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ABSTRACT In this work, a constraint programming (CP) formulation of the multi-mode resource-
constrained project scheduling problem (MMRCPSP) is proposed for solving the flexible job shop
scheduling problem (FJSSP) under the makespan minimization criterion. The resulting CP model allows
us to tackle the classical instances of the FISSP (such as where the operations of a given job follow a linear
order). It can also handle FJSSP instances where the precedence relationships between operations are defined
by an arbitrary directed acyclic graph (sequencing flexibility). The performance of our approach was tested
using 271 classical FJSSP instances and 50 FJSSP instances with sequencing flexibility. We establish the
validity of our approach by achieving an average relative percentage deviation of 3.04% and 0.18% when
compared to the best-known lower and upper bounds, respectively. Additionally, we were able to contribute
to the literature with ten new lower bounds and two new upper bounds. Our CP approach is relatively simple
yet competitive and can be quickly applied and adapted by new practitioners in the area.

INDEX TERMS Constraint programming, flexible job shop, FISSP, job shop, JSSP, multi-mode resource-
constrained project scheduling problem, MMRCPSP, sequencing flexibility.

1. INTRODUCTION that must follow the jobs at the machines is known in advance,

In the scheduling and combinatorial optimization literature,
one of the most studied problems in the last decades is the
well-known job shop scheduling problem (JSSP). In fact,
according to Scopus’s database, at the time of writing this
paper, the term “job shop” returns over +13,000 results for
the query of the term within the article title, abstract, and/or
keywords.

In a JSSP environment, there exist n jobs that must be
processed without preemptions at m machines. The operation
of job j at machine i is denoted by Oj;. In this context, the route
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thus, the problem consists of establishing the sequence of
the operations at the machines (i.e. the order in which the
operations of the jobs will be sorted in a determined machine)
to minimize a given criterion. Other common assumptions
are that both machines and jobs are all available at time zero,
also machines can not perform more than one operation at a
time. Additionally, the makespan or C,,, (the total length of
the schedule) is, by far, the most researched regular objective
function criterion, where a regular objective criterion is a
function that is non-decreasing in terms of the completion
time of the jobs. As first shown by [1], the shortest-length
schedule problem for an m machine JSSP is NP-complete for
m> 2.
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Within this framework, different extensions for the JSSP
have been proposed in order to map the characteristics of
intricate real-world shop situations. This paper will focus
on the flexible job shop scheduling problem (FJSSP), where
each operation can be processed on any of the machines
from a subset of the set of machines [2]. Thus, as opposed
to the JSSP, in an FJSSP it is also necessary to allocate the
job’s operations to the machines. The FISSP is an NP-hard
(non-deterministic polynomial time) problem since it takes
the JSSP to a particular case. In terms of representation, the
problem of minimizing the makespan in an FISSP can be
denoted as FJSSP,,//Cpax following the three-field notation
proposed in [3].

Additionally, as a consequence of mass customization and
automation, [2] claims that the FJSSP is no longer just another
extension of the JSSP but a shop scheduling problem on its
own. Indeed, we consider that the abundant literature related
to the FISSP reinforces this affirmation.

Because of its high computational complexity, the solution
methods to tackle the FISSP are mainly dominated by heuris-
tic and metaheuristic algorithms. Nevertheless, research in
exact methods such as mixed integer linear programming
(MILP) and constraint programming (CP) has also been
conducted. In Section II we will explore the solution methods
further.

In this paper, we propose a CP formulation for the
FISSP that relies on the well-known multi-mode resource-
constrained project scheduling problem (MMRCPSP).
The MMRCPSP extends the resource-constrained project
scheduling problem (RCPSP). An MMRCPSP involves the
simultaneous scheduling of multiple project instances into an
optimal schedule. These instances have activities that can be
executed in various modes and are subject to different types
of resources (renewable and/or non-renewable), time, and
precedence constraints [4]. In this regard, we consider that a
project instance is equivalent to a job, an activity is analogous
to a job operation, and a renewable resource is equivalent to a
machine. In our approach, we do not consider a homologous
to a non-renewable resource. To the best of our knowledge,
an MMRCPSP approach has not been applied before to tackle
the FISSP.

To assess the performance of our approach, we conducted
a computational study using 321 FJSSP instances of varying
sizes and characteristics: 271 classical FIJSSP instances
(where the operations of a given job follow a linear order),
and 50 FJSSP instances with sequencing flexibility (the
precedence relationships between the operations of a specific
job are defined by an arbitrary directed acyclic graph).
We contrast our results with the best-known up-to-date
lower bounds and upper bounds available in the literature.
Our approach demonstrates its validity by achieving an
average relative percentage deviation of 3.04% and 0.18%
when compared to the best-known lower bound and upper
bound, respectively. Also, we contribute with ten new lower
bounds and two new upper bounds. Lastly, the proposed
MMRCPSP formulation can readily be adapted to address
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related shop scheduling problems and alternative objective
criteria.

The remainder of the paper is organized as follows.
In Section II we review the literature related to the FISSP,
with an emphasis on the solution methods applied. Then,
in Section III we present a CP formulation based on the
MMRCPSP to tackle the FISSP. Next, in Section IV we
evaluate the performance of our approach when solving the
FISSP, comparing its performance with the best-known lower
bounds and upper bounds reported in the literature. Finally,
in Section V we conclude and highlight possible lines for
future research.

II. LITERATURE REVIEW

The FJSSP under C,,,4x minimization, is an NP-hard problem
that has a wide range of applications in the real world. This
extension of the classical JSSP arises as a response to the
flexibility that introduces the chance that the job’s operations
must also be assigned to machines. Indeed, in manufacturing
is common that some job operations can be accomplished
in more than one machine. Moreover, these machines could
be technologically different, and thus, the processing times
could be different from machine to machine. In this regard,
the three-field notation («/B/y) introduced by [3] is a
standard and compact form of representing the specific
characteristics of the shop scheduling problem under study.

The literature relative to the FISSP is abundant. We refer
the reader to a recent survey of [2] that presents and classifies
the different criteria, constraints, configurations, and solution
approaches that have been considered for the FISSP in the last
30 years of research.

In terms of solution methods applied to solve the FISSP,
these are mainly based on approximate methods such as
heuristics and metaheuristics. Metaheuristics follows certain
rules to explore the most promising areas within the
solution space with the aim of finding high-quality solutions.
However, this comes at the expense of increased computing
time compared to heuristics [5]. In fact, metaheuristics
have proven to be powerful for solving hard scheduling
problems. In this context, [6] proposed an effective Quantum
Annealing (QA) metaheuristic for solving the FJSSP in
a time-efficient manner. In [7], a discrete improved grey
wolf optimization (DIGWO) algorithm proves effective in
solving the FJSSP. Moreover, in [8] the authors introduce a
framework that generalizes literature results related to local
search algorithms for the JSSP and FISSP. A Greedy Ran-
domized Adaptive Search Procedure (GRASP) is proposed
by [9] to tackle efficiently large instances of the generalized
FJSSP (where hard constraints are taken into account such
as machine capacity, time lags, and sequence-dependent
setup times, among others). Despite the success of the
use of metaheuristics to solve hard scheduling problems,
they also have some drawbacks. These include a lack
of guarantee to find the optimal solution, difficulty in
handling constraints, sensitivity to the representation of the
problem, and complex coding, among others. In general,
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the effectiveness of these metaheuristics methods relies on
the implementation and fine-tuning of parameters, as they
integrate both problem representation and solution strategy
within unified frameworks [10].

In contrast, the mathematical modeling approach (where
MILP and CP belong) separates the problem representation
from the solution strategy [11]. Moreover, for both exact
methods, in some small-sized scheduling instances, it is
possible to prove the optimality of a determined solution.
However, they may face challenges in terms of scalability
for large instances. In this regard, [12] presents a MILP
and a CP model to formulate the multiresource FISSP with
arbitrary precedence graphs, in order to assess the efficiency
of both methods. In [9], three approaches are compared when
solving the generalized FISSP: GRASP, MILP, and CP. The
computational results indicate that CP outperforms MILP,
and GRASP outperforms CP. Earlier, in [10], a mixed integer
programming (MIP) and a CP approach were used to address
the FISSP with parallel batch processing machines, where
CP incomparably outperforms the MIP approach. To our
knowledge, usually, CP has proven to be more competitive
than MILP approaches in solving complex shop scheduling
problems. Indeed, the computational results reported in [13]
and [14] concerning other related shop scheduling problems
support this claim.

Regarding the characteristics of the problem, an FISSP
assumes that the route of a job is sequential or linear.
This is what we call a classical FISSP instance. However,
in real-world manufacturing, a job operation may have more
than one predecessor or more than one successor. This
extension has been described in the literature using terms
like sequencing flexibility, non-linear routes, and arbitrary
precedence constraints, among others. Hereinafter, we refer
to this case as sequencing flexibility adopting the terminology
used by [15]. In Section IIT we address both cases in detail.

In the same way, as for the FJSSP, the literature related to
the MMRCPSP is vast. The MMRCPSP is a generalization
of the resource-constrained project scheduling problem
(RCPSP) where each activity may have more choice by
performing different modes (i.e., the activity duration and
resource requirements) [16]. Thus, every mode represents
a feasible compromise between the time duration of a
task and resource demand. The MMRCPSP is an NP-hard
optimization problem as same as the RCPSP [17]. Hence,
large-sized instances of the MMRCPSP cannot be optimally
solved in a reasonable computational time [18].

Because of its computational complexity, the solution
methods proposed for tackling the MMRCPSP mostly rely
on heuristics and metaheuristics. In [19], the authors provide
a brief survey of the literature, showing arguments in favor of
the use of metaheuristic approaches to solve the MMRCPSP.
A similar summary can also be found in [20]. On the
other hand, the authors in [18] claim that exact optimization
algorithms are appropriate for smaller data sets. Hybrid
metaheuristics have been applied as well in the context of
the MMRCPSP. In [4], a hybrid approach (or matheuristic)
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is proposed to handle the MMRCPSP, combining CP and a
metaheuristic-based algorithm.

Finally, to the best of our knowledge, the MMRCPSP
has not been applied to make an equivalent representation
of the FJSSP. Moreover, metaheuristics approaches for
handling the FJSSP are usually tailor-made and often require
complex computational coding and calibrations of multiple
parameters. Then, this paper is motivated to provide a
simple yet competitive approach to handling FJISSP instances
through the resolution of an MMRCPSP using a CP solver
which can be quickly used by new practitioners in the area.

Ill. CONSTRAINT PROGRAMMING FORMULATION
The following CP formulation for the FISSP is based on
the “sched_rcpspmm.mod” file available in the examples
folder of the IBM ILOG CPLEX Optimization Studio
22.1.1 installation. Since the FJSSP instances we are
addressing do not involve non-renewable resources, we have
chosen to exclude this part from the original MMRCPSP
formulation. Additionally, hereinafter, a renewable resource
(or simply resource) is analogous to a machine, and a task is
analogous to a job operation.

We now proceed to describe the elements of the proposed
CP model.

A. INDICES, SETS, AND PARAMETERS
o t: Index for tasks
o r:Index for resources
o NbTasks: Number of tasks
o NbRsrcs: Number of resources
e Rsrclds: Set of resources {1, ..., NbRsrcs}
o A,: Availability of the resource r € Rsrclds

B. TUPLES

o Task: A tuple with the following fields: {id: identifier
of the task, succs: set of immediately successors of the
task}

e Mode: A tuple with the following fields: {taskld:
identifier of the task, id: identifier to determine the
mode type, pt: processing time for the mode, dmdpggciqs:
number of resources that belong to the set Rsrclds used
per time period during the execution of the mode}

C. TUPLESETS
o Tasks: A tupleset that stores instances of the Task tuple
o Modes: A tupleset that stores instances of the Mode tuple

D. DECISION VARIABLES
o task;cusks: Interval variable between the start and the
end of the Tasks t
o modemepodes: An optional interval variable of size pt if
the task; is performed under the mode,,

E. CUMUL FUNCTION EXPRESSION
A cumul expression is a built-in function available in
Optimization Programming Language (OPL) that can be
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used to model and track cumulative resource consumption.
This feature is useful in the context of the FISSP to avoid
overlapping of tasks in a resource. Thus, we define the
following function:

z pulse(modey,, m.dmd,), m.dmd, > 0

min Modes

Usage, =

where Usage, tracks the cumulative consumption over time
of the resource r € Rsrclds through the sum of individual
contributions of the optional interval variables mode,,,.

F. MATHEMATICAL FORMULATION

min{ max endOf (task;)} ))]
teTasks
subject to: Usage, < A, ¥r € Rsrclds 2)
alternative(task,, mode,,) V't € Tasks,
Vm € Modes, m.taskld = t.id 3)
endBeforeStart (task;1, taskyy) vVt € Tasks,
t2id € tl.succs )

The objective function (1) is used to minimize the
makespan C,,,c, which is computed by the expression
maxzcrasksendOf (task;) that corresponds to the task that
finishes last. Constraints set (2) guarantee that resource
availability is respected. In the context of the FJSSP, this
ensures that each resource (machine) does not perform
multiple tasks (job operations) simultaneously. Constraints
set (3) ensures that each task is executed in exactly one
mode. Finally, constraint sets (4) impose that precedence
relationships between operations (route conditions) are
respected.

IV. NUMERICAL EXPERIMENTS

All the computational experiments were performed on a
Hewlett-Packard laptop having an Intel i7-10750H 2.60 GHz
CPU with six cores and 16 GB of DDR4 RAM running
at 2933 MHz. For solving the FJSSP instances we used
the software IBM ILOG CP Optimizer 22.1.1 with the
default Auto-search strategy (a combined search approach
automatically controlled by the solver). We ran each instance
once. We run our experiments using two types of instances.
The classical FJISSP instances (eight sets) and the FJSSP
instances with sequencing flexibility (two sets). The problem
instances are detailed in Sections IV-A and IV-B. We compare
our results against the best-known bounds in literature.
All the details pertaining to these bounds are presented in
Section IV-C. Additionally, quality indicators to analyze our
results are presented in Section I'V-D.

A. CLASSICAL FISSP INSTANCES

In a classical FISSP instance, the operations of a given job
follow a linear order. This means that each operation has
at most one predecessor and one successor. In this context,
the following set of 271 instances of different sizes are

VOLUME 11, 2023

TABLE 1. Description of the FISSP benchmark instances.

Instance Set  Size Jobs (n) Machines (m)  Flexibility (F)
BRdata 10 {10,15,20} [4,15] [1.43,4.10]
BCdata 21 {10,15} [11,18] [1.07, 1.30]
DPdata 18 {10,15,20} {5,8,10} [1.13,5.02]
KCdata 4 {4,10,15} {5,7,10} [5.00, 10.00]
Fdata 20 [2,12] [2,8] [1.50, 2.67]
HU-edata 66 [6,30] [4,15] [1.12, 1.21]
HU-rdata 66 [6,30] [4,15] [1.88,2.08]
HU-vdata 66 [6,30] [4,15] [2.09, 6.70]
DA-data 30 [4,12] [5,10] [2.67,5.19]
Y-data 20 [4,17] [7,26] [2.53, 6.08]

widely used for testing the performance of different solution
approaches:

o BRdata: 10 instances introduced by [21].

e BCdata: 21 instances from [22].

o DPdata: 18 instances proposed by [23].

o KCdata: 4 instances by [24].

o Fdata: 20 instances from [25].

e HUdata: 198 instances divided into three sets of
66 instances each (HU-edata, HU-rdata, and HU-vdata)
with different degrees of flexibility (the average number
of candidate machines for each operation) from [26].

An important aspect that characterizes an FJSSP instance is
what is known as its flexibility (F'), which corresponds to the
average number of candidate machines for each operation [2].
In Table 1, we summarize the range of flexibility for each
set, along with other benchmark features. For instance, within
the BRdata set, the instance with the lowest flexibility is
MKO08 with F = 1.43 (322 modes in total for 225 job
operations), whereas the instance with the highest flexibility
is MK02 with F = 4.10 (238 modes in total for 58 job
operations).

B. FISSP INSTANCES WITH SEQUENCING FLEXIBILITY
Here we consider those FJSSP instances where an arbitrary
directed acyclic graph defines the precedence relationships
between operations. The 50 instances below were proposed
by [15]:

e Ydata: 20 instances composed of two independent
sequences of operations followed by an assembling
operation.

o DAdata: 30 instances composed of jobs whose prece-
dences are given by an arbitrary directed acyclic graph.

In Figure 1 we provide a graphical representation of the
operations’ precedence constraints of instance DAFJS23.
In this context, each job operation is denoted by a node or
vertex, and the precedence relations between them through
a directed arc. For illustrative purposes, we filled with the
same color the nodes that belong to a particular job (i.e.
green for Jp). For instance, in the case of Jj, as soon as
operation 1 is finished, it is possible to start both operations
2 and 8 simultaneously. To the extent that the availability of
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FIGURE 1. Graphical representation of the operations’ precedence
constraints of instance DAFJS23.

machines allows it. With the aim of clarity, other issues of the
instances like the routing flexibility are not displayed.

C. BEST-KNOWN BOUNDS FOR THE FISSP

There are numerous references that report the best-known
lower bound (Best;p) and the best-known upper bound
(Bestyp) found until specific dates for the FISSP instances.
In this context, a recent survey conducted by [2] summarizes
the best bounds achieved for the FISSP in the last decades.
This information is used as our primary point of reference.
However, some of these bounds are not updated and/or
present some typos in the article. Indeed, for the Fdata
set, authors of [27] provide better bounds than the original
reported by [2]. Also, for the Ydata and DAdata, we detected
some errors in the reported bounds that are attributed to the
CPLEX solver. Indeed, some best solutions in these last two
sets of instances that are attributable to the Beam Search
method of [28] are not considered.

Taking all these factors into consideration, we made efforts
to update the Bestrp and Bestyp for each FJSSP instance
based on the sets detailed in Section I'V-A and Section I'V-B.
All details are listed in Tables 2- 9 and Tables 11- 12 in
Section IV, pointing out the source of information.
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TABLE 2. Test set BRdata.

Instance n m 0 P F LB UB Time RPDip RPDyg
MKO1 10 6 55 115 2.09 40 [2] 40 [2] 0.27  0.00% 0.00%
MKO02 10 6 58 238 410 26 (2] 26 (2] 9.49  0.00% 0.00%
MKO03 15 8 150 451  3.01 204[2] 204[2] 031  0.00% 0.00%
MKO04 15 8 90 157 174 60 [2] 60 [2] 147 0.00% 0.00%
MKO05 15 4 106 181 171 172[2] 172[2] 958.87  0.00% 0.00%
MKO06 10 15 150 490 327 57121 57 (2] 3468  0.00% 0.00%
MKO07 20 5 100 283 283 139[2] 139[2] 3.81  0.00% 0.00%
MKO08 20 10 225 322 143 523[2] 523[2] 0.15  0.00% 0.00%
MKO09 20 10 240 606 253  307[2] 307[2] .19 0.00% 0.00%

MKI10 20 15 240 716 298 189[2] 193[2] 2,196.47  3.70% 1.55%

TABLE 3. Test set BCdata.

Instance n m o P F LB UB Time RPDig  RPDyg
mt10cl 10 11 100 110 1.10 927 [2] 927 [2] 335  0.00%  0.00%
mtl0cc 10 12 100 120 1.20 908 [2] 908 [2] 1.01  0.00%  0.00%
mtl0x 10 11 100 130 130 918 [2] 918 [2] 094  0.00%  0.00%

mt]10xx 10 12 100 120 120 918 [2] 918 [2] 1.32 0.00% 0.00%
mt10xxx 10 13 100 130 130 918 [2] 918 [2] 430  0.00% 0.00%
mt10xy 10 12 100 110 1.10 905 [2] 905 [2] 0.95  0.00% 0.00%

mt10xyz 10 13 100 112 112 847 [2] 847 [2] 1.58  0.00% 0.00%
setb4c9 15 11 150 165 1.10 914 (2] 914 [2] 3.15  0.00% 0.00%
setb4cc 15 12 150 180 120 907 [2] 907 [2] 2.60  0.00% 0.00%
setbdx 15 11 150 195 130 925 (2] 925 (2] 6.33  0.00% 0.00%

setb4xx 15 12 150 180 120 925 [2] 925[2] 10.07  0.00% 0.00%
setb4xxx 15 13 150 195 1.30 925 2] 925 (2] 6.26  0.00% 0.00%
setb4xy 15 12 150 165 1.10 910 [2] 910 [2] 576  0.00% 0.00%
setb4xyz 15 13 150 180 120 902 [2] 902 [2] 2.64  0.00% 0.00%
seti5c12 15 16 225 240 1.07 1169([2] 1169[2] 1820 0.00% 0.00%
setiSce 15 17 225 255 113 1135[2] 1135[2] 3622 0.00% 0.00%

seti5Sx 15 16 225 270 1.20 1198[2] 1198 [2] 6.08  0.00% 0.00%
setiSxx 15 17 225 255 113 1194[2] 1194 (2] 6.96  0.00% 0.00%
setiSxxx 15 18 225 270 1.20 1194[2] 1194[2] 1029  0.00% 0.00%
setiSxy 15 17 225 240 107 1135[2] 1135[2] 43.67 0.00% 0.00%

setiSexyz 15 18 225 255 1.13  1125([2] 1125[2] 2549 0.00% 0.00%

D. MEASURE METRICS
To evaluate the performance of our approach, we consider
three main measure metrics:

« Relative Percentage Deviation (RPDyp) calculated over
the Best; g documented:

UB — Best
RPDp = — — 218 (5)
Bestrp
« Relative Percentage Deviation (RPDyp) calculated over

the Bestyp found in the literature:

UB — Best
RPDyp = ———— ©6)
Bestyp
o Best Upper Bounds Percentage (% BESTyp) attained
over the number of instances of a benchmark set:
Number of BESTyp

% BESTyp = 7
’ UB = Number of instances @

Since the best-known bounds for the FISSP were attained
under different hardware, software, and time limit conditions,
we consider that is difficult to make a direct compar-
ison between these approaches and our proposal. Thus,
in https://github.com/yuraszeck/fjssp, we report detailed
results for different time limits at 600-second intervals (until
reaching 3,600 seconds) to establish a balance between
solution quality and the time allocated to our approach.
In Table 10 and Table 13 we summarize our findings.

E. RESULTS FOR CLASSICAL FISSP INSTANCES
Tables 2- 9 show the results obtained in the classical FJSSP
instances. For each problem instance, we show the number
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TABLE 4. Test set DPdata.

TABLE 7. Test set HU-edata.

Instance n m o P F LB UB Time RPDig  RPDyg Instance n m o P F LB UB Time RPD;p  RPDyp
0la 10 5 196 221 1.13 2505 (2] 2505 [2] 1575  0.00% 0.00% abz5 10 10 100 113 1.13 1167 [2] 1167 [2] 0.43 0.00% 0.00%
02a 10 5 196 332 1.69 2228 [2] 2228 2] 112.60  0.22% 0.22% abz6 10 10 100 114 1.14 925 (2] 925 [2] 1.15 0.00% 0.00%
03a 10 5 196 501 2,56 2228[2]  2228[2] 29.87  0.00% 0.00% abz7 20 15 300 337 112 604 [2] 610[2] 2310.21 1.82% 0.82%
0da 100 5 196 221 113 2503(2] 2503 [2] 27.60  0.00% 0.00% abz8 20 15 300 340 1.13 625 [2] 636 (2] 321.66  2.72% 0.94%
05a 10 5 196 332 1.69  2192[2] 2,203 [2] 46043 1.09% 0.59% abz9 20 15 300 339 113 644 [2 644 2 334396  0.00% 0.00%
0O6a 10 5 196 501 256 2163[2] 2171[2] 275695 120%  0.83% carl 11 5 55 66 120 6176 {ZJ 6176 {2} 0.88  0.00%  0.00%
07a 15 8 293 364 124 2216[2] 2254[2] 38202 496%  3.19% car? 13 4 52 63 121 6327[2] 63272 050  0.00%  0.00%
08a 15 8 293 710 242 2061[2] 2061[2] 23701 0.19%  0.19% car3 12 5 60 71 118 6856[2] 68562 045  0.00%  0.00%
09a 15 8 293 1182 4.03 2061[2] 2061[2] 1,048.60 0.05% 0.05% card 14 4 56 67 120 7789[2] 7789 (2] 0.06 0.00% 0.00%
10a 15 8 293 363 124 2212[2] 2.241[2] 31449 5.42%  4.06% car5 100 6 60 70 117 7229[2] 72292 022 0.00%  0.00%
Ila 15 8 293 708 242 2018[2] 2037[2] 1,85351 2.18% 1.23% car6 8 9 72 84 117 7990[2] 7990 [2] 042  0.00% 0.00%
12a 15 8 293 1184 4.04 1969(2] 1984[2] 3497.16 2.89% 2.12% car? 7 7 49 58 118  6123[2] 6123[2] 023 0.00% 0.00%
13a 20 10 387 518 134 2197[2] 2236[2] 105020 3.14%  1.34% car8 S 8 64 75 LIT 7689[2] 7689 (2] 019  0.00%  0.00%
14a 20 10 387 1156 299 2161[2] 2161[2] 222430 0.09%  0.09% 1201 0 5 50 60 120 6092  609[2] 007  000%  000%
15a 20 10 387 1941 502 2161[2] 2161[2] 321572  0.05%  0.05% 1202 10 5 50 60 120 65512 655[2] 014  000%  000%
16a 20 10 387 518 134 2193[2] 2231[2] 166499 347%  1.70% 1203 10 5 50 59 118 55002 550[2] 047 000%  0.00%
17a 20 10 387 1156 299 2088[2] 2.105[2] 350733 283%  2.00% 1204 10 5 50 59 118 568[2] 568[2] 016  000%  0.00%
182 20 10 387 1938 501 2057[2] 2070[2] 276817 3.65%  3.00% 1205 0 5 50 60 120 50302 503[2] 007  0.00%  000%
1a06 15 5 75 86 1.15 833 2] 833[2] 0.07  0.00% 0.00%

1a07 15 5 75 86 1.15 762 2] 762 [2] 0.21 0.00% 0.00%

1a08 15 5 75 86 1.15 845 2] 845 [2] 0.07  0.00% 0.00%

1a09 15 5 75 86 1.15 878 [2] 878 [2] 0.15 0.00% 0.00%

TABLE 5. Test set KCdata. 1al0 15 5 75 87 116 866 2] 866 [2] 0.14  0.00%  0.00%
lall 20 5 100 113 113 1103[2] 1103 (2] 0.19  0.00% 0.00%

- lal2 20 5 100 114 114  960[2] 960 [2] 027  0.00%  0.00%

Instance n m o p F LB UB Time RPDrp  RPDyg lal3 20 5 100 114 114 1053[2] 1053 2] 0.14  0.00%  0.00%
Kaceml 4 5 12 60 5.00 12 1172 0.02 0.00% 0.00% lal4 20 5 100 113 113 1123[2] 1123[2] 0.14 0.00Z/c 0.00:/0
Kacem? 10 7 29 203 7.00 1R 12 0.07 0.00% 0.00% lal5 20 5 100 113 113 1111[2] 1111[2] 0.84  0.00% 0.00%
lal6 10 10 100 113 113 892 (2] 892 (2] 024 0.00% 0.00%

Kacem3 10 10 30 300 1000 7[2] = 7[2] 006 000%  0.00% 1al7 1010 100 113 113 707(2]  707[2] 035  000%  0.00%
Kacem4 15 10 56 560 10.00 11[2] 11[2] 0.80  0.00% 0.00% lal8 10 10 100 113 113  842[2] 842[2) 108  000%  0.00%
la19 10 10 100 113 113 796 [2] 796 (2] 0.47  0.00% 0.00%

1a20 10 10 100 113 113 857 (2] 857 (2] 0.24  0.00% 0.00%

la21 15 10 150 173 115 1009 (2] 1009 [2] 69.59  0.00% 0.00%

TABLE 6. Test set Fdata. 1a22 15 10 150 173 115  880[2]  880[2] 422 0.00%  0.00%
1a23 15 10 150 171 114 950 [2] 950 [2] 11.59  0.00% 0.00%

la24 15 10 150 174 116 908 [2] 908 [2] 11.78  0.00% 0.00%

stanci . la25 15 10 150 174 1.16 936 [2] 936 [2] 7.31 0.00% 0.00%
Instance n _m o p F LB UB Time RPDis RPDus 1a26 20 10 200 227 L14 1106[2] 1106[(2] 1420.11  099%  0.99%
SFJS1 2 2 4 8 2.00 66 [2] 66 [2] 0.02  0.00% 0.00% la27 20 10 200 227 1.14 1181[2] 1181[2] 140.90  0.00% 0.00%
SFJS2 2 2 4 6 1.50 107 [2] 107 [2] 0.02  0.00% 0.00% 1a28 20 10 200 226 1.13  1142[2] 1142[2] 911.69  0.00% 0.00%
SFIS3 3 2 6 10 1.67  221[27] 221 (2] 0.02 0.00% 0.00% 1a29 20 10 200 227 1.14  1107[2] 1107 [2] 1,23474  0.00% 0.00%
SFIS4 3 2 6 10 1.67  355[27] 355 (2] 0.02 0.00% 0.00% 1a30 20 10 200 227 1.14  1188[2] 1188[2] 3.599.70  0.42% 0.42%
SFIS5 3 2 6 12 2.00 119[27] 119 [2] 0.02 0.00% 0.00% la31 30 10 300 341 1.14  1532[2] 1532([2] 173.40  0.59% 0.59%
SFIS6 3 3 9 15 1.67  320(27) 320 [2) 0.02  0.00% 0.00% la32 30 10 300 341 1.14 1698 [2] 1698 [2] 3.07  0.00% 0.00%
SFIS7 3 5 9 18 2.00 397 (2] 397 (2] 0.03  0.00% 0.00% la33 30 10 300 339 1.13 1547 (2] 1547 (2] 17.38  0.00% 0.00%
SFJS8 3 4 9 18 200 253[27] 253 [2] 0.03  0.00% 0.00% la34 30 10 300 339 113 1599([2] 1599 (2] 9.87  0.00% 0.00%
SEJS9 3 3 9 18 2.00 210 [2] 210 [2] 0.02  0.00% 0.00% 1a35 30 10 300 339 113 1736(2] 1736 (2] 148 0.00% 0.00%
SFIS10 4 5 12 20 1.67  516[27] 516 [2] 002  0.00% 0.00% 1a36 15 15 225 258 115 1160[2] 1160 [2] 2237  0.00% 0.00%
MEISI 5 6 15 33 220 468 4682 007  000%  000% 1a37 15 15 225 258 LIS 1397[2] 1397[2] 108 0.00%  0.00%
MES2 5 7 15 39 260 446 446[2] 008  000%  0.00% 138 15 15 225 257 L14 1141[2] 11412 5441 0.00%  0.00%
MEIS3 6 7 18 48 267 466  466[2] 008  000%  000% 1a39 15 15 225 257 L14 1184[2] 1184[2] 736 0.00%  0.00%
MEISA 7 7 21 56 267 ss4r 554[2] 008 0.00%  0.00% 1a40 15 15 225 258 LIS 1144[2] 11442 1292 0.00%  0.00%
MEISS 7 7 21 55 262 514+ 514[2] 008 000%  0.00% mi06 6 6 36 42 L7 SS5[2] - S5[2) 0.06 - 0.00% — 0.00%
MFIS6 8 7 24 62 2.58 634 634 [27] 008  0.00% 0.00% mtl0 10 10 100 113 113 871 (2] 871 (2] 2.37  0.00% OAOOD/c
MEJS7 3 7 3 74 231 879+ 879 2] 026 0.00% 0.00% mt20 20 5 100 113 1.13  1088[2] 1088 [2] 1.65  0.00% 0.00%
MEJSS 9 8 36 86 239 884+ 884 2] 020 0.00% 0.00% orbl 10 10 100 114 114 977 [2] 977 (2] 3.55  0.00% 0.00%
MEJS9 11 8 44 103 234 1055% 1055 [27] 1940 0.00% 0.00% orb2 10 10 100 113 113 865 [2] 865 [2] 2.16  0.00% 0.00%
MEISI0 12 8 48 112 233  119* 1196[27] 11001 000%  0.00% orb3 100100100 114 L14 - 95L2] - 951[2] 341°000%  0.00%
- . . . orb4 10 10 100 114 1.14 984 [2] 984 [2] 2.98  0.00% 0.00%

orb5 10 10 100 114 1.14 842 [2] 842 [2] 1.13 0.00% 0.00%

orb6 10 10 100 114 1.14 958 [2] 958 [2] 1.05  0.00% 0.00%

orb7 10 10 100 113 113 389 [2] 389 [2] 145 0.00% 0.00%

orb8 10 10 100 114 1.14 894 [2] 894 [2] 0.40  0.00% 0.00%

H : orb9 10 10 100 114 1.14 933 [2] 933 [2] 1.40  0.00% 0.00%
Of JObS (n)’ the number Of maChlneS (m)’ the number Of orb10 10 10 100 114 1.14 933 [2] 933 [2] 2.11 0.00% 0.00%

operations (0), the number of modes (p), the flexibility factor
(F = p/o), the best-known lower and upper bounds, and
the time required by our approach to finding its best relative
percentage deviations for lower and upper bounds.

In Table 2 we can observe that for all but one instance
in set BRdata, our approach was able to find the best lower
and upper bounds from literature in low times. The hardest
problem instance in this set was MKI10, the largest one.
In most other cases the approach was able to reach the lower
and upper bounds in very low execution times (lower than
10 seconds). Only in two cases, instance MKO06 and instance
MKOS5 it required around 34 and 958 seconds respectively.
These cases are not the largest ones, but possibly some
structurally complex cases.

In Table 3 we can observe that in all instances in set
BCdata our approach reached the best lower and upper
bounds from literature. Larger times are required for larger
problem instances, but the time required to solve these
problem instances is at most around 43 seconds.
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In Table 4 we can observe that only in three out of
18 instances our approach was able to find the best lower
and upper bounds from literature. These were found for
instances Ola, 03a, and 04a, all these considering 10 jobs and
5 machines. Moreover, these best bounds were found using at
most 29.87 seconds. The hardest problem instances in this set
were 07a and 10a, both considering 15 jobs and 8 machines.
For these, the best bounds were at most 5.42% closer to the
best bound from literature and were obtained using at most
400 seconds.

The results for instances in set KCdata are shown in
Table 5. Regardless of the size of the problem instance, in this
set our approach reached the best lower and upper bounds
from literature in less than one second in all cases.

The results for instances in set Fdata are shown in Table 6.
In a very similar way that for results in set KCdata, here
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TABLE 8. Test set HU-rdata.

TABLE 9. Test set HU-vdata.

Instance n m o P F LB UB Time RPD;g  RPDyp Instance n m o P F LB UB Time RPDrp RPDyp
abzs 10 10 100 198 198  954[2]  9542] 170 0.00%  0.00% abzs 10 10 100 467 467 859[2]  859[2] 057  000%  0.00%
abz6 10 10 100 194 194 $07[2] 8072 028  0.00%  0.00% abz6 10 10 100 429 429  742[2]  742[2] 015  000%  0.00%
abz7 20 15 300 587 196  493[2]  522[2] 43846 8.72%  2.68% abz7 20 15 300 1951 650  492[2]  492[2] 95222 020%  0.20%
abz8 20 15 300 579 193 S507[2] 535[2] 17724  8.88%  3.18% abz8 20 15 300 1973 658  506[2] 507[2] 11056 059%  0.39%
abz9 20 15 300 584 195  SI17[2]  536[2] 157896 6.00%  224% abz9 20 15 300 1994 665 497[2] 497(2] 87837 040%  0.40%
carl 115 55 111 202 5034[2] 50342 8542 024%  024% carl 115 55 151 275 5005[2] 5005[2] 10359 0.02%  0.02%
car2 13 4 52 100 192 5985[2] 5985[2] 149807 0.00%  0.00% car2 134 52 119 229 5929[2] 59292 8257  0.00%  0.00%
car3 125 60 121 202 5622[2] 5622[2] 11983  0.09%  0.09% car3 125 60 156 260 5597[2] 5597[2]  544.62 0.00%  0.00%
card 14 4 56 110 196 6514[2] 6514 [2) 3297  0.00%  0.00% card 14 4 56 117 209 6514[2] 6514 [2] 823.69  0.00%  0.00%
carS 10 6 60 115 192 5615[2] 5615([2) 2571 0.00%  0.00% car5 10 6 60 170 2.83 4909 [2] 4910 (2] 13097  0.14%  0.12%
carb 8 9 72 140 194 6147[2] 61472 014 0.00%  0.00% car6 8 9 72 294 408 5486[2] 54862 008  0.00%  0.00%
car? 77 49 102 208 4425[2] 44252 036 0.00%  0.00% car 707 49 169 345 4281[2] 4281[2] 009 0.00%  0.00%
car$ 8 8 64 123 192 5692[2] 5692 2] 070 0.00%  0.00% car8 8 8 64 254 397 4613[2] 4613[2] 016 0.00%  0.00%
1a01 10 5 50 9 192 570[2] 570[2] 63125 0.00%  0.00% 1201 10 5 50 142 284 570[2] 5702 2467 0.00%  0.00%
1a02 10 5 50 94 188 52912 529[2] 7449 0.00%  0.00% 1a02 10 5 50 134 268 529[2] 5292 403 000%  0.00%
1a03 10 5 50 99 1.98 477 2] 477 (2] 109.31 0.00% 0.00% 1a03 10 5 50 128 2.56 477 [2] 477 (2] 70.87 0.00% 0.00%
1a04 10 5 50 101 2.02 502 [2] 502 2] 0.55 0.00% 0.00% 1a04 10 5 50 119 2.38 502 2] 502 2] 1.36  0.00% 0.00%
1a05 10 5 50 103 206 457[2] 457[2] 1456 0.00%  0.00% 1a05 105 50 119 238  457[2]  457[2] 595 0.00%  0.00%
1206 5 5 75 141 188 79[ 799[2] 066  000%  0.00% 1206 15 5 75 182 243 799[2]  799[2] 1991 000%  0.00%
1a07 15 5 75 147 196 749[2] 749[2] 156.86  0.00%  0.00% 1a07 155 75 182 243 749[2]  749[2] 649 0.00%  0.00%
1a08 15 5 75 145 193  1765[2] 765[2] 9.16  0.00%  0.00% 1a08 I5 5 75 194 259 765[2]  765[2] 16427 0.00%  0.00%
1209 5 5 75 14 192 853[2 8532 3320 000%  0.00% 1209 15 5 75 190 253 8$53[2] 853[2] 498 000%  0.00%
1a10 15 5 75 147 196  804[2]  804[2] 87880 0.00%  0.00% 1al0 155 75 200 267  804[2]  804[2] 433 000%  0.00%
lal1 20 5 100 203 203 1071[2] 1071[2] 294 000%  0.00% lal1 20 5 100 253 253 1071[2] 1071[2] 725  0.00%  0.00%
lal2 20 5 100 199 199  936[2)  936[2) 388 000%  0.00% lal2 20 5 100 248 248  936[2]  936[2] 225 0.00%  0.00%
lal3 20 5 100 198 198 1038[2) 1038 (2] 076 000%  0.00% 1a13 20 5 100 245 245 1038[2] 1038 [2] 327 000%  0.00%
lalt 0 35 100 197 197 1070[2] 1070 2] 3 000%  000% lal4 20 5 100 244 244 1070[2] 1070[2] 119 000%  0.00%
lals 2 5 100 198 198 1089[2] 1089(2] 51312 000%  000% lal5 20 5 100 263 263 1089[2] 1089 (2] 6408  0.00%  0.00%
lale 0010 100 201 201 T[] 70 035 0.00%  0.00% 1a16 10 10 100 470 470 T17[(2] 717[2] 020  000%  0.00%
117 010 100 193 193 646[2  646[2) 015 0.00%  000% 1al7 10 10 100 479 479  646[2]  646[2] 018 000%  0.00%
lal8 10 10 100 199 199  666[2] 666 2] 027 0.00%  0.00% la18 1010 100 479 479  663(2]  663[2] 0.170.00% — 0.00%
la1o 10 10 100 19 196 70012 700 [2] 125 000%  0.00% 1a19 10 10 100 480 480 617[2]  617[2] 041 000%  0.00%
1a20 10 10 100 199 199  756[2] 756 2] 033 0.00%  0.00% 1a20 10 10 100 487 487  756[2]  756[2] 016  000%  0.00%
la21 15 10 150 301 201  808[2]  825[2] 7970 4.08%  1.94% la21 150100150 715477 800[2]  825(21 - 98642 0.13% - 0.13%
122 15 10 10 306 204 741[s] 7532 12677 270%  106% 1a22 15 10 150 677 451 733[2] 733[2] 23807 027% 027%
1923 15 10 10 306 204 8I6[] 83102 6666 319%  130% 1a23 15 10 150 680 453  809[2] 809[2] 186325 0.2%  0.12%
o2 5 10 150 297 198 73] TeS[] #0026 374%  113% 1a24 15 10 150 727 485 773[2] 773[2] 18515 0.13%  0.13%
1a2s 13 10 150 302 201 78[5 79[ 844 221%  071% 1a25 15 10 150 725 483  751[2] 751[2] 263648 027%  027%
e 20 10 200 391 19 1056[2] 1057() 7168 095%  085% 1a26 20 10 200 917 459 1052[2] 1052[2] 299860 0.00%  0.00%
o 20 10 200 302 196 1085121 1085(2] 90890 028%  028% 1a27 20 10 200 915 458 1084[2] 1084[2] 42954 0.00%  0.00%
1028 20010 200 100 201 1073021 107(2] 219246 037%  028% 1a28 20 10 200 897 449 1069[2] 1069[2] 146537 0.00%  0.00%
1229 20 10 200 399 200 993[2] 994[2] 31585 0.70%  0.60% e 00002000 BLoadAl wslal S 1943 QA 0.10%
1a30 20 10 200 392 196 1068[2] 1071[2] 81066 131%  1.03% e 2 } o 300 1380 3' 63 1320 [[2]' 1320 [[2]' é 4(7)922 Oood 0‘00‘;;’
131 30 10 300 576 192 1520[2] 1520[2] 294079 0.07%  0.07% . 20010 300 130 49 16870] 1es7(2 e1ses  006% 006
1a32 30 10 300 585 195 1657[2] 1657[2] 181548 0.06%  0.06% ; - - - 067
133 30 10 300 581 194 1497[2] 1497[2] 62541 007%  0.07% la33 3001003000 1354 451 1497(2]  1497(2] 20841 0.07%  0.07%
1a34 30 10 300 584 195 1535[2] 1535[2] 35682  0.07%  0.07% la34 30010300 1387 4.62 }sig 21 }535 (21 40809 0.00%  0.00%
o 20010 300 290 19y 1) 1sila 1ates: 00 o06% 1a35 30 10 300 1394 465 1549[2] 1549[2] 36999 0.06%  0.06%

; 1a36 15 15 225 1507 670 948[2]  948[2] 102 000%  0.00%
1a36 1515 225 439 195 1023[2] 1023 (2] 993 000%  0.00% 1a37 15 15 225 1492 663  986[2] 9862 090 0.00%  0.00%
1a37 15 15 225 437 194 1062[2] 1062[2] 51555 0.00%  0.00% 1a38 15 15 225 1479 657 943[2] 943[2 083  0.00%  0.00%
1a38 I5 15 225 444 197 95412]  954[2) 857  000%  000% 1239 15 15 225 1470 653 922 [[2]| 922 [[2]| 141 000%  000%
1a39 15 15 225 436 194 1011[2] 1011 2] 7155 000%  0.00% 1010 5 15 205 1458 648 955[2] 95521 091 000%  000%
1a40 15 15 225 441 196 955[2] 955[2] 138681 0.00%  0.00% 06 6 6 % 1035 o286 41 470 004 000%  000%
mt06 6 6 36 74 206  47[2]  47(2] 004 0.00%  0.00% mt10 10 10 100 448 448  655[2]  655[2] 016  000%  0.00%
mt10 10 10 100 196 196  686[2]  686[2] 0.2 0.00% — 0.00% mt20 20 5100 262 262 1022[2] 1022 [2] 7744 0.00%  0.00%
me20 205100 194 1.94  1022[2] 1022[2] 607 0.00%  0.00% orbl 10 10 100 446 446  695[2] 695 [2] 028  0.00%  0.00%
orbl 10 10 100 196 196 746[2] 746 [2] L4 000%  0.00% b2 010 100 440 440 62001 6002 053 000%  0.00%
°f';§ ig }8 igg }g; ig; gi‘g {g g?g % 18(1) 8-38;0 8833 orb3 10 10 100 467 467 648[2]  648[2] 028 000%  0.00%
or! : L 00%  0.00% orb4 10 10 100 471 471  753[2] 753[2 022 000%  0.00%
orbd 10 10 100 194 194 753[2] 753[2] 068 0.00%  0.00% orbS 10 10 100 477 477 584 }2{ S84 %2{ 027 000%  0.00%
orbs 10 10 100 198 198  639[2]  639[2] 128 0.00%  0.00% orb6 1010 100 478 478 71502 71502 021 000% 0.00%
orb6 10 10 100 196 196  754[2]  754[2] 064  0.00%  0.00% oh? 1010 100 456 456  273[2  27502] 03 000%  0.00%
orb7 1010 100 197 197  302[2]  302[2] 194 0.00%  0.00% orb8 1010 100 455 455 5732 ST3[2) 018 0.00%  0.00%
orb8 10 10 100 195 195  639[2]  639[2] 178 0.00%  0.00% orb9 1010 100 447 447 692  659[2] 023 000%  000%
orb9 10 10 100 194 194  694[2] 694 2] 021 0.00%  0.00% obl0 10 10 100 451 451  681(2]  681[2] 02 000%  000%
orbl0 10 10 100 198 198  742[2] 742[2] 123 000%  0.00%

most problem instances were solved instantaneously except
the two largest ones that required around 19 and 110 seconds
respectively. Moreover, our approach was able to find 10 new
lower bounds. These values are accompanied by a star (*) in
Table 6.

Tables 7, 8 and 9 show the results obtained when solving
the HUdata. All these test sets consider 66 instances.

Table 7 show the results obtained in data set Hu-edata.
Here, our approach was able to solve 61 out of 66 cases.
Moreover, the solution times were lower and closer to
1 second in 39 cases. There are just a few cases that were
solved in very high execution times. Also, cases abz7, abz8,
and abz9 resulted very complex. The first ones were not
solved, while instance abz9 was solved, but the approach
required more than 3,000 seconds to reach the best solution.
These instances are the largest in their category. On the other

144934

side, instances 1a26, 1a27, 1a28, 1a29, and 1a30 were also
complex to solve. Only three of these cases were optimally
solved but required more than 140 seconds. It is interesting
here to note that these problem instances are not the largest
in their corresponding set, hence, the complexity of these
problem instances should come only from their structure.

Table 8 show the results obtained in data set Hu-rdata.
Here, our approach was able to solve only 46 out of 66 cases.
In 25 instances, the solving times were either lower than or
approaching one second. There are a few cases that were
solved with very high execution times. In 8 cases, the time
was higher than 100 seconds and in two cases the time
required was higher than 1,000 seconds. Complex instances
for the approach in this set range from cases with 10 jobs
and 5 machines to 20 jobs and 5 machines. Also, there are
complex instances with 15 jobs and 15 machines.
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TABLE 10. Results for classical FISSP instances presented in Section IV-A. The best upper bounds percentage (% BEST;g) is reported for the time limit
configuration of 3,600 seconds.

Instance Set % BEST, TL: 600[s] TL: 1,200(s] TL: 1,800(s] TL: 2,400(s] TL: 3,000(s] TL: 3,600(s]

: UB RPD;y; RPDys RPD,g RPDys RPDiy RPDyg RPDyy RPDyg RPDry RPDyg RPD;z RPDyg
BRdata 90% 0.53% 0.32% 0.48% 0.26% 0.48% 0.26% 0.37% 0.16% 0.37% 0.16% 0.37% 0.16%
BCdata 100% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
DPdata 16.67% 1.92% 1.32% 1.84% 1.24% 1.79% 1.19% 1.78% 1.18% 1.76% 1.16% 1.75% 1.15%
KCdata 100% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Fdata 100% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
HU-edata 92.42% 0.23% 0.19% 0.14% 0.10% 0.14% 0.10% 0.11% 0.07% 0.11% 0.06% 0.10% 0.06%
HU-rdata 69.69% 0.71% 0.32% 0.68% 0.29% 0.67% 0.28% 0.66% 0.27% 0.66% 0.27% 0.66% 0.27%
HU-vdata 77.27% 0.06% 0.06% 0.05% 0.05% 0.05% 0.05% 0.05% 0.04% 0.04% 0.04% 0.04% 0.04%

TABLE 11. Test set DAdata. the ability of the approach to solve these problems and it could
nsance 1 m o p F LB UB  Time RPDm  RPDus be mostly related to specific features of the problems being
DAFJS01 4 5 26 82 3.15  257[29] 257[29] 0.23 0.00% 0.00%

DAFJS02 4 5 25 79 3.16  289[29] 289[29] 0.21 0.00% 0.00% SOlved: . . . .

DAFISO3 4 10 55 279 507 576[29] 576[29] 003 000%  0.00%

DASE 4 n m n mele seln) 003 000% - 0.00% All in all, in Table 10 we summarize our findings for the

DAFISOS 6 5 39 104 267 384[29] 384[29] 087 0.00%  0.00% classical FJSSP instances:

DAFJS06 6 5 44 136 3.09 404 [29] 404 [29] 42.86 0.00% 0.00%

DAFJS07 6 10 85 431 507 505[29] 505(29] 1.45 0.00% 0.00% . . . .

DAFISOS 6 10 85 403 474 628[29] 628 [29] 00 000%  0.00% « We proved optimality in all instances from sets BCdata,

DAFIS09 8 5 45 135 300 324[29] 460[29] 12132 4228%  0.22% sy .

DAFISI0 8 5 58 168 290 337[29] 516[29] 74371 5401%  0.58% KCdata, and Fdata within the first 600 seconds. Indeed,

DAFJS11 8 10 113 534 473 658[29] 658 [29] 1.08 0.00% 0.00% . . .

DARISI2 8 10 117 603 5.5 530[29] 588[29] 339592 11.70%  0.68% the average time needed to reach the optimal solution

DAFISI3 10 5 62 193 311 306[29] 633% 93183  10686%  0.00% . . .

DAFISIA 10 5 6 206 299 367[20] 708[29) 58198 9401%  0.56% in these 55 instances was 7.3 seconds. Moreover, in the

DAFIJS15 10 10 120 595 496 512[29] 626[29] 209.02 23.83% 1.28% . : :

DAFISI6 10 10 120 602 502 641[29] 642[29] 231078 031%  0.16% Fdata set we contribute to the literature with 10 new

DAFIJS17 12 5 82 246 3.00 309[29] 771[29] 517.67 150.16% 0.26%

DAFISIS 12 5 74 231 312 328[29] 766[29] 94609 133.54%  0.00% lower bounds.

DAFISI9 8 7 70 283 404 512[29] 512[29] 703 000%  0.00% :

DAFJS20 10 7 92 361 392  434[29] 660 [29] 1,334.78 52.07% 0.00% ° For the BRdata Set we reaChed the BESTUB m 9 OUt Of

DAFJS21 12 7 107 425 397 504[29] 755 [29] 2,348.36 50.60% 0.53% s s

DAFJS22 12 7 116 450 3.88 464[29] 659 [29] 2,853.72 43.32% 0.91% 10 lnStanceS' In Only lnStance MK 10 we Could nOt reaCh

DAFIS23 8 9 76 367 483 450[29] 460 17001 222%  0.00% s : s

DARIS: 8§ o 9 4 503 46l20] 539l 19722 1se%  095% the BESTyp within the time limit, however, the results

DAFJS25 10 9 123 619 5.03 584[29] 689 [29] 3,589.80 19.69% 1.45% 1

DAFJS26 10 9 119 606 509 565[29] 681[29] 2.999.11 22.48%  1.62% in terms of RPDp and RPDyg (< 0.53% on average)

DAFIS27 12 9 127 625 492 503[29] 768[29] 317862 54.08%  0.91% :

DAFIS28 8 10 91 457 502 535(29] 535[29] 511 000%  0.00% seem satisfactory.

DAFJS29 8 10 95 468 493  609[29] 618[29] 13.71 1.81% 0.32% 1

DAFIJS30 10 10 98 509 5.19  467[29] 519 [29] 2,987.10 11.35% 0.19% ° OVCI‘aH, the DPdata set was the mOSt Challenglng’ Where
we reached 3 out of 18 BESTyp with both RPD values

TABLE 12. Test set Ydata. less tha.n. or equal to 1.92% f)n average. It is WOIjth

emphasizing that, to the author’s knowledge, optimality
Insance n m o p F LB UB  Time RPDs RPDus has been proven in only 8 out of 18 instances within this
YFISOI 4 7 40 104 260  773[29]  773[29] 023  0.00%  0.00% benchmark (44.44%).
YFIS02 4 7 40 104 2.60 825[29] 8251[29] 0.17 0.00% 0.00%
YFISO3 6 7 24 63 263 347(29] 347[29] 009 0.00%  0.00% o For all the 3 sets of HUdata both RPD;p and RPDyp
YFISO4 7 7 28 71 254 390[29] 390[29] 014 0.00%  0.00% . .
YFISOS 8 7 32 81 253 445[20]  4d5[29] 014 0.00%  0.00% present consistent results with values lower than or equal
YEISO6 9 7 36 95 264 446[29]  446[29] 109 0.00%  0.00%
YFISOT 9 7 36 93 258  444[29]  444[29] 032  000%  0.00% to 0.71% on average.
YFISOS 9 12 36 100 278  353[29]  353[29] 007 0.00%  0.00% .. . .
YFISO9 9 12 36 219 608  242[29] 242[29] 0.16 000%  0.00% . Although it is natural to expect improvements 1n the
YEISIO 10 12 40 113 283  399[29]  399[29] 0.3 0.00%  0.00% . . .. .
YRISII 10 10 50 134 2.68  526[29] 526[29] 035 0.00%  0.00% results as the computational time limit increases, it can
YFIS12 10 10 50 133 2.66 512 [29] 512 [29] 0.41 0.00% 0.00% . ..
YEISI3 10 10 50 137 274  405[29] 405[29] 023  000%  0.00% be noticed the competitiveness of our approach even for
YEISI4 13 26 221 641 290 1317[29] 1317[29] 086 0.00%  0.00% . . .
YFISIS 13 26 221 648 293 1239[29] 1239[29] 082 0.00%  0.00% relatlvely short execution times.
YEISI6 13 26 221 633 286 1222[29] 1222[29] 227 0.00%  0.00%
YFIS17 17 26 289 1328  4.60 1133 [29] 1133 [29] 2.84 0.00% 0.00%
YFISIS 17 26 289 1362 471 1220[29] 1220[29] 166 0.00%  0.00%
YFISIO 17 26 280 1347 466  926[29]  926[29] 1837 0.00%  0.00% F. RESULTS FOR FJSSP INSTANCES WITH SEQUENCING
YFIS20 17 26 280 1343 465  968[29]  968[29] 1157 0.00%  0.00%

Finally, Table 9 show the results obtained in data set Hu-
vdata. In this test set, our approach was able to solve 51 out of
66 cases. Here, again, the solution times were very low, lower
or close to 1 second, in 29 cases. Also, there are a few cases
that were solved with very high execution times. In 8 cases,
the time was higher than 100 seconds, and in three cases
the time required was higher than 1,000 seconds. Complex
instances for the approach in this set range from cases with
12 jobs and 5 machines to 30 jobs and 10 machines. Again,
neither the size nor the flexibility of the test cases determine
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In Table 11 we present detailed results obtained for DAdata
set. Only 11 cases were optimally solved in this test set.
Anyway, two new upper bounds were found in this test set.
These are marked with a star (*) in Table 11. Execution times
were very low in all these cases. On the other side, specially
high differences in lower bounds were found in these cases,
higher than 10% in 16 cases and higher than 100% in three
cases.

Table 12 show the detailed results obtained for set Ydata.
All cases were optimally solved in this test set. Execution
times were lower than and close to one second in 15 cases, and
lower than 19 seconds in all cases. Large differences in lower
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TABLE 13. Results for FISSP instances with sequencing flexibility presented in Section IV-B. The best upper bounds percentage (% BESTp) is reported for

the time limit configuration of 3,600 seconds.

Instance Set % BEST TL: 600[s] TL: 1,200(s] TL: 1,800[s] TL: 2,400[s] TL: 3,000(s] TL: 3,600(s]
¢ U RPD;3 RPDys RPD;y RPDyz RPDyz RPDyg RPDig RPDygs RPDiz RPDys RPDiz  RPDyp
DAdata 43.33% 29.94%  0.61%  29.80% 051% 29.74% 047% 29.70% 0.44%  29.63% 0.38% 29.57%  0.33%
Ydata 100% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0 50 100 150 200 250 300 350 400 450

FIGURE 2. A Gantt chart for a feasible solution of instance DAFJS23 with Cipax = 460.

bounds were found in these cases, higher than 10% in 16 cases
and higher than 100% in three cases. Higher execution times
were required in larger problem instances in this test set.

Summarized results for FISSP instances with sequencing
flexibility, grouped by benchmark set, are provided in
Table 13. The attained results allow us to make the following
conclusions:

o We found the optimal solution in all Ydata instances in
an average computational time of 2.1 seconds.

For the DAdata set, we reach the BESTyp in 13 out of
30 instances. In this context, we contribute with two
new BESTyp for the instances DAFJS13 and DAFJS23.
In Figure 2 we provide a Gantt Chart for the instance
DAFJS23 with a Cpqy = 460 based on the precedence
constraints previously shown in Figure 2. In Table 14
we present the details of the attained solution. Finally,
although the average RPD;p values are higher than
those obtained for classical FISSP instances, the average
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RPDyp is competitive, with values averaging lower than
or equal to 0.61%.

V. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a CP formulation of the MMR-
CPSP to solve the FISSP under the makespan minimization
criterion. The FISSP is an NP-hard problem that extends the
well-known JSSP by allowing each operation to be executed
on any machine within a specified subset of the available
machines.

To evaluate our approach, we conducted computational
experiments comparing our results to the best-known solu-
tions in the literature. To do this we consider two categories of
FJSSP instances: 271 classical instances where the operations
of a given job follow a linear order, and 50 instances
with sequencing flexibility. In these cases, the precedence
relationships between operations are defined by a directed
acyclic graph. In this context, we reach a competitive
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TABLE 14. Tabulated results for a feasible solution of instance

DAFJS23 with Crax = 460.

Task Job Mode Machine  Starting  Finishing
1 J1 1 4 13 95
2 J1 3 2 97 154
3 J1 1 9 154 240
4 J1 1 9 240 303
5 J1 1 5 332 362
6 J1 1 3 362 422
7 J1 1 2 422 431
8 J1 3 8 95 168
9 J1 1 5 221 268
10 J1 1 4 343 350
11 J1 5 5 362 414
12 J1 1 7 414 435
13 J1 2 2 435 458
14 J2 1 1 0 14
15 J2 5 1 126 147
16 J2 4 6 165 258
17 J2 1 1 14 94
18 J2 1 5 94 129
19 J2 3 4 153 246

20 J2 2 5 268 332
21 J2 1 1 395 459
22 J3 1 9 0 31

23 J3 3 5 55 90

24 J3 1 2 90 97

25 J3 1 5 129 221
26 J3 3 4 246 343
27 J3 1 2 343 420
28 J3 3 5 420 439
29 J3 3 5 439 452
30 J3 1 4 452 456
31 J3 6 7 31 99

32 J3 1 1 99 126
33 J3 1 3 126 178
34 J3 4 8 178 198
35 J3 3 1 198 271
36 J3 3 1 271 321
37 J3 1 1 321 395
38 J3 1 9 395 460
39 Ja 1 6 0 95

40 Ja 5 5 0 55

41 Ja 1 9 95 152
42 Ja 2 2 154 244
43 Ja 3 6 258 344
44 Ja 1 4 428 449
45 Js 1 2 0 82

46 Js 1 3 97 111
47 Js 2 3 261 351
48 Js 1 6 351 374
49 Js 5 7 435 458
50 Js 5 9 31 87

51 Js 1 1 147 196
52 Js 1 2 244 303
53 Js 2 4 350 428
54 Js 1 3 428 445
55 Js 6 3 458 460
56 Je 4 8 0 92

57 J6 1 6 95 165
58 Je 1 7 262 316
59 Je 2 3 178 181
60 Js 1 3 181 261
61 Je 4 7 316 407
62 Je 2 3 422 425
63 J7 1 4 0 13

64 J7 4 95 153
65 J7 1 7 184 262

VOLUME 11, 2023

TABLE 14. (Continued.) Tabulated results for a feasible solution of
instance DAFJS23 with Cpax = 460.

66 J7 1 8 290 371
67 J7 6 2 303 343
68 J7 2 6 374 449
69 Js 1 3 0 48

70 Js 1 3 48 94

71 Jg 3 3 94 97

72 Jg 1 7 99 184
73 Jg 2 8 198 290
74 Jg 1 9 303 378
75 Js 4 9 378 391
76 Js 2 8 378 460

average RPDyp of 0.18% over the 321 instances considered,
contributing with ten new lower bounds and two new upper
bounds to the literature.

In terms of future lines of research, other operational
constraints and optimization criteria could be considered

for

the FJSSP. Additionally, given the generality of our

MMRCPSP approach, it can be readily adapted to address
other closely related problems subsumed by the FJSSP, such
as the flexible flow shop scheduling problem (FFSSP) and the
flexible open shop scheduling problem (FOSSP).
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