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ABSTRACT In this work, a constraint programming (CP) formulation of the multi-mode resource-
constrained project scheduling problem (MMRCPSP) is proposed for solving the flexible job shop
scheduling problem (FJSSP) under the makespan minimization criterion. The resulting CP model allows
us to tackle the classical instances of the FJSSP (such as where the operations of a given job follow a linear
order). It can also handle FJSSP instances where the precedence relationships between operations are defined
by an arbitrary directed acyclic graph (sequencing flexibility). The performance of our approach was tested
using 271 classical FJSSP instances and 50 FJSSP instances with sequencing flexibility. We establish the
validity of our approach by achieving an average relative percentage deviation of 3.04% and 0.18% when
compared to the best-known lower and upper bounds, respectively. Additionally, we were able to contribute
to the literature with ten new lower bounds and two new upper bounds. Our CP approach is relatively simple
yet competitive and can be quickly applied and adapted by new practitioners in the area.

INDEX TERMS Constraint programming, flexible job shop, FJSSP, job shop, JSSP, multi-mode resource-
constrained project scheduling problem, MMRCPSP, sequencing flexibility.

I. INTRODUCTION
In the scheduling and combinatorial optimization literature,
one of the most studied problems in the last decades is the
well-known job shop scheduling problem (JSSP). In fact,
according to Scopus’s database, at the time of writing this
paper, the term ‘‘job shop’’ returns over +13,000 results for
the query of the term within the article title, abstract, and/or
keywords.

In a JSSP environment, there exist n jobs that must be
processed without preemptions atmmachines. The operation
of job j at machine i is denoted byOji. In this context, the route
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that must follow the jobs at themachines is known in advance,
thus, the problem consists of establishing the sequence of
the operations at the machines (i.e. the order in which the
operations of the jobs will be sorted in a determined machine)
to minimize a given criterion. Other common assumptions
are that both machines and jobs are all available at time zero,
also machines can not perform more than one operation at a
time. Additionally, the makespan or Cmax (the total length of
the schedule) is, by far, the most researched regular objective
function criterion, where a regular objective criterion is a
function that is non-decreasing in terms of the completion
time of the jobs. As first shown by [1], the shortest-length
schedule problem for an mmachine JSSP is NP-complete for
m ≥ 2.
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Within this framework, different extensions for the JSSP
have been proposed in order to map the characteristics of
intricate real-world shop situations. This paper will focus
on the flexible job shop scheduling problem (FJSSP), where
each operation can be processed on any of the machines
from a subset of the set of machines [2]. Thus, as opposed
to the JSSP, in an FJSSP it is also necessary to allocate the
job’s operations to the machines. The FJSSP is an NP-hard
(non-deterministic polynomial time) problem since it takes
the JSSP to a particular case. In terms of representation, the
problem of minimizing the makespan in an FJSSP can be
denoted as FJSSPm//Cmax following the three-field notation
proposed in [3].

Additionally, as a consequence of mass customization and
automation, [2] claims that the FJSSP is no longer just another
extension of the JSSP but a shop scheduling problem on its
own. Indeed, we consider that the abundant literature related
to the FJSSP reinforces this affirmation.

Because of its high computational complexity, the solution
methods to tackle the FJSSP are mainly dominated by heuris-
tic and metaheuristic algorithms. Nevertheless, research in
exact methods such as mixed integer linear programming
(MILP) and constraint programming (CP) has also been
conducted. In Section II we will explore the solution methods
further.

In this paper, we propose a CP formulation for the
FJSSP that relies on the well-known multi-mode resource-
constrained project scheduling problem (MMRCPSP).
The MMRCPSP extends the resource-constrained project
scheduling problem (RCPSP). An MMRCPSP involves the
simultaneous scheduling of multiple project instances into an
optimal schedule. These instances have activities that can be
executed in various modes and are subject to different types
of resources (renewable and/or non-renewable), time, and
precedence constraints [4]. In this regard, we consider that a
project instance is equivalent to a job, an activity is analogous
to a job operation, and a renewable resource is equivalent to a
machine. In our approach, we do not consider a homologous
to a non-renewable resource. To the best of our knowledge,
anMMRCPSP approach has not been applied before to tackle
the FJSSP.

To assess the performance of our approach, we conducted
a computational study using 321 FJSSP instances of varying
sizes and characteristics: 271 classical FJSSP instances
(where the operations of a given job follow a linear order),
and 50 FJSSP instances with sequencing flexibility (the
precedence relationships between the operations of a specific
job are defined by an arbitrary directed acyclic graph).
We contrast our results with the best-known up-to-date
lower bounds and upper bounds available in the literature.
Our approach demonstrates its validity by achieving an
average relative percentage deviation of 3.04% and 0.18%
when compared to the best-known lower bound and upper
bound, respectively. Also, we contribute with ten new lower
bounds and two new upper bounds. Lastly, the proposed
MMRCPSP formulation can readily be adapted to address

related shop scheduling problems and alternative objective
criteria.

The remainder of the paper is organized as follows.
In Section II we review the literature related to the FJSSP,
with an emphasis on the solution methods applied. Then,
in Section III we present a CP formulation based on the
MMRCPSP to tackle the FJSSP. Next, in Section IV we
evaluate the performance of our approach when solving the
FJSSP, comparing its performance with the best-known lower
bounds and upper bounds reported in the literature. Finally,
in Section V we conclude and highlight possible lines for
future research.

II. LITERATURE REVIEW
The FJSSP under Cmax minimization, is an NP-hard problem
that has a wide range of applications in the real world. This
extension of the classical JSSP arises as a response to the
flexibility that introduces the chance that the job’s operations
must also be assigned to machines. Indeed, in manufacturing
is common that some job operations can be accomplished
in more than one machine. Moreover, these machines could
be technologically different, and thus, the processing times
could be different from machine to machine. In this regard,
the three-field notation (α/β/γ ) introduced by [3] is a
standard and compact form of representing the specific
characteristics of the shop scheduling problem under study.

The literature relative to the FJSSP is abundant. We refer
the reader to a recent survey of [2] that presents and classifies
the different criteria, constraints, configurations, and solution
approaches that have been considered for the FJSSP in the last
30 years of research.

In terms of solution methods applied to solve the FJSSP,
these are mainly based on approximate methods such as
heuristics and metaheuristics. Metaheuristics follows certain
rules to explore the most promising areas within the
solution space with the aim of finding high-quality solutions.
However, this comes at the expense of increased computing
time compared to heuristics [5]. In fact, metaheuristics
have proven to be powerful for solving hard scheduling
problems. In this context, [6] proposed an effective Quantum
Annealing (QA) metaheuristic for solving the FJSSP in
a time-efficient manner. In [7], a discrete improved grey
wolf optimization (DIGWO) algorithm proves effective in
solving the FJSSP. Moreover, in [8] the authors introduce a
framework that generalizes literature results related to local
search algorithms for the JSSP and FJSSP. A Greedy Ran-
domized Adaptive Search Procedure (GRASP) is proposed
by [9] to tackle efficiently large instances of the generalized
FJSSP (where hard constraints are taken into account such
as machine capacity, time lags, and sequence-dependent
setup times, among others). Despite the success of the
use of metaheuristics to solve hard scheduling problems,
they also have some drawbacks. These include a lack
of guarantee to find the optimal solution, difficulty in
handling constraints, sensitivity to the representation of the
problem, and complex coding, among others. In general,
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the effectiveness of these metaheuristics methods relies on
the implementation and fine-tuning of parameters, as they
integrate both problem representation and solution strategy
within unified frameworks [10].
In contrast, the mathematical modeling approach (where

MILP and CP belong) separates the problem representation
from the solution strategy [11]. Moreover, for both exact
methods, in some small-sized scheduling instances, it is
possible to prove the optimality of a determined solution.
However, they may face challenges in terms of scalability
for large instances. In this regard, [12] presents a MILP
and a CP model to formulate the multiresource FJSSP with
arbitrary precedence graphs, in order to assess the efficiency
of both methods. In [9], three approaches are compared when
solving the generalized FJSSP: GRASP, MILP, and CP. The
computational results indicate that CP outperforms MILP,
and GRASP outperforms CP. Earlier, in [10], a mixed integer
programming (MIP) and a CP approach were used to address
the FJSSP with parallel batch processing machines, where
CP incomparably outperforms the MIP approach. To our
knowledge, usually, CP has proven to be more competitive
than MILP approaches in solving complex shop scheduling
problems. Indeed, the computational results reported in [13]
and [14] concerning other related shop scheduling problems
support this claim.

Regarding the characteristics of the problem, an FJSSP
assumes that the route of a job is sequential or linear.
This is what we call a classical FJSSP instance. However,
in real-world manufacturing, a job operation may have more
than one predecessor or more than one successor. This
extension has been described in the literature using terms
like sequencing flexibility, non-linear routes, and arbitrary
precedence constraints, among others. Hereinafter, we refer
to this case as sequencing flexibility adopting the terminology
used by [15]. In Section III we address both cases in detail.
In the same way, as for the FJSSP, the literature related to

the MMRCPSP is vast. The MMRCPSP is a generalization
of the resource-constrained project scheduling problem
(RCPSP) where each activity may have more choice by
performing different modes (i.e., the activity duration and
resource requirements) [16]. Thus, every mode represents
a feasible compromise between the time duration of a
task and resource demand. The MMRCPSP is an NP-hard
optimization problem as same as the RCPSP [17]. Hence,
large-sized instances of the MMRCPSP cannot be optimally
solved in a reasonable computational time [18].
Because of its computational complexity, the solution

methods proposed for tackling the MMRCPSP mostly rely
on heuristics and metaheuristics. In [19], the authors provide
a brief survey of the literature, showing arguments in favor of
the use of metaheuristic approaches to solve the MMRCPSP.
A similar summary can also be found in [20]. On the
other hand, the authors in [18] claim that exact optimization
algorithms are appropriate for smaller data sets. Hybrid
metaheuristics have been applied as well in the context of
the MMRCPSP. In [4], a hybrid approach (or matheuristic)

is proposed to handle the MMRCPSP, combining CP and a
metaheuristic-based algorithm.

Finally, to the best of our knowledge, the MMRCPSP
has not been applied to make an equivalent representation
of the FJSSP. Moreover, metaheuristics approaches for
handling the FJSSP are usually tailor-made and often require
complex computational coding and calibrations of multiple
parameters. Then, this paper is motivated to provide a
simple yet competitive approach to handling FJSSP instances
through the resolution of an MMRCPSP using a CP solver
which can be quickly used by new practitioners in the area.

III. CONSTRAINT PROGRAMMING FORMULATION
The following CP formulation for the FJSSP is based on
the ‘‘sched_rcpspmm.mod’’ file available in the examples
folder of the IBM ILOG CPLEX Optimization Studio
22.1.1 installation. Since the FJSSP instances we are
addressing do not involve non-renewable resources, we have
chosen to exclude this part from the original MMRCPSP
formulation. Additionally, hereinafter, a renewable resource
(or simply resource) is analogous to a machine, and a task is
analogous to a job operation.

We now proceed to describe the elements of the proposed
CP model.

A. INDICES, SETS, AND PARAMETERS
• t: Index for tasks
• r : Index for resources
• NbTasks: Number of tasks
• NbRsrcs: Number of resources
• RsrcIds: Set of resources {1, . . . ,NbRsrcs}
• Ar : Availability of the resource r ∈ RsrcIds

B. TUPLES
• Task: A tuple with the following fields: {id: identifier
of the task, succs: set of immediately successors of the
task}

• Mode: A tuple with the following fields: {taskId:
identifier of the task, id: identifier to determine the
mode type, pt: processing time for the mode, dmdRsrcIds:
number of resources that belong to the set RsrcIds used
per time period during the execution of the mode}

C. TUPLESETS
• Tasks: A tupleset that stores instances of the Task tuple
• Modes: A tupleset that stores instances of theMode tuple

D. DECISION VARIABLES
• taskt∈Tasks: Interval variable between the start and the
end of the Tasks t

• modem∈Modes: An optional interval variable of size pt if
the taskt is performed under the modem

E. CUMUL FUNCTION EXPRESSION
A cumul expression is a built-in function available in
Optimization Programming Language (OPL) that can be
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used to model and track cumulative resource consumption.
This feature is useful in the context of the FJSSP to avoid
overlapping of tasks in a resource. Thus, we define the
following function:

Usager =

∑
m inModes

pulse(modem,m.dmdr ),m.dmdr > 0

where Usager tracks the cumulative consumption over time
of the resource r ∈ RsrcIds through the sum of individual
contributions of the optional interval variables modem.

F. MATHEMATICAL FORMULATION

min{ max
t∈Tasks

endOf (taskt)} (1)

subject to: Usager ≤ Ar ∀r ∈ RsrcIds (2)

alternative(taskt ,modem) ∀t ∈ Tasks,

∀m ∈ Modes,m.taskId = t.id (3)

endBeforeStart (taskt1, taskt2) ∀t1 ∈ Tasks,

t2id ∈ t1.succs (4)

The objective function (1) is used to minimize the
makespan Cmax , which is computed by the expression
maxt∈TasksendOf (taskt ) that corresponds to the task that
finishes last. Constraints set (2) guarantee that resource
availability is respected. In the context of the FJSSP, this
ensures that each resource (machine) does not perform
multiple tasks (job operations) simultaneously. Constraints
set (3) ensures that each task is executed in exactly one
mode. Finally, constraint sets (4) impose that precedence
relationships between operations (route conditions) are
respected.

IV. NUMERICAL EXPERIMENTS
All the computational experiments were performed on a
Hewlett-Packard laptop having an Intel i7-10750H 2.60 GHz
CPU with six cores and 16 GB of DDR4 RAM running
at 2933 MHz. For solving the FJSSP instances we used
the software IBM ILOG CP Optimizer 22.1.1 with the
default Auto-search strategy (a combined search approach
automatically controlled by the solver). We ran each instance
once. We run our experiments using two types of instances.
The classical FJSSP instances (eight sets) and the FJSSP
instances with sequencing flexibility (two sets). The problem
instances are detailed in Sections IV-A and IV-B.We compare
our results against the best-known bounds in literature.
All the details pertaining to these bounds are presented in
Section IV-C. Additionally, quality indicators to analyze our
results are presented in Section IV-D.

A. CLASSICAL FJSSP INSTANCES
In a classical FJSSP instance, the operations of a given job
follow a linear order. This means that each operation has
at most one predecessor and one successor. In this context,
the following set of 271 instances of different sizes are

TABLE 1. Description of the FJSSP benchmark instances.

widely used for testing the performance of different solution
approaches:

• BRdata: 10 instances introduced by [21].
• BCdata: 21 instances from [22].
• DPdata: 18 instances proposed by [23].
• KCdata: 4 instances by [24].
• Fdata: 20 instances from [25].
• HUdata: 198 instances divided into three sets of
66 instances each (HU-edata,HU-rdata, andHU-vdata)
with different degrees of flexibility (the average number
of candidate machines for each operation) from [26].

An important aspect that characterizes an FJSSP instance is
what is known as its flexibility (F), which corresponds to the
average number of candidate machines for each operation [2].
In Table 1, we summarize the range of flexibility for each
set, along with other benchmark features. For instance, within
the BRdata set, the instance with the lowest flexibility is
MK08 with F = 1.43 (322 modes in total for 225 job
operations), whereas the instance with the highest flexibility
is MK02 with F = 4.10 (238 modes in total for 58 job
operations).

B. FJSSP INSTANCES WITH SEQUENCING FLEXIBILITY
Here we consider those FJSSP instances where an arbitrary
directed acyclic graph defines the precedence relationships
between operations. The 50 instances below were proposed
by [15]:

• Ydata: 20 instances composed of two independent
sequences of operations followed by an assembling
operation.

• DAdata: 30 instances composed of jobs whose prece-
dences are given by an arbitrary directed acyclic graph.

In Figure 1 we provide a graphical representation of the
operations’ precedence constraints of instance DAFJS23.
In this context, each job operation is denoted by a node or
vertex, and the precedence relations between them through
a directed arc. For illustrative purposes, we filled with the
same color the nodes that belong to a particular job (i.e.
green for J1). For instance, in the case of J1, as soon as
operation 1 is finished, it is possible to start both operations
2 and 8 simultaneously. To the extent that the availability of
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FIGURE 1. Graphical representation of the operations’ precedence
constraints of instance DAFJS23.

machines allows it. With the aim of clarity, other issues of the
instances like the routing flexibility are not displayed.

C. BEST-KNOWN BOUNDS FOR THE FJSSP
There are numerous references that report the best-known
lower bound (BestLB) and the best-known upper bound
(BestUB) found until specific dates for the FJSSP instances.
In this context, a recent survey conducted by [2] summarizes
the best bounds achieved for the FJSSP in the last decades.
This information is used as our primary point of reference.
However, some of these bounds are not updated and/or
present some typos in the article. Indeed, for the Fdata
set, authors of [27] provide better bounds than the original
reported by [2]. Also, for the Ydata and DAdata, we detected
some errors in the reported bounds that are attributed to the
CPLEX solver. Indeed, some best solutions in these last two
sets of instances that are attributable to the Beam Search
method of [28] are not considered.
Taking all these factors into consideration, we made efforts

to update the BestLB and BestUB for each FJSSP instance
based on the sets detailed in Section IV-A and Section IV-B.
All details are listed in Tables 2- 9 and Tables 11- 12 in
Section IV, pointing out the source of information.

TABLE 2. Test set BRdata.

TABLE 3. Test set BCdata.

D. MEASURE METRICS
To evaluate the performance of our approach, we consider
three main measure metrics:

• Relative Percentage Deviation (RPDLB) calculated over
the BestLB documented:

RPDLB =
UB − BestLB

BestLB
(5)

• Relative Percentage Deviation (RPDUB) calculated over
the BestUB found in the literature:

RPDUB =
UB − BestUB

BestUB
(6)

• Best Upper Bounds Percentage (% BESTUB) attained
over the number of instances of a benchmark set:

% BESTUB =
Number of BESTUB
Number of instances

(7)

Since the best-known bounds for the FJSSP were attained
under different hardware, software, and time limit conditions,
we consider that is difficult to make a direct compar-
ison between these approaches and our proposal. Thus,
in https://github.com/yuraszeck/fjssp, we report detailed
results for different time limits at 600-second intervals (until
reaching 3,600 seconds) to establish a balance between
solution quality and the time allocated to our approach.
In Table 10 and Table 13 we summarize our findings.

E. RESULTS FOR CLASSICAL FJSSP INSTANCES
Tables 2- 9 show the results obtained in the classical FJSSP
instances. For each problem instance, we show the number
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TABLE 4. Test set DPdata.

TABLE 5. Test set KCdata.

TABLE 6. Test set Fdata.

of jobs (n), the number of machines (m), the number of
operations (o), the number of modes (p), the flexibility factor
(F = p/o), the best-known lower and upper bounds, and
the time required by our approach to finding its best relative
percentage deviations for lower and upper bounds.

In Table 2 we can observe that for all but one instance
in set BRdata, our approach was able to find the best lower
and upper bounds from literature in low times. The hardest
problem instance in this set was MK10, the largest one.
In most other cases the approach was able to reach the lower
and upper bounds in very low execution times (lower than
10 seconds). Only in two cases, instance MK06 and instance
MK05 it required around 34 and 958 seconds respectively.
These cases are not the largest ones, but possibly some
structurally complex cases.

In Table 3 we can observe that in all instances in set
BCdata our approach reached the best lower and upper
bounds from literature. Larger times are required for larger
problem instances, but the time required to solve these
problem instances is at most around 43 seconds.

TABLE 7. Test set HU-edata.

In Table 4 we can observe that only in three out of
18 instances our approach was able to find the best lower
and upper bounds from literature. These were found for
instances 01a, 03a, and 04a, all these considering 10 jobs and
5 machines. Moreover, these best bounds were found using at
most 29.87 seconds. The hardest problem instances in this set
were 07a and 10a, both considering 15 jobs and 8 machines.
For these, the best bounds were at most 5.42% closer to the
best bound from literature and were obtained using at most
400 seconds.

The results for instances in set KCdata are shown in
Table 5. Regardless of the size of the problem instance, in this
set our approach reached the best lower and upper bounds
from literature in less than one second in all cases.

The results for instances in set Fdata are shown in Table 6.
In a very similar way that for results in set KCdata, here
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TABLE 8. Test set HU-rdata.

most problem instances were solved instantaneously except
the two largest ones that required around 19 and 110 seconds
respectively. Moreover, our approach was able to find 10 new
lower bounds. These values are accompanied by a star (*) in
Table 6.

Tables 7, 8 and 9 show the results obtained when solving
the HUdata. All these test sets consider 66 instances.

Table 7 show the results obtained in data set Hu-edata.
Here, our approach was able to solve 61 out of 66 cases.
Moreover, the solution times were lower and closer to
1 second in 39 cases. There are just a few cases that were
solved in very high execution times. Also, cases abz7, abz8,
and abz9 resulted very complex. The first ones were not
solved, while instance abz9 was solved, but the approach
required more than 3,000 seconds to reach the best solution.
These instances are the largest in their category. On the other

TABLE 9. Test set HU-vdata.

side, instances la26, la27, la28, la29, and la30 were also
complex to solve. Only three of these cases were optimally
solved but required more than 140 seconds. It is interesting
here to note that these problem instances are not the largest
in their corresponding set, hence, the complexity of these
problem instances should come only from their structure.

Table 8 show the results obtained in data set Hu-rdata.
Here, our approach was able to solve only 46 out of 66 cases.
In 25 instances, the solving times were either lower than or
approaching one second. There are a few cases that were
solved with very high execution times. In 8 cases, the time
was higher than 100 seconds and in two cases the time
required was higher than 1,000 seconds. Complex instances
for the approach in this set range from cases with 10 jobs
and 5 machines to 20 jobs and 5 machines. Also, there are
complex instances with 15 jobs and 15 machines.
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TABLE 10. Results for classical FJSSP instances presented in Section IV-A. The best upper bounds percentage (% BESTUB) is reported for the time limit
configuration of 3,600 seconds.

TABLE 11. Test set DAdata.

TABLE 12. Test set Ydata.

Finally, Table 9 show the results obtained in data set Hu-
vdata. In this test set, our approach was able to solve 51 out of
66 cases. Here, again, the solution times were very low, lower
or close to 1 second, in 29 cases. Also, there are a few cases
that were solved with very high execution times. In 8 cases,
the time was higher than 100 seconds, and in three cases
the time required was higher than 1,000 seconds. Complex
instances for the approach in this set range from cases with
12 jobs and 5 machines to 30 jobs and 10 machines. Again,
neither the size nor the flexibility of the test cases determine

the ability of the approach to solve these problems and it could
be mostly related to specific features of the problems being
solved.

All in all, in Table 10 we summarize our findings for the
classical FJSSP instances:

• We proved optimality in all instances from sets BCdata,
KCdata, and Fdata within the first 600 seconds. Indeed,
the average time needed to reach the optimal solution
in these 55 instances was 7.3 seconds. Moreover, in the
Fdata set we contribute to the literature with 10 new
lower bounds.

• For the BRdata set we reached the BESTUB in 9 out of
10 instances. In only instanceMK10 we could not reach
the BESTUB within the time limit, however, the results
in terms of RPDLB and RPDUB (≤ 0.53% on average)
seem satisfactory.

• Overall, theDPdata set was the most challenging, where
we reached 3 out of 18 BESTUB with both RPD values
less than or equal to 1.92% on average. It is worth
emphasizing that, to the author’s knowledge, optimality
has been proven in only 8 out of 18 instances within this
benchmark (44.44%).

• For all the 3 sets of HUdata both RPDLB and RPDUB
present consistent results with values lower than or equal
to 0.71% on average.

• Although it is natural to expect improvements in the
results as the computational time limit increases, it can
be noticed the competitiveness of our approach even for
relatively short execution times.

F. RESULTS FOR FJSSP INSTANCES WITH SEQUENCING
FLEXIBILITY
In Table 11 we present detailed results obtained for DAdata
set. Only 11 cases were optimally solved in this test set.
Anyway, two new upper bounds were found in this test set.
These are marked with a star (*) in Table 11. Execution times
were very low in all these cases. On the other side, specially
high differences in lower bounds were found in these cases,
higher than 10% in 16 cases and higher than 100% in three
cases.

Table 12 show the detailed results obtained for set Ydata.
All cases were optimally solved in this test set. Execution
timeswere lower than and close to one second in 15 cases, and
lower than 19 seconds in all cases. Large differences in lower
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TABLE 13. Results for FJSSP instances with sequencing flexibility presented in Section IV-B. The best upper bounds percentage (% BESTUB) is reported for
the time limit configuration of 3,600 seconds.

FIGURE 2. A Gantt chart for a feasible solution of instance DAFJS23 with Cmax = 460.

boundswere found in these cases, higher than 10% in 16 cases
and higher than 100% in three cases. Higher execution times
were required in larger problem instances in this test set.

Summarized results for FJSSP instances with sequencing
flexibility, grouped by benchmark set, are provided in
Table 13. The attained results allow us to make the following
conclusions:

• We found the optimal solution in all Ydata instances in
an average computational time of 2.1 seconds.

• For the DAdata set, we reach the BESTUB in 13 out of
30 instances. In this context, we contribute with two
new BESTUB for the instances DAFJS13 and DAFJS23.
In Figure 2 we provide a Gantt Chart for the instance
DAFJS23 with a Cmax = 460 based on the precedence
constraints previously shown in Figure 2. In Table 14
we present the details of the attained solution. Finally,
although the average RPDLB values are higher than
those obtained for classical FJSSP instances, the average

RPDUB is competitive, with values averaging lower than
or equal to 0.61%.

V. CONCLUSION AND FUTURE WORKS
In this paper, we proposed a CP formulation of the MMR-
CPSP to solve the FJSSP under the makespan minimization
criterion. The FJSSP is an NP-hard problem that extends the
well-known JSSP by allowing each operation to be executed
on any machine within a specified subset of the available
machines.

To evaluate our approach, we conducted computational
experiments comparing our results to the best-known solu-
tions in the literature. To do this we consider two categories of
FJSSP instances: 271 classical instances where the operations
of a given job follow a linear order, and 50 instances
with sequencing flexibility. In these cases, the precedence
relationships between operations are defined by a directed
acyclic graph. In this context, we reach a competitive
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TABLE 14. Tabulated results for a feasible solution of instance
DAFJS23 with Cmax = 460.

TABLE 14. (Continued.) Tabulated results for a feasible solution of
instance DAFJS23 with Cmax = 460.

average RPDUB of 0.18% over the 321 instances considered,
contributing with ten new lower bounds and two new upper
bounds to the literature.

In terms of future lines of research, other operational
constraints and optimization criteria could be considered
for the FJSSP. Additionally, given the generality of our
MMRCPSP approach, it can be readily adapted to address
other closely related problems subsumed by the FJSSP, such
as the flexible flow shop scheduling problem (FFSSP) and the
flexible open shop scheduling problem (FOSSP).
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