario in BCFL. The roles and functionalities of each

stakeholder are represented in different colors, and badges
are attached to indicate interactions with IPFS and smart
contracts.

The job creator initiates the BCFL process by reviewing
the received tasks and establishing the training configuration.
This includes the total number of global rounds, training
hyperparameters, the number of trainers, evaluation methods,
client selection methods, and round duration. Once partici-
pant recruitment is completed by the job creator, the genesis
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FIGURE 4. Workflow illustration of the cross-silo scenario in BCFL.

model is uploaded to IPFS. The job creator then registers the
CID of the uploaded genesis model in the smart contract,
providing access to all participants.

Fig. 4 illustrates the workflow of the cross-silo scenario,
which adapts and enhances the model presented in [49]. This
scenario presupposes the participation of three entities, with
the final global model emerging as an aggregation of their
respective auxiliary models. Each participant cyclically takes
the evaluator role within its auxiliary model while the others
serve as trainers. As there is no distinct evaluator for the main
model, the cumulative evaluation results from each auxiliary
model are used as weights.

The aggregator is responsible for aggregating the auxiliary
models and executing the final aggregation for the main
model. As illustrated in Fig. 4, a third-party entity, not
considered as a participant, is chosen as an example.
To identify an eligible client for aggregation, the BCFL
system, which manages the allowlist and client requests,
should maintain a allowlist of authenticated users, such
as those with DIDs, thus selecting users who consistently
contribute to the training. If an aggregator is chosen from
among the participants, strategic variations can be introduced,
which can be done by randomly selecting an aggregator from
the clients and assigning the role to the client with a high
contribution during the training process.

D. STAKEHOLDERS’ FUNCTIONS AND OTHER MODULE
DESIGNS
In this work, we categorize stakeholders into two distinct
groups based on the scenario. In the cross-device scenario,
we identify four types of stakeholders: job creator, evaluator,

FIGURE 5. Structure of the job creator class module within the context of
the cross-device scenario.

trainer, and aggregator. Alternatively, in the cross-silo
scenario, we identify three types of stakeholders: job creator,
participant, and aggregator. As described later, we propose
that each participant in the cross-silo scenario can perform
both the roles of an evaluator and a trainer.

1) JOB CREATOR
The job creator can either be the entity commissioning
the task or a client who receives requests from external
organizations and prepares estimates. The job creator is
primarily responsible for the creation part of the BCFL
task. These responsibilities include creating the training
configuration, utilizing the BCFL cross-device scenario
smart contract along with network standard interfaces, such
as ERC-20 token contracts, deploying DID contracts, and
setting up the genesis model. As outlined in Fig. 5, the key
responsibilities of the job creator are as follows:

• Training configuration: This encompasses details such
as the number of global rounds, the number of trainers,
and the evaluation and client selection algorithms. This
information is disseminated to the stakeholders through
either the BCFL system or the smart contracts.
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FIGURE 6. Evaluator class module structure in cross-device scenario.

• Smart contracts: The job creator deploys the requisite
smart contracts essential for training. This encompasses
the BCFL contract, the token contract using network
standard interfaces, and the DID contract. The job
creator accesses the contract after each global round’s
completion to verify the status and distribute tokens to
the trainers.

• Setting genesis model: The job creator designs the
deep learning network in accordance with the desired
objectives and uploads the model to IPFS. This infor-
mation, once documented in the smart contract, becomes
accessible to all stakeholders.

2) EVALUATOR
Presumed to be a node equipped with a suitable test data set,
the evaluator is responsible for evaluating local models. It is
designed to be capable of receiving rewards for providing
evaluation data and contributing to the training process.
As outlined in Fig. 6, the evaluator class consists of modules
for ‘local model evaluation,’ ‘global model evaluation,’
‘scoring algorithms,’ and ‘smart contract bridge.’ These
modules fulfill the following roles:

• Local model evaluation: Once all the trainers have
completed their local training, the evaluation phase
begins. At this stage, the evaluator identifies the
trainers who are authenticated via their DIDs and
awards additional scores to them for reward purposes.
Additionally, to perform the evaluation, the evaluator
needs to access the smart contract to retrieve the CIDs
of the models that the trainers have completed.

• Global model evaluation: To gauge the performance
of the final model, an evaluation of the global model
is required. This evaluation can serve as a comparative
measure, indicating the extent to which the local
models, trained by the trainers, contribute to the global
model.

• Scoring algorithms: There are various types of algo-
rithms for evaluation, with Shapley value and leave-one-
out being commonly mentioned in the field of federated
learning. The contribution in federated learning can
be measured by the marginal value for a trainer’s
contribution to the global model, or by contribution
estimation algorithms such as Shapley value or leave-
one-out, in accordance with the guidelines specified in
the training configuration created by the job creator.

FIGURE 7. Trainer class module structure in cross-device scenario.

The chosen algorithm should align with the train-
ing’s objectives and characteristics, and also allow for
straightforward module design of tailored algorithms
specific to the training task.

• Smart contract bridge: The submission of the com-
pleted local update CIDs to the blockchain is facilitated
through the smart contract bridge. This bridge serves
as a connection between the evaluation process and
the blockchain, ensuring that all evaluation results
are accurately recorded and readily accessible for
subsequent stages of the BCFL process.

3) TRAINER
Trainers conduct the training in accordance with the provided
training configuration and record the results in IPFS and
smart contracts. They also have the discretion to decide
whether or not to use their personal information to obtain
DID and VC. Fig. 7 outlines the structure of the trainer class
module, each detailed as follows:

• Local training During the local training phase, trainers
need to download the global model before they start
their training. The access CID for the global model
is specified in the smart contract, and trainers access
it to download the model from IPFS. The training is
conducted based on the training configuration provided
by the job creator. Upon completing their training,
each trainer uploads their updated local model to
IPFS, records it on the blockchain via the contract,
and then waits for the evaluation by the evaluator to
be completed. After the evaluation stage, trainers can
check whether they have been eliminated by the client
selection algorithm at the start of the new round. After
verifying their status, they proceed to the next round.

• Smart contract bridge: Trainers are responsible for
uploading the CIDs of their locally updated models to
the blockchain through the smart contract. This bridge
facilitates the recording of updates and contributions
made by each trainer to the global model.

• DID class: Trainers have the discretion to obtain DID
and VC voluntarily. If trainers choose to obtain DID
and VC, they interact with the BCFL system, which
includes authentication logic. The DID class manages
these requests to the BCFL system, and the BCFL
system, in turn, maintains a allowlist of authenticated
trainers and manages it for the corresponding BCFL
task.
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FIGURE 8. Aggregator class module structure in cross-device scenario.

4) AGGREGATOR
The aggregator performs global model aggregation and
receives additional rewards accordingly. The criteria for
selecting the aggregator can rely on the allowlist furnished by
the BCFL system, which allows for the selection of clients
beyond the pool of training participants. Alternatively, the
flexibility can be provided by selecting trainers based on
specific requests. The aggregator class module structure is
outlined in Fig. 8, and each module is detailed as follows:

• Smart contract bridge: The aggregator uploads the
aggregated global model update to IPFS and registers the
CID in the smart contract to allow participants to access
the global model.

• Building the global model: The primary role of the
aggregator is to aggregate the local models. They access
the smart contract and IPFS to download the list of local
models and perform model aggregation according to the
specified aggregation algorithm.

• Aggregation algorithms: Several aggregation algo-
rithms, including FedAvg, are included in this module.
The aggregation algorithms module should be designed
to accommodate dynamic decisions of the effective
aggregation algorithms for the given task.

• Client selection algorithms: After performing aggrega-
tion, the aggregator needs to select trainers to participate
in the next round. Recently, various client selection
algorithms are being actively proposed so that efficient
algorithms for the given task in the sense of cost and
performance can be chosen. In this study, the option of
not performing client selection (all) or excluding trainers
based on their performance ranking (scoring order) is
provided. In addition to this, there are various client
selection algorithms, and we plan to add them so that
they can be tested in BCFL as well.

5) PARTICIPANT IN CROSS-SILO SCENARIO
Fig. 9 illustrates the participant module structure in the cross-
silo scenario. In this scenario, there is no dedicated evaluator
among the participants. Instead, multiple auxiliarymodels are
created, with participants alternately assuming the evaluator
role. Thus, each participant in the cross-silo scenario can
perform both the roles of an evaluator and a trainer. The newly
considered modules, ‘check role’ and ‘add auxiliary model,’
in Fig. 9 are detailed as follows:

• Role check: In a specific auxiliary model, the creation
of the class should be different depending on whether
the participant is a trainer or an evaluator.

TABLE 2. Smart contract deployment gas price in Sepolia test network.

• Add auxiliary model: Participants in the evaluator role
deploy their local model as the genesis model. Using this
genesis model, other participants initiate training based
on the cross-device scenario.

6) BCFL UTILITY FUNCTIONS
Fig. 10 outlines the utility functions required for training. The
IPFS class includes functions necessary for the upload and
download of completed local and global models. As the IPFS
connection is established via the HTTPAPI, a dedicated class
is necessary to manage this connection, which is then utilized
by all participants.

The smart contract bridge provides contract-related func-
tionalities to all BCFL participants. This class is implemented
using blockchain interaction libraries, such as Web3.py.
It encompasses functionalities like contract deployment,
contract instantiation, wallet-related functions (e.g., wallet
information retrieval, token deployment, and balance check-
ing), federated learning-related functions, and token-related
functions (e.g., token transfer).

E. DID AND VC CERTIFICATION SYSTEM
The authentication system leveraging DID and VC is
designed to operate at the service level. Fig. 11 illustrates an
example of the system utilization, where the holder refers to
a user who engages with the service by issuing a DID. Upon
obtaining the DID, the holder requests VC issuance from
the BCFL system and submits it when participating in the
federated learning task. The BCFL system decrypts the VC,
verifies whether it is signed by the BCFL system, and sends
a verification completion message to the federated learning
task registration organization.

Fig. 12 illustrates the additional score gained through the
DID authentication logic. Users can be divided into authen-
ticated and unauthenticated groups. For the authenticated
group, an additional authentication reward score is granted
on top of the evaluation score. This enables the aggregator,
when performing client selection based on the evaluation
score, to achieve better performance as the clients are
from the authenticated group. By continuously monitoring
and eliminating malicious trainers from the unauthenticated
group, it is expected that the performance of the global model
will improve.

IV. EXPERIMENTS
This section presents the experimental results, focusing on
our proposed BCFL architecture. It is important to emphasize
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FIGURE 9. Participant class module structure in cross-silo scenario.

FIGURE 10. BCFL Utilities(IPFS, Smart contract).

FIGURE 11. DID, VC verifying scenario.

that these results integrate aspects of both federated learning
and blockchain technologies, rather than examining them
separately. In Section IV-A, we discuss the deployment costs
of smart contracts in the BCFL framework. Section IV-B
investigates the performance of BCFL in non-IID dataset
environments, which are prevalent in federated learning
scenarios. Finally, Section IV-C critically analyzes the
effectiveness of our proposed DID-based authentication
system, underscoring its significance and applicability in the
context of our research.

A. GAS FEE EVALUATION
In this work, we verify the reference architecture through
deployment and execution in the real-world Ethereum envi-
ronment. We utilized the Sepolia test network, an Ethereum
test network, to verify the deployment costs of the smart
contracts employed in BCFL. Table 2 elucidates the
deployment costs on the Sepolia test network. The total
deployment cost for the four contracts used in BCFL, includ-

TABLE 3. Smart contract deployment gas price in Ganache local network.

ing the cross-device scenario, cross-silo scenario, ERC-20
token contract, and DID registry contract, is approximately
0.0274 ETH. This translates to around 51.69USD (or around
66, 500KRW) when converted to cash.4

Table 3 shows the costs of deploying identical contracts
on a local Ethereum network via Ganache. It is noticeable
that the deployment costs on the Ganache local network are
approximately tenfold that on the Sepolia test network. The
Sepolia test network is configured to mirror the Ethereum
mainnet, which adopts the proof of stake (PoS) consensus
algorithm. In contrast, Ganache-configured network emulates
the Ethereum 1.0 network that employs the proof of work
(PoW) consensus algorithm. This variance in gas costs
arises due to the simulation of differing Ethereum network
environments. Thus, for comprehensive verification from a
cost perspective, additional deployment and validation in an
environment as close as possible to the main network are
necessary.

B. VERIFICATION OF OPERATION ON NON-IID DATASET
To verify the operation of BCFL, we first conduct a basic deep
learning task on a non-IID dataset. The experiment, based
on the cross-device scenario, utilized FEMNIST dataset
for training, which was supplied through LEAF [55]. The
FEMNIST dataset, comprising 62 classes of handwritten
characters, presents a non-IID distribution for each trainer’s
data. The same test dataset was used across all evaluations,
and a convolutional neural network (CNN) classification
model served as the network. We set the hyperparameters for
training for 15 global rounds and 2 local epochs.

Fig. 13 shows the progression of global and local loss as
four trainers participate in training based on the FEMNIST
dataset. In terms of global loss, as depicted in Fig. 13(a),
it initiated at 4.15 in the first round and gradually converged
to approximately 0.61 by the final round. Concurrently,

4This is based on the exchange rates as of July 22, 2023.
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FIGURE 12. Additional score obtained through the DID authentication logic.

FIGURE 13. Global loss graph (a) and local loss graph (b) for the FEMNIST
dataset.

as depicted in Fig. 13(b), the local loss experienced by
the trainers also displays a converging pattern over time.
As the 15 global rounds progress, the local model loss of
all four trainers shows similar signs of convergence. This
demonstrates the effectiveness of the training procedure and
its ability to minimize loss across all participating trainers.

C. GLOBAL MODEL WITH DID AUTHENTICATION SYSTEM
In this experiment, we seek to show an example scenario
of the integrated architecture of BCFL and DID systems.
For this purpose, we set up a total of 25 trainers, each
with a unique wallet address on the Ganache network. All
trainers maintain their own training dataset in their local
environments, utilizing the FEMNIST dataset. Intentionally,
we set 12 of these 25 trainers to have normal datasets,
whereas the remaining 13 to have label-flipped datasets.
These 13 trainers are treated as malicious trainers, and thus,
we have them not participate in the DID authentication
process. Fig. 14 shows the test loss graph resulting from

FIGURE 14. Test loss graph of DID non-certified trainer (a) and test loss
graph of DID certified trainer (b).

evaluations conducted on these trainers. More specifically,
Fig. 14(a) represents the test loss from the unauthenticated
trainers, demonstrating poor performance. This result implies
that their aggregation into the global model could potentially
exert a detrimental impact. In contrast, Fig. 14(b) represents
the test loss from trainers who have undergone DID
authentication and have normal datasets, showing a trend of
decreasing loss as training progresses. The results suggest
that the DID authentication process effectively separates
trainers with normal datasets from those with label-flipped
datasets, contributing to the improvement of the overall
model performance.

Next, to assess the potential impact of the persistent par-
ticipation of unauthenticated malicious trainers in training,
we examine the performance of the global model under
a different scenario. In this context, regular trainers that
undergo DID authentication are rewarded with an extra score,
which is equivalent to 10% of the score achieved from
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FIGURE 15. BCFL’s global model loss graph where client selection was
performed by giving additional scores to DID-certified trainers(solid) and
BCFL’s global model loss graph with no client selection(dashed).

the local evaluation. As shown in Fig. 15, when we grant
additional scores to DID-authenticated clients (depicted in
green) and juxtapose this with a scenario in which no extra
scores are granted (depicted in purple), a substantial decrease
in global loss is observed, dropping from approximately
2.9 to 1.3. This result underscores the effectiveness of
rewarding DID-authenticated trainers in reducing global loss.

The experimental results presented in this section demon-
strate the effective integration of BCFL with DID. The
detailed evaluation of training loss with different sets of train-
ers validates the robustness and versatility of our proposed
system. Moreover, the added security and accountability
from the DID authentication system show its potential in
mitigating the risks associated with malicious trainers. As our
architecture continues to be refined and improved, it can
further accommodate the evolving needs of federated learn-
ing environments. We anticipate these results to contribute
significantly to the development of secure, efficient, and
practical BCFL systems.

V. CONCLUSION AND FUTURE DIRECTIONS
BCFL presents a promising decentralized solution that
combines the benefits of federated learning and blockchain
technologies. This study introduces a novel reference archi-
tecture for BCFL and provides a comprehensive analysis of
its key components and processes. Additionally, we have
implemented and verified the architecture in a practical
real-world Ethereum development environment.

For the verification of the architecture, we initially
compared the deployment costs of smart contracts on the
Ethereum Sepolia test network, which closely resembles
the real-world main network environment, with those on
the Ethereum local network simulated using Ganache. The
experimental results reveal significant disparities in deploy-
ment costs between actual production and development
environments. As part of future work, more extensive
testing and verification, encompassing operational costs and
transaction processing speed to enhance the user experience,
will be necessary. Secondly, to validate the FL process
running on Ethereum simulation networks constructed using
Ganache, we showcased convergence trends for both global
and local models in terms of loss. Thirdly, for verification

and as a notable example of extensibility, DIDs have been
successfully integrated as an authentication method to intro-
duce practical usage within BCFL. When an additional score
is awarded to authenticated trainers during client selection for
global model evaluation, a notable performance enhancement
is observed, verifying the potential value of incorporating
DID authentication systems within BCFL in a real-world
deployment. We conceptualized and conducted experiments
to demonstrate the effective operation of this authentication
system.While applying an authentication system to BCFL for
managing and tracking potentially malicious trainers holds
promise, further research is needed to ascertain the suitability
of adopting DIDs as the authentication mechanism.

This study primarily focuses on the practical verification
of the architecture’s functionality. Future research will shift
towards evaluating the system’s performance, taking into
account performance indicators such as the accuracy of
federated learningmodels and the evaluation of contributions.
The fair and efficient assessment of participating clients’
contributions is particularly critical in BCFL, as it directly
influences model accuracy and the incentive mechanism.
To advance our proposed approach, it is essential to integrate
evolving client evaluation techniques from the federated
learning domain, thus qualitatively improving global models.
Moreover, expanding the range of client selection methods
may also be advantageous. Fundamentally, the continued
integration of cutting-edge techniques in federated learning
is vital, requiring task generators to be supported in selecting
and formulating BCFL tasks appropriately.

In addition, operational verifications and performance
evaluations will be conducted on an actual Ethereum main
network or an equivalent test network. Possibilities, such
as utilizing Ethereum client programs to establish and
operate a gas-free private network will also be investigated.
Alternatively, commercially available main networks with
rapid transaction processing speeds and low gas fees could
serve as suitable platforms for the real deployment of BCFL.
A Layer-2 Architecture may offer a promising solution for
this approach. Building upon these explorations, our future
work will also include a detailed analysis of communication
costs within the BCFL system. This will particularly focus
on the interaction between IPFS and blockchain, aiming to
further enhance the architecture’s efficiency and applicability.

REFERENCES
[1] E. Strickland, ‘‘Andrew Ng, AI minimalist: The machine-learning pioneer

says small is the new big,’’ IEEE Spectr., vol. 59, no. 4, pp. 22–50,
Apr. 2022.

[2] H.-S. Lee, D.-Y. Kim, and J.-W. Lee, ‘‘Radio and energy resource
management in renewable energy-powered wireless networks with deep
reinforcement learning,’’ IEEE Trans. Wireless Commun., vol. 21, no. 7,
pp. 5435–5449, Jul. 2022.

[3] S. E. Whang, Y. Roh, H. Song, and J.-G. Lee, ‘‘Data collection and quality
challenges in deep learning: A data-centric AI perspective,’’ VLDB J.,
vol. 32, no. 4, pp. 791–813, Jan. 2023.

[4] C. Tenopir, E. D. Dalton, S. Allard, M. Frame, I. Pjesivac, B. Birch,
D. Pollock, and K. Dorsett, ‘‘Changes in data sharing and data reuse
practices and perceptions among scientists worldwide,’’ PLoS ONE,
vol. 10, no. 8, Aug. 2015, Art. no. e0134826.

145760 VOLUME 11, 2023



E. Goh et al.: BCFL: A Reference Architecture Design, Implementation, and Verification

[5] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
‘‘Communication-efficient learning of deep networks from decentral-
ized data,’’ in Proc. 20th Int. Conf. Artif. Intell. Statist., Feb. 2017,
pp. 1273–1282.

[6] D.-Y. Kim, D.-E. Lee, J.-W. Kim, and H.-S. Lee, ‘‘Collaborative policy
learning for dynamic scheduling tasks in cloud-edge-terminal IoT net-
works using federated reinforcement learning,’’ 2023, arXiv:2307.00541.

[7] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov,
‘‘How to backdoor federated learning,’’ in Proc. AISTATS, Aug. 2020,
pp. 2938–2948.

[8] X. Gong, Y. Chen, Q.Wang, andW. Kong, ‘‘Backdoor attacks and defenses
in federated learning: State-of-the-art, taxonomy, and future directions,’’
IEEE Wireless Commun., vol. 30, no. 2, pp. 114–121, Apr. 2023.

[9] C. Ma, J. Li, L. Shi, M. Ding, T. Wang, Z. Han, and H. V. Poor,
‘‘When federated learning meets blockchain: A new distributed learning
paradigm,’’ IEEE Comput. Intell. Mag., vol. 17, no. 3, pp. 26–33,
Aug. 2022.

[10] D. C. Nguyen, M. Ding, Q.-V. Pham, P. N. Pathirana, L. B. Le,
A. Seneviratne, J. Li, D. Niyato, and H. V. Poor, ‘‘Federated learning
meets blockchain in edge computing: Opportunities and challenges,’’ IEEE
Internet Things J., vol. 8, no. 16, pp. 12806–12825, Aug. 2021.

[11] K. Lee, ‘‘Adaptive federated learning in a dynamic device environment,’’
IITP, IT Knowl. Portal Weekly Technol. Trend, vol. 2052, no. 3, pp. 28–39,
Jun. 2022.

[12] Y. Qu, M. P. Uddin, C. Gan, Y. Xiang, L. Gao, and J. Yearwood,
‘‘Blockchain-enabled federated learning: A survey,’’ ACM Comput. Surv.,
vol. 55, no. 4, pp. 1–35, Nov. 2022.

[13] M. Ali, H. Karimipour, and M. Tariq, ‘‘Integration of blockchain and
federated learning for Internet of Things: Recent advances and future
challenges,’’ Comput. Secur., vol. 108, Sep. 2021, Art. no. 102355.

[14] J. Zhu, J. Cao, D. Saxena, S. Jiang, and H. Ferradi, ‘‘Blockchain-
empowered federated learning: Challenges, solutions, and future direc-
tions,’’ ACM Comput. Surv., vol. 55, no. 11, pp. 1–31, Feb. 2023.

[15] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, ‘‘Federated learning:
Challenges, methods, and future directions,’’ IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 50–60, May 2020.

[16] Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, Y. Li, X. Liu, and B. He, ‘‘A survey
on federated learning systems: Vision, hype and reality for data privacy and
protection,’’ IEEE Trans. Knowl. Data Eng., vol. 35, no. 4, pp. 3347–3366,
Apr. 2023.

[17] S. Niknam, H. S. Dhillon, and J. H. Reed, ‘‘Federated learning for
wireless communications: Motivation, opportunities, and challenges,’’
IEEE Commun. Mag., vol. 58, no. 6, pp. 46–51, Jun. 2020.

[18] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, ‘‘Federated
learning with non-IID data,’’ 2018, arXiv:1806.00582.

[19] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, ‘‘Robust and
communication-efficient federated learning from non-i.i.d. data,’’ IEEE
Trans. Neural Netw. Learn. Syst., vol. 31, no. 9, pp. 3400–3413, Sep. 2020.

[20] H. Zhu, J. Xu, S. Liu, and Y. Jin, ‘‘Federated learning on non-IID data:
A survey,’’ Neurocomputing, vol. 465, pp. 371–390, Nov. 2021.

[21] C. He, S. Li, J. So, X. Zeng, M. Zhang, H.Wang, X.Wang, P. Vepakomma,
A. Singh, H. Qiu, X. Zhu, J. Wang, L. Shen, P. Zhao, Y. Kang, Y. Liu,
R. Raskar, Q. Yang, M. Annavaram, and S. Avestimehr, ‘‘FedML:
A research library and benchmark for federated machine learning,’’ 2020,
arXiv:2007.13518.

[22] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, J. Fernandez-Marques,
Y. Gao, L. Sani, K. H. Li, T. Parcollet, P. P. B. de Gusmao, and
N. D. Lane, ‘‘Flower: A friendly federated learning framework,’’
Mar. 2022, arXiv:2007.14390v5.

[23] M. Di Pierro, ‘‘What is the blockchain?’’ Comput. Sci. Eng., vol. 19, no. 5,
pp. 92–95, 2017.

[24] E. Politou, F. Casino, E. Alepis, and C. Patsakis, ‘‘Blockchain mutability:
Challenges and proposed solutions,’’ IEEE Trans. Emerg. Topics Comput.,
vol. 9, no. 4, pp. 1972–1986, Oct. 2021.

[25] D. Puthal, N. Malik, S. P. Mohanty, E. Kougianos, and C. Yang,
‘‘The blockchain as a decentralized security framework [future direc-
tions],’’ IEEE Consum. Electron. Mag., vol. 7, no. 2, pp. 18–21, Mar. 2018.

[26] M. Nofer, P. Gomber, O. Hinz, and D. Schiereck, ‘‘Blockchain,’’ Bus. Inf.
Syst. Eng., vol. 59, pp. 183–187, Mar. 2017.

[27] H. Albayati, S. K. Kim, and J. J. Rho, ‘‘Accepting financial transactions
using blockchain technology and cryptocurrency: A customer perspective
approach,’’ Technol. Soc., vol. 62, Aug. 2020, Art. no. 101320.

[28] S. Saberi, M. Kouhizadeh, J. Sarkis, and L. Shen, ‘‘Blockchain technology
and its relationships to sustainable supply chain management,’’ Int. J. Prod.
Res., vol. 57, no. 7, pp. 2117–2135, Apr. 2019.

[29] R. Cole, M. Stevenson, and J. Aitken, ‘‘Blockchain technology: Implica-
tions for operations and supply chainmanagement,’’ Supply ChainManag.,
Int. J., vol. 24, no. 4, pp. 469–483, Jun. 2019.

[30] J. Huang, D. He, M. S. Obaidat, P. Vijayakumar, M. Luo, and
K.-K. R. Choo, ‘‘The application of the blockchain technology in voting
systems: A review,’’ ACM Comput. Surv., vol. 54, pp. 1–28, Apr. 2021.

[31] P. Dunphy and F. A. P. Petitcolas, ‘‘A first look at identity management
schemes on the blockchain,’’ IEEE Secur. Privacy, vol. 16, no. 4,
pp. 20–29, Jul. 2018.

[32] Y. Liu, D. He, M. S. Obaidat, N. Kumar, M. K. Khan, and K.-K. R. Choo,
‘‘Blockchain-based identity management systems: A review,’’ J. Netw.
Comput. Appl., vol. 166, pp. 1–11, Sep. 2020.

[33] P. Zhang, D. C. Schmidt, J. White, and G. Lenz, ‘‘Blockchain technology
use cases in healthcare,’’ Adv. Comput., vol. 111, pp. 1–41, Jan. 2018.

[34] Z. Wang and Q. Hu, ‘‘Blockchain-based federated learning: A comprehen-
sive survey,’’ 2021, arXiv:2110.02182.

[35] Y. Li, C. Chen, N. Liu, H. Huang, Z. Zheng, and Q. Yan, ‘‘A blockchain-
based decentralized federated learning framework with committee consen-
sus,’’ IEEE Netw., vol. 35, no. 1, pp. 234–241, Jan. 2021.

[36] R. Myrzashova, S. H. Alsamhi, A. V. Shvetsov, A. Hawbani, and X. Wei,
‘‘Blockchain meets federated learning in healthcare: A systematic review
with challenges and opportunities,’’ IEEE Internet Things J., vol. 10,
no. 16, pp. 14418–14437, Aug. 2023.

[37] M. H. U. Rehman, A. M. Dirir, K. Salah, E. Damiani, and D.
Svetinovic, ‘‘TrustFed: A framework for fair and trustworthy cross-device
federated learning in IIoT,’’ IEEE Trans. Ind. Informat., vol. 17, no. 12,
pp. 8485–8494, Dec. 2021.

[38] B. Jia, X. Zhang, J. Liu, Y. Zhang, K. Huang, and Y. Liang, ‘‘Blockchain-
enabled federated learning data protection aggregation scheme with
differential privacy and homomorphic encryption in IIoT,’’ IEEE Trans.
Ind. Informat., vol. 18, no. 6, pp. 4049–4058, Jun. 2022.

[39] M. Qi, Z. Wang, F. Wu, R. Hanson, S. Chen, Y. Xiang, and L. Zhu,
‘‘A blockchain-enabled federated learning model for privacy preservation:
System design,’’ in Proc. ACISP, Dec. 2021, pp. 473–489.

[40] S. Singh, S. Rathore, O. Alfarraj, A. Tolba, and B. Yoon, ‘‘A framework
for privacy-preservation of IoT healthcare data using federated learning
and blockchain technology,’’ Future Gener. Comput. Syst., vol. 129,
pp. 380–388, Apr. 2022.

[41] C. Zhu, X. Zhu, J. Ren, and T. Qin, ‘‘Blockchain-enabled federated
learning for UAV edge computing network: Issues and solutions,’’ IEEE
Access, vol. 10, pp. 56591–56610, 2022.

[42] Y. Qu, L. Gao, T. H. Luan, Y. Xiang, S. Yu, B. Li, and G. Zheng,
‘‘Decentralized privacy using blockchain-enabled federated learning in
fog computing,’’ IEEE Internet Things J., vol. 7, no. 6, pp. 5171–5183,
Jun. 2020.

[43] S. Rahmadika and K.-H. Rhee, ‘‘Unlinkable collaborative learning trans-
actions: Privacy-awareness in decentralized approaches,’’ IEEE Access,
vol. 9, pp. 65293–65307, 2021.

[44] B. S. Egala, A. K. Pradhan, P. Dey, V. Badarla, and S. P. Mohanty,
‘‘Fortified-chain 2.0: Intelligent blockchain for decentralized smart health-
care system,’’ IEEE Internet Things J., vol. 10, no. 14, pp. 12308–12321,
Jul. 2023.

[45] X. Bao, C. Su, Y. Xiong, W. Huang, and Y. Hu, ‘‘FLChain: A blockchain
for auditable federated learning with trust and incentive,’’ in Proc.
5th Int. Conf. Big Data Comput. Commun. (BIGCOM), Aug. 2019,
pp. 151–159.

[46] L. Gao, L. Li, Y. Chen, C. Xu, andM. Xu, ‘‘FGFL: A blockchain-based fair
incentive governor for federated learning,’’ J. Parallel Distrib. Comput.,
vol. 163, pp. 283–299, May 2022.

[47] K. Toyoda, J. Zhao, A. N. S. Zhang, and P. T. Mathiopoulos, ‘‘Blockchain-
enabled federated learning with mechanism design,’’ IEEE Access, vol. 8,
pp. 219744–219756, 2020.

[48] S. K. Lo, Y. Liu, Q. Lu, C. Wang, X. Xu, H.-Y. Paik, and L. Zhu, ‘‘Toward
trustworthy AI: Blockchain-based architecture design for accountability
and fairness of federated learning systems,’’ IEEE Internet Things J.,
vol. 10, no. 4, pp. 3276–3284, Feb. 2023.

[49] H. Cai, D. Rueckert, and J. Passerat-Palmbach, ‘‘2CP: Decentralized
protocols to transparently evaluate contributivity in blockchain federated
learning environments,’’ 2020, arXiv:2011.07516.

VOLUME 11, 2023 145761



E. Goh et al.: BCFL: A Reference Architecture Design, Implementation, and Verification

[50] H. A. Coelho Dias, ‘‘Impact analysis of different consensus, participant
selection and scoring algorithms in blockchain-based federated learning
systems using a modular framework,’’ M.S. thesis, Dept. Math. Comput.
Sci., Eindhoven Univ. Technol., Eindhoven, The Netherlands, 2022.

[51] O. Avellaneda, A. Bachmann, A. Barbir, J. Brenan, P. Dingle, K. H. Duffy,
E. Maler, D. Reed, and M. Sporny, ‘‘Decentralized identity: Where did it
come from and where is it going?’’ IEEE Commun. Standards Mag., vol. 3,
no. 4, pp. 10–13, Dec. 2019.

[52] Y. Bai, H. Lei, S. Li, H. Gao, J. Li, and L. Li, ‘‘Decentralized and self-
sovereign identity in the era of blockchain: A survey,’’ in Proc. IEEE
Blockchain, Aug. 2022, pp. 500–507.

[53] E. Nyaletey, R. M. Parizi, Q. Zhang, and K. R. Choo, ‘‘BlockIPFS-
blockchain-enabled interplanetary file system for forensic and trusted data
traceability,’’ in Proc. IEEE Int. Conf. Blockchain (Blockchain), Jul. 2019,
pp. 18–25.

[54] M. Naz, F. A. Al-zahrani, R. Khalid, N. Javaid, A. M. Qamar, M. K. Afzal,
and M. Shafiq, ‘‘A secure data sharing platform using blockchain and
interplanetary file system,’’ Sustainability, vol. 11, no. 24, p. 7054,
Dec. 2019.

[55] S. Caldas, S. Meher Karthik Duddu, P. Wu, T. Li, J. Konecny,
H. B. McMahan, V. Smith, and A. Talwalkar, ‘‘LEAF: A benchmark for
federated settings,’’ 2018, arXiv:1812.01097.

EUNSU GOH received the B.S. and M.S. degrees
in electronics and communications engineering
from Kwangwoon University, Seoul, South Korea,
in 2019 and 2021, respectively. She has been
immersed in the realm of deep learning. Her inter-
est gravitates toward algorithms from federated
learning and blockchain technology, particularly
in creating trustworthy collaborative learning
systems.

DAE-YEOL KIM received the B.S. and Ph.D.
degrees in electronics and communications engi-
neering from Kwangwoon University, Seoul,
South Korea, in 2016 and 2022, respectively.
From 2016 to 2019, he was an Associate Research
Engineer with Tvstorm, Seoul. From 2022 to 2023,
he held the position of Senior Research Engi-
neer with InnopiaTech, Sungnam, South Korea.
Since September 2023, he has been an Assistant
Professor with the Department of Information

and Communication AI Engineering, Kyungnam University, Changwon,
Gyeongsangnam, South Korea. His research interests include medical
artificial intelligence, computer vision, and blockchain-enabled federated
learning.

KWANGKEE LEE received the B.S., M.S., and
Ph.D. degrees in electronics engineering from
Yonsei University, Seoul, South Korea, in 1986,
1988, and 1993, respectively.

From 1994 to 2014, he was a Researcher with
the Samsung Advanced Institute of Technology
and Samsung Electronics. From 2016 to 2019,
he was an Industrial Convergence PD for R&BD
planning with the Ministry of Industry, Industrial
Technology Evaluation andManagement Institute.

He is currently a Software Architect and a Principal Investigator with Innopia
Technologies Inc.

SUYEONG OH received the B.S. and M.E.
degrees in electronics and communications engi-
neering from Kwangwoon University, Seoul,
South Korea, in 2020 and 2022, respectively. He
was an Associate Research Engineer at Tvstorm
from 2021 to 2023, where he contributed to the
development of Android TV applications. Since
November 2023, he has been serving as an Asso-
ciate Research Engineer at Innopiatech, focusing
on the development of Android applications and

research in smart healthcare. His research interests lie in integrating artificial
intelligence and blockchain technologies to develop innovative platforms.

JONG-EUI CHAE received the B.S. degree in
electronics and communications engineering from
Kwangwoon University, Seoul, South Korea, in
2022, where he is currently pursuing the M.S.
degree. Since 2023, he has been working as a
Researcher onVital Signs at Innopia Technologies,
Inc. His research interests include vital-signal
engineering and data analytics through deep
learning.

DO-YUP KIM (Member, IEEE) received the B.S.
degree (summa cum laude) in electronics and
communications engineering from Kwangwoon
University, Seoul, South Korea, in 2016, and
the Ph.D. degree in electrical and electronic
engineering from Yonsei University, Seoul, South
Korea, in 2022.

From 2021 to 2022, he was a Visiting Scholar
with the Bradley Department of Electrical and
Computer Engineering, Virginia Tech Research

Center, Arlington, VA, USA, followed by a Post-Doctoral Scholar with
the Department of Electrical and Computer Engineering, The Ohio State
University, Columbus, OH, USA. From September 2022 to February 2024,
he was an Assistant Professor with the Department of Information and
Communication AI Engineering, Kyungnam University, Changwon-si,
Gyeongsangnam-do, South Korea. Since March 2024, he has been an
Assistant Professor with the Department of Information and Telecommu-
nication Engineering, Incheon National University, Incheon, South Korea.
His research interests include communication networks, optimization, and
machine learning.

145762 VOLUME 11, 2023


