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ABSTRACT This paper proposes a model estimationmethod in offline Bayesianmodel-based reinforcement
learning (MBRL). Learning a Bayes-adaptive Markov decision process (BAMDP) model using standard
variational inference often suffers from poor predictive performance due to covariate shift between offline
data and future data distributions. To tackle this problem, this paper applies an importance-weighting
technique for covariate shift to variational inference learning of a BAMDP model. Consequently, this
paper uses a unified objective function to optimize both model and policy. The unified objective function
can be seen as an importance-weighted variational objective function for model training. The unified
objective function is also considered as the expected return for policy planning penalized by the model’s
error, which is a standard objective function in MBRL. This paper proposes an algorithm optimizing
the unified objective function. The proposed algorithm performs better than algorithms using standard
variational inference without importance-weighting. Numerical experiments demonstrate the effectiveness
of the proposed algorithm.

INDEX TERMS Bayesian model-based reinforcement learning, decision-aware reinforcement learning,
offline reinforcement learning.

I. INTRODUCTION
Reinforcement learning (RL) is a promising framework for
autonomously learning a policy from interaction data [1].
Online model-free RL methods have succeeded in appli-
cations where the data can be obtained easily, such as
games [2], [3]. However, such methods are often impractical
for applications where the data collection is expensive, such
as robotics or healthcare [4], [5]. Data-efficiency is one of the
fundamental issues in RL.

There are several approaches for increasing data-efficiency
in RL. One is model-based reinforcement learning (MBRL).
In MBRL, the agent explicitly learns an environment
model and utilizes it to improve a policy [6], [7], [8].
Bayesian MBRL is a subfield of MBRL in which the
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agent explicitly takes uncertainty about an environment
model into account [9], [10]. Based on Bayes-optimal
exploration/exploitation tradeoff in Bayesian MBRL, the
data-efficiency can be further improved. Offline RL is also
a data-efficient RL approach [11]. In offline RL, the agent
learns a policy from previously collected data. Meta-RL is
another approach for data-efficient RL [12]. In meta-RL,
the agent learns a policy from data collected from multiple
similar environments, assuming that each environment is
drawn from some distribution every episode. Combining
these data-efficient RL approaches has also been investigated.

Motivated by increasing data-efficiency, this paper dis-
cusses a Bayesian MBRL approach for offline meta-RL.
A standard model in Bayesian MBRL is a Bayes-adaptive
Markov Decision Process (BAMDP) [9], [10]. A task
distribution to draw a task instance in meta-RL can be
represented as a prior distribution over MDPs in a BAMDP.
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A BAMDP is also reasonable for offline RL, as its goal
is offline optimization of possible trial and error under its
environment model and prior distribution. For these reasons,
a BAMDP is a promising model for offline meta-RL.

Conventional Bayesian MBRL methods assume that a
BAMDP is given in advance, implying that an environment
is accurately represented by a likelihood function and a
prior distribution specified in a BAMDP. This assumption is
valid when using a flexible black-box model to infer from
sufficient data from a current environment. However, this
assumption is often difficult to hold when using a structured
model with low-dimensional latent task representation to
infer from few data from a current environment. If using
an inaccurate model, Bayesian MBRL may not work for a
real environment due to failing at belief update [13]. How to
address a structured BAMDP is a question.

Recent meta-MBRL research has discussed learning latent
variable models based on variational inference framework to
obtain latent task representation in meta-RL [14], [15], [16],
[17], [18]. A typical approach is to optimize an evidence
lower bound that implicitly assumes that the data distribution
does not change. Such implicit assumption can also be
seen in meta-MBRL but also in MBRL, e.g., [8], [19], and
[20]. However, in MBRL, the distribution of data previously
collected to train a model differs from the distribution of data
obtained in the future when applying a policy improved using
the learned model. Such a situation is called covariate shift or
distribution shift [11].

In the case of onlineMBRL, the effect of ignoring covariate
shift is relatively mild. This is because the difference
between the constantly updated data-collecting policy and
the improved policy gradually becomes small in the online
setting in which the policy is gradually improved and
converged. Indeed, most of the above-mentioned meta-
MBRL methods suppose online learning settings. However,
in the case of offline MBRL, the difference between the
data-collecting policy no longer updated and the improved
policy is significant, and thus the effect of ignoring covariate
shift is also significant. Prior work [17] addresses another
issue that arises in offline meta-MBRL, whereas the issue of
covariate shift is out of the discussion.

This paper discusses learning a BAMDP model consider-
ing covariate shift. This paper leverages the idea of learning
a MDP model considering covariate shift [21]. The main
idea of [21] is importance-weighted maximum likelihood
estimation weighted by the ratio of the distributions to predict
future data more accurately when applying an improved
policy. The importance-weighted objective is also an estimate
of the expected return in a MDP penalized by model error.
The algorithm in [21] optimizes the importance-weighted
objective with respect to both model and policy. This paper
proposes to extend this idea from MDP model learning to
BAMDP model learning. The outline of the discussion is
similar to [21]. Firstly, this paper presents a unified objective
function viewed as an importance-weighted variational
objective function for training a model and as the expected

return penalized by model’s error for planning a policy.
Secondly, this paper proposes an algorithm to optimize it with
respect to both model and policy.

This paper and [21] are one of the decision-aware
model learning approaches [22], [23]. Prior works [24],
[25] are also similar approaches in that they consider
importance-weighting with the distribution ratio. The differ-
ence is that this paper and [21] consider the data distribution
in a simulation MDP model when applying a planned policy,
not the data distribution in a real MDP as in other approaches.
Using the data distribution in MDPmodel simulation has two
advantages. Firstly, unlike in a real MDP, data when applying
a newly planned policy in a simulationMDPmodel are acces-
sible to the agent, and the importance-weight can be obtained
in the standard framework of density ratio estimation [26].
Secondly, optimizing the importance-weighted variational
objective with respect to policy takes the same form as
standard BAMDP planning, and the proposed algorithm can
use an existing BAMDP planning algorithm as a policy
planning subroutine.

Sect. II describes the notations of MDP and BAMDP.
Sect. III explains the problem setting of offline meta-MBRL
in this paper and presents an importance-weighted variational
objective. Sect. IV proposes an algorithm to optimize the
importance-weighted variational objective. Sect. V demon-
strates the effectiveness of the proposed algorithm in
numerical experiments. Sect. VI concludes this paper.

II. PRELIMINARY
A. MDP
This paper considers a discounted infinite horizonMDP [27].
Let S be the state space. Let A be the action space. Let ρ(s)
be the initial state distribution. Let P(s′|s, a) be the transition
probability function. Let r(s, a) be the reward function. Let π
be a policy. The state and state-action distributions are

dπ
P (s) = (1− γ )

∞∑
t=0

γ tPr(st = s|ρ, π,P)

dπ
P (s, a) = (1− γ )

∞∑
t=0

γ tPr(st = s, at = a|ρ, π,P).

The expected return is

ηπ
P = E(s0,a0,··· )∼Pr(·|ρ,π,P)

[
∞∑
t=0

γ tr(st , at )

]

=
1

1− γ
E(s,a)∼dπ

P
[r(s, a)] .

B. BAMDP
A BAMDP is an augmented MDP whose augmented state is
(bt , st ), where bt is the agents’ belief over MDPs at timestep
t [9], [10]. For simplicity, this paper assumes that reward
function r is known. In that case, the agent’s belief is over
transition probability function P . The prior distribution, i.e.,
the agent’s belief at timestep t = 0 is b0(P). The likelihood
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function is l(P; st , at , st+1) = P(st+1|st , at ). The posterior
distribution, i.e., the agent’s belief at t ≥ 1 is updated using
the Bayes rule,

bt+1(P) = Pr(P|b0, s0, a0, · · · , st , at , st+1)

∝ b0(P)
t∏

t ′=0

P(st
′
+1
|st
′

, at
′

)

∝ bt (P)P(st+1|st , at ).
= Pr(P|bt , st , at , st+1)

The transition probability function in a BAMDP is

Pr(b′, s′|b, s, a) = EP∼b
[
P(s′|s, a)

]
δ
(
b′ = Pr(·|b, s, a, s′)

)
.

By the assumption, the reward function in a BAMDP is
r(b, s, a) = r(s, a). The expected return in a BAMDP is

Eb0,s0,a0,···∼Pr(·|ρ,π,b0)

[
∞∑
t=0

γ tr(bt , st , at )

]

= EP∼b0

[
E(s0,a0,··· )∼Pr(·|ρ,π,P)

[
∞∑
t=0

γ tr(st , at )

]]

=
1

1− γ
EP∼b0

[
E(s,a)∼dπ

P
[r(s, a)]

]
= EP∼b0

[
ηπ
P
]
. (1)

A Bayes-optimal policy is a policy that maximizes (1).
Since a BAMDP is an augmented MDP whose augmented
state is (b, s), a Bayes-optimal policy is a function of
(b, s). In principle, when given a BAMDP, i.e., when given
likelihood function l(P; s, a, s′) = P(s′|s, a) and prior
distribution b0(P), a Bayes-optimal policy can be planned
offline, as (1) can be computed offline [10].

III. PROBLEM SETTING AND OJECTIVE FUNCTION
This paper assumes a meta-RL setting where a task
represented by a MDP is drawn from a distribution. This
paper considers optimizing the expected return averaged over
MDPs as a reasonable criterion in meta-RL. For simplicity,
this paper assumes that state space S , action space A, initial
state distribution ρ(s), and reward function r(s, a) are the
same between all MDPs. In that case, the expected return
averaged overMDPs isEP∼b0

[
ηπ
P
]
, which is the same as (1).

That is, policy optimization in meta-RL in this setting can be
seen as policy optimization in a BAMDP whose likelihood
function and prior distribution are specified by P and b0

(hereinafter called ‘‘the real BAMDP’’). As described in
Sect. I, this paper considers a setting where the real BAMDP
is inaccessible, and only offline data are given. Even in
principle, a Bayes-optimal policy cannot be planned offline
in this setting, as the real BAMDP is not given. Throughout,
this paper discusses a model-based approach to optimize (1)
in this setting.

This paper assumes that offline data are collected
from M real MDPs sampled from b0. Let Dofl

m =

{(sm,n, am,n, s′m,n)}
N
n=1 be the offline data collected in the m-

th real MDP, where (sm,n, am,n, s′m,n) is the n-th transition

sample observed in the m-th real MDP. LetDofl
= {Dofl

m }
M
m=1

be the entire offline data. Let Pm be the m-th real MDP’s
transition probability function. Hereinafter, for notational
shorthand, this paper uses sa = (s, a), sam,n = (sm,n, am,n),
and sas′m,n = (sm,n, am,n, s′m,n). Let d

ofl
m (sa) be the underlying

state-action distribution of sam,n.
To represent Pm(s′|sa) and Pm ∼ b0, the agent uses a

latent variable model denoted by P̂θ,z(s′|sa) and z ∼ β0
φ ,

where θ is a model parameter vector shared between MDPs,
z is a latent variable vector to specify one MDP, and β0

φ is
the prior distribution parameterized with φ. Hereinafter, this
paper refers to a BAMDP model whose likelihood function
and prior distribution are specified by P̂θ,z and β0

φ as ‘‘the
simulation BAMDP.’’ Let β tφ be the agent’s belief at timestep
t . By the assumption, the reward function in the simulation
BAMDP is r(βφ, sa) = r(sa). In the MDP whose transition
probability function is P̂θ,z, let η̂π

θ,z be the expected return,
let d̂π

θ,z(sa) be the state-action distribution, and let D̂π
θ,z be

simulated data collected using policy π .
The model-based meta-RL setting in this paper is summa-

rized as

• the agent trains simulation BAMDP parameter (θ, φ)
using the offline data obtained in the real BAMDP,

• the agent uses the trained simulation BAMDP to plan
policy π to optimize the expected return in the real
BAMDP, (1).

Below, this paper discusses how to train (θ, φ) and plan
π . The first idea is to train (θ, φ) to optimize a standard
latent variable model learning criterion and then plan π to
optimize a standardMBRL criterion. This paper calls it ‘‘two-
stage optimization.’’ The second idea is to iterate between
training (θ, φ) and planning π to optimize a unified objective
function. This paper calls it ‘‘joint optimization.’’ The former
is a natural extension of existing methods, whereas the
latter is what this paper proposes. Sections III-A-III-B
describe objective functions for these ideas, respectively.
Sections IV-A-IV-B show algorithms for these objective
functions, respectively.

A. OBJECTIVE FUNCTION FOR TWO-STAGE OPTIMIZATION
1) FIRST STAGE: TRAINING (θ, φ)
The first stage is to train (θ, φ) based on variational inference
for latent variable model learning. As a standard method, this
paper uses variational autoencoder (VAE) [28]. Given Dofl ,
the log marginal likelihood function is

ln Pr(Dofl
|θ )

=

M∑
m=1

ln Pr(Dofl
m |θ ) =

M∑
m=1

lnEz∼p

[
Pr(Dofl

m |θ, z)
]

=

M∑
m=1

lnEz∼p

[
N∏
n=1

P̂θ,z(s′m,n|sam,n)

]
, (2)
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where p(z) is the prior distribution for VAE learning. Using
Jensen’s inequality, Equatoin (2) is bounded as

ln Pr(Dofl
|θ )

≥

M∑
m=1

Ez∼qφ (·|Dofl
m )

[
N∑
n=1

ln P̂θ,z(s′m,n|sam,n)− ln
qφ(z|Dofl

m )
p(z)

]
,

(3)

where qφ(z|Dofl
m ) is a variational distribution parameterized

with φ. Let (θ∗, φ∗) denote parameters that maximize (3).
The initial belief in the simulation BAMDP is ideally

the true latent variable distribution obtained after VAE
learning. As a reasonable approximation, this paper uses
β0(z) = 1

M

∑
m qφ∗ (z|Dofl

m ), which can be seen as a latent
distribution learned from data and is called average encoding
distribution [29] or aggregated posterior [30].

2) SECOND STAGE: PLANNING π

The second stage is to plan π using the simulation BAMDP
represented by P̂θ∗,z and β0

φ∗ . The most naive idea is to
optimize the expected return in the simulation BAMDP,

Ez∼β0
φ

[
η̂π

θ,z
]
=

1
1− γ

Ez∼β0
φ

[
Esa∼d̂π

θ,z
[r(sa)]

]
, (4)

with (φ, θ) = (φ∗, θ∗). However, even in the case of
MDP, this idea often only works for offline MBRL [20].
An improved idea is to optimize a penalized expected return
in a MDP whose penalized reward function is r(s, a) −
λu(s, a), where u(s, a) is an estimate of model’s error, and
λ is the user-chosen penalty coefficient [20].
Similarly, this paper considers a penalized version of the

expected return in the simulation BAMDP. Writing the initial
belief explicitly as β0

φ(z) =
1
M

∑
m qφ(z|Dofl

m ), this paper uses

1
1− γ

1
M

M∑
m=1

Ez∼qφ (·|Dofl
m )

[
Esa∼d̂π

θ,z

[
r(sa)− λum,θ,z(sa)

]]
,

(5)

with (φ, θ) = (φ∗, θ∗) as the second stage objective function,
where um,θ,z(sa) is an estimate of the model’s error between
Pm(·|sa) and P̂θ,z(·|sa).

B. OBJECTIVE FUNCTION FOR JOINT OPTIMIZATION
In the joint-optimization, this paper gives the agent’s
belief at timestep t = 0 in the form of β0

φ(z) =
1
M

∑M
m=1 qφ(z|Dofl

m ), as in the two-stage optimization. This
paper also approximates the expected return in the real
BAMDP by EP∼b0

[
ηπ
P
]
≈

1
M

∑M
m=1 ηπ

Pm . The difference
between the expected return in the simulation BAMDP and
the approximate expected return in the real BAMDP is
bounded as∣∣∣∣∣
(

1
M

M∑
m=1

ηπ
Pm

)
− Ez∼β0

φ

[
η̂π

θ,z
]∣∣∣∣∣ ≤ C√L(θ, φ;π )− hmin,

(6)

where

L(θ, φ;π ) =
1
M

M∑
m=1

Ez∼qφ (·|Dofl
m ),sa∼d̂π

θ,z,s
′∼Pm(·|sa)

[

− ln P̂θ,z(s′|sa)+ ν ln
qφ(z|Dofl

m )
p(z)

]

C =
γ maxsa |r(sa)|

√
2

(1− γ )2

hmin = min
m,sa

Es′∼Pm(·|sa)
[
− lnPm(s′|sa)

]
,

and ν is a constant. For the derivation, see Appendix.
A lower bound of the approximate expected return in the

real BAMDP is bounded as

EP∼b0
[
ηπ
P
]

≈
1
M

M∑
m=1

ηπ
Pm

≥ Ez∼β0
φ

[
η̂π

θ,z
]
−

∣∣∣∣∣
(

1
M

M∑
m=1

ηπ
Pm

)
− Ez∼β0

φ

[
η̂π

θ,z
]∣∣∣∣∣

≥ Ez∼β0
φ

[
η̂π

θ,z
]
− C

√
L(θ, φ;π )− hmin.

The first term is the expected return in the simulation
BAMDP, and the second penalizes the policy evaluation error
between the real and simulation BAMDPs.

Inspired by increasing the objective function by maximiz-
ing the lower bound, this paper defines a penalized objective
function by

J (θ, φ, π ) = Ez∼β0
φ

[
η̂π

θ,z
]
− c

√
L(θ, φ;π)− hmin, (7)

where c ∈ [0,C] is a user-chosen penalty coefficient. The
main idea of the joint optimization is to iteratively optimize
(θ, φ) and π based on an estimate of (7).

This paper uses the MM framework [31] to optimize (7).
When updating from (θi, φi, πi), the surrogate function is

Jsurr(θ, φ, π; θi, φi, πi)

= Ez∼β0
φ

[
η̂π

θ,z
]
−
c (L(θ, φ;π )+ L(θi, φi;πi)− 2 hmin)

2
√
L(θi, φi;πi)− hmin

=
1

1− γ

1
M

M∑
m=1

Ez∼qφ (·|Dofl
m ),sa∼d̂π

θ,z

[
r(sa)

+ κEs′∼Pm(·|sa)
[
ln P̂θ,z(s′|sa)

]
− κν ln

qφ(z|Dofl
m )

p(z)

]
+ const, (8)

where κ =
c(1−γ )

2
√
L(θi,φi;πi)−hmin

. Below, this paper omits the
constant term.
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1) ESTIMATED OBJECTIVE FUNCTION FOR TRAINING (θ, φ)
Equation (8) can be rewritten as

1
1− γ

1
M

M∑
m=1

Ez∼qφ (·|Dofl
m )

[
Esa∼doflm

[
wπ
m,θ,z(sa)

(
r(sa)

+ κEs′∼Pm(·|sa)

[
ln P̂θ,z(s′|sa)

]
− κν ln

qφ(z|Dofl
m )

p(z)

)]]
,

where wπ
m,θ,z(sa) =

d̂π
θ,z(sa)

doflm (sa)
. This paper estimates the above

equation by

κ̃

1− γ

1
M

M∑
m=1

Ez∼qφ (·|Dofl
m )

×

[ N∑
n=1

1
N
w̃π
m,θ,z(sam,n)ℓm,n(θ, z; κ̃)− ν ln

qφ(z|Dofl
m )

p(z)

]
,

(9)

where

ℓm,n(θ, z; κ̃) = ln P̂θ,z(s′m,n|sam,n)+
r(sam,n)

κ̃
,

w̃π
m,θ,z is an estimate of wπ

m,θ,z, and κ̃ is an estimate of κ . How
to estimate them is described in Sect. IV-B.

Equation (9) can be interpreted as a kind of variational
inference because (9) is similar to (3) in the following
points. Firstly, wπ

m,θ,z(sa) is importance-weighting to address

covariate shift between doflm (sa) and d̂π
θ,z(sa). Secondly,

ℓm,n(θ, z; κ̃) is a utility function modified from the log-
likelihood function. Thirdly, ν scales the KL divergence
regularization term in the same manner as β-VAE [32].
Based on the interpretation of (9) as a kind of variational
inference, this paper uses it to update (θ, φ). This paper calls
it ‘‘importance-weighted variational inference for BAMDP.’’

2) ESTIMATED OBJECTIVE FUNCTION FOR PLANNING π

Equation (8) can also be rewritten as

1
1− γ

1
M

M∑
m=1

Ez∼qφ (·|Dofl
m )

[
Esa∼d̂π

θ,z

[
r(sa)

+ κEs′∼Pm(·|sa)
[
ln P̂θ,z(s′|sa)

]]
− κν ln

qφ(z|Dofl
m )

p(z)

]
.

The KL divergence term is constant in terms of π . If the
penalty function is um,θ,z(sa) = −Es′∼Pm(·|sa)

[
ln P̂θ,z(s′|sa)

]
,

then optimizing the above equation with respect to π

is equivalent to optimizing (5), In practice, however,
Es′∼Pm(·|sa)

[
ln P̂θ,z(s′|sa)

]
is inaccessible. This paper

replaces the penalty function with a model trained to estimate
it, denoted by ûm,θ,z(sa). How to train ûm,θ,z(sa) is described
in Sect. IV-B. Replacing κ with κ̃ as in Sect. III-B1, the

Algorithm 1 Two-Stage Optimization

1: Input: (Dofl, λ).
2: Train (θ, φ), variational inference using Equation (3)

given Dofl .
3: Plan π , planning in simulation BAMDP using Equa-

tion (5) given (θ, φ, λ).

resulting estimated objective function is

1
1− γ

1
M

M∑
m=1

Ez∼qφ (·|Dofl
m ),sa∼d̂π

θ,z

[
r(sa)− κ̃ ûm,θ,z(sa)

]
,

(10)

which is a penalized version of the expected return in the
simulation BAMDP.

a: COMPARISON TO TWO-STAGE OPTIMIZATION
The objective function for planning π is essentially the same
for the joint optimization and the two-stage optimization,
comparing (10) and (5). In the joint optimization, the
objective function for training (θ, φ) is relevant to the one for
planing π , as (9) and (10) are both estimates of (8). However,
in the two-stage optimization, the objective function for
training (θ, φ) is different from the one for planning π ,
comparing (3) and (5). In other words, for one objective, the
joint optimization optimizes it with respect to both (θ, φ) and
π , whereas the two-stage optimization does it with respect to
only π . As a result, the joint optimization is better than the
two-stage optimization in terms of optimizing one objective.

b: ADVANTAGE OF USING
D̂π

θ,Z (SA)

DOFL
M (SA)

AS

IMPORTANCE-WEIGHT
It is also possible to consider importance-weighting with
dπ
m (sa)

doflm (sa)
, becase another bound similar to (6) can also be

derived by replacing d̂π
θ,z in L(θ, φ;π ) with dπ

m , see Sect.IV
of [21]. However, in that case, the resulting variant of (10)
does not have the same form as the objective function of a

BAMDP planning problem. One advantage of using
d̂π
θ,z(sa)

doflm (sa)
is that (10) is a BAMDP planning objective function and can
be optimized using an existing BAMDP planning algorithm.
Another advantage is that, since the agent cannot access data
sampled from dπ

m (sa) in the real BAMDP but can generate

data sampled from d̂π
θ,z(sa) in the simulation BAMDP,

d̂π
θ,z(sa)

doflm (sa)
can be obtained in the standard framework of density ratio
estimation [26], which is a simpler setting.

IV. ALGORITHM
A. ALGORITHM FOR TWO-STAGE OPTIMIZATION
The main idea of the two-stage optimization is to train
BAMDP parameter (θ, φ) and subsequently plan policy π .
Algorithm 1 shows the outline.
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Algorithm 2 Joint Optimization

1: Input: (Dofl, ν, c).
2: for i = 1, 2, · · · do
3: if i = 1 then
4: Train (θ, φ), variational inference using Equa-

tion (3) given Dofl .
5: else
6: Train (θ, φ), importance-weighted variational infer-

ence using Equation (9) given (Dofl, ν, c, π), see
Algorithm 3.

7: end if
8: Plan π , planning in simulation BAMDP using Equa-

tion (10) given (θ, φ, ν, c).
9: end for

1) FIRST STAGE: TRAINING (θ, φ)
Line 2 in Algorithm 1 optimizes (3), which is variational
inference for latent variable model learning. To represent
qφ , this paper uses permutation-invariant amortized inference
networks [33],

qφ(z|Dofl
m )

= N
(

µφ

(
N∑
n=1

fφ(sas′m,n)

)
, σφ

(
N∑
n=1

fφ(sas′m,n)

))
. (11)

Below, for notational shorthand, this paper uses µφ,m =

µφ

(∑
fφ(sas′m,n)

)
and σφ,m = σφ

(∑
fφ(sas′m,n)

)
.

2) SECOND STAGE: PLANNING π

Line 3 in Algorithm 1 optimizes (5), which is policy planning.
Inspired by VariBAD [16], this paper approximately gives an
augmented state in the BAMDP by a pair of a state and a vari-
ational approximation of the belief. To reduce computational
efforts, as the prior for the variational approximation of the
belief, this paper uses a variational distribution thatminimizes
the KL divergence from β0(z) = 1

M

∑
m qφ∗ (z|Dofl

m ).
As the likelihood function for the variational approximation
of the belief, this paper uses P̂θ,z, the decoder trained
as in Line 2. This paper trains um,θ,z(sa) in (5) using
input data {

(
san,m, z, µφ,m, ln σφ,m

)
}n,m and output data

{− ln P̂θ,z(s′n,m|san,m)}n,m.

B. ALGORITHM FOR JOINT OPTIMIZATION
The main idea of the joint optimization is to iterate between
training (θ, φ) and planning π . Algorithm 2 shows the
outline.

1) TRAINING (θ, φ)
At the first iteration, where π remains an initial value,
importance-weighting depending on π is not reasonable.
Line 4 in Algorithm 2 optimizes (3), as with the two-
stage optimization. At the subsequent iterations, Line 6 in
Algorithm 2 optimizes (9). Below, this paper discusses how
to execute Line 6 concretely.

This paper considers gradient-based optimization of (θ, φ).
When given κ̃ and w̃π

m,θ,z(sa), the gradient of (9) with respect
to φ can be estimated using the reparameterization trick [28].
The gradient of (9) with respect to θ is

∇θ {Equation (9)}

=
κ̃

1− γ

1
MN

∑
m

∑
n

Ez∼qφ (·|Dofl
m )

[
w̃π
m,θ,z(sam,n)

×

(
∇θ ln P̂θ,z(s′m,n|sam,n)+ ℓm,n(θ, z; κ̃)vπθ,z(sm,n)

)]
,

(12)

where vπθ,z(s) = ∇θ ln d̂π
θ,z(s). Below, this paper describes how

to use it approximately.

a: ESTIMATING κ

This paper estimates κ by

κ̃ =
c(1− γ )

2
√
L(θi, φi;πi)− h̃min

h̃min = min
n,m

[
− ln P̂θi,zm (s

′
m,n|sam,n)

]∣∣∣∣
zm=µφi (D

ofl
m )

. (13)

b: IGNORING V π
θ,Z (S)

In principle, vπθ,z(s) may be estimated by a meta-RL extension
of LSDG [34]. However, in practice, estimating vπθ,z(s)
is computationally unrealistic if θ is high-dimensional.
Specifically, LSDG in a single MDP RL setting requires
estimating the same number of value functions as the
dimension of model parameters, and vπθ,z(s) additionally
needs its meta-RL version. In the case of MDP, the numerical
experiments in [21] observe that importance-weighted model
estimation ignoring this term can also perform better than
unweighted model estimation. Assuming that this also holds
for a BAMDP, this paper ignores vπθ,z(s) in the gradient-based
optimization.

c: ESTIMATING W π
M,θ,Z

Estimating importance-weight wπ
m,θ,z(sa) =

d̂π
θ,z(sa)

doflm (sa)
is

meta-learning of density ratio where the source datasets
are Dofl

m , the target datasets are D̂π
θj,z. This paper estimates

wπ
m,θ,z using neural networks that take

(
sa, z, µφ,m

)
as

input, denoted by ŵπ
m,θ,z. Since µφ,m encodes data from

the m-th MDP, it contains the information of the source
distribution. Since z specifies a simulation MDP, it captures
the characteristics of the target distribution. Adding latent
representations of both source and target distributions to input
is inspired by [35].

d: LOCALLY UPDATING θ WHILE FIXING Ŵ π
M,θ,Z

Computational efforts to obtain w̃π
m,θ,z, i.e., meta-learning of

density ratio, are not negligible. Instead of computing w̃π
m,θ,z

every updating θ , this paper considers fixing w̃π
m,θ,z during
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Algorithm 3 Importance-Weighted Variational Inference for
BAMDP
1: Input: (Dofl, ν, c, π) and θ .
2: for j = 0, 1, · · · do
3: (θj, φj, πj)← (θ, φ, π ).
4: Compute κ̃ , computing Equation (13).
5: Generate {D̂π

θj,z}z, rollout in simulation BAMDP given
(θj, φj, π).

6: Estimate w̃π
m,θj,z, meta-learning of density ratio given

Dofl and {D̂π
θj,z}z.

7: Update (θ, φ), optimizing Equation (14) given
(Dofl, κ̃, w̃π

m,θj,z, ν).
8: end for

locally updating θ . When locally updating from θj, this paper
uses a local approximate objective function defined by

κ̃

1− γ

1
M

M∑
m=1

Ez∼qφ (·|Dofl
m )

[
−ν ln

qφ(z|Dofl
m )

pm(z)

+

N∑
n=1

1
N
w̃π
m,θj,z(sam,n)ℓm,n(θ, z; κ̃)

]
, (14)

where vπθ,z(s) is ignored as described above. The gradient
of (14) with respect to θ is

κ̃

1− γ

1
MN

∑
m

∑
n

Ez∼qφ (·|Dofl
m )

×

[
w̃π
m,θj,z(sam,n)∇θ ln P̂θ,z(s′m,n|sam,n)

]
.

Importance-weighting with w̃π
m,θj,z(sam,n) is consis-

tent but can be unstable in practice [36]. To stabilize
importance-weighted model learning, this paper replaces
w̃π
m,θj,z(sam,n) in (14) with {w̃π

m,θj,z(sam,n)}}α , as in [21].
Algorithm 3 summarizes how to update (θ, φ) described

above.

2) OPTIMIZING π

Line 8 in Algorithm 2 optimizes (10) using the same method
in Sect. IV-A2.

V. NUMERICAL EXPERIMENTS
A. POLICY EVALUATION
Firstly, to illustrate the effectiveness of importance-weighted
variational inference for BAMDP, this paper discusses the
problem of predicting behaviors of a given target policy. This
problem can be seen as a policy evaluation problem, as the
expected return is computed from the predicted behavior.
This paper compares predicting behaviors of standard
variational inference and importance-weighted variational
inference when training BAMDPmodels expressed using the
same NN model.

This paper considers an inverted pendulum task, where
state s is a pair of angle and angular velocity, and action

a is torque input. The environmental variation in meta-RL
is that the viscosity coefficient of the equation of motion
behind a real MDP changes every episode. The offline data is
collected using a random policy in 100 sampled real MDPs.
The target policy is a controller that swings up and stabilizes
the pendulum to (0, 0) in the real MDP, whose viscosity
coefficient is zero. For more details, see Appendix.

The outline of variational inference is as follows. The agent
considers a one-dimensional dimension latent variable z. The
agent represents each model by neural networks. For learning
each model, the agent uses the data obtained from 80 real
MDPs for training and the rest for validation. For regularizing
importance-weighting, the agent uses α = 0.2. The number
of iterations of Algorithm 3 is five. For more details, see
Appendix.

Fig. 1 illustrates the predicted behavior when using
standard variational inference, i.e., optimizing (3). The
100 subplots correspond to the 100 sampled real MDPs.
In each subplot, the horizontal and vertical axes stand for
angle and angular velocity, respectively. The black lines
show real future data when applying the target policy from
initial state (π, 0) in each real MDP, which is the ground
truth behavior the agent wants to predict. Multiple black
line patterns show that the target policy planned for zero
viscosity coefficient swings more weakly than expected as
the viscosity coefficient increases, finally failing to swing
up. The colored markers show simulated future data when
applying the target policy from the same initial state in each
simulation MDP, whose latent variable is the encoding of the
offline data collected in the real MDP in the same subplot.
That is, this is the prediction that the agent obtains using
the trained model. Note that since the state transition model
is estimated as a probabilistic model, there are variations in
the predicted behavior, which are drawn in different colors.
The red markers indicate (0, 0). The top 20 subplots and the
bottom 80 subplots are the real MDPs where the offline data
for validation and training are collected, respectively. There
is a big difference between the black lines and the colored
markers, meaning that the simulation BAMDP trained using
standard variational inference does not capture the behavior
of the target policy.

Fig. 2 illustrates the predicted behavior when using
importance-weighted variational inference for BAMDP. Note
that the black lines, i.e., real future data, are the same
as Fig. 1. The difference between the black lines and the
colored markers in Fig. 2 is small compared to Fig. 1. Thus,
the simulation BAMDP trained using importance-weighted
variational inference for BAMDP captures the behavior of
the target policy more accurately compared to standard
variational inference.

Fig. 3 shows the offline data colored based on the
logarithm of the importance-weights at the fifth iteration
of Algorithm 3. This figure also shows the same black
lines as Fig. 1 for reference. Roughly speaking, data points
close to the black line are colored brightly, assigning
large importance-weighting. Such importance-weighting is
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FIGURE 1. Behaviors in real and simulation BAMDPs when using standard variational inference (policy
evaluation).

FIGURE 2. Behaviors in real and simulation BAMDPs when using standard variational inference (policy
evaluation).

effective for more accurately predicting behaviors of the
target policy.

Fig. 4 illustrates the relationship between the real MDP
parameter and the simulationMDP latent variable when using
standard variational inference. The horizontal axis stands for
the viscosity coefficient, which is the real MDP parameter
and is inaccessible to the agent. The vertical axis indicates
the one-dimensional latent variable mean of the approximate
belief, which encodes the offline data collected in the same
real MDP and is accessible to the agent. The orange and blue
markers are the results of the real MDPs where the offline
data for validation and training are collected, respectively.

This figure also shows that the simulation BAMDP learned
using standard variational inference is not very accurate.

Fig. 5 illustrates the relationship between the real MDP
parameter and the simulationMDP latent variable when using
importance-weighted variational inference for BAMDP. The
magnitude relation of the one-dimensional latent variable
accessible to the agent roughly captures the magnitude
relation of the viscosity coefficient inaccessible to the agent.
This figure also shows that the simulation BAMDP learned
using importance-weighted variational inference for BAMDP
is more accurate. Note that, for the few subplots that do not
capture the ground truth behaviors, the viscosity coefficient
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FIGURE 3. Importance-weighting of offline data (policy evaluation).

FIGURE 4. Real MDP parameter and simulation mpd latent variable when
using standard variational inference (policy evaluation).

is close to the critical point where the target policy cannot
swing up.

B. POLICY OPTIMIZATION
Next, this paper discusses policy optimization experiments
to demonstrate the effectiveness of the proposed algorithm.
This paper presents the results of the inverted pendulum task
described in Sect. V-A and a cartpole swing-up task. For
the cartpole task, the environmental variation in meta-RL is
that the pole mass and the pole length of the equation of
motion behind a real MDP change every episode. Similar to
the inverted pendulum task, the offline data is collected using
a random policy in 100 sampled real MDPs. For more details,
see Appendix.

The outline of the two-stage optimization and the
joint optimization is as follows. The agent considers a
one-dimensional latent variable in the inverted pendulum
task and a two-dimensional one in the cartpole swing-up
task. The agent uses a decoder with 48 hidden units in the

FIGURE 5. Real MDP parameter and simulation mpd latent variable when
using standard variational inference (policy evaluation).

inverted pendulum task and one with 64 hidden units in the
cartpole swing-up task. The others are the same between
the inverted pendulum and cartpole swing-up tasks. For
regularizing importance-weighting, the agent uses α = 0.2.
The number of iterations of Algorithm 3 is five. The number
of iterations of Algorithm 2 is two. The agent uses SAC [37]
as a policy planning subroutine to learn an augment-state-
dependent policy in the simulation BAMDP. For more details,
see Appendix.

Table 1 shows the result of the two-stage optimization and
the joint optimization. Note that the two-stage optimization
is an existing method, and the joint optimization is the
proposed algorithm, as described in Sect. III. For each task,
Table 1 reports the score averaged over five runs with
different random seeds. For each run, this paper estimates the
expected return by averaging the return in 100 sampled real
MDPs. For both tasks, the joint optimization achieves better
performance.
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FIGURE 6. Behaviors in real and simulation BAMDPs when planned using two-stage optimization (inverted
pendulum policy optimization).

TABLE 1. Performance comparison.

Figs. 6-7 show the behaviors in the real BAMDP
when planned using the two-stage optimization and the
joint optimization, respectively. The policy planned using
the two-stage optimization cannot stabilize the pendulum
around (0, 0) as shown in Fig. 6, leading to the worse
performance shown in Table 1. This is because the simulation
BAMDP trained by the two-stage optimization cannot
accurately represent transitions around (0, 0). The joint
optimization trains the simulation BAMDP by assigning
larger importance-weighting to data around (0, 0). As a result,
the policy planned using the joint optimization can stabilize
the pendulum around (0, 0) as shown in Fig. 7, resulting in
the better performance shown in Table 1.

VI. CONCLUSION AND FUTURE DIRECTIONS
This paper discusses importance-weighted variational infer-
ence to train a BAMDP model in offline Bayesian MBRL.
The proposed algorithm optimizes a unified objective func-
tion that is an importance-weighted variational objective
function for training a model and is a penalized expected
return for planning a policy. In theory, since a method using
standard variational inference without importance-weighting
optimizes an objective function of interest only with respect
to a policy, the proposed algorithm is better in terms of
optimizing one objective function. In practice, numerical
experiments demonstrate that the proposed algorithm can
perform better.

Future directions to improve the proposed algorithm will
be as follows. Firstly, this paper considers the case where
the number of real MDPs collected in offline data, M , is not
large. To address a large number of real MDPs, the average
encoding distribution, β0(z) = 1

M

∑
m qφ∗ (z|Dofl

m ), needs
to be approximated by a mixture of variational posteriors
with pseudo-inputs [38] or a similar technique. Secondly,
applying to large-scale tasks is an important challenge.
One of the bottlenecks is density ratio estimation in high-
dimensional settings, as this is itself a research topic [39],
[40]. It is necessary to incorporate recent developments.
Thirdly, improving variational inference of BAMDP as a
latent variable model is essential for both unweighted and
importance-weighted settings.

APPENDIX A
DERIVING POLICY EVALUATION ERROR BOUND
The policy evaluation error between the real and simulation
MDPs is bounded as follows (see Sect. IV-A of [21]).

|ηπ
m − η̂π

θ,z| ≤ C
√

ξ (θ, φ, z;π )− hmmin, (15)

where ξ (θ, φ, z;π ) = Esa∼d̂π
θ,z,s

′∼Pm(·|sa)

[
− ln P̂θ,z(s′|sa)

]
and hmmin = minsa Es′∼Pm(·|sa)

[
− lnPm(s′|sa)

]
.

Equation (6) is obtained as follows,∣∣∣∣∣
(

1
M

∑
m

ηπ
Pm

)
− Ez∼β0

φ

[
η̂π

θ,z
]∣∣∣∣∣

=

∣∣∣∣∣ 1M ∑
m

(
ηπ
Pm − Ez∼qm

[
η̂π

θ,z
])∣∣∣∣∣

≤
1
M

∑
m

Ez∼qm
[
|ηπ
m − η̂π

θ,z|
]
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FIGURE 7. Behaviors in real and simulation BAMDPs when planned using joint optimization (inverted pendulum
policy optimization).

≤
1
M

∑
m

Ez∼qm

[
C
√

ξ (θ, φ, z;π )− hmmin

]
≤ C

√
1
M

∑
m

{
Ez∼qm [ξ (θ, φ, z;π )]− hmmin

}
≤ C

√
1
M

∑
m

Ez∼qm [ξ (θ, φ, z;π )]− hmin

≤ C

√
1
M

∑
m

Ez∼qm

[
ξ (θ, φ, z;π )+ ν ln

qm(z)
p(z)

]
− hmin

= C
√
L(θ, φ;π )− hmin,

where qm(z) = qφ(z|Dofl
m ) for notational shorthand. The first

inequality uses |E[·]| ≤ E[| · |], the second uses (15), the
third uses Jensen’s inequality, the forth uses 1

M

∑
m h

m
min ≥

minm hmmin = hmin, and the last uses the non-negativity of KL
divergence.

APPENDIX B
NUMERICAL EXPERIMENT SETTINGS
The inverted pendulum task and the cartpole swing-up tasks
are modifications of OpenAI Gym [41]. The modified parts
are as follows. For the inverted pendulum task, the time
discretization width is 0.1, the mass is 0.5, the viscosity
coefficient is uniformly sampled from [0, 0.3] as task
variation, the initial angle and angular velocity uniformly
are sampled from [−0.75π, 0.75π ] and [−5, 5], and the cost
function is 1 − exp(−0.5 × angle2). For the cartpole swing-
up task, the goal is changed from balancing to swing-up,
the time discretization width is 0.05, the pole mass and
length are uniformly sampled from [0.05, 0.3] and [0.4, 0.5]
as task variation, the initial angle is uniformly sampled from

[−π, π], the initial values of the other state variables are
uniformly sampled from [−0.5, 0.5], and the cost function
is 1− exp(−0.5× angle2).
The details of model training are as follows. For the

encoder, fφ and [µφ, log σφ] are four-layer neural networks
with ReLU activation with 32 hidden units. The decoder,
P̂θ,z, is two-layer neural networks with ReLU activation
with 48 hidden units in the inverted pendulum task and
with 64 hidden units in the cartpole swing-up task. The
encoder and the decoder are trained using standard variational
inference or importance-weighted variational inference for
BAMDP. The importance-weight model, ŵπ

m,θ,z, is four-layer
neural networks with tanh activation with 32 hidden units and
learned using a logistic regression loss and α = 0.2. The
penalty model, ûm,θ,z, is four-layer neural networks with tanh
activation with 16 hidden units and learned using a regression
loss.

The discount factor is γ = 0.99. The constant scaling the
KL divergence regularization term is ν = 1. The penalty
coefficient for importance-weighted variational inference
for BAMDP is c = 0.1. The penalty coefficient for
standard variational inference is λ = κ̃ , to compare
with importance-weighted variational inference for BAMDP
under the same condition.

The code is avalable at https://github.com/numahha/iwvi.git.
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