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ABSTRACT Graph theory within power electronics, developed over a 50-year span, is continually evolving,
necessitating ongoing research endeavors. Facing with the never-been-seen explosion of graph-structured
data, the state-of-the-art deep learning technique-Graph Neural Networks (GNNs), becomes the leading
trend in machine learning within just recent five years and demonstrated surprisingly broad and prominent
benefits covering from new drug discovery to better IC design. However, its promising applications in Power
Electronics are still rarely discussed and its full potential remains unexplored. Addressing this gap, this
review paper is the first to outline GNNs’ general workflow in power electronics, laying the groundwork
and examining current GNN methodologies within the field. To bridge the gap in the sparse GNN literature
within this domain, we also provide extended discussions on leveraging insights from GNN-aided circuit
design to enrich power electronics research. Our work includes in-depth GNN-based case studies that
demonstrate promising applications from converters to system-level power electronics, showcasing GNNs’
unique benefits and untapped possibilities (e.g., accurate component design, voltage predictions on IEEE-13
bus and 118 bus systems). Additionally, we provide a comprehensive survey of GNNs’ latest and successful
applications, emphasizing their impact on energy-centric sectors, such as transportation electrification, smart
grids. Considering the interdisciplinary nature of power electronics in modern energy systems, our review
highlights the potential of GNNs emerge as a promising tool to decode the intricate behavior and dynamics of
power electronics systems, and we hope such synergies between advanced AImethodologies like GNNswith
the ever-evolving graph theory can lead to more powerful tools, novel methodologies, and advancements in
the power electronics community.

INDEX TERMS Artificial intelligence, deep learning, energy systems, electronics automation design, graph
theory, graph intelligent design, machine learning, neural network, power electronics, power systems, smart
grids.

I. INTRODUCTION
As an interdisciplinary research field, Power Electronics
involves the use of solid-state electronic devices, commu-
nication techniques, digital controllers, etc., for the control,
conversion, and conditioning of electrical energy, which plays
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a crucial role in various applications, such as renewable
energy systems, electric vehicles, next-generation smart grid,
and so on [1]. Driven by the growing demand for effi-
cient and sustainable energy conversion and management
solutions, the field of power electronics has undergone sig-
nificant advancements in recent years. As power electronics
systems become increasingly complex to facilitate mod-
ern energy transmission systems, such as renewable energy
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FIGURE 1. Publications of GNN-induced research on IEEE Xplore
from 2009 to 2023. The search is done by using keywords ‘‘graph neural
network’’ or ‘‘deep learning on graph’’, or ‘‘graph convolutional network’’
and including journal papers, conference papers, and early access papers.
The current number of 2023 publication is 7318, which is expected to
surpass 7500 at the end of the year. The early access papers (944 papers
in total) are further demonstrated at right-side with several highlighted
journals: IEEE Transactions on Smart Grid, IEEE Transactions on Power
Systems, IEEE Transactions on Industrial Informatics, IEEE Transactions on
Intelligent Transportation Systems, etc., showing a rapid growth regarding
GNN-related research in Energy/Power domain. (All data is accessed
through IEEE Xplore in December 2023.)

resource-based intelligent grids, electrical vehicles, motor
drives, uninterruptible power supplies, etc., there is a great
need for innovative methods to model, optimize, control, and
monitor these systems from both hardware to software.

In this context, Graph Theory has emerged as a promis-
ing tool for addressing these challenges, especially in recent
years [2]. Serving as a common language among various
disciplines, graph theory can be leveraged as a power-
ful tool to enable systematic modelling and analysis [3],
[4], [5], [6], [7], design new converters [8], [9], [10],
[11], [12], control their operations [13], [14], estimate and
identify potential issues [15], [16], [17], optimize the sys-
tems [18], [19], [20], or even facilitate the understanding of
the interconnections and interactions between components
in power-electronics-based systems [21], [22], [23]. Espe-
cially in recent years, innovative research keeps emerging,
covering component-level, converter-level and system-level
of power electronics [24], [25], [26], [27], [28], [29], [30],
[31], [32], [33], [34], [35], [36], [37]. Leveraging the power
of graph, these research works not only feature systematic
understanding but also open more possibilities, e.g., inte-
grated with automation and AI. Such progress further inspires
us to seek more advanced and flexible techniques that can
capture the complex dynamics of these systems (e.g., graph-
theory-inspired modeling and operation) and meet composite
requirements for practice. This is where Graph Neural Net-
works (GNNs) come into play.

Unlike the Convolutional Neural Networks (CNNs) which
deal with the regular shapes of data (text, image that naturally
forms into grids or matrix), GNNs surpass such a limitation
and are dedicated to data with irregular shapes or more gener-
ally speaking non-Euclidean data. As a specialized category
of deep learning models explicitly developed for handling
graph-structured data, GNNs tackle the so-called geometric

deep learning problem through the automated learning of the
network features instead of traditional hand-crafted feature
engineering [38], [39]. Therefore, they can overcome the
computational bottlenecks of traditional machine learning
on graphs and have achieved notable success and attracted
significant research interest across various multidisciplinary
applications (see the publication trends in Fig. 1). These
include social network analysis [40], molecular and drug
discovery [41], bioinformatics [42], computer vision [43],
language processing [44], materials science, and chem-
istry [45], as well as more recent advances in internet of
things [46], [47], energy systems [48], [49], intelligent trans-
portation systems [50], [51], power systems [52], wireless
networks [53], and communication systems [54].
In summary, while GNNs have been extensively explored

in various fields, their application in power electronics
remains an underexplored territory. The unique graph struc-
tures and data inherent to power electronics systems present
a fertile ground for GNNs to uncover deep insights into the
complex behaviors and interactions within these systems.
This untapped potential positions GNNs as a pivotal tool for
advancing the efficiency, reliability, and robustness of power
electronics. This, in turn, can aid researchers and engineers
in the development of more efficient, reliable, and robust
solutions that cater to the evolving demands ofmodern energy
systems.

In detail, the benefits brought by GNNs in general can be
characterized by the following key aspects:

• Systematic analysis and design optimization: GNNs
can better process graph-structured data and can effec-
tively capture the complex dependencies and interac-
tions between different components, enabling improved
analysis of complex power electronics systems and lead-
ing to comprehensive deep-learned models for specific
tasks with globally optimal benefits, such as power flow
and generation control, load consumption prediction and
connection analysis among the whole system, etc.

• Cross-domain knowledge transformation: As an
interdisciplinary field, power electronics can bene-
fit from the insights and methodologies developed
in domains like power systems, transportation, circuit
design, etc. This knowledge transfer can lead to innova-
tive solutions and approaches for addressing challenges
in power electronics, e.g., through a transferable GNN-
based method [55].

• Fault-tolerance and reliability: By leveraging GNNs’
ability to uncover hidden patterns and dependencies
within graph-structured data, researchers can develop
a better understanding of potential failure points and
devise strategies to increase the lifetime of components
and further the overall reliability of power electronics
systems.

• Scalability and adaptability: GNNs can efficiently
process large-scale and dynamic graph-structured
data, making them suitable for tackling the grow-
ing complexity of modern power electronics systems,
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which often involve numerous interconnected compo-
nents/equipment and rapidly evolving technologies.

• Ability to handle dynamic graphs: GNNs can adapt
to changes in the graph structure over time, such as the
addition or removal of nodes and edges [56]. This makes
GNNs well-suited for power electronics systems that
may evolve or change during operation [57], allowing
them to capture and learn from the dynamic behavior of
the system. In contrast, conventional machine learning
methods often struggle with handling dynamic graph
data, as they generally assume a fixed structure.

• Relational reasoning: GNNs can perform relational
reasoning by learning to weigh the importance of
different relationships and dependencies within the
graph [58]. This enables GNNs to identify crucial inter-
actions among components in power electronics systems
and make more informed decisions or predictions. Con-
ventional machine learning methods, however, often
lack the ability to explicitly model and reason about such
relationships, which may lead to overlooking important
information.

This paper aims to address this underexplored area by
providing a comprehensive and timely review of GNNs and
their potential applications in power electronics. To reflect
the rapid development of GNN-induced applications, a large
quantity of recent published surveys/reviews are cited as our
major supporting materials. In general, this paper is written
as a guide for those interested in harnessing the merits of
GNNs in power electronics research. By delving into the fun-
damentals of GNNs, exploring their promising applications
in power electronics, and highlighting their advantages over
traditional AI techniques, this paper shed the light on the
future integration of GNNs into power electronics, ultimately
driving innovation and advancements in this critical domain.

This paper is organized as follows: it begins with a broad
introduction (Section I) and is followed by an overview of
recent progress of graph theory research in power electronics
(Section II); the thorough overview of howGNNs are andwill
be implemented in power electronics is given in Section III,
then, it delves into the fundamentals of GNNs (Section IV);
following that, selected scenarios with GNN for filter design
and power electronics-enabled microgrid systems are fur-
ther demonstrated with their unique benefits and potentials
(Section V); then we go beyond the power electronics and
discuss what GNNs have been done in energy-related systems
(SectionVI). This paper endswith our outlooks in SectionVII
and the conclusions in Section VIII.

II. GRAPH THEORY IN POWER ELECTRONICS
A. BASICS
Graph Theory has been applied in electrical engineering
since the very beginning of Circuit Theory and its everlast-
ing applications in power electronics can be traced back to
the 1950s-1960s and is still under development. In power
electronics, graph theory can be employed covering electrical
components, power conversion topologies and even converter

systems as demonstrated in Fig. 2. By employing funda-
mental graph theory concepts in different levels of research,
such as vertices (representing components), edges (repre-
senting connections), and graph properties (like planarity,
connectivity and centrality), researchers can gain a deeper
understanding of the system’s structure and behavior. This
enables the study of across a broad scope of power electron-
ics, e.g., modeling, analysis, topology derivation, operation
design, etc. In [2], a thorough general picture is given and
interesting readers are encouraged to refer to this review
paper for detailed and explicit investigations on both histori-
cal achievements and emerging developments of graph theory
in power converter research.

B. RECENT DEVELOPMENTS
Recent years witnessed some interesting graph-theory-
based methods in Power Electronics research covers from
component-, converter- as well as system-level research.

(i) Component-level: In [20], a graph model is constructed
to represent the complex, heterogeneous layouts of multichip
silicon carbide power modules, capturing interconnectivity
and design constraints, and using this model in conjunction
with integer programming and genetic algorithms for system-
atic and efficient optimization of module layouts. In the latest
framework of design automation technique PowerSynth 2
[59], constraint graphs are constructed to enable bottom-up
constraint propagation for synthesizing layouts that respond
to various design constraints, such as minimum width, enclo-
sure, and spacing between components, leading to optimized
and constraint-aware solutions. In addition, various graph-
theory-induced algorithms are also implemented, such as
longest path algorithm, path-finding algorithm, etc. In recent
circuit synthesis research, graph learning is proposed in [30]
to enable superior approximate synthesis, design diagnosis,
reverse engineering, etc.

(ii) Converter-level: Leverage the explicit expression
power, graph-theory-based modeling and analysis has got
some considerable attention, including equivalent circuit
identification [3], multilevel converter topologies with par-
allel connectivity [5], open-circuit fault diagnosis for T-type
inverter [15], operation analysis of DC-DC converters consid-
ering uncertain states of diodes [33], sneak circuit analysis
of semi-DAB [34], fault diagnosis of modular power sup-
ply [35], etc. In terms of converter relationship research,
isomorphic converter derivation and operation design is pro-
posed in [21], revealing some unique yet broadly existing
interconnections between voltage-source and current-source
converters. In [60], duality method is exploited to facilitate
the systematic analysis and operation design of newmultiport
converters for renewable generation integration. Thework got
further extend by proposing the generalized duality method
for cognate multiport converters to cover a wider scope of
related multiport topologies which feature different circuit
appearance but come from the same dual topology [23].

On the other hand, considerable research works deal with
the topology derivation challenges covering from DC-DC
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FIGURE 2. A brief summary of different levels of Power Electronics research associated with Graph Theory approaches.

converters [9], [10], DC-AC inverters [37], multiport con-
verters [10], [61], switched-capacitor converters [8], as well
as works towards power converters in general [11], [12].
In particular, The topology automatic generation and search
is a challenging and trending theme, where works focused
on non-resonant dc-dc converters [25], single-inductor multi-
input multi-output converters [32], multi-port hybrid circuit
breakers [28] and vertex prime degree-based DC–DC con-
verters with two switches [31] representing some most
interesting recent progress.

In addition, graph-based operation design and control can
also be found recently, such as battery balancing [14], [24],
voltage regulation in DC microgrids [36], partitioning of
modularmultilevel control system [62], etc. In particular, [63]
introduces a universal framework for finite-control-set model
predictive control design with unified model for isomorphic
and dual power converters, which shows a significant simpli-
fication compared to the conventional design process.

(iii) System-level: Optimization of distribution systems
can benefit from graph theory, such as the work on
multiple-output DC distribution system [18], and auto-
matic generation and visualization of optimal network [19].
Smart transformer, as another system-level example, got
improved through graph-theory-based control as proposed
in [7] and [13]. The implementation of graph theory also
spread out to wireless power transfer (WPT) system, where
graph sets method is proposed for simplified modeling with
comprehensive analysis of multicoil WPT systems [4], [64].
Topology identification in [27], shows some promising ben-
efits bringing unsupervised learning with graph theory for
applications in low-voltage distribution systems.

In summary, graph theory applications for power elec-
tronics have witnessed rapid progress and development. The
recent years innovations on this theme show their great poten-
tial on facilitating systematic research of all the major critical
aspects of power electronics. As a universal mathematical
language, it is also demonstrating interesting opportunities to
bring graph and state-of-the-art algorithms altogether, emerg-
ing as GNNs as intersection of both graph and AI. In the next
section, a bibliometric study will be given to further illustrate

such trends in graph theory induced research and solidify the
visions on power electronics research evolutions from graph
theory to GNNs.

C. BIBLIOMETRIC STUDY
Over the 15-year period from 2009 to 2023, the growing
importance and application of graph theory illustrates a con-
sistent upward trend in the number of publications, including
computer science, electrical engineering, and many others,
indicating a high level of ongoing research activity.

To give a holistic view, the research topics of graph
theory-induced research on IEEE Xplore is shown with pro-
found evolution from 2018 to 2023 (see Fig. 3), covering
from purely theoretical research to various applications, e.g.,
learning, semantic networks, pattern clustering, social net-
works, recommender systems, multi-agent systems, image
classifications, object detection, etc.

In general, graph theory is a fundamental mathematical
discipline used in many areas of computer science, including
network design, data structures, and algorithm theory. It’s
also crucial in modern AI and machine learning, particularly
in the design and implementation of graph neural networks,
which can model complex systems and relationships. It’s
worth noting that the ‘‘Graph Neural Networks’’ topic also
shows a similar trend as ‘‘Graph Theory’’ ‘‘Learning (Artifi-
cial Intelligence)’’ and ‘‘Deep Learning (AI)’’ in the figure,
which suggests a relationship between the two topics. This
is expected, as Graph Neural Networks are an application of
Graph Theory.

III. GNNS IN POWER ELECTRONICS
Power electronics devices are penetrating different areas in
energy systems to significantly promote efficiency and func-
tions; however, such a trend also provokes serious concerns
about their cost, safety, reliability, etc., and calls for emerg-
ing needs for more advanced modeling, analyzing, deriving,
operating the power-electronics-enabled systems [65]. Given
the superior graph-structured handling capability over con-
ventional machine learning methods, GNN-based methods
can fit well for such tasks, facilitating the research by
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FIGURE 3. The topic evolution of the publications of Graph Theory related
research on IEEE Xplore from 2018 to 2023. The search is done by using
keywords ‘‘graph theory’’. (All data is accessed through IEEE Xplore in
November 2023.)

automatically learning the complex topological relationships
and dependencies in power-electronics-enabled applications.

A. WORKFLOW OF GNNS IN POWER ELECTRONICS
The GNN-based methods can follow a similar workflow
in [66] for different applications as summarized in Fig. 4.
The graph identification and characterization step are to

deal with different dataset types of power electronics, and by
conducting graph modeling methods, either structured data,
or non-structured data can be transformed into the compatible
form for GNN algorithms.

The computational modules and training will basically
follow the philosophy as reviewed in [66] by exploring the
diverse design space of GNNs. Similar concept has also been
found in converter optimal design [67], e.g., set of selected
design- and operating parameters, materials, components,
topology, etc.

The loss function design step is closely related to how the
ground truth of node/edge/graph embeddings are generated,
and what are the downstream tasks. In general, it will be
recommended to transform the component-level, converter-
level, system-level power electronics tasks (more details are
listed in Fig. 4) into standard graphical grammar, i.e., node-
level, edge-level, graph-level tasks. This is when the domain
knowledge plays important roles to make sure such transla-
tion aligns well with the engineering requirements.

B. EXISTING APPLICATIONS OF GNNS IN POWER
ELECTRONICS
As mentioned before, despite the growing interest in GNNs,
their full utility in power electronics is still unexplored. By the
time of preparing this review, there has been a limited number
of works published regarding this direction, covering specific

topics such as GNNs for converter modeling and derivation,
rectifier fault diagnosis, and regulation of DC microgrids or
clusters of microgrids.
(i) Converter-level research. To better implement machine

learning methods for tasks including regression, classifica-
tion, clustering, and synthesis of power electronic converter
circuits, a systematic circuit mapping framework is proposed
in [68]. In this work, the bond graph is used for converter
modeling to cope with the multi-physics nature of power
converters, and GCN with Mean pooling is used for circuit
feature encoding, such that, datasets can be generated in a
unique graphical format for downstream tasks, e.g., classifi-
cation of converter types.

In [69], a novel learning-based framework for deriving the
topology of power electronics converters is introduced. The
framework represents the circuit as a graph, which allows for
enhanced flexibility in modeling complex converter topolo-
gies. Features of the circuit graph are then extracted using
GNNs and fed into a reinforcement learning framework to
derive new converter topologies. The proposed framework
is effective in deriving new complex topologies such as six-
port, eight-port, and even ten-port converters, which were
previously difficult to design using traditional approaches.

The GCN-based fault diagnosis would link the data with
the associated graph, such that the time-frequency features
can be embedded as node features, while the similarity of
measurements can be modeled as the edge connections in
graph. By introducing the prior knowledge during the associ-
ation graph constructing process, the authors in [70] greatly
improve the diagnostic accuracy regarding a typical traction
system rectifier, where special focus is given to IGBT open
circuit faults. This work got further improvement by tackling
the over-smoothing problems in GCN-based methods [71],
where the learnable weight coefficient θ is added into the
conventional GCN forward propagation formula.
(ii) System-level research.As power converters play a cru-

cial role in modern microgrids, bridging renewable energy
sources with load and grid, intelligent control becomes vital
to stem the high system efficiency, good power quality and
resilient operation [72].
In [73], the authors introduce a novel approach for fault

detection and identification in low-voltage DC microgrids
with meshed configurations. Their proposed methodology is
based onGCN,which effectively leverages the explicit spatial
information of the network topology and measurement data
to accurately detect faults. Notably, the proposed method is
robust to noise and corrupted data, exhibiting a strong feature
extraction capability.

In [74], a multi-agent reinforcement learning method
featuring an augmented GCN with proximal policy opti-
mization algorithm is proposed for the cost-effective voltage
regulation, allowing for the decentralized training with pri-
vacy preservation. By extracting the key features from the
network topology via the techniques of critical bus and elec-
tric distance, it can help convey various system dynamics
and uncertainties, including renewable generation, demand,
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FIGURE 4. The workflow and GNN-based applications for Power Electronics.

and price signals, and integrate them into the optimization
process.

In summary, GNNs in power electronics are still in a very
early stage, and the research focuses mainly on converter and
system-level, and there is still great potential that GNNs could
bring to power electronics research. To further explore the
implementation of GNNs, in the next section, the applications
of GNNs in circuit design will be presented.

C. RELEVANT APPLICATIONS OF GNNS IN CIRCUIT
DESIGN
To provide a tangible sense of howGNNs can be implemented
in Power Electronics, we will also highlight some papers
from the circuit-design domain which are considered closely
relevant here, where the topics circle around analog integrated
circuit (IC) design, transistor sizing, circuit aging, etc.
(i) Electromagnetic emulation. To tackle the high-

frequency circuit design, a specialized GNN method is
proposed in [75] to simulate the electromagnetic properties
of distributed circuits, e.g., resonator filters in 5G/6G system.
By capturing the relationships between circuit components,
the electrical and magnetic couples can be learned and then,
help solve the inverse design problems, i.e., given desired
circuit transfer function and optimize the geometrical floor
planning and parameters. Such an application of GNN can
be transferred to power electronics component-level design,
for instance, automated EMI filter design for high-frequency
converters.
(ii) Radio-frequency circuits.The work in [76] proposes

a unique multimodal policy network consisting of a circuit
topology-based GNN (both GCN and GAT are used to learn
the embedding of circuit-level physical features) and a fully
connected neural network to embed key domain knowledge
of circuit design and achieves higher accuracy, efficiency, and
optimality. By generalizing the same idea, one can implement
GNN-based methods for automated and more intelligent
analog circuit design in power conversion where traditional
CNNs cannot handle the geometric learning efficiently.
(iii) Circuit Representation. To preserve the important

topological and geometrical information, the circuits are

modeled as heterogeneous graphs in [77]. By utilizing circuit
GNN algorithms, the information can be distinctively prop-
agated on both topological and geometrical edges and then
fuse the messages to update cells and nets representations.
Therefore, the design framework can work well in both logic
synthesis stage and placement stage. This is indeed a good
hint for power electronics circuit design, since both the topol-
ogy features (which are related to the operation behaviors like
switching states of a converter) and the geometrical features
(which are related to the physical realization like device
package, heat dissipation, EMI, etc.) need to be considered
organically during the design process.
(iv) Placement and sizing. To improve the analog IC

placement, authors in [78] incorporate GAT and DiffPool,
outperform the recent CNN-based model and achieve per-
formance similar to manual designs. To consider the layout
parasitic (e.g., parasitic resistance and coupling capacitance)
in transistor sizing problem, the work in [79] utilizes parasitic
graph embeddings from GNN-based pre-trained prediction
networks and achieves optimization convergence by 3.7 times
and 2.1 times compared to conventional Gaussian process
regression and neural network based Bayesian linear regres-
sion, respectively. Such layout parasitic problems are also
emerged in wide-bandgap power module design, thus, could
benefit from a similar treatment in IC design philosophy.
(v) Degradation Estimation. To make a fast estimation

of aging-induced transistor degradation, the authors in [80]
propose a heterogeneousGCN to characterize themulti-typed
devices and connection pins. By further extending the pro-
posed algorithm, information from multi-hop devices can
be extracted without an over-smoothing issue and enables
significant performance improvement compared to tradi-
tional graph learning methods and the static aging reliability
simulations. Aging and its diagnosis in modern power elec-
tronics devices is drawing increasing attention in recent
years [81] and GNN-based methods could be a potential
solution for more-integrated power generations, e.g., power-
on-chip, ultra-low voltage/power applications.
(vi) Hardware security of ICs. To tackle the circuit-related

tasks related to hardware security, a generic end-to-end
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GNN-based pipeline is suggested in [82]. Concerns like
implantation hardware Trojans, piracy of design intellectual
property, and reverse-engineering are highlighted. GNN-
based methods have been used to address some of them, such
as hardware Trojans detection, piracy detection, functional
reverse engineering, and attacks on design-for-trust (includ-
ing predictions of key leakage, link formation, structural
leakage, etc.). Security problems also received considerable
research efforts in power electronics, while mostly focused on
cyber security [83]. Given the recent development regarding
hardware security research in IC design, this topic could also
inspire some works in the power domain and similar GNNs
could be implemented.
(vii) Knowledge transfer design. To reduce the re-design

from one circuit to another, authors in [55] combine both the
GCN and the reinforcement learning to transfer the knowl-
edge between different technology nodes (180nm, 65nm,
etc.) and topologies. GCN is built to help open the black box
during optimization and improve the circuit performancewith
learned domain knowledge. In [84], a similar idea of hybrid
GNNs, i.e., GIN with transfer learning, is adopted to transfer
learned device sizing knowledge to predict the performance
of new topologies.

Such applications can also be expected in power con-
verter topology design to capture the domain knowledge from
conventional dataset and help to design different converters
where different semiconductors and topologies are used.

In summary, GNNs have been applied in circuit design cov-
ering from circuit analysis to synthesis, from Multiphysics
considerations to different circuit scales, which shows great
potential of their extension to power electronics.

D. SPECIFIC DIRECTIONS OF GNNS IN POWER
ELECTRONICS
The integration of graph theory and deep learning through
GNNs offers exciting opportunities for the field of power
electronics. By leveraging the interdisciplinary nature of
power electronics and the powerful capabilities of GNNs,
researchers and practitioners can develop more efficient and
reliable solutions, driving further advancements in this criti-
cal domain. In this section, merits, future potential as well as
challenges are presented.

Based on the previous overview, there are several interest-
ing topics that we believe could receive further development
in power electronics research based on GNN-aided tech-
niques.

• Enhancing power converter modeling and analy-
sis.When designing or analyzing power converters (and
their systems), both the topological and geometrical
information such as the circuit networks and positions
of the components (converters) play important roles.
In this direction, identity-/position- aware GNNs [85],
[86] can be trained with the holistic datasets to accu-
rately model the converter (and/or its system). Thanks
to the Universal Approximation Theorem, embedding
MLPs in GNN layer could further improve the algorithm

expressiveness, capturing different graph structures of
the power electronics systems [87].

• Expanding the power of neural network controls.
Neural-network-based controls (e.g., MLP, fuzzy neu-
ral network, recurrent neural network, etc.) have been
applied during the past two decades for different prob-
lems of power electronics [88], such as space vector
PWM of voltage-fed inverter, speed sensorless opera-
tion, delayless filtering andwaveform processing, and so
on. As a natural extension, GNNs can be seamlessly sub-
stituted in wherever conventional neural-network-based
controls can fit, plus, achieve more accurate and/or
more computation-efficient predictions for other scenar-
ios when non-Euclidean data are needed to be handled,
such as multi-agent-based vehicle systems [89].

• Advanced power electronics design and automation.
With the semiconductor industry approaching the lim-
itation of Moore’s law’s, advanced power electronics
topology likemultilevel converters also get implemented
in ICs [90]. But still, the difference between ICs and
power electronics circuits could remain to be promi-
nent [91]: (1) circuitry nonlinearity, (2) high degree of
accuracy with switching actions, (3) the wide variation
of circuit node impedances and time constants, (4) high
sensitivity of the layout parasitic elements. Following a
similar path in EDA, the power electronics design can
utilize GNN-based methods to facilitate the automation
of thewhole process. In particular, advancedGNNmeth-
ods can be redesigned with the integration of domain
knowledge to handle the above heterogeneous features.

• Developing advanced fault diagnosis and tolerant
operation. The recent work of GCN-based fault diag-
nosis of single-phase rectifier opens somemore opportu-
nities that other advanced spectral GNN algorithms can
also be utilized for different power converters and their
systems. As summarized in [92], spectral GNNs learn
node or graph representations from spectral information
(e.g., multivariate time-series fault signals), and possess
different expressiveness and interpretability from spatial
methods, resulting in diverse groups of methods that
have been still unexplored.

In summary, even though GNNs are generally underdevel-
oped in power electronics, but their great implementation in
relevant domain like electrical design automation has already
show convincing promises that they can serve as tools for
enhancing power converter modeling and analysis, expand-
ing the power of neural network controls, advanced power
electronics design and automation and developing advanced
fault diagnosis and tolerant operation.

IV. FUNDAMENTALS OF GNNS
GNNs are under the broader umbrella of graph representation
learning, which emerged from the need of learning tasks from
graph data and follow a similar yet different structure of other
learning algorithms.
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FIGURE 5. The visualization of message passing (information
propagation) process from the adjacent nodes to the target node. The
integration of neighborhood is normally realized by aggregation function,
e.g., MEAN, MAX, SUM, etc.

Founded on an information diffusion mechanism, the core
difference of GNNs over conventional graph representation
learning lies in how topological information is encoded dur-
ing the learning process [93], [94]. This not only sets them
apart from conventional machine learningmethodologies, but
also brings various unique features:

• Local and global context awareness [45].
• Invariance to permutations [95]. [96].
• Powerful expressivities [87].
• Optimal approximation [97].
In each layer of GNNs, the information propagation is

designed to be conducted around the neighborhood (the
adjacent nodes) of each targeted node (see the conceptual
visualization of this process in Fig. 5 which is adapted
from [98]). Compared to convolutional neural networks
(CNNs), the most distinctive part in computation module
is the aggregation function (as indicated in Fig. 5), which
takes the information of the adjacent nodes and generates
a ‘‘message’’ and updates the target node. The topological
features will be embedded in this process by default, while
such information is normally overlooked by CNNs or other
Euclidean data-handling methods.

Next, wewill discuss the concept of design space of GNNs,
which sets the grounds for the design possibilities of GNN
algorithms in theory. This will provide a general picture as
well as guidance of GNN design tasks from a software-
engineering perspective. (For readers who are interested in
more details, please refer to books like [94], [98].) Fig. 6
shows the detailed GNN learning algorithm structures with
function modules and descriptions based on the work in [99],
which demonstrates a hierarchical design philosophy includ-
ing three major design categories: (1) intra-layer design,
(2) inter-layer design, (3) learning configuration.

Intra-layer configurations define the core function of a
single GNN layer, and directly influence the general features
and performance of GNN algorithms. A typical GNN layer
consists of several message-passing sub-layers (as shown in
the right-hand side of Fig. 6), where consecutive sub-layers
can be treated as specialized functions that take the input from

FIGURE 6. Design space of GNNs. (MLP denotes the Multi-layer
Perceptron which possess a combination of multiple linear functions and
non-linear functions.)

the previous sub-layer and generate the output as input for the
next sub-layer. The complete pipeline features five modules,
i.e., a linear layer, batch normalization, dropout, non-linear
activation function and aggregation function (please refer to
deep learning fundamentals textbooks like [100] and [101]
for their basic definitions). By altering these modules, various
GNN layers can be obtained, resulting in different GNN
algorithms, such as GCN, GraphSAGE, GIN, etc.

Inter-layer design is categorized based on how multiple
GNN layers are connected together, e.g., direct stacking,
adding skip connections, etc. By different concatenation
methods, GNN layers can be organized in various ways, and
demonstrate different merits, further expanding the design
space.

Same as other learning algorithms, different training set-
tings and optimization methods could be implemented for
pre-/post- process andmessage-passing layers, leading to dis-
tinctive performance, and thus, their fine-tuning and optimal
selection would be important for GNNs to fit the desired
applications. To provide a more holistic view of GNN, inter-
ested researchers are recommended to refer to various GNN
algorithms listed in Appendix Table 2 and various datasets for
learning on graphs listed in Appendix Table 3.

V. CASE STUDIES
To demonstrate the practical opportunities of introducing
GNNs into Power Electronics, here we choose three exam-
ples to further illustrate: (1) case study 1 is focused on the
converter-level applications, where GNN algorithm is trained
for optimal design of a high-frequency filter; (1) case study 2
is focused on the converter-system-level applications, where
data from power-electronics-enabled systems like microgrids
can be collected; (2)case study 3 is extended from the first
one, by implementing the similar GNN algorithms for larger
system, e.g., local distribution system. Case 1 was running
on the local computer with Intel i9-11980HK @ 2.60GHz
3.30 GHz and NVIDIA GeForce RTX3080 Laptop GPU.
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FIGURE 7. Graph modeling of distributed parameter filters.

Both cases 2 and 3 have been running with Google Colab
environment.

A. CASE STUDY 1: HIGH-FREQUENCY FILTER DESIGN
This case study follows the workflow proposed in [102] and
is focused on high-frequency filter design problem (from
MHz to GHz), which gains increasing attention in power
electronics miniature applications [103], e.g., power-on-chip
systems, gallium nitride (GaN)-based power amplifiers, etc.
The basic idea is illustrated as in Fig.7, by adopting the graph
theory model of converter, the filter design can be transferred
into a layout planning which can be learned and designed
through the GNN-based methods.

Due to the ultra-high frequency range the problem dealt
with, the lumped parameter modeling can no longer be valid,
and traditional manual design methodologies are increas-
ingly proving to be insufficient for these complex systems.
In detail, we’ve adopted a supervised GNN algorithm in [75]
to address the inverse design of distributed-parameter filter
design in GHz range. The algorithm is specifically configured
to ingest a pre-defined circuit transfer function and subse-
quently optimize both the geometrical floor planning and the
circuit parameters.

As for the algorithmic settings, the GNN model oper-
ates with a batch size of 128 and a learning rate of 2e-4,
with 117 epochs for training. The architecture comprises
three GNN layers, with edge and node attributes dimen-
sioned at 20 and 11, respectively. The hidden layer is robust,
featuring 400 neurons and employing a leaky ReLU acti-
vation function. These parameters were chosen to maintain
a balance between computational efficiency and predic-
tive accuracy, thereby fortifying the model’s robustness in
addressing high-frequency filter design complexities.

Fig. 8 shows the loss of the training and validation of the
algorithm, where the performance tends to maintain steady
after 60 epochs. The average error of training is around 1.1dB
for 4-resonator topology (∼1.7dB for validation/testing), and

FIGURE 8. Loss of GNN-based filter design training/valid results.

FIGURE 9. S-function prediction example of filter with 3 resonators.

FIGURE 10. Bandpass filter design results target band 260-290 GHz.

around 1.3dB for 5-resonator topology (∼2.2dB for valida-
tion /testing). Fig. 9 presents the prediction results for a filter
with 3 resonators, demonstrating that the GNN-based pre-
diction error closely aligns with the theoretically calculated
frequency response. The Fig. 10 further demonstrate another
example for bandpass filter design within the frequency range
of 260-290 GHz, where the delivered band is 255-293 GHz
which considered quite close to target. Please note that, within
the GNN-based workflow, such a distributed circuit design
task only requires several minutes, while the same task would
take an expert multiple orders of time, like days if not weeks
to reach the same level of optimality. It is anticipated that the
same methodology can be further developed for other parts
of the power converters, especially considering application
within radio frequency range or even beyond.

B. CASE STUDY 2: MICROGRIDS VOLTAGE PREDICTION
As mentioned in [1], a key component in a modern
microgrid is the Power-Electronics-based smart interfacing
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FIGURE 11. Power-Electronics-enabled AC-coupled microgrid system.

converter (IFC), which enables flexible power flow control
and is the actuator of smart functions. Those IFCs connect
renewable/non-renewable energy generation/storage systems
and loads to the AC and DC subgrids of microgrids as shown
in Fig. 11. However, the intermittent of renewable energy
(wind and/or PV power generations) as well as low inertia
of power converters in microgrid systems, could lead to
power fluctuations, or even stability problems, especially in
high penetration levels. In this case study, we will leverage
GNN-based algorithm to help predict the voltage fluctuations
inside a microgrid.

To emulate the networks of a microgrid system, we choose
the IEEE 14-bus system as our benchmark [104], [105]. The
IEEE 14-bus diagram is adopted from [106] and the original
graph-structured dataset is available from [107]. The detailed
workflow is shown in Fig. 12.

First, the network data needs to be converted into graph as
demonstrated in the graph modeling Fig. 13. Then, the graph
can be further represented by utilizing adjacent matrix A:

A =

 a11 · · · a1n
...

. . .
...

an1 · · · ann

 (1)

where the value of element aij in A is assigned as ‘‘1’’
when the corresponding ith node is connected to the jth node
through an edge, Otherwise, assigned as ‘‘0’’. In practice,
sparse matrix will be converted into standard edge_index
form and both the connection information and node attributes
can be stored efficiently and processed by the GNN algo-
rithms. Then, the GNN algorithm is built for a node label
prediction task. To accommodate our specific needs, i.e.,
a voltage fluctuation prediction, the graph node attribute is
also embedded by a data pre-process with first, a Mean
function, and then, a Classifier to indicate if the binary classi-
fications of voltage magnitude higher or lower the threshold.

In this demo, we implemented supervised learning as our
training settings, and chose GCN as the GNN layer, utilizing

three convolutional layers. For the node classification task,
we applied mean pooling followed by two fully connected
layers. Since our focus was on binary classification, we uti-
lized a binary-cross entropy loss function. To determine the
optimal set of hyperparameters, we employed a grid-search
method and fine-tune them through trial and error. The graph
features and detailed hyperparameter setups are summarized
in Table 1.
The training process is to use a certain amount of graph

data samples as training set, while a randomly chosen graph is
our testing set. Fig. 14 shows the prediction results are getting
more accurate with a higher number of epochs. Fig. 15 shows
the loss function value changes with epoch numbers, as well
as the confusion matrix of the classification prediction. The
final achieved accuracy is around 92.85%. It is worth noting
that the epoch number cannot go too high due to an over-
fitting problem, which will cause performance degradation.
Another thing worth noting is our selected dataset contains
10000 samples for the IEEE 14-bus system and contains
various voltage patterns. Therefore, during each time training,
the GCN algorithm needs to tune the parameters and capture
the patterns of those node voltage labels from different data
graphs without knowing the possible patterns of the testing
case. Due to the non-regular form of the data, such a task
cannot be directly handled with conventional CNNs, unless
hand-crafted features are provided.

C. CASE STUDY 3: A LARGER SYSTEM VOLTAGE
PREDICTION
To show the scalability of GNN-based methods on an
even larger Power-Electronics-based system, we choose the
IEEE 118-bus network as our benchmark as shown in the
Fig. 16(a) [108]. The original graph-structured dataset is
available from [107]. And in this case, we implement the
same pre-processing of the data, and the sameGCN algorithm
for the voltage fluctuation prediction with considerations of
the network topological information (as opposed to conven-
tional methods where this graphical information is normally
overlooked and cannot achieve straightforward generaliza-
tion). Its graph representation with the labeled node is shown
in Fig. 16(b). The graph features and detailed hyper parame-
ters can be found in Table 1.

To increase the robustness for such a large network, differ-
ent from the case 2, the training is done by using each graph
data sample with some masked nodes (meaning that some of
the nodes’ labels are hidden) and the task is to predict the
nodes’ labels in a completely new graph.

Fig. 17(a)-(d) shows the prediction results with differ-
ent epoch numbers. It can be observed that the exact same
GCN algorithm can predict most of the node voltage labels
correctly with a large enough epoch number which shows
an impressive scalability of the GNN-based method. Since
the dataset gets more complicated, it took more iterations
to forward and backpropagation and modify the parameters
inside the GCNmodel to learn the patterns. Fig. 18 shows the
loss function value changes with epoch numbers, as well as
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FIGURE 12. The workflow of GNN-based applications for voltage fluctuation prediction for a microgrid/distribution system with IEEE 14-bus network.

FIGURE 13. Graph modeling of IEEE 14-bus configuration-based
microgrid.

FIGURE 14. The prediction results for voltage fluctuation (Case 1,
Microgrid with IEEE 14-BUS): (a) epoch 0, (b) epoch 10, (c) epoch 30,
(d) epoch 50.

FIGURE 15. The learning results for IEEE 14-bus case. (a) The loss
function value changes with epoch numbers. (b) The confusion matrix of
the voltage label prediction results.

the confusionmatrix of the classification prediction. The final
achieved accuracy is around 90.67%. Typically, conventional

TABLE 1. Graph features and hyper-parameter settings.

methods will overlook the topological information of the
network and cannot handle such a task well [109].
The main purpose of the case studies is to demonstrate

the opportunity of GNN-basedmethods in power-electronics-
enabled applications; therefore, all algorithms are imple-
mented without further fine-tuning. In practice, the prediction
accuracy can be further improved by (1) feeding more
data into the model, (2) human-based/auto fine-tuning the
parameters of the model, (3) choosing some other advanced
GNN-basedmodels. In fact, onemajor challenge in the imple-
mentation of the GNN-based model in practice is the lack of
enough open-source datasets embedded with graphical struc-
tured data. Parameter tuning and model searching are other
challenges that can greatly affect the final performance. There
are some promising research works like Graph Neural Archi-
tecture Search, which is an automated approach to search for
optimal GNN architectures using neural architecture search
(NAS) techniques [69].

VI. EMERGING APPLICATIONS OF GNNS BEYOND
POWER ELECTRONICS
It is well-acknowledged that power electronics is a key tech-
nology for enabling the transition to a more sustainable
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FIGURE 16. From diagram to graph: (a) the diagram of IEEE 118-bus network; (b) the labeled graph of the IEEE 118-bus network.

FIGURE 17. The prediction results for voltage fluctuation of distribution
networks based on IEEE 118-bus configuration: (a) epoch 0, (b) epoch 60,
(c) epoch 120, (d) epoch 200.

and low-carbon energy system [110], where interdisci-
plinary fields encompass various aspects such as energy
generation, transmission, distribution, storage, and con-
version, etc. To envision a broader scope of how GNN
can bring benefits for modern power electronics, in this
section, the emerging applications of GNNs in energy-related
domains are covered in terms of industrial and academic
applications.

FIGURE 18. The learning results for IEEE 14-bus case. (a) The loss
function value changes with epoch numbers. (b) The confusion matrix of
the voltage label prediction results.

A. INDUSTRIAL APPLICATIONS
GNNs have emerged as a leading trend in machine learn-
ing, offering exceptional capabilities in modeling and ana-
lyzing complex relationships and interactions found in
graph-structured data. Their widespread adoption can be
witnessed in various applications today, including social
network analysis, recommendation systems, drug discovery,
knowledge graphs, traffic prediction, computer vision, natu-
ral language processing, and more. For example, GNNs have
been instrumental in ranking thousands of drugs based on
their potential efficacy against diseases like SARS-CoV-2,
or facilitating the identification of potential treatments for
Covid-19 [111]. Furthermore, GNNs are being utilized in
materials science research. The Lincoln Laboratory team
is developing GNNs capable of learning the relationships
between a material’s crystalline structure and its properties.
This approach accelerates the process of screening materials
for specific applications by predicting properties from new
crystal structures [41].

In the realm of web mapping services like Google
Maps, the accurate estimation of travel time is critical for
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optimizing commuting experiences. GNNs offer a remark-
able opportunity to leverage graphical representations at
scale, considering factors such as road conditions and traf-
fic along specific routes. A GNN estimator collaboratively
proposed by Google, DeepMind, Facebook AI, and other
institutions has been introduced to enhance the precision of
estimated travel time predictions [112]. Moreover, to ensure
the practicality and scalability of GNNs in growing and
global services, a random-walk GCN, i.e., the PinSage was
developed in [113], which excels at learning node embed-
dings within massive web-scale graphs containing billions
of objects. Through these representative scenarios, GNNs
have revolutionized various fields of study and commercial
applications, proving their value in tackling complex prob-
lems and leveraging graphical representations effectively.
With ongoing research and advancements, GNNs are poised
to continue making significant contributions across diverse
domains.

B. ACADEMIC APPLICATIONS
GNNs in intelligent transportation systems provide a power-
ful framework for understanding, modeling, and optimizing
transportation systems. By exploiting the inherent graph
structure of transportation networks, GNNs can capture com-
plex relationships and dynamics, leading to improved traffic
management, enhanced user experience, and more efficient
and sustainable transportation systems [114], [115], GNNs
are well-suited for modeling and analyzing the complex rela-
tionships present in wireless networks for tasks such as link
prediction, node classification, network optimization, and
resource allocation [53], [54], [116], [117], [118]. The Inter-
net of Things (IoT) connects physical devices over wireless
networks, and device-to-device (D2D) communication is a
promising technology for IoT [119].

As chip design becomes increasingly complex, traditional
EDA approaches are struggling to cope with the chal-
lenges of very large-scale integration (VLSI). While EDA
tools offer scalability, reliability, and time-to-market advan-
tages, they are often computationally demanding and do not
always guarantee optimal solutions. To address these lim-
itations, researchers have turned to GNNs as a promising
new approach for solving EDA problems directly using graph
structures for circuits, intermediate Register Transfer Levels,
and netlists [120], [121], [122].
For power system problems recorded as graph-structured

data with nodes and edges, GNNs can effectively capture
the complex dependencies and interactions between differ-
ent components in a power system, enabling a range of
applications, such as optimal power generation and flow,
load forecasting, fault detection and diagnosis, etc. [123].
With GNNs, the features of the power system network can
be extracted and utilized to improve overall system per-
formance [72]. GNNs can be applied to solar and wind
power prediction tasks by leveraging the spatial and temporal

dependencies present in weather data and power generation
patterns [124], [125], [126], [127].
Other applications of GNNs can be found in the field

of smart grids, e.g., fault detection and identification in
low-voltage DCmicrogrids with meshed configurations [73],
fault detection and classification problems in shipboard net-
works [128].
Based on the graph structure of interconnected components

or sensors in a system, the fault detection tasks can be com-
pleted by the GNNs-based method [129].

VII. OUTLOOKS
Accompanied by great potentials, bringing GNNs into power
electronics research also brings some novel challenges:
Domain knowledge.Power Electronics as a discipline

dealing with electrical power handling has a very long his-
tory [130], where a large portion of rich legacy of trailblazing
inventions is still in the non-digital form, or even hidden in the
innumerable literature. This calls for a great need to organi-
cally re-organize and systematically digitalize/modernize this
valuable knowledge in Power Electronics in the context of
contemporary AI technology, like GNNs.
Power Electronics datasets.There is a great absence of

GNN-compatible datasets in Power Electronics field and
thus, calls for the non-Euclidean data construction in the
near future. The datasets can be generated through simulation
software (MATLAB, PLEXIM, ANSYS, etc.), hardware-in-
the-loop platforms and experimental validations, where their
comparative study is also a potential direction for future
research. In particular, by leveraging the digital models with
Digital Twin-enabled technologies, datasets with different
scales and timespans can be synthesized, providing holistic
views of the whole system [131].
Graph formulation.Graph-theory-based modeling pro-

vides a promisingway of formulating power electronics prob-
lems and mathematically characterizing the graph features,
which is still under development. Problems like dimension
reduction, and non-structured data formulation, are still quite
challenging and need further investigations.
Computation theory.The efficiency of running an

algorithm like GNN for specific tasks can be denoted by
computation theory notions and in return, it can help design a
better algorithm. However, such a formulization of the power
electronics problems is still missing, and several critical
problems remain open, such as what are NP-hard (or NP-
complete) problems in power electronics?
Knowledge-informed algorithm design. Rule-based oper-

ation methods have received major attention in the Power
Electronics community. However, how to embed such prior
knowledge into GNNs for power electronics problems is still
unexplored.
Real-time implementation.Given the sophisticated nature

of GNNs, finding the solutions to reduce computation burden
to enable real-time learning would be quite challenging, but
valuable in practice.
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Hyper-parameter tuning.As mentioned before, the design
space of GNNs could be extremely huge and poses great
challenge to fine-tuning the hyper-parameters.
Goal-directed GNNs.The real-world power electronics

problems normally come with practical constraints, and thus,
result in great challenges to cope with the learning process of
GNNs.
Trustworthy GNNs.Like other deep learning methods,

featuring the ‘‘black box’’ nature, GNNs may invoke the
questioning of the reliability of the results/models/learning
outcomes. This is especially important since nowadays,
power electronics devices are widely implemented in critical
applications. Therefore, it will be essential to develop trust-
worthy GNNs, with the recent progress of the explainability
and interpretability of AI [132].

VIII. CONCLUSION
The research paradigm of Power Electronics is experiencing
seminal transience from the classical William E. Newell’s
triangle (Electronics, Power, and Control) to a deeper multi-
disciplinary driven, higher requirement motivated, larger
research volume anticipated future. We believe combining
graph theory knowledge with the leading deep learning tech-
niques, i.e., GNNs can open new opportunities covering
major research aspects in our fields.

To support our envisions, this paper is prepared by cover-
ing comprehensive overviews with the most recent research
works and surveys and in-depth discussions on this rapidly
developing topic. In details:

• We reviewed the comprehensive introduction of GNNs’
basics to lay the foundations for the following discus-
sions.

• For the first time, the existing GNN-based methods in
power electronics are reviewed. To go beyond the very
limited existing GNN research works, extended discus-
sions on how we can learn from GNN-aided circuit
design for power electronics research is also provided.

• We also conducted several GNN-based case studies cov-
ering converter-level to converter-system-level applica-
tions in power electronics and provided our outlooks on
GNNs in power electronics with further discussions on
their unique merits, emerging potentials.

• We provided a holistic and timely survey of the most
recent and successful applications of GNNs in vari-
ous applications, especially highlighting the emerging
GNNs’ benefits in energy-related fields: intelligent
transportation systems, communication systems, power
systems, smart grids, EDA, fault detection, etc.

• Several novel challenges are summarized, e.g., digital-
ization of domain knowledge in power electronics, graph
datasets establish, mathematical formulation, reliable
and responsible implementations, etc.

We hope this review paper can serve as a starting point,
as well as a timely and handy summary for engineers/students
who want to enter the field and promote the innovation of
power-electronics-enabled applications.

APPENDIX
A. GNN-BASED ALGORITHMS
TABLE 2. Some GNN-based algorithms for different applications.

B. GRAPH-STRUCTURED DATASETS

TABLE 3. Some open-source datasets for learning on graphs.
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