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ABSTRACT Estimation of the partial pressure of carbon dioxide (pCO2) in the Bay of Bengal (BoB) region
plays a crucial role in better understanding the air-sea CO2 fluxes. Complex physical and biogeochemical
processes such as physical mixing, stratification, thermodynamic, and biological effects dominate the
spatiotemporal variability of pCO2 concentration over the BoB. This is difficult to estimate through in-situ
platforms alone due to the time-consuming, cost-effective, and intricacies involved inwater sample collection
during rough oceanic weather conditions. Alternatively, remote sensing technology provides governing
control parameters with high spatiotemporal resolution over large synoptic scales. Since the BoB region is
influenced by the Indian monsoon system and other complex processes, existing regional and global pCO2
algorithms are not adequate to estimate more accurate pCO2 fields. Hence, there is a need to develop a
regional pCO2 algorithm over the BoB. To resolve this problem, in the present study, a Multi Parametric
Regional Regression (MPRR) approach was developed over the BoB using satellite data such as sea surface
temperature (SST), sea surface salinity (SSS), and chlorophyll-a (Chla) concentration. To train and validate
the MPRR approach, required in-situ measurements were obtained from the open and coastal waters of
the BoB. The validation results revealed that the present MPRR approach showed better performance with
significant low errors (mean relative error (MRE) = 0.012, mean normalized bias (MNB) = 0.022, and
root mean square error (RMSE) = 4.75 µatm) and a high correlation coefficient (R2

= 0.92). Furthermore,
the study demonstrated the spatiotemporal variability of pCO2and generated monthly, seasonal, and annual
pCO2 maps over the BoB.

INDEX TERMS Ocean color remote sensing, multiparametric regional regression, SST, SSS, Chla and
pCO2.

I. INTRODUCTION
The ocean absorbs one-third of anthropogenic CO2 from the
atmosphere, and mitigates the effects of global warming and
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climate change scenarios [1]. Since the beginning of pre-
industrial era, the global oceans have absorbed approximately
165±20 PgC [2], with an annual rate of 2.5±0.6 PgC [3].
Estimation of pCO2 concentration in surface oceanic waters
plays a predominant role in better understanding of the global
carbon cycles, air-sea CO2 flux rates, source and sinks of
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CO2, ocean acidification, primary productivity, absorption
of CO2, and biogeochemical studies related to CO2 [4], [5],
[6], [7]. In surface waters, pCO2 concentration dynamically
changes due to the interaction of various physical (physical
mixing, stratification, mixed layer dynamics, ocean currents
and circulations), biological (production, respiration, and
biological pumps), and geochemical processes (carbonate
precipitation and dissolution). These processes are in turn
controlled by the corresponding physical and biogeochemical
parameters, such as sea surface temperature (SST), sea sur-
face salinity (SSS), mixed layer depth (MLD), chlorophyll-a
concentration (Chla), total alkalinity (TA), and dissolved
inorganic carbon (DIC). Because of these complex oceanic
processes and dynamic changes, estimation of spatiotemporal
variability of pCO2 through in-situ platforms are difficult [4].
Alternatively, the advancement of remote sensing technology
and data processing/retrieval algorithms has made it possible
to easily and accurately derive many of these parameters
from satellite data. This approach offers distinct advantages
over expensive in-situ measurements, particularly in terms of
conducting spatial and temporal analysis on large scales.

In the past few decades, multiple regional and global pCO2
approaches have been developed based on the in-situ and
satellite observations. In pioneering work, Stephens et al. [8]
investigated the distribution of pCO2 over the North Pacific
Ocean region using satellite derived SST data. The RMSE
deviation estimated using their approach in the subtropi-
cal North Pacific Ocean region is low (±17 µatm) due to
pCO2 variation in this region predominantly controlled by
the SST alone. However, for extremely biologically active
ocean regions, their method produced a higher RMSE devi-
ation (± 40 µatm) [4]. On a subsequent occasion, Ono et
al. [9] incorporated Chla along with SST in the develop-
ment of a multiple nonlinear regression (MNR) model and
demonstrated significant improvements in RMSE deviation
(±14 µatm). Furthermore, Lohrenz and Cai [10] aimed to
enhance the accuracy of pCO2 estimates by employing a com-
bination of the multiple linear regression (MLR) technique
and principal component analysis (PCA). They accomplished
this by establishing a relationship between pCO2 and bio-
physical parameters (Chla, SST, and SSS) in the northern
Gulf of Mexico’s river-dominated region.

Recently, Chen et al. [11] employed a diverse set of
machine learning approaches to estimate surface ocean pCO2
in the Gulf of Mexico (GOM) region. These approaches
encompassed a range of models, including multi-linear
regression (MLR), multi-nonlinear regression (MNR), prin-
cipal component regression (PCR), decision tree, support
vector machines (SVMs), multilayer perceptron neural net-
work (MPNN), and random forest-based regression ensemble
(RFRE) method. They have incorporated essential envi-
ronmental variables such as SST, SSS, Chla, and diffuse
attenuation of downwelling irradiance (Kd) as inputs for
these models. The findings provide valuable insights into
the intricate relationships between these oceanographic

parameters and pCO2 levels in the Gulf of Mexico, with
potential implications for marine ecosystems and the global
carbon cycle.

To better understand the global carbon cycle, it is crucial
to monitor the surface ocean pCO2 variations over the differ-
ent spatiotemporal scales. Multiple pCO2 models have been
proposed over various ocean regions [6], [7], [12], [13], [14],
[15], [16], [17], [18], [19], [20]; however, accurate estimation
of surface pCO2 in the Indian Ocean (IO) is yet to be defined
[21]. The North Indian Ocean (NIO) has distinctive physical
and biogeochemical features due to semi-annual reversing
atmospheric and oceanic circulations driven by the mon-
soonal forcing factors [22]. The Arabian and BOB regions are
widely recognizing in the NIO for its high biological produc-
tion, physical mixing (upwelling and down welling), water
mass transport, and stratification. In the Arabian Sea, Sarma
[23] estimated surface pCO2 from the carbonate chemistry
parameters (DIC and TA) by considering these as a function
of SST, SSS and Chla using MLR approach. Mohanty et al.
[24] recently employed a similar method to estimate the
spatial and temporal variability of surface ocean pCO2 fields
in the NIO region. However, this method produced large
uncertainties due to propagation of errors linked with the
calculation of DIC and TA as a parametric function of SST,
SSS and Chla. To minimize these uncertainties, Krishna et al.
[4] formulatedmultiparametric nonlinear regression (MPNR)
approach by considering the direct pCO2 relationships with
SST, SSS, and Chla and significantly improved the pCO2
estimations in the global oceans.

Despite the fact that the BoB plays a major role in the
global carbon budget, there have been very few attempts [25],
[26], [27], [28] were made to investigate the pCO2 variability
over this region. In a recent study, Joshi et al. [29] developed
and tested three machine learning methods (which includes
multiple linear regression (MLR), artificial neural network
(ANN), and extreme gradient boosting (XGB)) over the cen-
tral BoB region using SST, SSS and pCO2. While machine
learning techniques offer numerous advantages, such as their
capacity to learn from extensive datasets and provide accurate
predictions, the lack of available large datasets for training a
more precise pCO2 model and validating its results presents
a limitation in this study. In recent times, several researchers
have investigated the seasonal and inter-annual variability of
the surface ocean carbon cycle in the BoB region [24], [28],
[29]. However, these studies produced higher RMSE devia-
tions (10-30 µatm) over the region due to the consideration
of limited parameters and samples in the model formulation
and validation.

To address these issues, the present study used a mul-
tiparametric regional regression (MPRR) approach. This
method uses a combination of in-situ (pCO2, SST, and SSS)
and satellite (Chla) observations to develop and validate
a more accurate model for estimating pCO2 variability in
the BoB region. By incorporating multiple parameters, the
MPRR approach aims to provide a more comprehensive
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FIGURE 1. Location of the study region and spatial distribution of in-situ
sample locations used for developing (solid red) and validating (solid
white) the MPRR algorithm.

understanding of the complex interactions between these
variables, resulting in improved accuracy and reliability in
estimating pCO2 fields. To develop and validate the MPRR
approach, a significant amount of high-quality in-situ mea-
surements were collected from both the open and coastal
waters of the BoB region. The developed MPRR approach
is validated using independent in-situ measurement data, the
validation results revealed that the present MPRR approach
showed better performance with significant low errors and
a high correlation coefficient. Finally, to demonstrate the
spatiotemporal variability of surface pCO2 fields over the
BoB, the developed MPRR approach was implemented on
the satellite data products (SST, SSS and Chla) and generated
pCO2 maps (monthly/seasonal/annual).

II. DATA AND METHODS
A. IN-SITU DATA
In order to develop and validate the MPRR approach, the
in-situ measurements (SST, SSS and pCO2) were obtained
from the National Centers for Environmental Information
(NCEI) - National Oceanic and Atmospheric Administration
(NOAA) (https://www.ncei.noaa.gov/access/ocean-carbon-
acidification-data-system-portal/). Note that, the NCEI data
repository is not available over the coastal region of BoB;
hence, 300 in-situ observational data collected during a field
visit conducted by the National Remote Sensing Centre
(NRSC) were also included. In addition to this, the Bay of
Bengal Ocean Acidification (BOBOA) mooring measure-
ments were employed to account for the seasonal fluctuations
of surface ocean pCO2.
The BOBOA moored buoy, deployed in the BoB on

November 23, 2013, provides crucial data on pCO2 variabil-
ity and air-sea CO2 flux. As the first buoy of its kind in the
Northern Indian Ocean, it plays a vital role in understanding
seasonal and inter-annual CO2 fluctuations and associated
biogeochemical processes. The spatial distribution of in-situ
data over the study region is shown in Fig.1, whereas corre-
sponding metadata (parameter, number of samples, location,
and date) are presented in Table 1. Although, the in-situ mea-
surements are spatially biased, which represent significant

oceanic features and processes, such as major gyre sys-
tems, varying temperature and density profiles (warming and
stratification conditions), mixing and dilution processes, and
biological activity regions. The in-situ data comprises fugac-
ity of CO2 (fCO2) measurements, which were converted to
pCO2 using the following equation [14].

pCO2(µatm) = fCO2(µatm)

× [1.00436 − 4.669 × 10−5
× SST(oC)]

(1)

B. SATELLITE DATA
In order to illustrate and demonstrate the spatiotemporal
variability of surface pCO2 fields over the BoB, Mod-
erate Resolution Imaging Spectroradiometer ( MODIS) -
Aqua sensor Level-3 products of SST and Chla (spatial
resolution: 4 km) were obtained from the NASA ocean
color website (https://oceancolor.gsfc.nasa.gov/). In addi-
tion to this, Multi-Mission Optimally Interpolated - Sea
Surface Salinity (MMOI-SSS) data (spatial resolution:
25 km) were obtained from the Jet Propulsion Labora-
tory (https://podaac.jpl.nasa.gov/dataset). For the purpose
of satellite data analysis, SeaWiFS Data Analysis System
(SeaDAS) software developed by NASA Ocean Biology
Processing Group (OBPG) was used. To conduct satellite val-
idation analysis, the in-situ measurements corresponding to
the satellite pixels at 25 km spatial resolution were averaged
to establish matchups. Using monthly, seasonal, and annual
satellite data (SST, SSS, and Chla) for the reference year
2017, the spatiotemporal variability of surface ocean pCO2
was described.

C. MODEL PARAMETRIZATION
The BoB region is strongly influenced by the Indian monsoon
cycle (south-west monsoon, SWM and north-east monsoon,
NEM), enormous amount of freshwater inflow from the in the
spatiotemporal variability of surface pCO2 fields [4]. For this
variability, aMPRR approachwas adopted by relating surface
pCO2 with SST, SSS, and Chla. In total, 20284 quality-
controlled in-situ measurement data (9784 from the NCEI
data repository, 10200 from the BOBOA buoy, and 300 from
the NRSC field campaign) were considered to formulate and
validate the presentMPRR approach. Based on the spatiotem-
poral coverage, these measurements were randomly divided
into model development (12000 points) and validation (8284
points) datasets. In this study, MODIS-Aqua Level-3 daily
binned Chla data (spatial resolution: 4 km) corresponding
to in-situ locations were used due to the unavailability of
concurrent in-situ Chla observations with NCEI datasets.
In-situ measurements are instantaneous and continuous, but
corresponding satellite derived Chla have 4 km spatial res-
olution. Hence, there is a spatiotemporal mismatch between
in-situ (SST, SSS and pCO2) and satellite data (Chla). For the
purpose of spatiotemporal matchup analysis between in-situ
and satellite data, all the in-situ measurements were con-
verted into 4 km spatial resolution provided by the satellite
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TABLE 1. In-situ data used for the development and validation of MPRR approach.

FIGURE 2. Scatter plots of the relationships of pCO2 with (a) SST, (b) SSS,
and (c) Chla at 4km resolution.

sensor (MODIS-Aqua), which reduces the number of sample
points to 6864. Furthermore, these available sample points
were used to establish parametric relationships between in-
situ pCO2 and regulating control parameters (SST, SSS, and
Chla) (Fig.2).

Parametric analysis indicates that surface pCO2 have
strong correlations with SST, SSS, and Chla. Based on
the formulations of Krishna et al. [4] and strong paramet-
ric relationships over the BoB, more accurate and precise
regional regression coefficients were obtained from the
MPRR approach. The present MPRR approach improved the
regression coefficients of MPNR approach by considering
the vast number of quality-controlled in-situ measurements
covering over the coastal and open oceans regions of BoB.
Although the in-situ measurements are biased spatially, this
represents warming and stratification conditions, mixing and
dilution, and biological productive regions of BoB.

pCO2 = 11.855 SST + 4.753 SSS

− 21.777log10Chla − 125.557 (2)

The robustness and effectiveness of present MPRR approach
and accuracy assessment was carried out using independent
in-situ pCO2 datasets to generate pCO2 maps.

D. MODEL ACCURACY ASSESSMENT
The MPRR model accuracy assessment was carried out
using standard statistical parameters such as mean rela-
tive error (MRE), mean normalized bias (MNB), root mean

square error (RMSE), correlation coefficient (R2), slope, and
intercept.

MRE =
1
N

∑N

i=0

∣∣∣(pCOestimated
2 −pCOin−situ

2 )
∣∣∣

pCOin−situ
2

(3)

MNB =

∑N
i=0 (pCO

estimated
2 −pCOin−situ

2 )

N
(4)

RMSE =

√∑N
i=0 (pCO

estimated
2 −pCOin−situ

2 )2

N
(5)

The MRE and RMSE provide the systematic and random
errors, whereas other statistical parameters The MRE and
RMSE provide the systematic and random errors, whereas
other statistical parameters such as MNB, intercept, slope,
and R2 values are used to investigate the deviations of the
estimated pCO2 from the measured in-situ pCO2 values.

III. RESULTS AND DISCUSSION
This section presents the validation and inter-comparison
results of the present MPRR approach with existing stud-
ies using in-situ and satellite observations. Furthermore, the
spatial distribution and temporal variability of surface pCO2
fields are demonstrated using satellite oceanographic data.

A. VALIDATION AND INTER-COMPARISION RESULTS
The daily MODIS-Aqua Level-3 SST and Chla data (spa-
tial resolution: 4 km) and the associated 7-day MMOI-SSS
composite data (spatial resolution: 25 km) were used to
validate the satellite-derived pCO2 data with the in-situ obser-
vations over the BoB. The Level-3 MODIS-Aqua SST/Chla
and MMOI-SSS products had different spatiotemporal res-
olutions. To reduce the spatiotemporal mismatches in the
validation datasets, the MODIS-Aqua (4 km) products were
resampled according to the SSS products (25 km) using the
nearest neighborhood technique. Finally, 1300 sample points
available after elimination of points with no satellite data
and binning to 25 km spatial resolution, these points are
used for validation of in-situ and satellite data. Validation
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FIGURE 3. Validation and comparative scatter plots (a, b) of present
study, with (c, d) Shanthi et al. [26] and (e, f) Ye et al. [30].

results indicate that, direct in-situ pCO2 values are consistent
and closely correlated with in-situ derived (MRE=0.012,
MNB=0.022, RMSE= 4.75 µatm, and R2

= 0.92) and satel-
lite derived (MRE=0.020, MNB=0.032, RMSE=4.94µatm,
and R2

= 0.91) pCO2 values.

B. COMPARITIVE ANALYSIS
Furthermore, we conducted a comparative analysis and
performance assessment of MPRR approach with existing
regional algorithms [26], [30]. The validation scatter plots are
shown in Fig. 3, whereas corresponding statistical parameters
are shown in Table 2.

In contrast, our evaluation of existing regional algo-
rithms, specifically those designed for BoB region reveals
higher errors and deviations in pCO2 estimations. The
inter-comparison of the existing regional BoB algorithms
produced the errors and deviations as: MRE 0.064–0.146,
RMSE 7.64–14.26, R2 0.71–0.85 and slope 0.70–0.82
(Table 2). The effectiveness of the MPRR approach can
be attributed to its comprehensive consideration of dom-
inant parameters and by incorporating a diverse dataset
of spatiotemporal in-situ data for model development. The
MPRR approach provides a promising alternative, effectively
mitigating the limitations and uncertainties associated with
existing algorithms.

C. SPATIOTEMPORAL VARIABILITY OF pCO2 FIELDS
The air-sea CO2 fluxes and its effects on global climate
change largely depend on the spatiotemporal variability of
pCO2 fields. These fluxes are primarily controlled by the
thermodynamic effects, which depend on SST variations.

Stephen et al. [8] reported that pCO2 increases by 4.23 %
for every 1oC rise in SST. Similarly, the pCO2 field alters
due to the seasonal changes in biological production (strongly
controlled by the Chla). Hence, the surface variations of
pCO2 fields are mainly driven by the thermodynamic (SST),
stratification (SSS) and biological (Chla) production. Gener-
ally, high biological productions with low stratification and

FIGURE 4. Monthly variations of satellite derived (a) SST, (b) SSS and
(c) pCO2 with the in-situ observations over the BoB region (2017).

FIGURE 5. Spatial distribution of monthly satellite derived SST at 25-km
resolution over the BoB region (2017).

thermodynamic affected regions have lower pCO2 values,
whereas low biological production with high stratification
and thermodynamic influenced regions have higher pCO2
values [4]. The comparison between monthly variation of
satellite derived SST, SSS, and pCO2 values and correspond-
ing in-situ measurements are shown in Fig. 4.

The BoB region exhibits significant variations in SST
due to the factors such as atmospheric circulation patterns,
monsoon systems, ocean currents, and local climatic con-
ditions [31]. The variations in SST significantly influence
the pCO2 levels in seawater. Warmer SST leading to higher
pCO2 levels, while cooler SST resulting in lower pCO2
levels [4], [8]. During the pre-monsoon season (March to
May), the BoB experiences relatively warm temperatures as
the region transitions from the cooler winter months to the
upcoming monsoon season. The monsoon season (June to
September) in the BoB is characterized by heavy rainfall and
increased freshwater discharge from river runoff and precip-
itation. These monsoonal influences can lead to decreased
solar radiation penetration due to cloud coverage, resulting
in relatively cooler SST values compared to the pre-monsoon
season [32]. The monsoon season, which occurs from June to
September, brings significant rainfall and cloud cover to the
BoB region, leading to cooling of the ocean surface. How-
ever, after the monsoon period, the influence of the monsoon
weakens, resulting in reduced cloud cover and precipitation.
As a consequence, the reduction in cloud cover allows more
solar radiation to reach the ocean surface, leading to increased
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TABLE 2. Comparitive statistics of present study and other regional studies.

FIGURE 6. Spatial distribution of monthly satellite derived SSS at 25- km
resolution over the BoB region (2017).

heating of the upper layer of seawater. The decrease in cloud
cover and weakening of the monsoon’s cooling effect cause
SST to rise during the post-monsoon period (October to
November).In winter season (December to February), the
BoB region experiences relatively cooler SST values due to
prevailing northeasterly winds and cold air advection from
the Asian landmass [33]. It is important to note that SST
is just one of the factors influencing pCO2 variations in
seawater. Other factors, such as biological activity, air-sea
CO2 exchange, and vertical mixing, also play significant
roles in determining pCO2 levels. The seasonal variability
of SSS in the BoB can have significant influences on pCO2
levels during different periods of the year [24]. During the
pre-monsoon season, the BoB experiences warmer tempera-
tures and reduced rainfall. These conditions lead to increased
evaporation, which contributes to higher SSS in the surface
waters. The higher SSS can cause seawater to become more
saline, reducing its ability to dissolve CO2. As a result, pCO2
levels tend to be higher during the pre-monsoon period due
to reduced CO2 solubility.

The monsoon season in the BoB is characterized by heavy
rainfall and increased freshwater discharge from river runoff
and precipitation. This influx of freshwater leads to a decrease
in SSS in the surface waters. The lower SSS during the
monsoon season enhances the ocean’s capacity to dissolve
and hold CO2. Consequently, pCO2 levels tend to be lower
during the monsoon period due to higher CO2 solubility. The

FIGURE 7. Spatial distribution of monthly satellite derived Chla at 25-km
resolution over the BoB region (2017).

post-monsoon season have reduced rainfall and a gradual
decrease in freshwater input, leading to a slight increase in
SSS compared to the monsoon period. The higher SSS during
the post-monsoon season may cause a reduction in CO2
solubility, contributing to higher pCO2 levels in the surface
waters. The winter season in the BoB is characterized by
cooler temperatures, but there is limited seasonal variation in
SSS during this period.SSS remains relatively stable during
the winter, so its impact on pCO2 levels is less pronounced
compared to other seasons [34].

The seasonal variability of Chla in the BoB influences
pCO2 levels through its impact on biological productivity and
CO2 uptake by phytoplankton [29]. During the pre-monsoon
season, the BoB experiences relatively warm temperatures
and reduced rainfall. These conditionsmay lead to lower Chla
concentrations as nutrients become limited. The lower Chla
concentrations imply reduced biological activity and primary
productivity, resulting in less CO2 uptake by phytoplankton
during photosynthesis. As a consequence, pCO2 levels tend
to be higher during the pre-monsoon period, as less CO2
is being absorbed from the surface waters. The monsoon
season in the BoB is characterized by heavy rainfall and
increased freshwater discharge, which can enhance nutrient
availability and stimulate biological productivity [35]. During
the monsoon period, Chla concentrations typically increase
due to the abundance of nutrients, promoting phytoplank-
ton growth and higher biological activity. The higher Chla
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FIGURE 8. Spatial distribution of monthly satellite derived pCO2 at 25-km
resolution over the BoB region (2017).

FIGURE 9. Seasonal maps of MODIS-Aqua SST (a-d), SSS (e-h), Chla (i-l),
and pCO2 (m-p) data at 25km spatial resolution for the year of 2017
[Mar-May (Pre-monsoon); Jun-Sep (Monsoon); Oct-Nov (Post-monsoon);
Dec-Feb (Winter)].

concentrations imply increased CO2 uptake by phytoplankton
during photosynthesis, leading to lower pCO2 levels in the
surfacewaters asmore CO2 is being removed from the system
[24]. The post-monsoon season have reduced rainfall and
gradual changes in nutrient availability, which can lead to
variations in Chla concentrations. Depending on the nutrient

FIGURE 10. Spatial distribution annual satellite derived pCO2 at 25-km
resolution over the BoB region (2017).

FIGURE 11. Inter annual variability of pCO2 over the BoB region
(2011-2019).

levels, Chla concentrations may either decrease or remain
relatively stable during this period. If Chla concentrations
decrease, biological activity and CO2 uptake by phytoplank-
ton may also decrease, contributing to higher pCO2 levels in
the surface waters. Conversely, if Chla concentrations remain
stable, their impact on pCO2 levels may be less pronounced
during the post-monsoon season. The winter season in the
BoB is characterized by cooler temperatures and relatively
low biological activity. The surface Chla concentrations tend
to be lower during the winter due to reduced light availability
and nutrient limitations.

The lower Chla concentrations imply reduced CO2 uptake
by phytoplankton during photosynthesis, potentially lead-
ing to higher pCO2 levels in the surface waters. During
pre-monsoon, BoB have higher biological production with
moderate thermodynamic and stratification, which signifies
all the three parameters play essential role in pCO2 variations.
In the post-monsoon season, pCO2 fields are principally
controlled by the thermodynamic and stratification effects
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as compared to the biological production, indicating that
pCO2 variations are mainly controlled by the SST and SSS
variations rather than Chla.

For the purpose of graphical demonstration of spatiotem-
poral variability of surface pCO2 fields over the BoB region,
the developed MPRR approach was implemented on the col-
located satellite data of SST, SSS and Chla at 25km spatial
resolution (for spatial consistency of all the satellite derived
products) and generated monthly (Fig. 5-8), seasonal (Fig. 9)
and annual (Fig.10) maps. Monthly maps were useful for
understanding short-term trends and fluctuations in pCO2
levels. Seasonal maps allowed for identifying patterns in
pCO2 levels over different seasons, such as the influence
of monsoons on carbon dioxide levels in the BoB. Finally,
annual maps provided a broader perspective on how pCO2
levels change over an entire year, which can be useful for
assessing long-term trends and informing policy decision
related to carbon management and climate change mitigation
strategies in the BoB region.

The spatiotemporal variability of pCO2 fields over the
BoB region predominantly controlled by the Indian monsoon
system such as SWMseason (June-August), andNEM season
(December-January). Due to SWM season, the BoB region
experiences high precipitation and receives large amount of
fresh water inflow from themajor Indian rivers leads to strong
stratification (caused by the low SSS) [15], which leads to low
pCO2 fields (<350 µatm) (Fig.8).

In the coastal region of BoB, strong seasonal pCO2
fluctuations are observed (Fig. 9) due to the higher
variability of seasonal biological production, changes in
SSS (freshwater inflow), strong vertical mixing, cyclonic
eddies, organic and inorganic carbon inputs from the rivers.
Sarma et al. [15] reported that BoB have higher pCO2 fields
in the south-western region and lower pCO2 fields in the
north-western region than to the atmospheric CO2 level;
the similar structures are observed in the present study
(Fig. 10 & 11). The lower pCO2 fields in north-western
BoB are caused due to the strong influence of physical and
biological processes over the region.

IV. CONCLUSION
AMPRR approach was developed using simultaneous in-situ
measurements of SST, SSS and Chla collected during the
oceanography cruises covering open and coastal waters of
BoB. In-situ and satellite validations revealed that the MPRR
derived pCO2 values are in very good agreement with direct
in-situ measurements with significantly very low RMSE
deviation (4.75 µatm). Hence, the MPRR approach is more
robust and accurate in assessing the pCO2 fields over the
BOB.Although the present study improved pCO2 estimations
over the BoB, inclusion of satellite derived Chla data instead
of in-situ measured Chla in the model development dataset
leads to slight deviations and uncertainties due to the spa-
tiotemporal mismatch analysis. In future, pCO2 estimations
can be improved by developing in-water algorithms rather
than in-situ and satellite matchup-based approaches.
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