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ABSTRACT Accurate fingerprint segmentation is crucial for reliable fingerprint recognition systems. This
paper presents two novel segmentation methods, GMFS and SUFS, inspired by the KISS (Keep It Simple
and Straightforward) principle. Both methods, evaluated on a public benchmark and compared to eighteen
state-of-the-art approaches, excel in terms of accuracy, while maintaining simplicity and computational effi-
ciency. GMFS utilizes a single handcrafted feature for straightforward yet effective fingerprint segmentation,
achieving superior performance compared to previously reported traditional methods. SUFS employs a sim-
plified U-net architecture for end-to-end segmentation, demonstrating remarkable performance: it achieves
an average classification error rate of 1.51% across the entire benchmark, with an improvement of over
40% compared to the previously best-performing method. Furthermore, despite being trained on a relatively
small dataset, it exhibits significant generalization capabilities, effectively segmenting fingerprints from very
different acquisition technologies without requiring fine-tuning. An open-source Python implementation of
both methods is available, fostering further research and development in the field of fingerprint recognition.

INDEX TERMS Fingerprints, fingerprint segmentation, KISS principle, magnitude of the gradient, U-net.

I. INTRODUCTION
Fingerprint recognition has emerged as a ubiquitous biomet-
ric technology, revolutionizing personal identification due to
its reliability and accuracy [1], [2]. Its versatility has made
it a cornerstone of various applications, including criminal
investigations, border control systems, and mobile device
authentication. A critical step in fingerprint recognition is
segmentation, the process of isolating the fingerprint pattern
from the background (Fig. 1). Segmentation is essential as it
eliminates noise and irrelevant information, paving the way
for accurate fingerprint recognition algorithms.

The field of fingerprint segmentation has witnessed a
proliferation of techniques, transitioning from traditional
methods based on handcrafted features in the spatial or fre-
quency domain, to more sophisticated approaches utilizing
classifiers, genetic algorithms, clustering, and, more recently,
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deep learning. While these advancements have undoubt-
edly improved segmentation performance, they have also
introduced a degree of complexity that can hinder imple-
mentation and comprehension of the underlying mechanisms
driving performance gains. This study adopts the KISS (Keep
It Simple and Straightforward1) principle [3], [4], seek-
ing to develop novel segmentation methods that achieve
state-of-the-art performance while maintaining simplicity.

The primary contributions of this paper are as follows:
1. A novel segmentation method based on simple

and efficient image processing steps that achieves
state-of-the-art performance.

2. A novel segmentation method based on a simplified
U-net architecture that surpasses all previous meth-
ods evaluated on a public benchmark and is able to

1While other interpretations of the KISS acronym are more common, this
paper employs a less colloquial but more academically appropriate definition
in the interest of maintaining scientific precision and avoiding potential
misinterpretations.

144530

 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-3054-9363
https://orcid.org/0000-0002-5026-5416


R. Cappelli: Unveiling the Power of Simplicity: Two Remarkably Effective Methods

deal with fingerprints acquired through very different
technologies without requiring fine-tuning.

3. An open-source implementation of both methods to
facilitate further research and development in this
domain.

FIGURE 1. An example of fingerprint segmentation. (a) a fingerprint,
(b) segmentation mask, (c) segmentation mask contour overlaid on the
fingerprint.

The rest of this paper is organized as follows. Section II
reviews the main fingerprint segmentation methods proposed
in the literature. Section III describes the two novel finger-
print segmentation methods. Section IV reports experiments
aimed at evaluating the performance of the proposed methods
and comparing them to the state-of-the-art on a public bench-
mark. Finally, section V draws some concluding remarks.

II. RELATED WORKS
During the last four decades, more than 100 methods for
fingerprint segmentation have been published [1], [5]. The
earliest methods typically split the image into blocks (e.g.,
16× 16 pixels), extract some features from each to classify it
as foreground or background, and finally perform a few post-
processing operations. Mehtre et al. [6] look for the presence
of peaks in histograms of local ridge orientations, and, in [7],
consider also the gray-level variance. Ratha et al. [8] use the
gray-level variance as well but computing it along the direc-
tion orthogonal to the ridge orientation. Bazen and Gerz [9]
compute the local mean and variance of gray-level intensities,
and the coherence of local gradients; a simple perceptron is
trained as a foreground/background classifier from these fea-
tures. A similar technique is proposed in [10]. Shen et al. [11]
and Alonso-Fernandez et al. [12] propose methods based on
Gabor filter bank responses, while Wu et al. [13] choose
Harris corner response as main feature and Gabor filter
responses for postprocessing. Zhu et al. [14] start from a local
orientation estimation as the main feature, then a shallow
neural network helps to detect wrongly estimated orienta-
tions and improves segmentation. Wang et al. [15] propose a
method based onGaussian-Hermite moments. Other methods
rely on fuzzy C-means clustering [16], [17], [18].
Given that fingerprints are characterized by an oriented

pattern with frequencies only in a specific band of the Fourier
spectrum, some authors propose segmentation methods that
work in the frequency domain. In [19], Chikkeru et al. per-
form a local Fourier analysis with the goal of enhancing

the fingerprint pattern, obtaining a fingerprint segmentation
mask together with an estimation of local ridge orientation
and frequency. Hu et al. [20] apply a Log-Gabor filter in the
frequency domain and combine it with orientation reliability
information. Marques and Thome [21] extract feature vectors
based on the Fourier spectrum and the directional consistency
of each 32 × 32 block, to train a shallow neural network.
Thai et al. [5] design a segmentation approach based on the
directional Hilbert transform of Butterworth bandpass filters.
Thai and Gottschlich [22] propose a segmentation method
by global three-part decomposition, which decomposes a
fingerprint image into cartoon, texture, and noise parts: the
foreground mask is obtained from the non-zero coefficients
in the texture image using morphological processing.

More recent methods are mostly based on deep learn-
ing. Dai et al. [23] first apply the total variation model to
decompose the fingerprint image into cartoon and texture
components; then the texture component is divided into over-
lapping blocks, each of which is classified as foreground
or background by a convolutional neural network; the final
segmentation mask is obtained after a morphology-based
postprocessing. Another block-based deep learning method
is described in [24], where Serafim et al. experiment two
well-known convolutional neural network architectures for
block classification: LeNet [25] and AlexNet [26]; as in the
previousmethod, some postprocessing steps produce the final
segmentation mask. An end-to-end fingerprint segmentation
method, trained on full sized images, is described in [27],
where Joshi et al. introduce a recurrent U-Net with dropout,
called DRUnet, and compare it to four existing network archi-
tectures: Conditional Generative Adversarial Network [28],
U-Net [29], Convolution neural network with criss-cross
attention module [30], and Recurrent U-Net [31].
This section has not considered latent fingerprint seg-

mentation methods, since this paper focuses on plain fin-
gerprints [1]. Segmentation of latent fingerprints requires
specifically-designed approaches that are outside the aims of
this study: interested readers may refer to [32], [33], and [34]
and the references therein.

III. PROPOSED METHODS
Given a grayscale image F containing a fingerprint image,
a segmentation method must classify each pixel in F as
foreground or background: the result is a binary image Swith
the same size of F (Fig. 1).
The following sections describe the two fingerprint seg-

mentation methods proposed in this paper. Both methods
expect fingerprint images with a resolution of 500 dpi, which
is the typical resolution of most fingerprint scanners [1].

A. GMFS
GMFS (Gradient-Magnitude Fingerprint Segmentation) is
the result of a research effort aimed at designing a fingerprint
segmentation method based on traditional image processing
techniques and inspired by the KISS principle. In particular,
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during its development, the author’s goal was to obtain a
method that:

• uses a small number of simple features (ideally only
one),

• consists in a short sequence of well-known and efficient
image processing steps, and

• requires a small number of parameters to be configured.

Fig. 2 shows a functional schema of GMFS and Fig. 3 an
example with all the intermediate processing steps. Feature
extraction simply consists of gradient magnitude estimation
for each pixel, and is performed as follows. Let ∂F

∂x and ∂F
∂y be

the two images which, at each pixel, contain the horizontal
and vertical derivative approximations of the input fingerprint
F. ∂F

∂x and ∂F
∂y can be computed by convolution with the Sobel

filters Sx and Sy [35]: ∂F
∂x = F ∗ Sx , ∂F

∂y = F ∗ Sy. The mag-

nitude of the gradient at each pixel isM =

√(
∂F
∂x

)2
+

(
∂F
∂y

)2
.

The gradient magnitude is typically high at the transition
points between ridges and valleys (see Fig. 3.b).
Starting from this feature, a threshold t is computed as

t = percentile (M, 95) · τ , where percentile (M, 95) is the
95th percentile of matrix M, and τ is a parameter of the
method (see section IV-B). Using the 95th percentile, instead
of simply choosing the maximum value in M, helps to mit-
igate the impact of outliers, which are often present due to
noise in the image.

The gradient magnitude is then averaged by convolvingM
with a Gaussian filterGσ with size gs×gs: M̄=F∗Gσ . Filter
Gσ is obtained by discretizing the 2D Gaussian function

G2D (x, y) =
1

2πσ 2 e
−
x2+y2

2σ2 over a gs×gs grid and normalized
by dividing each element by the sum of all the filter values.
σ is a parameter of the method (see section IV-B), while the
filter size is set to gs = ⌈3 · σ⌉ · 2 + 1, to contain most of
the Gaussian values according to the three-sigma rule. This
smoothing step is very important: it reduces the effect of noise
and ‘‘fills’’ most of the inner regions of ridges and valleys
where the gradient magnitude is low (see Fig. 3.c).
The initial segmentation mask St is obtained by a simple

thresholding operation on the average gradient magnitude:

St =
[
Si,j

]
, with Si,j =

{
foreground if M̄i,j > t
background otherwise

Note that threshold t is computed from the non-averaged
gradient magnitude M, while thresholding is performed
on the averaged gradient magnitude M̄.

The final segmentation mask S is obtained from St after
the following postprocessing steps:

1. Morphological closing [35] (dilation followed by ero-
sion) with a simple 3×3 disc-shaped structuring element
(each erosion and dilation step is repeated nc times,
where nc is a parameter of the method).

2. If the foreground contains more than one connected
component, only the largest one is considered; the

FIGURE 2. A visual summary of the proposed GMFS method.

connected component labeling algorithm [35] can be
used to perform this step efficiently.

3. Filling any holes, provided they are not adjacent to an
image border; this step can be efficiently carried out by
applying the connected components labeling algorithm
to the background.

4. Morphological opening [35] (erosion followed by dila-
tion) with the same structuring element used at step 1
(each dilation and erosion step is repeated no times,
where no is a parameter of the method).

5. If the previous step creates more than one connected
component, step 2 is executed again.

Fig. 3.e-h illustrate the effects of the first four postprocessing
steps: the first step partially fills the holes caused by noise (e),
the second one removes the noise artifact at the bottom-left
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FIGURE 3. An example of fingerprint segmentation using GMFS: (a) Fingerprint image F, (b) Gradient magnitude M, (c) Averaged gradient
magnitude M̄, (d) Initial segmentation mask St, (e)-(h) Results of the first four postprocessing steps with the previous mask superimposed in
semitransparency to highlight changes, (i) Final segmentation mask, and (j) Ground truth.

corner of the image (f), the third one fills the remaining
holes (g), and the fourth postprocessing step removes the
protrusion at the top-left of the fingerprint (h).

GMFS satisfies the goals stated at the beginning of this
section:

• it is based on a single feature (the gradient magnitude),
• it consists of a sequence of well-known image pro-
cessing operations that can be efficiently computed
(convolution with Sobel filters and Gaussian filter,
thresholding, morphology operations and connected
component labelling algorithm),

• only four parameters regulate it: τ , σ , nc, and no (see
section IV-B).

B. SUFS
SUFS (Simplified U-net Fingerprint Segmentation) is a fin-
gerprint segmentation method based on deep learning, with
the following general characteristics:

• It uses a single network for the end-to-end segmentation
task (from fingerprint F to segmentation mask S), except
for straightforward preprocessing and postprocessing
operations.

• The network architecture is inspired by U-Net [29], but
with some modifications that make the network simpler,
more symmetrical, and more suitable for the task of
segmenting fingerprints (Table 1).

TABLE 1. Main differences between SUFS network and U-Net [29].

• Thanks to the use of standard layers and a simple loss
function, the network can be easily implemented in any
deep learning framework.

• Network training is carried out with a simple procedure
using basic augmentation techniques on the learning
data.

The network, like the traditional U-Net, has an encoding
path and a decoding path. Both paths consist of six levels: at
each level there is an encoder (decoder) block with the same
structure.

An encoder block (Fig. 4) takes f
2 feature maps of size

d × d as input (except for the first encoder, which takes
a single-channel image: the input fingerprint), then applies
a 3 × 3 convolution with padding and ReLU activation,
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FIGURE 4. SUFS: the two building blocks of the network with their inputs, outputs, and intermediate layers.

batch normalization, and a 2 × 2 max pooling operation
for downsampling. An encoder block produces two types
of outputs: f downsampled feature maps of size d

2 ×
d
2

for the next level in the encoding path, and f feature maps
at the original d × d size to be provided, through a skip
connection, to the decoder block operating at the same
resolution.

A decoder block (Fig. 4) takes 4 · f feature maps of size
d
2 ×

d
2 as input (except for the first decoder block, which takes

f feature maps from the last encoder block), then applies a
3 × 3 convolution with padding and ReLU activation, batch
normalization, and a 2 × 2 upsampling layer to produce f
upsampled feature maps of size d×d , which are concatenated
to the same number of feature maps from the input skip
connection, resulting in a final output of 2 · f feature maps
of size d × d .

Fig. 5 provides a visual summary of the whole SUFS
method. The preprocessing step adjusts the image size by
adding or cropping borders. It is important to emphasize that
the image is not resized, as doing so would alter its resolution.
The network expects a 512 × 512 grayscale image as input:
at the first level of the encoding path, 16 downsampled feature
maps are extracted; each subsequent encoding level doubles
the number of feature maps, while halving the size. The
output of the last encoding block consists of 512 feature
maps of size 8 × 8, which are provided as input to the
first decoding block, together with 512 feature maps at the
previous size through the skip connection. The first decoding
level produces 1024 feature maps of size 16 × 16 and each

subsequent decoding level halves the number of feature maps
while doubling the size. The last decoding level produces
32 feature maps at the original 512 × 512 size, which are
converted into a single featuremap by a 3×3 convolutionwith
padding and sigmoid activation. A final postprocessing step
converts the network output to a binary image using 0.5 as a
threshold and adjusts the image size by adding or cropping
borders to obtain a segmentation map S with the same size of
the input fingerprint F.
The network architecture exhibits some symmetries.

For instance, at each level, both the encoder block and
its corresponding decoder block share identical f and d
parameters. Additionally, the feature maps passing through
the skip connections span from 512 × 512 × 16 to
16 × 16 × 512.
The above network architecture was selected as the most

promising among some possible alternatives that were exam-
ined during a round of preliminary experiments on separate
datasets (see section IV-C). In particular, the following
options were considered:

• the standard U-net architecture and some of its
variants,

• a greater or smaller number of feature maps f in each
level,

• a greater or smaller number of levels,
• transposed convolution instead of normal convolution
for the decoder block,

• transposed convolution with stride two in the decoder
block, instead of the upsampling layer.
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FIGURE 5. A visual summary of SUFS, including preprocessing, network architecture, and postprocessing.

To train the network, a loss function based on the Tversky
index [36] was chosen:

loss
(
ŷ, y

)
= 1−

1 + ŷ · y

1 + ŷ · y+ α (1 − y) ŷ+ (1 − α) y
(
1 − ŷ

)
(1)

where ŷ is the true value, y is the predicted outcome, α is
a parameter that weights false negatives, and one is added
in numerator and denominator to ensure that loss is not
undefined in edge cases. During the preliminary experi-
ments, other loss functions were considered [37], including
the Binary Cross-Entropy, the Focal Loss, the Dice Loss,
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FIGURE 6. An example of input, feature maps, and output of the SUFS
network. One of the feature maps for each level is shown.

and the Focal Tversky Loss. The loss function (1) was
chosen as the most promising according to the results
obtained, with α = 0.7, the same value suggested in [38].
Network training is carried out with a batch size of 16,
using the Adam optimizer [39] with a learning rate of
10−3, which is progressively reduced to 10−5. Additionally,
simple data augmentation techniques are employed to arti-
ficially expand training data, introducing horizontal flips,
small translations and rotations, and varying contrast and
scale.

Fig. 6 shows an example of fingerprint segmentation with
SUFS, from the network input to the corresponding output.
For each encoder and decoder block, one of the feature
maps is shown. Note that the size of the feature maps varies
from 512 × 512 to 8 × 8, although they are all resized
at the same dimensions for visualization purposes. Along
the encoding path, the feature maps evolve from captur-
ing fine-grained details and local patterns to representing
higher-level contextual information and global structures.
This process allows the network to extract progressively more
abstract and meaningful features from the input fingerprint.
In contrast, the decoding path reverses this trend, transform-
ing feature maps from abstract spatial representations back
into precise pixel-level segmentation masks.

IV. EXPERIMENTAL RESULTS
A. BENCHMARK AND METRICS
The publicly available fingerprint databases from the first
three Fingerprint Verification Competitions (FVC2000 [40],
FVC2002 [41], and FVC2004 [42]) are an established bench-
mark for fingerprint comparison algorithms [2], [43]. Thanks
to the work of Thai, Huckemann, and Gottschlich, who
made publicly available a manually marked segmentation
ground truth for all those fingerprints [5], these databases
are also a suitable benchmark for fingerprint segmentation,
already adopted by recent published works in the field.
Table 2 reports some general information on the benchmark
databases; there are four databases for each competition:
three are acquired from real fingers and the fourth one is
generated using SFinGe [44], [45], a synthetic fingerprint
generation method. Fig. 7 shows a sample fingerprint from
each database, together with the corresponding segmenta-
tion ground truth. The benchmark covers a wide range of
acquisition technologies and image sizes. As can be seen
in Fig. 7, fingerprints from the various databases are highly
heterogeneous with respect to their size, appearance, contrast,
noise type, etc. This contributes to make the benchmark quite
challenging. The image resolution is 500 dpi for all databases
except two: FVC2002 DB2 and FVC2004 DB3. Since GMFS
and SUFS are designed to work with 500 dpi images, the
fingerprints of these two databases are resized to bring their
resolution to 500 dpi before being provided as input to the
two proposed methods. The resulting segmentation masks
are then resized back to the original resolution before being
compared to the ground truth.
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TABLE 2. The twelve databases that comprise the benchmark (four for each competition).

FIGURE 7. A fingerprint image for each database in FVC2000 [40] (a)-(d), FVC2002 [41] (e)-(h), and FVC2004 [42] (i-l): all images are at the same
scale factor and with the contour of the corresponding segmentation mask provided by Thai, Huckemann, and Gottschlich [5].
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TABLE 3. GMFS parameters chosen for each database.

Each database is divided into two sets: A and B. Each set
A contains 800 fingerprints from 100 different fingers (there
are eight impressions for each finger), each set B contains
80 fingerprints from 10 different fingers. Following the same
approach of previous papers, sets A are reserved for testing,
while sets B are used for parameter tuning, model training
and validation.

The accuracy of a segmentation mask S with respect to the
corresponding ground truth SGT is evaluated in terms of:

• True positives (TP) – the number of foreground pixels in
S that are foreground in SGT .

• True negatives (TN) – the number of background pixels
in S that are background in SGT .

• False positives (FP) – the number of foreground pixels
in S that are background in SGT .

• False negatives (FN) – the number of background pixels
in S that are foreground in SGT .

Three evaluation metrics are used in this paper: the
classification error rate ER (2) is the percentage of
incorrectly-classified pixels with respect to the total number
of pixels in the image, the Dice coefficient DC (3) is a
standard metric to quantify segmentation performance [46],
and the Jaccard similarity coefficient JC (4) is a measure of
similarity between finite sample sets [47], also referred to as
intersection-over-union.

ER =
FP + FN

TP + TN + FP + FN
(2)

DC =
2 · TP

2 · TP + FP + FN
(3)

JC =
TP

TP + FP + FN
(4)

B. GMFS PARAMETER SELECTION
GMFS is controlled by four parameters (see section III-A):

• τ and σ are related to the thresholding operation and
should be tuned according to specific characteristics of
the fingerprint acquisition sensor, such as background
and image contrast.

FIGURE 8. Examples of successful fingerprint segmentations using GMFS
(a, c) and SUFS (b, d). The green contour represents the ground truth
mask, while the blue contour represents the proposed segmentation.

• nc and no are related to the postprocessing steps and
should be tuned according to the typical amount of noise
present in the fingerprints.

In this experimentation, the values of the above parameters
are chosen on set B of each database. The rationale for
choosing the parameters for each database is that the twelve
databases have been acquired (generated) with twelve dif-
ferent sensors (generation settings) and their images have
specific properties (see Fig. 7 and table 2). Table 3 reports
the parameter values used: for each database, the values
that minimize the average ER over the corresponding set B
have been chosen among a set of reasonable combinations of
values.

It is worth noting that the smallest values of parameter
τ (0.02 and 0.03) are chosen for the databases where the
background tends to be uniform and less noisy (FVC2004
DB1 and FVC 2002 DB1, see Fig. 7.i and Fig. 7.e).

C. SUFS MODEL, HYPERPARAMETERS AND TRAINING
Unfortunately, the size of each set B (80 fingerprints from
10 fingers) is too small to train a deep neural network and the
only reasonable option is to train a single network using all
the fingerprints from B sets (960 in total). In fact, for SUFS

144538 VOLUME 11, 2023



R. Cappelli: Unveiling the Power of Simplicity: Two Remarkably Effective Methods

FIGURE 9. Examples of cases where GMFS (a, c) is less precise than SUFS
(b, d). The green contour represents the ground truth mask, while the
blue contour represents the proposed segmentation. The green areas
correspond to false negatives.

preliminary experiments and training, these fingerprints are
split into the following sets:

• B1 – 96 fingerprints (the eight fingerprints of the finger
with index 1012 from all B sets),

• B2 – 96 fingerprints (the eight fingerprints of the finger
with index 102 from all B sets),

• B3 – 768 fingerprints (the eight fingerprints of the
fingers with indices 103-110 from all B sets).

During the preliminary experiments to evaluate various
options for the network architecture, and to choose the loss
function and the hyperparameters, B3 is used as a training
set, B1 as a validation set, and B2 as a test set to choose the
most promising configuration.

The final training, with the network architecture described
in section III-B, is carried out on B2 + B3, using B1 as a
validation set.

D. RESULTS
GMFS is implemented in Python using the OpenCV
library [48]. The time required to segment a finger-
print depends on the image size: on a PC with an
Intel® Xeon® Silver 4112 CPU at 2.60GHz, the aver-
age segmentation time ranges from 7ms for FVC2000 DB4
images (the smallest ones) to 22ms for FVC2004DB1 images
(the largest).

SUFS is implemented in Python with the Keras library
[49]. On a PCwith an NVIDIAGeForce RTX™ 3080 Ti GPU,

2In each FVC set B, the index of the first finger is 101, because the num-
bering continues from set A, which contains fingerprints from 100 fingers.

FIGURE 10. Examples of failure cases using GMFS (a, c, e) and SUFS
(b, d, f). The green contour represents the ground truth mask, while the
blue contour represents the proposed segmentation. The green areas
correspond to false negatives, while the blue areas correspond to false
positives.

training the network requires about 25 minutes, while the
average segmentation time is about 4ms, using batches of
32 fingerprints.

Fig. 8 illustrates sample successful segmentation cases
using GMFS and SUFS. Both methods exhibit robustness
across the large variety of background and sensor noise that
characterizes the benchmark (Fig. 7).

Fig. 9 shows two examples where GMFS produces less
satisfactory results than SUFS: in Fig. 9.a, GMFS falsely
classifies the top portion of the fingerprint as background due
to its low contrast. In Fig. 9.c, GMFSmisclassifies the bottom
and right portions of the fingerprint due to their poor quality
(the valleys are almost impossible to locate). In both cases,
SUFS achieves significantly better results.

Fig. 10 shows three cases where both methods pro-
duce unsatisfactory results. In Fig. 10.a-b, low-contrast
portions of the fingerprint are misclassified as background.
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TABLE 4. A summary of the state-of-the-art methods considered and the two new proposed ones.

TABLE 5. Average ER computed on set a of each database in the benchmark∗.

In Fig. 10.c-d, fingerprint-like noise (likely a ghost-fingerprint
left on the sensor by a previous acquisition) is misclassified
as foreground. Similarly, in Fig. 10.f, a ghost-fingerprint
portion at the top tricks SUFS into producing a false-positive
region; this does not happen for GMFS (Fig. 10.e) because
of postprocessing steps 2 and 5 (see section III-A). On the

other hand, GMFS produces more false negatives on the same
fingerprint.

E. COMPARISON WITH THE STATE-OF-THE-ART
The two proposed segmentation methods are compared with
18 state-of-the-art approaches. These are all the relevant
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TABLE 6. Average DC computed on set a of each database in the benchmark∗.

TABLE 7. Average JC computed on set a of each database in the benchmark∗.

approaches for which results have been reported on the FVC
benchmark. Table 4 lists all the twenty methods and specifies
which evaluation metrics are available for each of them.
Nine methods (including SUFS) are based on deep learn-
ing, while the other eleven (including GMFS) use traditional
image processing operations and handcrafted features. Four

methods come from software projects available in the pub-
lic domain: Mind (from the MindTCT software developed
by NIST [50]), NFIQ2 (from the NFIQ2 software [51]),
SAFIS (from the open source fingerprint recognition software
SourceAFIS [52]), and FJ (from the open source version
of the FingerJetFX software [53]). The remaining methods
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TABLE 8. Average results of traditional methods∗.

TABLE 9. Average results of deep-learning-based methods∗.

are among the most often cited fingerprint segmentation
methods in the scientific literature [5], [9], [11], [13], [19],
[22], [23], [24], [27] or are based on well-known network
architectures [25], [26], [28], [29], [30], [31].
Tables 5, 6, and 7 report all available results with ER,

DC, and JC metric, respectively. Tables 8 and 9 report
the average results over all databases for traditional and
deep-learning-based methods, respectively.

SUFS exhibits impressive performance, surpassing the
other methods in all the three metrics. Specifically, it outper-
forms the other methods on the ER metric in all databases,
on the DC metric in ten out of twelve databases, and on the
JRmetric in nine out of twelve databases. Additionally, it out-
performs the other methods on all metrics when considering
the average over the twelve databases.

However, the excellent performance of SUFS must not
overshadow the remarkable performance of GMFS, which
achieves the second-best performance in two databases on
the ER metric and in five databases on the DC metric. It also
achieves the third-best performance on the average ER over
all databases and the second-best performance on the aver-
age DC over all databases. Furthermore, if the comparison
is limited to the other traditional (non-deep-learning-based)

methods, GMFS obtains the best result on the ER met-
ric in seven out of twelve databases, on the DC metric
in all databases, and on the JR metric in nine out of
twelve databases. Finally, when considering the average met-
rics over the twelve databases, it outperforms any other
traditional method (Table 8). A further experiment has
been carried out to evaluate the impact of GMFS post-
processing steps: without them, its average ER grows from
2.98% to 4.01%, thus confirming the importance of GMFS
post-processing.

Although comparing performance metrics is essential, the
overall complexity of the methods must also be considered
to assess their practical utility. The following paragraphs
explore the complexity of the two top-performing traditional
methods and deep-learning-based approaches, according to
the average ER.

Among traditional methods (Table 8), GMFS (average ER
2.98%) and G3PD (average ER 3.06%) stand out for the low-
est average ER. GMFS, described in detail in Section III-A,
employs simple convolutions (with Sobel and Gaussian fil-
ters), thresholding, and minimal morphological operations:
using an image processing library like OpenCV [48], it can be
implemented in about 30 lines of Python code. This simplicity
contrasts with G3PD, which requires solving an optimiza-
tion problem to decompose the fingerprint into cartoon,
texture, and noise components, followed by morphological
operations to extract the segmentation from the texture coef-
ficients [22]. While the source code is not publicly available
(the authors only provide an obfuscatedMATLAB implemen-
tation), based on the paper [22], it is reasonable to infer that
G3PD implementation is significantly more complex than
that of GMFS.

Turning to deep-learning-based methods (Table 9), SUFS
(average ER 1.51%) and PCnet (average ER 2.62%) exhibit
the lowest average ER. SUFS, detailed in Section III-B,
utilizes an end-to-end neural network with minimal pre-
processing and postprocessing steps. Using Keras [49],
implementing the SUFS network architecture requires about
15 lines of Python code, and implementing the SUFS seg-
mentationmethod, including pre- and post-processing, can be
accomplished in about 20 lines. PCnet, in contrast, involves
a multi-step process [23]: 1) decomposing the fingerprint
into texture and cartoon components using a method similar
to G3PD, 2) dividing the texture component into overlap-
ping patches, 3) classifying each patch as foreground or
background using a specifically trained neural network, and
4) applying morphological operations to obtain the final seg-
mentation. Unfortunately, the source code is not available,
but it can be concluded from the paper [23] that PCnet
implementation is substantially more complex than that
of SUFS.

V. CONCLUSION
This paper introduces two novel fingerprint segmentation
methods, GMFS and SUFS, inspired by the KISS principle.
Bothmethods are evaluated on a public benchmark, achieving
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state-of-the-art performance while maintaining simplicity
and computational efficiency.

GMFS, a straightforward method based on a single hand-
crafted feature, exhibits superior performance compared
to all other traditional methods with available results on
the benchmark, including some considerably more complex
approaches. Notably, GMFS achieves comparable perfor-
mance to a range of deep learning-based methods. Given its
minimal computational resource requirements, GMFS is par-
ticularly well-suited for applications where computing power
and memory are constrained.

SUFS leverages the power of deep learning using a simpli-
fied U-net architecture for the task of end-to-end fingerprint
segmentation and exhibits impressive performance despite
being trained on a relatively limited dataset. It can effectively
segment fingerprints from databases acquired using a vari-
ety of technologies without requiring fine-tuning or specific
parameter adjustments for each image type. SUFS surpasses
all existing state-of-the-art methods, achieving an average
ER of 1.51% across the entire benchmark. This represents
a substantial improvement of over 40% compared to the
previously best-performing method.

An open-source Python implementation of both methods
is available at https://github.com/raffaele-cappelli/pyfing.
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