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ABSTRACT Skin cancer is a dangerous form of cancer that develops slowly in skin cells. Delays in
diagnosing and treating these malignant skin conditions may have serious repercussions. Likewise, early
skin cancer detection has been shown to improve treatment outcomes. This paper proposes DeepMetaForge,
a deep-learning framework for skin cancer detection from metadata-accompanied images. The proposed
framework utilizes BEiT, a vision transformer pre-trained as a masked image modeling task, as the image-
encoding backbone.We further proposemerging the encodedmetadata with the derived visual characteristics
while compressing the aggregate information simultaneously, simulating how photos with metadata are
interpreted. The experiment results on four public datasets of dermoscopic and smartphone skin lesion
images reveal that the best configuration of our proposed framework yields 87.1% macro-average F1 on
average. The empirical scalability analysis further shows that the proposed framework can be implemented
in a variety of machine-learning paradigms, including applications on low-resource devices and as services.
The findings shed light on not only the possibility of implementing telemedicine solutions for skin cancer on a
nationwide scale that could benefit those in need of quality healthcare but also open doors to many intelligent
applications in medicine where images and metadata are collected together, such as disease detection from
CT-scan images and patients’ expression recognition from facial images.

INDEX TERMS Image-metadata fusion, deep learning, skin lesion classification.

I. INTRODUCTION
Skin cancer is among the most common cancerous diseases
in many countries [1]. Early identification of skin cancer,
while still not prevalent, is critical for improving treatment
outcomes and may lead to lower mortality rates [2]. In med-
ical practice, some benign and malignant conditions are
difficult to distinguish from each other, as their dermatologic
manifestations are very resembling and can be wrongly
diagnosed as one another. For instance, skin-colored and
pearly-rolled edge nodules on facial skin can be diagnosed
clinically with cutaneous basal cell carcinoma (BCC) [3],
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but the other skin neoplasm can be a mimicker, such as
SCC, amelanotic melanoma, and trichoepithelioma. Another
example includes squamous cell carcinoma (SCC) [3], which
is clinically similar to actinic keratosis (AK), amelan-
otic melanoma, BCC, warts, spindle cell tumor, traumatic
wounds, or other benign tumors [4], while melanoma, the
deadliest form of skin cancer [5], might be challenging to
differentiate from seborrheic keratosis, melanocytic nevus,
pigmented BCC, pigmented AK, lentigo, angiokeratoma,
dermatofibroma, or some vascular abnormalities [6]. There-
fore, due to the variety of treatments and prognoses, these
dermatological disorders need actual diagnoses. Dermoscopy
is a noninvasive, in vivo diagnostic procedure used largely to
examine cutaneous lesions. Traditionally, such a procedure
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has been utilized as a guide to distinguish between benign
and malignant skin lesions before performing a skin biopsy
to provide a definitive diagnosis.

The initial presentation of these skin conditions can cause
anxiety in different aspects and encourage patients with
suspected skin conditions to visit hospitals for professional
diagnoses. These circumstances, causing the sheer influx of
concerned patients, have posed bottleneck problems in many
hospitals with insufficient dermatologists, causing hospital
congestion that may lead to a decline in the quality of
medical care [7]. Furthermore, studies have shown that
patients who live far from major hospitals, particularly in
rural regions or with poor incomes, identified long waits
and long travel distances as barriers to receiving proper
dermatologic care [8]. As a result, people in rural areas
are more likely to disregard their health concerns until it
is too late, owing to the expenses of communication and
hospitalization, as well as their hectic routines [9], [10]. These
issues behoove telemedicine solutions or other detection
technologies that can facilitate diagnoses in patients with
suspected skin disorders without requiring them to visit
major hospitals. Such systems could potentially be used by
non-dermatologists, especially primary care providers who
work in rural areas, with guidance from artificial intelligence
and remote professional dermatologists, allowing concerning
patients in rural areas to receive mainstream treatment in a
timely manner. Developing a telemedicine system for skin
cancer detection, however, requires intelligent components
that not only automatically and reliably distinguish malignant
from benign skin diseases but also demand reasonable
processing resources.

Previous literature has utilized deep learning technologies
to produce classification models for skin cancer detection
from images [11]. Furthermore, recent discoveries have
shown that patients’ metadata could provide additional
useful information when appropriately integrated into the
classifiers’ training processes. The majority of the previously
proposed metadata-fusing methods either concatenate the
encoded metadata to the image embedding [12] or use
metadata to guide visual feature extraction [13]. Although
these techniques may be logical from the standpoint of
the model, they fail to replicate the way in which people
understand the meaning of pictures in conjunction with
metadata. This is particularly relevant in the context of
diagnosing skin lesions, where dermatologists rely on a
combination of visual and metadata cues altogether rather
than sequentially. Nevertheless, most of these approaches
were only validated on a single dataset, limiting their
evidence of generalizability and robustness against varying
image quality and metadata compositions from diverse data
sources. Furthermore, the preponderance of past research on
metadata-fusing methodologies for skin lesion classification
has merely examined the efficacy of their proposed models
without evaluating their scalability in the context of system
implementation. The ultimate goal of our research is to

establish a system that can be accessible by both patients
and healthcare providers throughout the country, particularly
those whose physical access to major hospitals is hindered.
Therefore, the realization aspects of the proposed algorithms
are equally important.

In this paper, we propose DeepMetaForge, a visual
transformer-based deep-learning framework for skin lesion
classification using both images and patient metadata. The
proposed framework utilizes the BEiT [14] backbone, which
uses the self-attention mechanism to pre-train the model as a
masked image modeling (MIM) task, inspired by the masked
language modeling (MLM) task that was found successful for
pre-training transformer-based language models [15]. To our
knowledge, we are the first to evaluate the BEiT backbone
on the skin lesion classification problem. Furthermore,
we propose the Deep Metadata Fusion Module (DMFM)
that combines the visual features extracted from BEiT and
metadata encoded by a convolutional neural network (CNN)
while simultaneously compressing and decompressing the
amalgamated information, similar to the process of forging
metal decoration onto a steel plate. We hypothesize that
fusing the metadata while compressing the visual features
allows the metadata to blend in with the image information
more effectively. This process intuitively aligns with how
humans perceive semantics from metadata-accompanied
images, where metadata is interpreted simultaneously while
digesting the image content rather than sequentially. The
experiment results on four public datasets demonstrate that
our proposed DeepMetaForge framework exhibits superior
performance compared to the best image classification
backbone and the state-of-the-art metadata-fusing approach
by a large margin. In addition, the scalability analysis
found that the BEiT backbone utilized in the proposed
framework is scalable and could potentially be implemented
in telemedicine applications where the framework can be run
on both low-resource devices and as API services.

In future directions, the proposed framework could be
generalized to research problems outside of imaging der-
matology in which data consists of pictures and associated
metadata, such as artwork interpretation and document figure
categorization. Furthermore, the next generation of the BEiT
backbone (BEiT-v3) uses Multiway Transformers to perform
masked ‘‘language’’ modeling on images, texts, and image-
text pairs, allowing such a backbone to be used in a variety of
vision-language downstream tasks, including visual question
answering, visual reasoning, and image captioning [16]. Such
technologies could give rise to many innovative, intelligent
medical innovations, such as the ability to explain models’
decisions with natural language responses and to retrieve
hand-written medical notes with natural language queries.

In summary, this research’s key contributions are as
follows:

• We propose a novel framework for skin lesion classifi-
cation, DeepMetaForge, that uses BEiT as the backbone
image encoder as well as a novel Deep Metadata
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Fusion Module that combines the visual features with
encoded metadata while compressing the amalgamated
information. Such a novel concept is inspired by an
intuition that humans comprehend metadata and images
simultaneously while distilling a conclusion rather than
sequentially.

• We empirically evaluate our proposed framework on
four public skin lesion image datasets and compare the
classification performance with stand-alone backbones
and state-of-the-art metadata-fusing methods for skin
lesion classification [12], [17], [18].

• We empirically investigate the scalability of the pro-
posed framework by analyzing the trade-off between
the efficacy and efficiency of the models. The insights
shed light on the implementation aspect when extending
the proposed framework in a real-world telemedicine
system.

• We present parameter sensitivity analyses that impact
the performance of the proposed framework, such as
the impacts of different metadata modes, compression
ratios, module components, and backbone configura-
tions.

The rest of this article is organized as follows. Section II
discusses the background of skin lesion classification from
images and relevant approaches to addressing such a
task. Section III explains the proposed DeepMetaForge
framework, including the network architecture, the Deep
Metadata Fusion module, the datasets used for validation,
and the evaluation protocol. Section IV reports highlighted
experiment results as well as relevant discussions. Finally,
Section V concludes the paper.

II. BACKGROUND AND RELATED WORK
Automatic skin lesion classification has been a long-
standing research problem in computational sciences and
medicine [19]. The ability to automatically recognize can-
cerous skin conditions from images could prove helpful
in building computer-aided systems for dermatologists.
Furthermore, telemedicine applications could adopt such
technologies to enable medical doctors to early diagnose
patients who do not have access to hospitals with guided
information from artificial intelligence. Such early-stage
detection of malignant skin diseases could vastly increase
the chances of successful treatment [20]. Various computer
vision and machine learning techniques have been proposed
to address skin lesion classification problems. The early
techniques focused on extracting discriminative character-
istics from images, including segmentation, lesion border,
color, and other texture-based features [21]. These extracted
features can then be used to train traditional machine-learning
models such as Support Vector Machine (SVM) [22], neural
networks [23], and CART [24].
Deep learning technologies have evolved in recent years

to ease end-to-end training of machine learning models
while reducing the need for human expertise to engi-
neer features [25]. The availability of public datasets has

expedited the growth of emerging deep-learning techniques
by facilitating standard validation benchmarks. In many
applications, including skin lesion classification, studies
have reported deep learning approaches to perform supe-
rior to the traditional machine learning models trained
with engineered features [26], [27]. In addition, the use
of advanced deep learning techniques has facilitated the
analysis and acquisition of knowledge from various kinds
of images, therefore effectively tackling complex issues,
including the segmentation of retinal layers [28] and the
identification of objects in infrared thermal images [29], [30]
where immune-based intelligent techniques can be used for
diagnosis [31] and feature extraction [32] tasks. This section
reviews recent deep-learning techniques applied to skin
lesion classification problems. The first subsection discusses
the techniques that utilize only image information. Then,
since a novelty of our proposed network architecture is the
ability to forge metadata onto image embedding, we also
discuss relevant studies that utilize patients’ metadata to
enhance skin lesion classification in the second subsection.

A. SKIN LESION CLASSIFICATION USING ONLY IMAGES
Malignant skin lesion recognition from images can be framed
as an image classification problem where conventional
off-the-shelf pre-trained image embedding models can be
directly applied.Jiahao et al. [33] evaluated the applica-
bility of VGG-16, ResNet-50, and EfficientNet-B5 on the
ISIC 2020 dataset and found EfficientNet-B5 to yield the
best AUC-ROC. Similarly, Zhang and Wang [34] found
DenseNet-201 to perform the best when compared with
VGG-16 and ResNet-50 on the ISIC 2020 dataset.

While pre-trained image models could be conveniently
applied to the skin lesion datasets, the performance gaps
still existed that called for the invention of more advanced
network architectures. Zhang et al. [35] proposed to optimize
the convolutional neural networks (CNN) with an improved
version of the whale optimization algorithm [36] for skin can-
cer detection. Dermquest andDermISwere used as the bench-
mark datasets to compare their proposed method with an
ordinary CNN, VGG-16, LIN, Inception-v3, and ResNet-50.
Liu et al. [37] proposed incorporating doctors’ perspectives
when diagnosing skin cancer, including zooming, observing,
and comparing into their proposed clinical-inspired network
(CI-Net) using ResNet as the backbone. The evaluation
was conducted on the ISIC 2016 - 2020 and PH2 datasets.
Kaur et al. [38] developed LCNet, a novel end-to-end
CNN-based framework that incorporates image resizing,
oversampling, and augmentation specifically designed for
melanoma skin lesion classification. Their method was
tested on ISIC 2016, ISIC 2017, and ISIC 2020 datasets
and was compared with conventional image classification
backbones such as ResNet-18, Inception-v3, and AlexNet.
Recently, Reis et al. [39] invented InSiNet, a deep con-
volutional approach for skin cancer detection and segmen-
tation. They specifically raised the concern that typical
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deep learning image encoding backbones can be extensive
in size and consume high computational resources and
proposed a new network with few parameters, resulting
in a relatively lightweight model capable of cropping,
segmenting lesions, and removing hair noises from the input
images. Their method was evaluated on the ISIC 2018,
2019, and 2020 datasets, comparing against Inception-v3,
DenseNet-201, ResNet-152v2, and EfficientNet-B0.

While deep learning techniques have been proposed
to solve the skin lesion classification problem, a signifi-
cant drawback of such approaches would be the lack of
explainability when making predictions [40]. In the area
of automatic skin cancer diagnosis, many attempts were
made to explain the decisions from deep learning models.
López-Labraca et al. [41] designed an interpretable system
that allows CNN neurons to identify visual features and
analyzes activation units to extract useful information for
decision-making. Using their proposed system, they found
that a small subset of channels was deemed relevant for
a dermatologist compared to those of the baseline system.
Recently, Rezk et al. [42] introduced an interpretable
skin cancer diagnostic method that uses a skin lesion
taxonomy to gradually acquire dermatological knowledge
from a modified DNN architecture. These models were
trained using clinical photographs that could be readily
accessible to non-specialist healthcare professionals. The
empirical investigations showed that the applied taxonomy is
helpful for enhancing classification accuracy, comprehending
the reasoning behind illness diagnosis, and identifying
diagnostic mistakes. In addition, they used a sophisticated
gradient-based class activation map approach that illustrates
visual explanations when the model makes decisions.

The above-mentioned literature has investigated and pro-
posed methods to improve skin lesion classification from
images. Different studies focused on addressing challenges
posed by the available skin lesion datasets, such as developing
novel network architectures specific to the problem at
hand, handling data imbalance, improving image quality,
and enabling the models to provide valuable explanations
when making decisions. However, all such methods only
rely on skin lesion images as the sole information sources.
Typically, during clinical dermoscopy, dermatologists also
collect additional information about the patients, such as
gender, age, and behavior (e.g., smoking, drinking, etc.), and
about the diagnosed lesions, such as anatomical location,
color, and bleeding. This research aims to investigate whether
such metadata could help to improve the classification
performance when incorporated into the network architecture
while learning the image information. Therefore, the follow-
ing subsection discusses relevant literature that attempts to
use patients’ metadata to improve skin lesion classification
performance.

B. METHODS UTILIZING BOTH IMAGES AND METADATA
Oftentimes, images are accompanied by metadata for com-
plemented information. Fusing different data sources to

enhance model performance has long been investigated in
computer vision [43], [44], [45], [46]. While traditional
image classification models only require images as inputs,
several studies have found that incorporating metadata during
the training process could be helpful [47], [48], [49].
Integrating metadata into image classification could be as
simple as concatenating metadata to the image features,
training a dedicated learner with metadata and combining
the probability outputs with those from image classifiers,
or fusing metadata into the network architecture. Boutell
and Luo [50] used a Bayesian network to incorporate
camera metadata, such as brightness, flash, and subject
distance, for scene image classification. Zhu et al. [51]
extracted text lines from an image and combined them with
the image content. Experimenting with an SVM classifier
yielded an improvement from 81.3% to 90.1% in terms of
accuracy. Yang et al. [47] enhanced theme classification using
images from maps and their metadata such as name, title,
keywords, and abstract. Langenberg et al. [48] used traffic
lights’ contextual metadata to assign each traffic light to
its appropriate lane. Ellen et al. [49] employed geometric,
geo-temporal, and hydrographic context metadata to improve
plankton image classification. Lee et al. [52] proposed to
combine deep learning models and traditional hand-crafted
visual metadata features for biomedical image modality
classification. Jony et al. [53], [54] fused image features and
metadata to detect flooding in Flickr images.

In classifying skin lesions, as many public datasets contain
patient information with lesion photos, the literature has
developed approaches for exploiting such extra metadata to
enhance classification performance. While a study reported
that integrating patients’ metadata, such as age, gender, and
anatomical site, using a weighted average, concatenation-
based, and squeeze-and-excitation (SE) approaches did not
overall improve the skin lesion classification performance in
a case study of 431 patients [55], some reported otherwise,
especially those experimenting their proposed methods on
larger datasets. Nunnari et al. [56] proposed concatenating
probability from the image classifier with metadata when
training traditional machine learning models. However,
if neural networks are used as the primary classifier, then
they proposed to concatenate one-hot encoded metadata
with the image embedding layer. Their method yielded a
19.1% accuracy improvement on the ISIC 2019 dataset
compared to classifiers trained only with image information.
They also found that among the metadata attributes, age
provided the most discriminative information, followed by
body location and gender. Gessert et al. [12] proposed to
encode metadata with two dense layers with dropout options
and ReLU activation functions. The encoded metadata is
then concatenated with the image embedding from the
EfficientNet backbone. The choice of EfficientNet was
particularly explored due to its ability to scale the model’s
width and depth according to the associated input size,
leading to better classification results while using fewer
parameters compared to other traditional image encoding
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backbones. Their approach was evaluated on the ISIC
2019 dataset, yielding better performance than SENet-
154, ResNext WSL, and EfficientNet classifiers trained
only with image information. Ningrum et al. [17] focused
on developing algorithms for melanoma detection from
dermoscopic images using low-resource devices. Similar to
Gessert et al. [12]’s work, they proposed to encode patients’
metadata with a layer of the artificial neural network before
concatenating it to the image embedding from a CNN
model. Their method was evaluated on the ISIC 2019 dataset
and was shown to be superior to using the CNN model
alone. In addition to simply concatenating one-hot encoded
metadata to image embedding, Li et al. [57] proposed to
embed metadata with two neural networks using ReLU and
Sigmoid as activation functions, then fused the embedded
metadata with the image embedding using the multiplication
function. While their method was shown to be superior
to the concatenation-based approach, the improvement was
marginal on the ISIC 2018 dataset. Furthermore, their
concatenation baseline simply used the one-hot encoded
metadata as-is without encoding it first, as done in their
proposed multiplication-based method.

Another scheme of fusing metadata into visual information
is using metadata to guide the image feature extraction with-
out changing the dimension of visual feature maps, similar
to the attention mechanism [58]. Pacheco and Krohling [13]
proposed MetaBlock that uses an attention mechanism to
supervise visual feature extraction. The block first encodes
the patients’ metadata and multiplies it with the image
embedding where the hyperbolic tangent gate is used. These
intermediate parameters are concatenated with another set of
encoded metadata features, where the sigmoid gate is used
to produce the final supervised visual features. Their method
was evaluated on the ISIC 2019 and PAD-UFES-20 datasets.
Similarly, Pundhir et al. [59] proposed a multiplication-based
scheme to combine patients’ metadata with encoded lesion
images. However, their proposedHyperpametricMeta Fusion
Block multiples image embedding with encoded metadata
using Leaky ReLU as the activation function then con-
catenates the intermediate parameters with another encoded
metadata, after which the Swish [60] activation is used to
produced supervised features. Their method was evaluated
on the PAD-UFES-20 dataset, varying backbones such as
MobileNet-v2, VGGNet-13, ResNet-50, EfficientNet-B4,
and DenseNet-121. Cai et al. [61] proposed SLE (Soft Label
Encoder), where metadata attributes are encoded as soft
labels rather than binary values as done by the one-hot
encoder. The soft labels are then used in a mutual attention
decoder to produce the final embedding for classification
with a fully connected layer. Their proposed method was
evaluated on the ISIC 2018 dataset. Recently, Tang et al. [62]
presented FusionM4Net, a multi-stage multi-modal learning
algorithm for multi-label skin disease classification, which
consists of two stages: first, learning feature information from
clinical and dermoscopy pictures, and second, combining

patient metadata and decision information from the two-
modality images. Experiments conducted on the Seven-Point
Checklist (SPC) dataset demonstrated that FusionM4Net
was more accurate than any other existing state-of-the-art
approach. A weakness of their approach is its dependence on
two image sources (i.e., dermoscopic and clinical pictures),
which may not be available in other datasets or practical
scenarios.

While many studies have proposed various ways to merge
patients’ metadata into skin lesion classifiers’ learning mech-
anisms, including concatenation-based, multiplication-based,
and attention-based methods, the above-mentionedmetadata-
fusion approaches still fall short of analyses in several
practical aspects. First, most of the proposed algorithms only
validated their methods on one dataset, while generalizability
must be evidenced by controlled experiments onmultiple data
sources with diverse characteristics. Second, it is our overar-
ching intention to develop a telemedicine system accessible
to healthcare practitioners and patients, especially those in
suburban areas in developing countries where physical access
to modern medical equipment is limited and experienced
dermatologists are scarce. In doing so, the scalability aspect
of the classification models must be explored to determine
the appropriate deployment options to implement. In this
paper, we propose a deep vision-transformer metadata-
fusing framework for skin lesion classification. The novelty
of our framework lies in two folds. First, we adopted
BEiT (Bidirectional Encoder representation from Image
Transformers), which uses a masked image modeling task
to pre-train vision transformers [14]. Second, we propose
a novel Deep Metadata Fusion Module (DMFM) to merge
encoded metadata onto the image embedding during the
compression, mimicking the process of ‘‘forging’’ decoration
onto a metal piece, hence the name DeepMetaForge. Our
proposed method is generalizable as evidenced by the
experiments on four publicly available skin lesion datasets,
comparing with both stand-alone image encoding backbones
and the state-of-the-art metadata-fusing methods proposed
by Gessert et al. [12] and Ningrum et al. [17]. Furthermore,
we analyze the scalability of our proposed framework by
studying the trade-off between classification performance
and computational resource consumption.

III. METHODOLOGY
The novelty of our proposed DeepMetaForge framework
is the use of BEiT backbone and the metadata forging
mechanism. This section first discusses the proposed network
architecture in detail. Then, the rest of this section walks
through the experiment setup, including datasets, computa-
tional environments, and evaluation protocol.

A. NETWORK ARCHITECTURE
This section provides an overview of our network architec-
ture, depicted in Fig. 1. Our network features a multi-modal
base that can merge feature maps from various inputs. The
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FIGURE 1. Overall DeepMetaForge network architecture.

network structure comprises three main parts: the image
encoder, the meta encoder, and the combining module. The
image encoder utilizes the state-of-the-art vision transformer
backbone, BEiT [14], designed to extract high-level visual
features from images. On the other hand, the metadata
encoder employs a convolutional network structure to extract
the feature map from the input data. To combine the feature
maps from the image encoder and metadata encoder, we use
a merging module called Deep Metadata Fusion Module
(DMFM). This module effectively combines two feature
maps to produce a more comprehensive and informative
representation of the input. Overall, our network architecture
is designed to take advantage of the strengths of both the
image and metadata while effectively fusing them using a
novel deep feature-level merging module.

1) IMAGE ENCODER
Our proposed architecture uses the Bidirectional Encoder
representation from Image Transformers (BEiT) [14] as the
image encoder. It has been shown to outperform existing
supervised pre-training models in masked image modeling
tasks. The BEiT image encoder, illustrated in Fig. 2, tokenizes
the original image into small visual tokens and randomly
masks some image patches. These masked patches are then
fed into the backbone transformer. In summary, the BEiT
image encoder is a highly effective tool for pre-training
vision transformers and an excellent choice for our network
architecture.

FIGURE 2. Illustration of the BEiT network structure, adapted from [14].

2) METADATA ENCODER
The metadata encoder in our architecture is based on a
convolutional neural network (CNN), consisting of two sets
of convolutional layers, each including a one-dimensional
convolutional filter, a normalizer, and an activation function.
The computation of the metadata encoder is described by (1),
where φ represents the one-dimensional convolutional filter,
ξ represents the one-dimensional batch normalizer, and
ρ represents the Rectified Linear Unit (ReLU) activation
function.

y = ρ[ξ (φ (x))] (1)

Let y ∈ R and x ∈ R denote the feature map from a set of
convolutional layers and the input feature map. The metadata
encoder is one of the critical components of our architecture,
as it extracts the feature map from the input data. By utilizing
a CNN structure, we can effectively extract relevant features
from the input, which can be integrated with the feature map
generated by the image encoder to create a comprehensive
representation of the input data. The first CNN converts the
input metadata into a feature map with 256 channels. The
second converts the output of the first set into the same shape
as the output of the image encoder. This allows us tomerge the
feature map generated by the meta encoder with the feature
map generated by the image encoder using our proposed
DMFM, resulting in a more comprehensive and informative
representation of the input data.

3) DEEP METADATA FUSION MODULE (DMFM)
The Deep Metadata Fusion Module (DMFM) is a merging
component in our architecture that fuses the feature maps
generated by the image encoder and metadata encoder.
This module is adapted from the Fused Module, introduced
by Vachmanus et al. [63], to handle multi-modal visual
information. However, the Fused module was designed
for two-dimensional feature maps, while DMFM merges
one-dimensional feature maps by removing the convolution
with rate branch (cbr). Equation (2) defines the calculation of
DMFM. Let x̂ ∈ Rc represent the concatenation result of the
feature maps from the image encoder and metadata encoder,
and ẑ ∈ R2c denote the output feature map from DMFM, the
asterisk symbol (∗) represents the concatenation operation,
and z is calculated according to Equation (3).

ẑ = z ∗ x̂ (2)

z = µ2(µ1
(
x̂
)
) (3)

The function µ(x) is described by Equation (4), where ϕ is
the dropout operation with a 0.4 probability.

µ(x) = ϕ[ρ(φ (x))] (4)

The result of µ1 is a feature map with γ
c channels, where γ

denotes the compression ratio. The function µ2 converts the
feature map back to the input shape of themodule. As a result,
the feature map shape is roughly four times larger than the
input shape. In our architecture, we use a compression ratio
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of 8. The DMFM plays an essential role in our architecture,
allowing us to merge the feature maps generated by the image
encoder and meta encoder into a more comprehensive and
informative representation of the input data.

The DMFM’s operation is designed to imitate how a skin
lesion image with metadata is comprehended. Specifically,
one would understand the metadata and the associated skin
lesion presented in the image altogether concomitantly while
deducing a conclusion about whether it is a cancerous lesion.
Our concept contradicts the popular concatenation-based
method [12], where the simple concatenation of visual and
metadata features are fed to the fully connected layer for
classification, hence forcing the classifier to learn the two
information pieces sequentially rather than simultaneously.

4) CLASSIFICATION LAYER
The classification layer of the network is taskedwith reducing
the channel of the fused feature map from the DMFM to
a binary classification based on whether the skin lesion is
benign or malignant. This layer comprises a fully connected
layer, a one-dimensional batch normalizer, and a Rectified
Linear Unit (ReLU) activation function. As previously
described, the output of this layer is the ultimate output of the
whole network structure and is vital for making an accurate
prediction since it converts the DMFM-generated featuremap
into a binary classification. By applying a fully connected
layer, the feature map’s dimension is efficiently decreased to
provide a reliable prediction of the skin condition.

The primary objective of the proposed network is to
enable the detection of malignant skin lesions by binary
classification rather than focusing onmulticlass classification
for more detailed identification of specific forms of skin
cancer. This design choice is based on the following
justifications. First, our primary objective is to use the model
inside a telemedicine framework, with the primary purpose
of screening individuals exhibiting symptoms of skin cancer
to determine the need for further diagnosis by professional
dermatologists. Hence, precise identification of malignant
skin lesions is crucial. Framing the problem as a multiclass
classification task, while providing more details about the
predicted skin conditions, could not only be unnecessary
for the objective but also result in poorer classification
accuracy [64]. Furthermore, the primary contribution of this
study is in the novel network architecture, which necessitates
empirical validation for its suitability in accommodating
diverse datasets with various types of skin conditions. Hence,
to provide an equitable evaluation of the network’s efficacy
across various datasets, it is essential that the prediction
task remains constant, hence enabling a comparative exam-
ination of the influence of input data on the accuracy
of the model. Finally, framing the problem as a benign-
vs-malignant classification task allows a fair comparison
with several reputable methods addressing the skin lesion
classification [12], [17], [18] that also addressed the problem
using binary classification methods. Nevertheless, extending

TABLE 1. Statistics of the datasets used in this research.

FIGURE 3. Example skin lesion images from each dataset. By column: ISIC
2020, PAD-UFES-20, PH2, and SKINL2. By row: Malignant and Benign.

the proposed network for multiclass classification is trivial
and can be achieved bymodifying the output layers as needed.

B. DATASETS
We evaluate our proposed network architecture on four
publicly available skin lesion datasets: ISIC 2020 [65], PAD-
UFES-20 [66], SKINL2 [67], and PH2 [68]. The images
in the PAD-UFES-20 dataset were taken with smartphones,
while the others were with dermoscopy cameras. All of these
datasets include both images and metadata, which provide
complementary information for skin lesion classification.

The dataset contains a wide range of metadata, each
tailored to specific categories. For example, the PH2 dataset
contains the Histological Diagnosis, Asymmetry, Pigment
Network, Dots/Globules, Streaks, Regression Areas, Blue-
Whitish Veil, as well as color characteristics such as White,
Red, Light-Brown, Dark-Brown, Blue-Gray, and Black. The
SKINL2 dataset provides information on Gender, Age, Foto-
type, and Melanocytic attributes. The PAD-UFES-20 dataset
includes data on smoking and drinking habits, age, pesticide
exposure, gender, skin cancer history, cancer history, access
to piped water and sewage systems, Fitzpatrick score, region,
lesion diameter measurements, as well as factors like itchi-
ness, growth, pain, changes, bleeding, elevation, and biopsy
status. Lastly, the ISIC 2020 dataset encompasses information
regarding gender, age approximation, anatomical site of the
lesion, and diagnosis. These comprehensive datasets offer
valuable insights for a wide range of dermatological and
epidemiological research. A detailed description of each
dataset is provided in Table 1. Example images from each
dataset are depicted in Fig. 3.

Each dataset is divided into a training set, which comprises
70% of the data, a 10% validation set, and a testing set,
which comprises the remaining 20%. To further enhance the
reliability of our results, we employ 5-fold cross-validation
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for all experiments conducted in this paper. During the
training phase, we randomly split the training set into eight
parts, with one part designated as a validation set for
hyperparameter tuning. To improve the model’s performance,
we apply pre-processing techniques such as resizing all
images to 224 × 224, with some tests conducted using
384, depending on the pre-trained models’ architectures.
Data augmentation techniques such as normalization, random
flipping, and random rotation are performed to allow the
model to handle a range of diverse inputs.

By validating our proposed architecture on these various
datasets, we can show its efficacy in accurately classifying
benign and malignant skin lesions in a wide range of
scenarios. The use of these publicly available datasets is
essential for demonstrating the practical generalizability of
our proposed architecture to diverse sources of skin lesion
images (i.e., smartphones and dermoscopy cameras) and
different compositions of metadata details.

C. COMPUTATIONAL ENVIRONMENTS
During the training process, RGB images are resized to a
height and width of 224 to meet the requirements of the
backbone. The experiment is conducted on a single Linux
machine with NVIDIA Geforce RTX 3090 GPU and Intel
i7-12700K CPU with 32 GB of memory. The deep learning
framework Pytorch is utilized to construct and train the
network model. The network encoder is pre-trained on each
original publication, while the other layers’ parameters are
randomly initialized. To re-adjust the weights of the training
loss for each class, a cross-entropy function is used as
Equation (5), wherem represents the number of classes, p the
predicted probability observation, and q the binary indicator
(0 or 1).

Loss = −
1
m

∑
m

qlog(p) + (1 − q)log(1 − p) (5)

Momentum SGD is used as the optimization algorithm,
whose parameter is set to 0.9. The initial learning rate
( rateini) is set to 0.001 with a decay of 0.90 at every
five epochs, and the learning rate (lr) is calculated by
Equation (6), where epochs denotes the global step epochs
of training and dpe is the decay per epoch.

lr = rateini × decay
epochs
dpe (6)

D. EVALUATION METHODS
The network models are evaluated using a variety of
metrics, including precision, recall, F1 score, accuracy,MCC,
sensitivity, specificity, and NPV, to provide a comprehensive
analysis of its effectiveness in skin lesion classification.
Let the malignant class be referred to as the positive class
and the benign class as the negative class. Precision measures
the proportion of true positives among all predicted positives,
while recall measures the proportion of true positives among
all actual positives. The F1 score combines precision and
recall to provide a balanced evaluation of the network’s

FIGURE 4. Comparison of the accuracy of training and validation across
training iterations (epochs) using the BEiT-base-224 model on the ISIC
2020 dataset.

performance. In this research, we present precision, recall,
and F1 of both the positive and negative classes. The macro-
average F1 is simply the average of F1 scores from both
classes, used to represent the overall classification efficacy.
Accuracy measures the proportion of correct predictions
among all predictions, while MCC, or Matthews correlation
coefficient, considers true and false positives and negatives
to evaluate the performance of the network. Additionally,
sensitivity and specificity measure the proportion of true
positive and true negative predictions, respectively, and NPV,
or negative predictive value, measures the proportion of true
negative predictions among all negative predictions.

IV. EXPERIMENT, RESULTS, AND DISCUSSION
In this section, we evaluate the effectiveness of the proposed
network structure in comparison to other existing approaches
for skin lesion classification. Our evaluation is conducted
on multiple publicly available datasets, as described in
Section III-B. In addition to evaluating the overall per-
formance of the proposed network, we also assess the
construction and optimization of the DMFM, including the
evaluation of individual components using ablation studies,
as well as determining the optimal compression ratio for
merging feature maps generated from different sources.
By thoroughly evaluating the proposed approach, we can
identify the strengths and weaknesses of the network and
provide insights for future improvements in skin lesion
classification.

During the training process, the primary goal is to
identify the optimal training weights, which is achieved
by closely monitoring the accuracy of the validation set.
To address potential overfitting issues, a simultaneous check
is kept on both the validation accuracy and the training
accuracy. In Fig. 4, the relationship between accuracy and
training iterations across epochs using the BEiT-base-224
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model on the ISIC 2020 dataset is illustrated. Given the
dataset’s substantial size, it can be observed that the training
accuracy stabilizes shortly after the first epoch. Both the
training and validation accuracy values consistently remain
at approximately 98-99%.

A. THE DMFM OPTIMIZATION
The DMFM is primarily determined by the compression
ratio, denoted as γ , which controls the size of the feature
map in the module. The feature map is compressed to a
smaller shape during the merging process to facilitate the
combination of the different feature maps. To determine the
optimal compression ratio, we varied the value of γ according
to powers of 2 to avoid any remainder during the separation
process. Specifically, we tested compression ratios of 1, 2, 4,
8, 16, 32, and 64 in our experiments.

In this experiment, the performance of the DMFM was
tested on the ISIC 2020 dataset, which is the largest dataset
used in this research. The primary objective was to evaluate
the DMFM’s capability to merge feature maps generated
from various sources, including both image and metadata,
effectively. The evaluation metrics used were precision,
recall, and F1 score for each class. By testing the DMFM
on different datasets while varying the compression ratio,
we could determine the optimal configuration for accurately
classifying skin lesions.

TABLE 2. Comparison between different compression ratios on the ISIC
2020 dataset.

The results of the experiment evaluating the performance
of the DMFM on the ISIC2020 dataset are presented in
Table 2. To ease analyses, the comparison of F1 scores is
shown in Fig.5. Our primary objective was to determine the
optimal compression ratio to effectively merge the feature
maps generated from different sources, including both images
and metadata, and accurately classify skin lesions as benign
or malignant. The results show that the best compression
ratio is 8, which produces the highest macro-average F1
score of 92.0%, roughly 18.4% higher than the lowest
F1 score obtained in the experiment. In addition to the
average F1 score, we also analyzed the precision and recall
values for each class to evaluate the performance of the
DMFM with varying compression ratios. The results show
that the compression ratio of 8 generates the highest recall
value for the malignant class, which is about 66.9% higher
than the lowest recall value obtained in the experiment.
Moreover, this compression ratio provides a well-balanced
performance between precision and recall for both the benign

FIGURE 5. Comparison of F1 scores from different compression ratios.
The blue, orange, and green lines represent the F1 scores of the benign
class, malignant class, and macro average between the two classes,
respectively.

and malignant classes, which is important in accurately
classifying skin lesions. The results of this experiment
demonstrate that the DMFM with a compression ratio of
8 is the most efficient configuration to merge metadata
features into image data features for accurate skin lesion
classification. By varying the compression ratio and evaluat-
ing the performance on different datasets, we can determine
the optimal configuration for the DMFM to effectively
forge feature maps generated from different sources. These
findings contribute to the development of an effective and
accurate system for skin lesion classification, which can aid
in the early detection and treatment of skin cancer.

B. ABLATION STUDIES ON DMFM
Ablation studies analyze the impact of individual components
on a model’s performance. In DMFM, they can provide
insights into the compression branch and skip feature map.
By removing one component at a time and analyzing
performance, we can understand their importance and how
they work together. This can guide the design of more
effective models for skin lesion classification.

Table 3 displays the results of our experiment assessing
the performance of the DMFM on the ISIC2020 dataset.
To further investigate the impact of individual components
on the overall performance of the model, we conducted an
ablation study by removing the compression branch and
the skip feature map, one component at a time. We then
evaluated the performance on the same dataset to determine
the importance of each component with respect to skin
lesion classification performance. The results indicate that the
combination of the compression branch and skip feature map
yields the highest F1 score among all combinations. Notably,
the proposed compression branch with the compression
ratio (γ ) can improve the efficiency of concatenation by
31.2%. Additionally, the precision of the malignant class was
improved by approximately 1.8 times. These findings demon-
strate the impact of both components on achieving accurate
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TABLE 3. Comparison of the classification performance when using DMFM with different module components on the ISIC 2020 dataset. 1 F1 denotes the
relative performance difference (improvement) of the best-performing method compared to each other approach.

TABLE 4. Comparison of the classification performance when using DMFM with different feature map merging methods on the ISIC 2020 dataset. 1 F1
denotes the relative performance difference (improvement) of the best-performing method compared to each other approach.

skin lesion classification and highlight the effectiveness of
the proposed compression branch in improving the DMFM’s
performance.

Another crucial aspect in developing the DMFM architec-
ture involves exploring various methods of merging feature
maps. To achieve optimal skin lesion classification, another
experiment was conducted with different merging operations
for x̂ in Equation (2), including summation, multiplication,
and concatenation. These operations play a pivotal role in
fusing the information from the compression branch and
the skip feature map. Through rigorous testing and analysis,
the aim is to determine which merging technique yields the
best results, ultimately refining the DMFM architecture and
advancing the field of skin lesion classification.

Table 4 presents the experimental results for various
merging operations of DMFM on the ISIC2020 dataset. The
findings indicate that employing the concatenation operation
yields the highest F1 score compared to the other operations.
This results in approximately a 25.6% improvement over
the summation operation and a 14.9% increase over the
multiplication operation. Consequently, the concatenation
operation was the optimal choice for merging with DMFM.

C. IMAGE ENCODER BACKBONE COMPARISON
The proposed network architecture comprises two encoders
that extract different feature maps: the metadata encoder
and the image encoder. The metadata encoder uses a basic
CNN without pre-trained weights, while the image encoder
employs a large network structure that can extract or scope
into multiple values in the image. To optimize training time
and computational resources, the image encoder is initialized
with pre-trained weights specific to our task. In this section,
we conducted experiments to determine the optimal network
backbone for the image encoder by testing three well-known
network structures: the ResNext [69], EfficientNet [70], and
BEiT [14] models. Our primary objective was to identify the
most suitable model for accurately classifying skin lesions.

The results of our experiments, presented in Table 5,
demonstrate that the ResNext model achieved an F1 score
of approximately 85-86%, while EfficientNet ranges from
50-87% (depending on the model size), and BEiT achieves
an F1 score of 90-92% on the ISIC 2020 dataset. The BEiT
model outperforms the other models on the malignant class,
resulting in the highest F1 score. Therefore, we conclude
that the BEiT model is the most suitable image-encoding
backbone for our proposed architecture. The high F1 score
obtained using the BEiTmodel demonstrates its effectiveness
in extracting image features and combining them with
metadata to accurately classify skin lesions.

D. IMPACT OF METADATA INTEGRATION
Metadata, which includes patient information such as age,
gender, anatomical location of the lesion, and histopatho-
logical information, is an essential factor that can provide
additional information about a skin lesion that is not captured
by image data alone. Incorporating metadata into skin lesion
classification can be critical in accurately classifying skin
lesions. For example, age can be a significant factor in
identifying malignant melanoma, while the location of the
lesion can provide insight into its potential malignancy.
By combining metadata with image data, we can obtain a
more comprehensive understanding of the lesion, leading to
improved accuracy in classification. In our study, we aimed
to investigate the impact of metadata on skin lesion clas-
sification by comparing the performance of our proposed
model with and without metadata. We also tested the model
using dummy metadata, where all data slots were set to
zero, to evaluate the effect of metadata on model efficiency.
By analyzing the results across different datasets, we aimed
to gain insights into the importance of metadata in accurately
classifying skin lesions and identify the optimal approach for
incorporating metadata into the model.

Our analysis revealed that incorporating metadata
improved classification performance on most datasets for
the average F1 score, as presented in Table 6. However,
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TABLE 5. Classification performance of the DMFM with different image-encoding backbones on the ISIC 2020 dataset. 1 F1 denotes the relative
performance difference (improvement) of the best-performing method compared to each other approach.

TABLE 6. Classification performance comparison between using only image information with the BEiT backbone (None), our proposed network with
dummy metadata (Dummy), and our proposed network with actual metadata (Actual). 1 F1 denotes the relative performance difference (improvement)
of the best-performing method compared to each other approach.

the degree of improvement varied depending on the dataset
used. For instance, on the ISIC 2020 dataset, the use of
metadata improved the performance by 87.3%, while on the
PAD-UFES-20 dataset, the improvement was only 1.51%.
Furthermore, we observed that the effect of metadata was
more prominent in the efficient detection of malignant skin
lesions. However, in the case of the PAD-UFES-20 dataset,
the improvement from integrating metadata is only 1.51%,
lower than those of other datasets. This may be due to the
types of metadata that were not related to the diagnosis of the
disease. In addition, PAD-UFES-20 is the only dataset whose
images were taken by smartphones. Therefore, the reason
for the small performance improvement could be due to the
image characteristics themselves. Further investigation into
the actual causes is needed to find a theoretical explanation
for such a phenomenon.

In Fig. 6, we used GradCAM [71] to visualize the regions
of interest (ROIs) of the network for image classification

without metadata. The red areas in the bottom images
represent the ROIs of the model. When comparing two
samples, the network primarily focuses on the edges of the
lesions. This visualization shows that using only image input
cannot produce precise results, as the network’s ROIs do not
always correspond to the main information in the image. This
can lead to misclassification of benign samples.

We also tested the model using dummy metadata, where
all attributes’ values are replaced with zeros, to evaluate
the impact of metadata on model efficiency. Our results
showed that the use of dummy metadata decreased the
classification efficiency by about 41.2%, indicating that
relevant and meaningful metadata is crucial for improving
the performance of skin lesion classification. This also
indicates the proposed network cannot tolerate missing
metadata. This makes sense since the network was trained
with actual metadata; therefore, the absence thereof during
model evaluation could falsely guide the model’s prediction.
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FIGURE 6. EfficientNet B7 ROI visualization of benign samples using the
GradCAM technique: Top Row - Input Images, Bottom Row - ROI
Visualization, Left Column - predicted as benign, Right Column - predicted
as malignant.

In conclusion, our study evaluated the impact of incorpo-
rating metadata in skin lesion classification using our pro-
posed model. By comparing the model’s performance with
and without metadata across different datasets, we demon-
strated that metadata could improve classification efficiency,
especially for malignant detection. However, the effect of
metadata on performance varies depending on the type of
metadata and the dataset used. Therefore, it is crucial to
carefully select and incorporate relevant metadata into the
model to improve its efficiency in accurately classifying skin
lesions. Further research is needed to determine the most
appropriate types of metadata and the optimal approaches for
incorporating them into skin lesion classification models.

E. NETWORKS COMPARISON
In the skin lesion classification domain, metadata has been
shown to improve the overall classification performance in
addition to using the image data alone. Various researchers
have proposed new techniques for integrating metadata into
their learning mechanisms and have continued to improve
upon each other’s work over time. In this study, we compared
our proposed technique to three state-of-the-art methods,
Jasil and Ulagamuthalvi [18] + DMF, Ningrum [17], and
Gessert et al. [12], which also fuse metadata into their
network architectures for skin lesion classification. The
image encoding modules for these three baselines were
reproduced as reported in their publications. Note that the
skin lesion classification method proposed by Jasil and
Ulagamuthalvi [18] does not inherently integrate image
metadata into the network, making it difficult to comparewith
other metadata-fusing networks. Therefore, their proposed
network was used as the image-encoder component in our
proposed DMF network, hence referred to as Jasil and
Ulagamuthalvi + DMF. By comparing the performance of
these methods, we can gain insights into the strengths and

FIGURE 7. Prediction Outputs by BEiT with DMFM, with probability
scores.

weaknesses of each approach and identify areas for further
improvement.

The results of our comparison study are presented
in Table 7. By comparing the performance of the pro-
posed DeepMetaForge (BEiT + DMF) network and three
other published approaches (Jasil and Ulagamuthalvi [18],
Ningrum et al. [17], Gessert et al. [12]), across all datasets,
except for PH2, our DeepMetaForge network achieved the
highest macro-average F1 score. As discussed earlier, the
relevance and quality of metadata can have a significant
impact on classification performance. This suggests that
DMF is able to leverage metadata effectively to improve
classification accuracy. Therefore, while the efficiency of
only image classification for the malignant class is higher
than that of the baseline networks (slightly higher than
DMF), the DMF network outperformed Gessert et al. [12]
by 34.29%, Ningrum et al. [17] by 75.15%, and Jasil and
Ulagamuthalvi [18] by approximately 19.89% in terms of
average F1 across all datasets.

It is worth noting that the Ningrum et al. method
performs relatively inferior to other methods, despite their
better performance reported in their publication [17]. One
explanation could be that they only experimented on a
subset of 1,200 images from the ISIC 2019 dataset with
roughly 30% of positive samples and whose characteristics
may be different from the whole dataset. Furthermore, our
experiment, whose results are reported in Table 7, used the
ISIC 2020 dataset, which is more comprehensive than the
2019 version while also presenting a severe data imbalance
problem with only 1.78% positive samples.

In conclusion, our proposed DMF network demonstrates
the highest efficiency compared to the other previously
proposed metadata-fusing networks and establishes itself as
the state-of-the-art method for image-metadata classification
in skin lesion classification. Our results suggest that incorpo-
rating metadata into the classification system can improve the
accuracy of the diagnosis, and the proposed network provides
an effective approach for integrating metadata with image
data for skin lesion classification.

F. EVALUATION OF VARIOUS NETWORK COMBINATIONS
While the proposed DeepMetaForge network features the
BEiT backbone, this plug-and-play configuration could be
easily changed to other image-encoding backbones, such
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TABLE 7. Classification performance comparison between different metadata fusing networks (i.e., Ningrum et al., Gessert et al., Jasil and
Ulagamuthalvi + DMF and our proposed DeepMetaForge network architecture (BEiT + DMF)) on the selected datasets. 1 F1 denotes the relative
performance difference (improvement) of the best-performing method compared to each other approach.

as ResNext and EfficientNet, for portability. Figure 7
illustrates example prediction outputs. Therefore, this section
provides a comprehensive evaluation of the proposed network
architecture using different backbones, compared with the
state-of-the-art Gessert et al. method [12] whose backbones
are also varied for a fair comparison. Furthermore, the
performance of selected image-encoding backbones alone is
also reported for reference. Using different image encoders
allows one to explore the effectiveness of different feature
extraction methods in skin lesion classification. By varying
the backbone, we can also evaluate the adaptability of each
network architecture on different backbones that implement
different architectures.

The evaluation of the proposed network model against
the state-of-the-art approaches and only image classification
was conducted using a variety of metrics, including F1,
accuracy, andMCC.1 F1 denotes the performance difference
relative to the proposed DeepMetaForge network with the
BEiT backbone. The results presented in Table 8, and the
comparison of F1 score are shown in Fig. 8, show that,
in most datasets, the proposedmethod outperformed the other
baselines in many of the evaluation metrics. However, there
were some evaluating metrics, such as sensitivity and speci-
ficity, in which theDeepMetaForge networkwith BEiT image
encoder backbone did not achieve the highest score in the
SKINL2 and PAD-UFES-20 datasets. It is important to note
that these metrics focus only on each class of classification,
and the difference between the best-performing method and
the DMF with BEiT backbone is only marginal. On average,
the proposed DMF network with BEiT outperforms the
baselines and other configurations in all aspects. Specifically,

the best configuration of the proposed network outperforms
the best image-encoding backbone andmetadata-fusing state-
of-the-art methods by 19.39% and 8.49%, respectively.

This research provides valuable insights into the effective-
ness of different network models and their ability to classify
skin lesions accurately, which can have a significant impact
on the development of more efficient and accurate diagnosis
and treatment methods. Specifically, the experiment results
on the four different datasets support our conjecture that
fusing the metadata with visual features while compressing
the fused information to extract the low-level representation
is an effective approach to combining information from two
different sources for skin lesion classification.

G. SCALABILITY ANALYSIS
Skin lesion classification models can be used in telemedicine
applications to help dermatologists make informed deci-
sions efficiently. These systems should be accessible via
diverse platforms and available to patients and healthcare
practitioners, especially those in rural areas. Evaluating the
scalability of the proposed method is crucial to ensure its
accessibility, usability, and reliability across different settings
and scenarios.

In the previous part, we conducted an extensive evalu-
ation and comparison of several skin lesion classification
networks to determine the most suitable model for this task.
We found that the proposed DeepMetaForge network with
the BEiT image encoder backbone was the most efficient
for the selected datasets. However, it is also essential to
examine the trade-off between the models’ efficacy and
resource consumption in different scenarios to ensure its
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TABLE 8. Classification performance comparison between different metadata fusing methods (i.e., None, Gessert et al., and our proposed
DeepMetaForge network) and different backbone image encoders (i.e., ResNext50, EfficientNet-B7, and BEiT) on the selected datasets. 1 F1 denotes the
relative performance difference (improvement) of the best-performing method compared to each other approach.

practical application in real-world solutions. Thus, in this
part, we evaluate the proposed DeepMetaForge network
on the ISIC 2020 dataset while varying different BEiT
backbone models with different hyperparameter settings.
With a thorough understanding of the model’s efficacy-
efficiency tradeoff, developers can choose the right model for
specific applications.

We also analyzed the effect of the training dataset sizes
on the model efficiency. We varied different training sizes,
i.e., 10%, 30%, 50%, 70%, 90%, and 100%, and observed
the performance on the test set. Fig. 9 plots the F1-score
of the Malignant class and the macro-average F1-score as
the function of training dataset size. The results show that

training data size has a direct impact on performance, which
begins to plateau when using over 80% of the training data.
However, using the full dataset size still yields the optimal
performance.

In this experiment, we compared the performance of
different image encoder backbones by evaluating their
parameter size, model size, training time, memory usage,
and predicting time. The results, presented in Table 9,
show that the larger size of the image encoder backbone
yields a higher number of the model’s parameters and also
affects the model’s physical size (i.e., storage space on
HDD). The large version of BEiT is about three times
larger than the base one. The training time per iteration with
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FIGURE 8. Comparison of macro-avg F1 scores from different network architectures and image encoding backbones on all
datasets.

TABLE 9. Efficacy-efficiency tradeoff of the proposed DeepMetaForge network using different configurations of the BEiT backbones on the ISIC
2020 dataset.

FIGURE 9. F1-score vs. dataset size on ISIC 2020 dataset using the
proposed model.

a 16-batch-size of 384-input type took longer than the 224-
input type. Additionally, the predicted memory reserve of
the GPU for this type of network ranged between 2-3 GB.
Due to the model’s size, the larger size resulted in a longer
predicting time, with the larger size being around three
times longer than the base one, and the 384-input type
being around three times longer than the 224-input type.

Although the classification performance (macro-avg F1 and
accuracy) and memory usage of these backbones do not
differ much, we suggest using the BEiT-base-224 backbone
for those who seek to adopt the proposed framework in a
resource-limited environment, such as offline smartphone
applications. Such a base model only consumes roughly 2GB
of memory to operate, which can be accommodated by many
modern smartphones. Once loaded in the memory, this base
version also takes 4.1 ms to grade an input sample, which
should be fast enough for real-time applications. However,
if computation resources are not of critical concern, then
the BEiT-base-384 version, which can encode larger images,
hence yielding slightly better performance, is recommended.
It is worth noting that the larger versions, such as BEiT-large-
224 and BEiT-large-384, do not improve the classification
efficacy but consume roughly 40% more memory to operate.
Therefore, adopting such overkilling large models for skin
lesion detection applications is not encouraged. Regardless,
more investigation must be done to find ways to tweak these
larger models to improve the classification performance.

H. LIMITATIONS
Although the proposed network architecture has demon-
strated encouraging performance on the four chosen datasets
of skin lesion images, the scope of the presented study
primarily examined the performance of the proposed net-
work, with limited emphasis on other essential processes
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involved in deploying the model in practical systems. Such
procedures include handling data imbalance, augmenting
training data to enhance its quality, performing image
segmentation to eliminate background noise, and applying
image filtering to better certain characteristics of different
skin conditions. Researchers and professionals interested in
adopting the proposed techniques should thoroughly examine
techniques for data preprocessing to further enhance the
model’s performance.

V. CONCLUSION AND FUTURE WORK
In this experiment, we proposed a novel network architecture,
DeepMetaForge, for skin lesion classification, incorporating
image and metadata information to improve classifica-
tion accuracy. The proposed architecture features BEiT
image-encoding backbone and the novel Deep Metadata
Fusion Module (DMFM) that integrates visual and meta-
data features while blending them together simultaneously.
We evaluated the performance of the DeepMetaForge net-
work, along with other state-of-the-art approaches, on four
datasets comprising skin lesion images taken from both der-
moscopy and smartphone cameras. The results demonstrated
that the proposed network with the BEiT image encoder
backbone not only generalizedwell to different image sources
and metadata compositions but also outperformed other
networks in terms of F1, accuracy, and MCC, making it a
suitable model for skin lesion classification when images and
their metadata are available. A scalability analysis was con-
ducted to investigate how the required computation resources
would impact the classification performance of the proposed
approach. This work can be extended by framing the problem
as multiclass classification or object detection tasks, which
can have significant implications for pre-screening skin
lesion problems in remote areas. Future work can also focus
on adapting the network to meet the specific needs of
remote communities, ultimately improving public healthcare
in underdeveloped and developing countries.
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