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ABSTRACT The convergence of blockchain andMachine Learning (ML) promises to reshape technological
innovation by enhancing security, efficiency, and transparency in ML systems. This survey explores the
transformative potential of integrating these two technologies. We outline the foundational principles of
blockchain and ML, clarifying their capabilities and synergies. We examine how blockchain strengthens
ML as a secure, immutable platform for data sharing, model validation, and executing tasks. We emphasize
the opportunities for heightened data security, improved model validation, and decentralized, privacy-
preserving systems. However, challenges exist like scalability, energy-wise, and the need for new tailored
consensus mechanisms. We provide insights based on recent research at this intersection. Additionally,
we explore emerging trends and future directions, like blockchain’s application in federated learning for
secure, transparent data sharing and model validation. We also investigate privacy-preserving systems such
as Proof of Learning, where blockchain enables secure execution while maintaining data privacy. Moreover,
we examine the potential for decentralized AI systems leveraging blockchain to deploy and execute models.
This survey offers a comprehensive overview of the evolving landscape at the intersection of blockchain and
ML, highlighting opportunities and challenges while suggesting future research directions.

INDEX TERMS Blockchain, decentralized AI, energy-wise, federated learning, machine learning, privacy-
preserving, proof of learning, scalability.

I. INTRODUCTION
The digital landscape is rapidly evolving, with blockchain
and Machine Learning (ML)1 emerging as pivotal elements
shaping the future of various sectors [1], [2]. Individually,
these technologies have revolutionized numerous fields.
However, their intersection presents a unique opportunity
to enhance ML systems [3], [4]. This survey explores this
potential, focusing on how blockchain can improve various
aspects of ML, from model training and validation to ensure
the privacy and security of data [5], [6], [7], [8], [9].

Blockchain, initially conceived to underpin cryptocurrency
networks [10], [11], has evolved into a versatile platformwith
significant implications beyond finance [2], [12]. Blockchain
offers a decentralized, secure, and immutable record of
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approving it for publication was Mehdi Sookhak .
1Complete words of abbreviations are spelled out when they first appear in

this manuscript. However, a list of abbreviations is available in the appendix
for convenience.

transactions underpinned by distributed ledger technology.
[11]. Its features present an innovative approach to ensuring
data integrity, traceability, and transparency [2], [12]. These
are particularly beneficial for ML applications, as they
can enhance data security, provide a layer of security for
computer vision systems, and facilitate efficient and secure
data sharing [6], [9].

ML plays a similarly transformative role across countless
sectors. With its ability to learn from and make predictions
or decisions based on data, ML is revolutionizing myriad
sectors, from healthcare to finance and transportation to
entertainment [1], [13], [14].

ML can benefit from integration with blockchain through
enhanced privacy-preserving predictive modeling, improved
transaction confirmation time prediction, decentralized Proof
Of Learning, and decentralized Federated Learning. While
numerous studies have explored the advantages of integrating
blockchain with ML, such as privacy-preserving predictive
modeling, secure computer vision systems, and efficient
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transaction confirmation time prediction [5], [6], [7], [8],
[9], there remains a gap in understanding the specific
benefits of decentralization that blockchain can bring to ML
applications.

Despite the promising opportunities presented by inte-
grating these technologies, challenges remain. For instance,
current training on ML models generally requires large
amounts of data, which are often unavailable in practice or
limited due to the high cost of collection [15]. Filtering out
‘‘bad data’’ is a constant battle with spammers or malicious
contributors, who can submit low-effort or nonsensical data
and still receive rewards for their work [16]. It is also hard to
generalize ML models to reflect the future due to out-of-date
training [17]. Concerns about privacy and leakage still exist in
fields such as the Industrial Internet of Things [18]. However,
with blockchain, these problems can be efficiently solved.
We will also address the limitations of current research and
outline their potential future directions.

The survey’s objectives include:
1) Review of the Intersection of Blockchain and ML:

Thoroughly review the intersection of blockchain
and ML, including integration approaches, benefits,
and challenges. For instance, we will explore how
blockchain can enhance data security and privacy in
ML applications, a topic explored in various studies [3],
[6], [15].

2) Review of Existing Consensus Mechanisms for ML:
Examine existing consensus mechanisms for ML,
analyzing their strengths and limitations, such as Proof
Of Learning and deep learning. We aim to understand
their weaknesses and explore potential improvements.
The goal is to understand the landscape of consensus
mechanisms and their role in blockchain and ML
integration [19], [20], [21], [22], [23].

3) Analyzing Blockchain Use Cases in ML Appli-
cations: Explore use cases applying blockchain to
enhance ML applications. This includes exploring the
specific benefits of these use cases and the challenges
encountered. We will focus on use cases such as proof
of learning and federated learning. For instance, wewill
examine how blockchain has been used for secure and
privacy-preserving federated learning [24], federated
learning for autonomous vehicles [25], and healthcare
applications [26]. We will also explore the novel
blockchain consensus mechanism, Proof of Learning,
based on ML competitions [27].

4) Future Directions and Recommendations: We will
explore areas where this integration could provide
significant benefits but has not yet been extensively
studied, such as the potential for blockchain to support
trustless ML contracts [28] and secure IoT data for
e-health applications [9], [29]. We will identify gaps
in the existing research, emphasizing the need for a
more holistic understanding of the potential of this
integration. Then, we will recommend areas where fur-
ther research could lead to significant advancements,

such as using blockchain to incentivize data shar-
ing and penalize dishonest behavior in federated
learning [9], [30].

Throughout the rest of this survey, we will delve into
the intricate relationship between blockchain and ML,
emphasizing their synergies, challenges, and prospects [31],
[32]. The paper is structured as follows:

• Section II: Background - In this section, we provide
a comprehensive overview of the fundamental prin-
ciples of blockchain. We explore various aspects of
blockchain, including its distributed ledger architecture
and the different layers that constitute its framework.
Additionally, we delve into the core principles of ML,
covering topics like supervised learning, unsupervised
learning, reinforcement learning, and the application of
ML in Proof-of-Useful Work. We also discuss the role
of smart contracts in machine-learning contexts.

• Section III: Related Works - Reviews relevant lit-
erature and differentiates this survey from existing
work, summarizing related surveys’ contributions and
establishing this study’s uniqueness.

• Section IV: Applications and Innovations - In this
section, we investigate the potential for integrating
blockchain and ML. Our focus is on enhancing security
and privacy in ML models. We delve into real-
world applications, including securing ML models and
exploring innovative marketplaces that incentivize data
sharing. We also examine blockchain-enhanced feder-
ated learning systems, the concept of Sharing Updatable
Models (SUM) on the blockchain, and platforms like
DeepChain and LearningChain Marketplace.

• Section V: Challenges and Future Research Direc-
tions - This section comprehensively examines the cur-
rent obstacles and limitations in integrating blockchain
with ML. We delve into the technical and practical chal-
lenges hindering this convergence and discuss how they
can be addressed. Additionally, we forecast emerging
trends and potential research avenues, mapping out the
future landscape of blockchain andML integration. This
exploration provides a roadmap for future developments
and innovations in the field.

• Section VI: Conclusion - Concludes the paper by
summarizing key findings, insights, and the overall
implications for the field.

II. BACKGROUND
A. BLOCKCHAIN
Blockchain is a form of distributed ledger technology [10].
Fundamentally, a blockchain is a decentralized and dis-
tributed digital ledger that records transactions across a
network of computers in a manner that prohibits retroactive
alterations to the registered transactions [2]. This char-
acteristic imbue the system with inherent resistance to
data modification, thereby ensuring the immutability and
transparency of data. These features of blockchain make
it an ideal candidate for integration with ML applications,
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FIGURE 1. Blockchain architecture: components of a block including
timestamp, nonce, hash of the block’s contents, and transaction list [4].

where data security, privacy, and integrity are of paramount
importance [15].

Blockchain technology employs cryptographic methods to
safeguard data security and integrity. Typically, each block
in a blockchain contains a hash of its contents, a timestamp
marking when the data was recorded, a nonce (a one-
time number), and the previous block’s hash, along with
a list of transactions [10]. The nonce, computed during
mining in systems like Proof of Work (PoW), ensures the
block hash adheres to the network’s difficulty criteria [33].
This mechanism is integral to securing new transactions
and upholding blockchain integrity. The preceding block’s
hash links each block sequentially, forming an unalterable
chain. While PoW involves mining, other systems might
use different consensus methods like Proof of Stake (PoS)
to validate transactions and add new blocks, each ensuring
network-wide agreement and decentralization. This design
thwarts data tampering within a block, as it would require
altering all subsequent blocks. The decentralized consensus
mechanisms enhance the system’s robustness and security,
as depicted in Figure 1 [4].
Recent advancements in blockchain technology have

further extended its applications into cybersecurity, partic-
ularly in mitigating Distributed Denial-of-Service (DDoS)
attacks. Innovative frameworks such as Cochain-SC offer
a blockchain-based approach combining software-defined
networks (SDN) and smart contracts for effective intra-
and inter-domain DDoS mitigation [34]. Similarly, Co-IoT
utilizes blockchain and SDN for collaborative DDoS mitiga-
tion in IoT environments [35]. Other notable developments
include ChainSecure, which provides a proactive solution
for protecting blockchain applications from DNS ampli-
fication attacks in SDN contexts [36], and BrainChain,
which employs machine learning techniques within SDN
to safeguard permissioned blockchain nodes from similar
threats [37]. These studies underscore the growing role of
blockchain in enhancing cybersecurity measures, showcasing
its versatility beyond traditional transaction recording.

Based on the level of access and data validation permis-
sions, blockchains can be categorized into public, private,

and consortium chains, as outlined by Zheng et al. in 2018
[38]. A comparison of these three distinct blockchain types is
presented in Table 1.
The principles of blockchain can be summarized as

follows:
1) Distributed ledger: Blockchain maintains a dis-

tributed ledger of all transactions across the network
nodes. This ledger is replicated among all participants;
no central authority manages it.

2) Immutability: Immutability in blockchain refers to
the permanent and unchangeable nature of data once
it has been written to the blockchain. After adding
a block to the chain, altering the data within it
would require changing it and all subsequent blocks.
This is due to the cryptographic linking of blocks,
where each block contains the previous block’s hash,
creating a dependency chain. Altering any block’s
data would invalidate the hashes in all following
blocks, which is computationally impractical due to the
design of blockchain networks. This immutable nature
of blockchain provides a tamper-proof and enduring
record of all transactions, ensuring the integrity and
authenticity of the data stored on the blockchain.

3) Cryptography: Blockchain uses cryptographic tech-
niques like hashing and digital signatures to link blocks
together and verify transactions. This provides security
and authenticity.

4) Consensus mechanism: As there is no central author-
ity, blockchain uses a consensus mechanism to validate
transactions and add new blocks to the chain. This
ensures all nodes have the exact copy of the ledger.

5) Transparency: All transactions stored in the
blockchain are publicly visible to all participants. This
provides transparency and trust.

6) Irreversibility: Irreversibility in blockchain pertains
to the non-reversible nature of transactions once they
have been confirmed and recorded on the blockchain.
Blockchain transactions are final once validated and
added to a block. This irreversible aspect is fun-
damental to the security of blockchain networks,
as it prevents double-spending and other fraudulent
activities. It contributes to the overall trustworthiness
and reliability of the blockchain system.

With these critical principles providing a foundation,
blockchain shows promise for numerous applications. How-
ever, there remain challenges to blockchain’s widespread
adoption, including issues like scalability, energy ineffi-
ciency, and regulatory issues, which need to be addressed for
its widespread adoption [39].

1) DISTRIBUTED LEDGER
Unlike traditional ledgers, which are usually controlled by a
single entity, a distributed ledger is spread across numerous
nodes in a network, and each node holds a copy of the
complete ledger. This distribution ensures that no single
entity has absolute control over the data, enhancing the
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TABLE 1. Comparison of three types of blockchains [15].

security of the ledger [40]. In the context of private and
consortium blockchains, decentralization can prevent a single
point of failure and protect data from unauthorized access.
However, in public blockchains, while the data is secured
against tampering, it is accessible for verification and reading
by any participant in the network. This distinction highlights
the varying degrees of data privacy and accessibility across
blockchain architectures. This benefits ML applications
where data privacy and security are crucial [15]. Transactions
on the ledger are grouped into blocks, and each block
references the one before it, creating a chain of blocks - hence
the term blockchain [41].
Distributed ledgers use consensus mechanisms to validate

transactions and ensure that all network nodes agree on the
ledger’s state. These mechanisms ensure that all transactions
are validated, recorded, transparent, and immutable, enhanc-
ing the system’s trustworthiness [33]. The decentralized
nature of distributed ledger technology has been recognized
for its potential benefits in various sectors, including gov-
ernment and construction, where it can improve information
sharing and enable smart contracts, respectively [42]. Build-
ing on the concept of distributed ledgers, blockchain systems
comprise multiple architectural layers, as explored next.

2) BLOCKCHAIN ARCHITECTURE OVERVIEW
In line with the research presented in [43] and [44],
a standard blockchain system can be broken down into six
primary layers, as depicted in Figure 2. These layers, which
include the data, network, consensus, incentive, contract, and
application layers, serve distinct roles and are elaborated
upon below.

a: DATA LAYER
The data layer is chiefly concerned with transactions and
blocks that store transactional data from various applications.
Each block consists of multiple transactions and is connected
to its predecessor, forming a sequential list of blocks.
As illustrated in Figure 1, a block is divided into a header
and main data. The header contains metadata such as the
block version, hash pointers to previous and current blocks,
timestamp, and Merkle root [46]. The main data section
holds all the executed transactions, the nature of which
depends on the blockchain service. In Directed Acyclic

FIGURE 2. Blockchain hierarchical layers: from data to application layer,
with key functions and examples [45].

Graph networks, transactions directly reference previous
transactions, eliminating the need for blocks.

b: NETWORK LAYER
The network layer is responsible for the specific networking
mechanisms employed in blockchain to distribute, verify,
and audit data generated by the data layer. Typically, this
layer operates as a Peer-to-Peer (P2P) network, facilitating
decentralized data distribution.

c: CONSENSUS LAYER
The consensus layer specifies the consensus algorithm used
to reach an agreement among untrusted parties in decen-
tralized systems. There are various consensus protocols,
such as PoW, PoS, and Byzantine Fault Tolerance (BFT)
protocols like Practical Byzantine Fault Tolerance (PBFT).
The choice of consensus protocol varies depending on the
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type of blockchain. For instance, public blockchains often use
incentive-based schemes like PoW, while private blockchains
may use BFT protocols like PBFT.

d: LEDGER TOPOLOGY LAYER
This layer defines the ledger structure for storing data
produced by the consensus layer. While most blockchain
applications are built upon a traditional chain of blocks, they
are increasingly being complemented by alternative struc-
tures such as Directed Acyclic Graphs (DAG), sidechains,
and off-chain solutions to address scalability issues. These
structures do not replace the fundamental chain of blocks but
work alongside it to enhance performance and scalability.

e: INCENTIVE LAYER
The incentive layer introduces economic incentives to
encourage nodes to verify data, which is crucial in maintain-
ing a decentralized system without centralized control.

f: CONTRACT LAYER
The contract layer adds programmability to blockchain
systems. It employs various script codes and smart contracts
to facilitate more complex transactions. Smart contracts,
written in Turing-complete languages, extend transaction
semantics and implement intricate business rules [47].

g: APPLICATION LAYER
The application layer encompasses a wide range of applica-
tions, including but not limited to IoT, smart cities, and edge
computing. These applications can transform their respective
fields by offering efficient, secure, decentralized solutions.

3) CONSENSUS PROTOCOLS FOR ML APPLICATIONS
A key aspect of blockchain is the consensus mechanism.
Given that the blockchain is a distributed system with no cen-
tral authority, there needs to be a method for validating trans-
actions and agreeing on the current state of the blockchain.
This process is achieved through various consensus mecha-
nisms such as PoW, PoS, and others [48]. These mechanisms
ensure that all nodes in the blockchain network agree on the
validity and order of transactions, maintaining the integrity
and consistency of the distributed ledger [49]. Consensus
mechanisms, central to blockchain technology as exemplified
by Bitcoin, are crucial in preventing double-spending and
ensuring the validity of transactions in various applications,
including machine learning. These mechanisms facilitate
the recording and validation of transactions, contributing to
the integrity and reliability of the system. While attributes
like transparency and immutability can vary depending on
the specific blockchain architecture, they generally enhance
trustworthiness across diverse applications [15].
The PoW consensus mechanism involves nodes solving

a primary hash function and generating a nonce, thereby
proving the work done to validate transactions [49]. However,
PoW is criticized for its energy inefficiency and low

scalability. On the other hand, the PoS consensus mechanism,
used by cryptocurrencies like Ethereum, selects validators
deterministically based on their stake in the network, which
can reduce energy consumption and improve scalability [48].
In the context of ML applications, PoW can prevent Sybil
attacks in distributed ML, while PoS can incentivize honest
participation in federated learning [15].
Despite these advancements, consensus mechanisms in

blockchain still face challenges, such as the risk of cen-
tralization and the need for a balance between security
and performance. When applied to ML applications, these
challenges can include the need for real-time decision-
making and the handling of large datasets [15]. Therefore,
further research is needed to develop more efficient and
secure consensus mechanisms for blockchain [48], [49].

In addition to consensus protocols, blockchain systems
increasingly incorporate smart contracts self-executing code
with various applications.

4) SMART CONTRACTS
Smart contracts, first proposed by Nick Szabo in 1994, are
self-executing contracts with the terms of the agreement
between buyer and seller directly written into code. These
contracts automatically execute transactions following pre-
determined rules when certain conditions are met, without
needing a trusted intermediary [50]. In the context of ML,
smart contracts can be used to automate the process of
data sharing in federated learning or to enforce privacy-
preserving protocols, enhancing the efficiency and security
of ML applications [15].

The use of smart contracts extends beyond simple trans-
action processing. They can be used to create decentralized
applications (DApps) that run on the blockchain, providing
a wide range of services without needing a centralized
authority [11]. These decentralized applications can create
decentralized ML platforms, enabling users to train and
deploy ML models in a decentralized and privacy-preserving
manner [4].

Blockchain’s ability to provide a transparent, immutable,
and secure transaction environment, coupled with its decen-
tralized nature, makes it a potentially transformative tool for
numerous industries [2]. One such industry is healthcare,
as illustrated in Figure 3, where AI techniques excel at
classifying and analyzing large datasets but face data integrity
and trustworthiness challenges in decision-making [51].
Integrating blockchain and AI technologies can address
these issues by securely storing data on a decentralized,
immutable patient record. Smart Contracts can validate
various stages such as diagnosis, analytics, and critical
decision-making [51].

Similarly, in supply chain management, smart contracts
can facilitate complex multi-step processes, where each
process step can be automatically triggered by completing
the previous step. In ML, smart contracts can be used to
automate complex ML workflows, enhancing the efficiency
and scalability of these workflows [15].
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FIGURE 3. Decentralized healthcare through collective intelligence [51].

Having reviewed core blockchain concepts, we now turn
to ML and its foundational paradigms.

B. ML
ML leverages algorithms and statistical models to evolve sys-
tem performance over time based on experiential data. This
adaptive approach contrasts with rule-based programming,
as ML models autonomously identify patterns and make
decisions, reducing the need for human intervention [52].

ML’s utility is further amplified when integrated with
blockchain technology, which is widely applied across
various sectors such as cybersecurity, smart cities, healthcare,
e-commerce, and agriculture. This synergy enhances the
reliability and effectiveness of ML applications [15].

A significant aspect of contemporary ML research focuses
on securing training processes. Innovations in this domain
aim to authenticate the derivation of ML model parameters,
ensuring they result from computational training efforts. This
is crucial for addressing model ownership and integrity,
especially in distributed training scenarios [53].

Recent critiques, however, such as ‘‘Proof-of-Learning is
CurrentlyMore Broken Than You Think’’ by Fang et al., shed
light on the vulnerabilities within PoL mechanisms. These
studies call for more robust security solutions in ML training
processes, indicating an area ripe for further research [54].

Furthermore, ML’s capacity to process blockchain data for
pattern recognition, fraud detection, and predictive analyt-
ics enhances blockchain’s utility. Conversely, blockchain’s
decentralized architecture is instrumental for secure data
sharing, which is necessary for ML model training. This

TABLE 2. Prospects of AI in Blockchain Problems. [55] Note: Tick (✓)
indicates AI solution probable; Tick (×) indicates AI solution improbable.

mutual benefit is bolstered by blockchain’s distributed
computing capabilities and smart contracts and consensus
mechanisms, which collectively ensure the validity and
integrity of ML models [15].

In summary, the integration of ML and blockchain
technologies improves existing applications and opens new
frontiers in research and development [15].

The role of AI in addressing blockchain challenges is
detailed in Table 2.
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The key advantages of integrating Blockchain and AI
technologies are outlined in Table 3. These benefits range
from enhanced data security to decentralized intelligence and
high-efficiency AI [56].

ML can be categorized into three types: supervised
learning, where models are trained using labeled data;
unsupervised learning, where models identify patterns in
unlabeled data; and reinforcement learning, where models
learn to make decisions by interacting with their environment
and receiving feedback [1]. Each of these types of ML
can benefit from integration with blockchain, for example,
through enhanced data security and privacy and the ability to
learn from decentralized datasets [15]. Here is amore detailed
overview of each type of ML and how it can integrate with
blockchain:

1) SUPERVISED LEARNING
In supervised learning, the ML model is trained on a labeled
dataset, i.e., a dataset where the target outcome is known.
This process involves mapping input data (features) to known
outputs (labels). The model uses this known input-output pair
to learn the underlying function that governs the data. Once
the function is learned, it can predict the output for unseen
input data [57].
Supervised learning is commonly applied in regression,

classification, and forecasting tasks. For instance, it has
been used in classifying astronomical objects, where features
such as brightness and color are used to classify objects
like stars, galaxies, and quasars [58]. Supervised learning
has been used in education to predict students’ performance
based on features like attendance, participation, and previous
grades [59]. In medicine, features such as patient age, blood
pressure, and cholesterol levels have been used in supervised
learningmodels to predict the likelihood of heart disease [60].
Integrating supervised learning with blockchain capitalizes

on both technologies’ strengths to enhance data security
and privacy in these applications. Blockchain’s decentralized
structure and immutable ledger ensure data integrity and
protect against unauthorized access. This integration also
provides a transparent and immutable record of the super-
vised learning process, reinforcing trust and verifiability in
applying these technologies [15].

2) UNSUPERVISED LEARNING
Unlike supervised learning, unsupervised learning operates
on datasets where the target outcome is unknown. These algo-
rithms uncover the data’s inherent structure by identifying
patterns, correlations, and similarities within the input data.
The primary objective of unsupervised learning is to discover
the intrinsic distribution of the data [61].
Clustering, a typical application of unsupervised learning,

involves grouping similar data points. This technique is
widely used in various fields. For example, in marketing,
clustering can segment customers into different groups based
on their purchasing behavior, which can help businesses tailor

their marketing strategies to different customer segments.
In computer vision, clustering can be used for image
segmentation, where an image is divided into multiple
segments that share similar characteristics [62].
Another typical application of unsupervised learning is

dimensionality reduction, which aims to reduce the number
of random variables under consideration by obtaining a set
of principal variables. This technique is beneficial in dealing
with high-dimensional data, as it can help alleviate issues
such as overfitting and make the data more accessible to
visualize [63].
Unsupervised learning methods have also been employed

to analyze molecular simulation data in material science,
solid-state physics, biophysics, and biochemistry. These
methods include feature representation, density estimation,
and kinetic models, among others [64].
Integrating unsupervised learning with blockchain tech-

nology leverages the strengths of both fields to enhance
the security and privacy of data in these applications.
Blockchain’s immutable ledger and cryptographic security
ensure the integrity and confidentiality of data used in
unsupervised learning processes. Additionally, the trans-
parent nature of blockchain provides an immutable record
of the learning process, fostering trust and verifiability in
unsupervised learning applications [15].

3) REINFORCEMENT LEARNING
Reinforcement learning is a type of ML where an agent
learns to behave in an environment by performing spe-
cific actions and receiving rewards or penalties in return.
It is an approach to train an agent to take steps based
on the current state to maximize the cumulative reward.
The exploration-exploitation tradeoff is a critical challenge
in reinforcement learning. This involves the decision of
whether to take the best action based on current knowledge
(exploitation) or to try a new step in hopes of finding a better
one (exploration) [65].

A recent study highlights an interesting connection
between two regularization techniques in offline reinforce-
ment learning - actor and critic regularization. The study
suggests that under certain conditions, these two approaches
can be equivalent, providing valuable insights into the design
and efficiency of RL algorithms [66]. This finding contributes
to the ongoing discussion on the optimal regularization
methods in RL, especially in scenarios with limited data.

Reinforcement learning has been applied in various
domains, including game playing. For instance, the Alp-
haZero algorithm, developed by DeepMind, taught itself to
play Go, chess, and shogi (a Japanese version of chess)
and beat state-of-the-art programs specializing in these three
games. This ability of AlphaZero to adapt to various game
rules is a notable step toward achieving a general game-
playing system [67].
The integration of reinforcement learning with blockchain

technology contributes to enhancing data security and

VOLUME 11, 2023 145337



O. Ural, K. Yoshigoe: Survey on Blockchain-Enhanced Machine Learning

TABLE 3. Key features and benefits of Blockchain integration with AI [56].

FIGURE 4. Blockchain maintained ML competition algorithm that uses
PoUW.

privacy. Blockchain’s immutable and transparent record-
keeping complements the adaptive decision-making process
in reinforcement learning, ensuring the data and learning
process are securely stored and verifiable. This synergy offers
robust protection against data tampering and unauthorized
access while maintaining transparency in the learning out-
comes [15].

In addition to the core types of ML, there are other
important applications of ML in blockchain contexts:

4) ML IN PROOF-OF-USEFUL-WORK
ML is integral to numerous domains. As computing power
has rapidly increased alongside growing research interests,
the performance of ML models has significantly improved.
However, achieving high-performance models demands sub-
stantial computational power [68]. Furthermore, accurate
models necessitate ML experts to fine-tune them through
multiple iterations of training and evaluation with varying
hyperparameters. Consequently, a high-quality model comes
with the considerable expense of computational resources.

Several Proof-of-Useful-Work (PoUW) mechanisms,
including Primecoin [19], PoX [69], Privacy-Preserving
Blockchain Mining [70], Coin.AI [71], WekaCoin [72], and
Proof of Deep Learning (PoDL) [73], require miners to
perform valuable tasks. Figure 4 illustrates a Blockchain
Maintained ML Competition Algorithm that employs the
PoUW mechanism, showcasing how ML tasks can be
integrated into the mining process.

5) SMART CONTRACTS FOR ML
Smart contracts, self-executing contracts where the terms are
written into code and stored on the blockchain, can automate
various tasks in ML processes. For instance, smart contracts
can facilitate the automatic validation of ML models,

trigger actions based on the performance of the models,
or handle incentives for data providers in decentralized ML
ecosystems [74].
In the context of ML, smart contracts can create a

decentralized marketplace for data, where data providers are
incentivized to share their data for ML model training [75].
This can lead to more robust and diverse ML models, as they
can be trained in a broader range of data.

Moreover, smart contracts can also ensure the fair and
transparent evaluation of ML models. Encoding the evalua-
tion criteria into a smart contract can automatically validate
an ML model’s performance and trigger actions based on the
results, such as releasing payment to the model developer.
Integrating smart contracts withML can lead tomore efficient
and transparent ML processes [74].

C. DEEP LEARNING
Deep learning, a specialized branch within AI and ML,
is adept at discerning the underlying representations of
fundamental data types, including images, text, and speech
signals. This capability allows for executing various appli-
cations with accuracy comparable to or exceeding human
performance. Examples of deep learning applications span
image classification, object detection [76], and autonomous
driving [77].
The training of deep learning models heavily depends on

extensive labeled datasets, with data quality being crucial for
accurate decision-making in ML algorithms, especially with
time series data. Insufficient data detail can compromise the
model’s effectiveness, regardless of algorithm sophistication.
While feature engineering may aid data reconstruction
by extracting features from raw data [78], deep learning
algorithms autonomously extract high-level latent features.
These models have multiple layers; lower layers handle
essential elements, and higher layers manage more abstract
aspects. Notably, the number of layers in these models
impacts their accuracy and security; increased complexity,
as indicated by more layers, can make the models more
susceptible to adversarial attacks, posing potential security
risks [79].

Tuning hyperparameters in a deep learning model is
crucial for optimizing performance for a specific task [80].
When considering scalability, the choice of network topology
becomes a significant factor. For instance, a client-server
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architecture offers scalability as the model is trained at the
server end, with each node receiving the trained representa-
tive [81]. If retraining is needed, it can be conducted at the
server end and broadcast to the entire network. This approach
simplifies the tuning of hyperparameters and allows for
generalization across the network. In contrast, a P2P network
may not be as scalable, as each node must individually train
or retrain its model instance, which can be computationally
intensive.

Deep learning also has applications in cybersecurity, where
it analyzes internet traffic patterns to identify threats. Current
challenges in security include malware, data breaches, social
engineering, phishing, Denial-of-Service (DOS), and insider
attacks. Deep learning can aid in detecting and preventing
these threats, analyzing data traffic, and verifying transaction
signatures for intrusion detection. It can also recognize sus-
picious activities within the system, using Natural Language
Processing, a subtype of deep learning, to detect threats
related to social engineering and data theft [82].

1) BLOCKCHAIN-ENHANCED DEEP LEARNING
Blockchain’s ability to enable the reusability and secure
sharing of deep learning models is a vital necessity.
This technology also supports audibility, data verification,
result attestation, provenance, ownership traceability, usage
monitoring, and fairness assurance, all crucial for integrating
blockchain with deep learning. Deep learning models, trained
on diverse datasets, depend on the quality of this data to learn
and generate accurate predictions.

In addressing the data management challenge in deep
learning applications, recent studies have highlighted the
effectiveness of leveraging off-chain storage solutions like the
InterPlanetary File System (IPFS). For instance, healthcare
research has demonstrated a scalable blockchain model using
off-chain IPFS storage for patient health records, signifi-
cantly enhancing data scalability. Similarly, an integrated
blockchain and IPFS storage network have been proposed
for Electronic Health Records (EHR), focusing on creating a
patient-centric access model [83]. This integration effectively
addresses scalability issues when storing all data types
directly on the blockchain.

Moreover, using IPFS in blockchain systems can dras-
tically reduce the block size, leading to more lightweight
and efficient blockchain networks. This reduction is achieved
by storing only data indices on-chain, while the actual data
resides off-chain, thereby speeding up data replication among
network nodes and enhancing overall system efficiency
[83]. A method combining Named Data Network (NDN)
technology with a distributed blockchain and IPFS has also
been proposed to ensure safe storage and efficient sharing of
copyrighted files, demonstrating the utility of IPFS in secure
data storage and distribution [84].

Furthermore, a secure data storage solution has been
developed where only the encrypted hash of the data is stored

TABLE 4. A summary of the deep learning and blockchain features that
assist in improving deep learning-based applications [56].

on the blockchain. This solution maintains a consistent hash
size on the chain, regardless of the volume of raw data
stored off-chain, offering a scalable and secure data sharing
scheme [85]. These advancements underscore the potential
of blockchain and off-chain storage solutions like IPFS in
enhancing deep learning applications, especially in managing
large-scale data efficiently while ensuring data integrity and
security.

The blockchain, as a decentralized and verifiable global
database, thus empowers network nodes to hold securely and
exchange data. It enhances the efficiency and effectiveness of
deep learning applications by ensuring data integrity, quality,
and secure sharing. The key features of blockchain in deep
learning are summarized in Table 4, and Figure 5 showcases
the primary aspects, scenarios, and categories benefiting from
this integration.

In our pursuit to present a thorough analysis of
blockchain-enhanced deep learning, we have incorporated
Table 5, derived from the seminal work of Shafay et al. [86].
This work is a cornerstone in understanding the multifaceted
interaction between blockchain technologies and deep
learning methodologies. The table presents a comprehensive
comparison and analysis of state-of-the-art blockchain-based
deep learning frameworks. By including this table, we aim to
give our audience a broad perspective on the advancements
and innovations in this evolving field.

The table meticulously categorizes various deep learning
applications associated with different types of blockchain
technologies and their corresponding consensus protocols.
This categorization is crucial as it sheds light on the
diverse approaches adopted in the field and how they align
with specific blockchain characteristics. For instance, using
private blockchains in specific applications emphasizes the
requirement for privacy and controlled access, while public
blockchains are chosen for their transparency and broader
reach.

Furthermore, the table explores the deep learning methods
employed in these studies, ranging from traditional neural
networks to more advanced techniques like LSTM and CNN.
This exploration is vital for understanding the complexity and
suitability of different deep learning techniques in blockchain
environments. It also helps in assessing the compatibility
of these methods with the inherent properties of blockchain
technology, such as immutability and decentralization.

Each entry in the table also provides an insightful analysis
of the strengths and limitations inherent in each study. This
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FIGURE 5. Advantages arising from the convergence of deep learning and blockchain [86].

analysis is instrumental in identifying the current challenges
faced in the domain, such as scalability issues, computational
demands, and data privacy concerns. It also highlights the
achievements in the field, like enhanced security mea-
sures, improved data integrity, and innovative application
scenarios.

This examination of various blockchain-based deep
learning frameworks opens avenues for future research.
It underscores the need for developing more efficient, secure,
and scalable solutions. The insights gained from this table are
academic and have profound practical implications, paving
the way for more robust, reliable, and versatile applications
in the healthcare and finance sectors.

Blockchain and deep learning, when integrated, offer com-
plementary benefits. Blockchain’s decentralized, immutable
ledger provides robust security for data, which is essential for
deep learning models that rely on large datasets for training
and accurate predictions. However, storing large datasets for
deep learning directly on the blockchain is not feasible due to
size and cost constraints. Instead, blockchain can effectively
keep critical aspects such as data hashes, model parameters,
and metadata, ensuring data integrity and traceability. Off-
chain storage solutions like IPFS can be employed for most
training data.

Integrating blockchain and deep learning automates tasks
requiring robust data handling and security. Blockchain’s
stability, permanence, and decentralization offer a secure
framework to manage data, while deep learning algo-
rithms analyze this reliable data to extract insights and
make predictions. This synergy is paving the way for

innovative applications across various industries, merging
blockchain’s data security with the analytical power of deep
learning.

A summary of the advantages stemming from the fusion of
blockchain with deep learning algorithms includes:

• Data Security: Blockchain’s decentralized nature
ensures robust security for information. Private
blockchain platforms are utilized to handle confidential
data, and the private keys of the nodes, essential for
accessing blockchain data, must be kept secret. Deep
learning algorithms can leverage the stable data from
the blockchain, leading to more credible, precise, and
dependable decision-making [86].

• Automated DecisionMaking: Recognized for process-
ing transactions on a P2P basis, blockchain simplifies
the verification of decisionsmade by deep learningmod-
els through its traceability feature. This also guarantees
the integrity of documents during human-aided auditing
phases [97].

• Collective Judgments: In certain situations,
autonomous digital agents make decisions based on
specific scenario-related data. Deep reinforcement
learning and swarm robotics exemplify agent-based
decision-making systems. A voting-based method can
guide robot decision-making, utilizing data from swarm
robotics on the blockchain [98].

• Increased Robustness: In some instances, the decision
accuracy of deep learning models exceeds human
capability, enhancing stakeholder trust. The decen-
tralized nature of the technology further ensures the
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TABLE 5. A comparison and analysis of state-of-the-art blockchain-based deep learning frameworks [86].

system’s robustness. The merger of deep learning
with blockchain proves valuable in business contexts,
allowing parties to operate in a trustless and automated
environment [99].

III. RELATED WORKS
A. SUMMARY OF CONTRIBUTIONS OF RELATED SURVEY
PAPERS
This survey paper builds upon previous blockchain and ML
work. Several survey papers have explored the integration
of blockchain and ML, each with unique perspectives and
contributions. The titles, publication dates, and main focus
of these papers are listed in Table 6.

B. WHAT MAKES OUR SURVEY UNIQUE IN THE
BLOCKCHAIN AND ML LANDSCAPE
Our survey paper distinctively contributes to the blockchain
and machine learning (ML) landscape, offering insights and
perspectives that set it apart from other surveys listed in
Table 6.

• Comprehensive Overview of Blockchain-ML Con-
vergence: Our survey provides a detailed exploration

of how blockchain enhances ML, focusing on secure
data sharing, model validation, and task execution,
a perspective not extensively covered in surveys such
as [25] or [100].

• In-Depth Focus on Decentralization and Privacy-
Preserving Techniques: We delve into decentralized
ML methods like federated learning and privacy-
preserving systems like Proof of Learning, offering a
more focused analysis than general reviews like [56]
or [101].

• Balanced Analysis of Opportunities and Challenges:
Unlike papers that primarily focus on benefits or
challenges, like [102] and [103], our survey presents
a balanced view of the potentials and limitations of
integrating blockchain in ML.

• Exploration of Emerging Trends and Future Direc-
tions: We investigate the future of blockchain in fed-
erated learning and decentralized AI, offering insights
into trends not thoroughly explored in surveys like [86]
and [104].

• Unique Emphasis on Scalability and Energy-Wise
Approaches: Building on foundations laid by surveys
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TABLE 6. Summary of Survey Papers For Blockchain And ML.

like [55] and [105], we uniquely focus on scalabil-
ity and energy-wise considerations in blockchain-ML
integration.

• Critical Evaluation of Security and Data Privacy:
Our survey provides a critical analysis of security
and data privacy issues in blockchain-ML convergence,
extending the discussions found in works like [94]
and [106].

IV. APPLICATIONS AND INNOVATIONS
As the introduction highlights, blockchain offers significant
potential when integrated with ML applications. Blockchain
provides a decentralized infrastructure [111]. It offers a
trustless, automated, and decentralized framework that can
streamline how businesses operate, much like how the inter-
net revolutionized the collaborative economy [112]. Figure 6
shows the taxonomy of blockchain for AI [56]. This research
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categorized these works regarding the decentralization of AI
methodologies and operations, a blockchain infrastructure
and types, and the underlying consensus protocols utilized
for distributed decentralized transaction validations across
underlying networks [56].

In line with this taxonomy, novel approaches combining
blockchain and ML continue to emerge, including federated
learning, PoL, and PoDL, which can lead to more secure and
privacy-preserving ML applications [113]. One of the novel
approaches in blockchain and ML integration is the Proof of
Learning consensus algorithm. This algorithm channels com-
putational power to train neural networkmodels, empowering
ML with consensus building on blockchains [19]. Addition-
ally, federated learning enables decentralized training across
multiple devices and can be further secured and optimized
using blockchain [114]. The PoDL is another emerging
concept that leverages blockchain to ensure the integrity and
authenticity of deep learning models [115].
The following sections will delve into state of the art in the

confluence of Blockchain and ML.

A. SECURING ML MODELS
In the context ofML, blockchain presents a robust framework
for enhancing the security and privacy of ML models and
their training data. This section explores various dimensions
of how blockchain can be pivotal in securing ML models.

1) ENSURING DATA INTEGRITY
Blockchain can be harnessed to ensure the integrity of
training data and the trained models themselves [112].
By recording all transactions related to the model’s training
process and data on a distributed ledger, blockchain provides
a tamper-evident system that safeguards the trustworthiness
of ML models [113]. This becomes especially critical in
domains like healthcare, where the reliability of ML models
holds significant implications [116].

2) PRESERVING DATA PRIVACY
In ML applications, blockchain can preserve data privacy
and security. Blockchain’s decentralized nature allows data
to be stored across a network of nodes, mitigating the
risks associated with centralized databases [112]. Employing
cryptographic techniques within blockchain ensures that data
remains confidential and can only be accessed by authorized
entities [117]. This is particularly valuable in domains like
healthcare, where patient data privacy is paramount [118],
[119].

3) MITIGATING SECURITY THREATS
ML models are susceptible to various security threats,
including data poisoning and model inversion attacks [120].
Blockchain can fortify ML models against such
vulnerabilities. The ledger records all transactions related to
the model’s training process and data, ensuring the integrity

and security of both the model and the data [112]. The
tamper-evident nature of blockchain makes any unauthorized
modifications readily detectable, further enhancing the
security of ML models [113].

4) PRIVACY-PRESERVING ML AND SECURE DATA SHARING
Privacy-preserving ML methods, such as federated learning,
have gained prominence in the heightened data privacy
concerns era. Blockchain plays a crucial role in these
techniques by enabling data to remain on users’ devices,
with only model parameters shared and updated on the
blockchain [100]. This approach guarantees that raw data
remains confidential, safeguarding user privacy [121].

5) SECURE DATA SHARING
In ML, data is a valuable and sensitive resource. Blockchain
ensures secure and controlled data sharing, empowering
data owners to maintain control over who accesses their
data [117]. This controlled data sharing can be pivotal in
scenarios where data privacy regulations restrict the sharing
of raw data [117].

Integrating blockchain with ML promises enhanced data
security and privacy and creates decentralized ML models.
These models can leverage data from multiple sources
without necessitating the sharing of raw data, thereby
preserving data privacy, especially in contexts where reg-
ulations limit essential data sharing. While this integration
holds excellent potential, addressing its challenges and
fully realizing its benefits requires further research and
exploration [32].

Challenges around efficiency, incentives, and complexity
must be addressed to fully realize the benefits of secure data
sharing between blockchain and ML.

In addition to securing ML models, blockchain can
enable marketplaces that incentivize data and model sharing.
This section explores blockchain-based platforms facilitating
secure, transparent data and model exchange.

B. MARKETPLACE THAT INCENTIVIZES DATA SHARING
Several blockchain-based platforms create marketplaces
where participants can share data and get rewarded. These
decentralized data-sharing ecosystems promote open and
diverse datasets for training ML models.

1) BLOCKCHAIN-ENHANCED FEDERATED LEARNING
SYSTEM
The system under discussion [122] is designed to focus on
the secure sharing of data generated from connected devices
within the Industrial Internet of Things (IIoT) paradigm.
It introduces an innovative approach to privacy protection
by sharing data models instead of revealing the data itself.
This ensures that the raw data, owned by the contributors, are
stored locally, eliminating the risk of data leakage.
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FIGURE 6. Taxonomy of blockchain for AI [56].

As depicted in Fig. 7, the proposed system comprises two
primary modules: the permissioned blockchain module and
the Federated Learning module. Initially, the Data requester
submits a requirement for data sharing to the permissioned
blockchain. The blockchain encrypts the information and
records it on the blocks. Multiple parties then train the model
with new data, and the Data requester obtains the federated
data model, which is also logged into the blockchain.
A Cached model is employed to verify if the request has
been previously processed, thereby preventing redundant
operations.

a: PERMISSIONED BLOCKCHAIN MODULE
Positioned at the core, the permissioned blockchain estab-
lishes secure connections among all the end IoT devices
through its encrypted records. It meticulously manages data
accessibility, recording retrieval transactions, data-sharing
actions, and all related data-sharing events. Importantly,
it does this without recording the raw data, enhancing
security.

b: FEDERATED LEARNING MODULE
Situated at the bottom, the FL module facilitates sharing the
federated data model learned across multiple decentralized
parties. A unique consensus mechanism, known as the Proof
of Training Quality (PoQ), is introduced, reducing computing
costs and minimizing communication resources.

The evaluation results from the developers of this system
reflect the efficacy of the blockchain-empowered data-
sharing scheme in enhancing the secure data-sharing process.
Moreover, integrating FL into the consensus process of the
permissioned blockchain has led to significant improvements
in both the utilization of computing resources and the
efficiency of the data-sharing process.

Combining Federated Learning with blockchain presents
a promising and innovative way to ensure data privacy in
data sharing. This approach aligns with the growing need for
secure and efficient data handling in the IIoT landscape, and
it sets a precedent for future developments in this field.

2) SHARING UPDATABLE MODEL (SUM) ON BLOCKCHAIN
Similarly, frameworks have been proposed for collaboratively
sharing updatable ML models on the blockchain. The
framework under discussion [123] emphasizes the collective
sharing of data from various participants to train anMLmodel
utilizing smart contracts. Specifically, the ML model, trained
on the IMDB reviews dataset for sentiment classification,
can enhance its performance using collaboratively built
datasets. A depiction of the SUM structure can be seen in
Figure 8. One of the standout features of this SUM on a
blockchain is incorporating incentive mechanisms within a
smart contract. These mechanisms promote higher-quality
data submission, eliminate incorrect or ambiguous data, and
uphold the model’s accuracy.
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FIGURE 7. Secure data sharing architecture: process from data request to model training and verification, recorded on
permissioned blockchain [122].

FIGURE 8. SUM structure: three steps from incentive validation to ML
model update, including data recording and model training [123].

The SUM framework introduces three distinct incentive
mechanisms to foster collaboration and ensure data accuracy:

• Gamification: This approach leverages non-financial
incentives such as points and badges to recognize and
reward reliable data contributors.

• Rewards Mechanism Based on Prediction Markets:
This monetary reward system incentivizes submitting
accurate data. It consists of three phases:

1) Commitment Phase: The provider deposits the
reward, defines a loss function L(h,D), uploads
test datasets, and sets an end condition.

2) Participation Phase: Participants contribute their
datasets and train the ML model. The trained
model updates are sent to the smart contract for
aggregation.

3) Reward Phase: The smart contract updates each
participant’s balance bt through the equation
bt = bt−1 + L(ht−1,D) − L(ht ,D). Rewards or
penalties are assigned based on data quality.

• Deposit, Refund, and Take: Self-Assessment: This
mechanism enforces a deposit when contributing data to
penalize bad submissions. It consists of four phases:
1) Deployment Phase: An initial ML model h is

trained.
2) Deposit Phase: Participants deposit currency d

when providing data, influenced by the time inter-
val between updates, as in d ∝ f (time interval).

3) Refund Phase: Participants whose data agrees with
h have their deposit returned after time t , with
t ∝ f (P(h x = y)), where P is the probability
of correctness. The relationship is subject to t ≥

7 days.
4) Validation Phase: The smart contract validates

data, rewards good contributors, and takes a
portion of the deposit from those whose validation
result is h x ̸= y.

Figure 9 illustrates the simulation results of the third
incentive mechanism. Good Agents, who contribute quality
data, are rewarded, while Bad Agents, who upload incorrect
data, eventually deplete their balance. The smart contract
effectively mitigates the adverse impact of bad data, main-
taining the stability of the model. The SUM framework
offers a practical platform for collaborative dataset building,
utilizing smart contracts to maintain a continuously updated
ML model. Both financial and non-financial incentives
contribute to the provision of quality data and the preservation
of model accuracy.

3) DEEPCHAIN
Building upon these data-sharingmodels, theDeepChain pro-
totype tackles security issues in federated learning through
blockchain incentives. In this approach [32], data privacy is
safeguarded, and a protocol that promotes data sharing is set
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FIGURE 9. SUM simulation experiment: balancing ML model accuracy
with reward mechanism for data quality [123].

up. The authors of the DeepChain prototype argue that their
framework, which is both distributed and secure, tackles a
variety of security issues commonly ignored in Federated
Learning. Moreover, it incorporates a blockchain-based
incentive mechanism to ensure participants act appropriately.
Figure 10 provides a schematic representation of this frame-
work. Parties represent stakeholders with similar objectives
in this framework but cannot train a model independently.
The Trading Contract enables these Parties to upload their
local gradients to DeepChain. Workers log transaction data
onto the blockchain and receive incentives determined by the
Processing Contract. The Trading Contract and Processing
Contract are smart contracts within DeepChain, jointly
overseeing a secure training procedure. Here, TX stands for
transactions.

The research team also constructed a functional prototype
of DeepChain. They employed the decentralized ledger
Corda V3.0 [124] and the MNIST dataset [125] to create a
blockchain for simulation testing.

During the evaluation stage, the model was trained on
DeepChain in a multi-party configuration. Various metrics
were examined, such as cipher size, throughput, training
accuracy, and the total time cost. The results revealed that
the accuracy improves as more parties participate in training.
However, throughput diminishes with an increase in the
number of gradients, and the time required for training also
escalates as the number of participating parties increases.

DeepChain’s primary innovations include: First, it intro-
duces an incentive structure to promote collaborative involve-
ment in training deep learning models and disseminating the
resulting local gradients. Second, DeepChain ensures these
local gradients’ confidentiality while providing a transparent
and auditable training workflow.

4) LEARNINGCHAIN MARKETPLACE
Other decentralized marketplaces like LearningChain illus-
trate blockchain’s potential for enabling secure and private

FIGURE 10. DeepChain prototype overview: stakeholder parties, trading
contract, and worker roles in secure training with smart contracts [4].

data sharing for ML. The demand for robust ML algorithms
for large-scale, distributed data is pressing in the exten-
sive data landscape. LearningChain emerges as a solution
that transcends the limitations of traditional master-worker
distributed ML algorithms, which rely on a central trusted
server. The LearningChain Framework [126] is decentralized,
privacy-preserving, and secure, supporting both linear and
nonlinear learning models. It employs a decentralized
Stochastic Gradient Descent (SGD) algorithm, integrates
differential privacy mechanisms, and deploys an l-nearest
aggregation algorithm to counteract Byzantine attacks.

The framework operates in three pivotal phases. First, the
‘‘Blockchain Initialization’’ phase sets up a P2P network
involving nodes and data owners. Second, the ‘‘Local
Gradient Calculation’’ phase provides data owners with
model replicas for local gradient computation, adding a noise
factor for privacy. Lastly, the ‘‘Global Gradient Aggregation’’
phase identifies a winning node through a PoW challenge and
updates the global model.

LearningChain maintains a trade-off between user pri-
vacy and model accuracy. Reduced privacy correlates with
increased test errors, affirming the framework’s efficiency
and effectiveness in utilizing blockchain.

The architecture of LearningChain, as shown in Figure 11,
is flexible and does not impose specific blockchain require-
ments. The participants are data owners, like coin owners
in cryptocurrency systems or computing nodes, similar to
miners. These computing nodes assist data owners in learning
the model and are compensated based on their contributions.
The roles are fluid; a computing node can also be a data owner
if it has relevant data, and vice versa.

Beyond architectures for data sharing, blockchain also
shows promise for marketplaces that incentivize model
sharing.
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FIGURE 11. LearningChain architecture [126].

C. MARKETPLACE THAT INCENTIVIZES MODEL SHARING
Blockchain systems can also incentivize the sharing of
pre-trained ML models. Platforms that enable model
exchange allow developers to build on existing models rather
than training from scratch. This section discusses projects that
use blockchain for model sharing and exchange.

1) DANKU CONTRACT
Built upon an Ethereum-blockchain-based marketplace, this
original and classic protocol is designed to evaluate and
exchange ML models, serving as a trustless platform for
supply and demand [28]. The demander (or organizer),
possessing the dataset, poses a question, while the supplier (or
submitter) provides a well-trained ML model to address the
issue. In the final stage, the supplier with the top-performing
model receives a payout from the demander. To ensure data
privacy, hashed data is disclosed through a contract, and all
transactions are recorded on the blockchain. Figures 12 to 16
depict the structure of this marketplace, outlining five phases
that ensure its successful operation.

Several innovative features characterize this marketplace:

• Automation and Anonymity: Unlike the Ethereum
blockchain, which necessitates reputations, the ML
model exchange here is automated and anonymous. This
is achieved through cryptographic verification enforced
by the protocol.

• No Requirement for a trusted 3rd party: The smart
contract’s ability to automatically validate solutions sub-
mitted by submitters removes any uncertainty regarding
the correctness of the solution. Consequently, organizers

FIGURE 12. Initialization phase: contract formulation with problem
definition, dataset allocation, and ethereum wallet integration [28].

can solicit AI solutions globally, and submitters can
directly monetize rewards with their ML models.

• Data Privacy: The DanKu contract assists the organizer
in creating a cryptographic dataset for training and
testing, utilizing the sha3-keccak hashing function,
thereby ensuring data privacy [28].

The developers emphasize in their paper that the Smart
Contract fosters a market where individuals skilled in solving
ML problems can monetize their abilities. Simultaneously,
any organization or software agent needing an AI solution
can seek global solutions. This approach encourages the
creation of superiorMLmodels and enhances AI accessibility
for various companies and software agents [28], marking a
significant contribution to ML’s advancement.

Beyond evaluating and exchanging models, novel con-
sensus mechanisms like Proof of Learning demonstrate
how blockchain can enable decentralized development and
selection of ML models.
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FIGURE 13. Submission phase [28]: during this stage, submitters present
their trained ml models as potential solutions to the problem.

FIGURE 14. Test dataset disclosure phase [28]: The organizer unveils the
hashed testing data sets at this stage.

FIGURE 15. Evaluation phase: model assessment using evaluation
function and marking of top-performing or first-evaluated models [28].

FIGURE 16. Finalization phase: reward allocation to best model submitter
or return to organizer if no model passes evaluation [28].

2) PROOF OF LEARNING
Another innovative application of ML in the blockchain is
the concept of proof of learning. This distributed consensus
protocol ranks ML systems for a given task. This protocol

aims to reduce the computational waste of hashing-based
puzzles and create a publicly distributed and verifiable
database of state-of-the-art machine-learning models and
experiments. ML can significantly augment blockchain,
enhancing its security, efficiency, and utility in various
applications. In this mechanism, the right to create a block is
granted based on the performance of ML tasks. This provides
a practical alternative to the energy-consuming Proof of
Work and promotes the development and application of ML
models [127].

In the Proof of Learning mechanism, the nodes in the
blockchain network participate in ML competitions. The
node that achieves the best performance in the competition
earns the right to create the next block. This approach ensures
the block creation process’s fairness and encourages the
nodes to improve their ML capabilities [127].

Proof-of-learning can be extended to selecting optimal
machine-learning models through Smart Contracts. In this
setup, ML competitions are held where the participants com-
pete to develop the most accurate model. The performance of
these models is then evaluated and validated through smart
contracts, ensuring a transparent and fair model selection
process. This approach not only incentivizes the development
of high-quality machine-learning models but also promotes
the use of blockchain in machine-learning applications.

Proof of Learning (PoL) adds a unique dimension to
the ecosystem of consensus mechanisms by specifically
incentivizing the development of machine learning (ML)
models within a decentralized framework. While traditional
mechanisms like Proof of Work (PoW), Proof of Stake (PoS),
and Delegated Proof of Stake (DPoS) primarily focus on
securing blockchain networks and ensuring their resistance to
tampering, PoL aims to democratize access to ML. It fosters
innovation by rewarding the creation and improvement of
ML models, thereby aligning the interests of participants
with the advancement of ML technologies. This approach not
only stimulates growth in the field of ML but also offers an
alternative to the computationally intensive tasks typically
associated with blockchain consensus mechanisms, poten-
tially reducing computational waste and focusing resources
on productive ML model development.

a: PROOF-OF-LEARNING AND SMART CONTRACTS IN ML
MODEL SELECTION
Integrating blockchain and ML has opened up new possibil-
ities for optimizing model selection in ML, mainly through
smart contracts and novel consensus mechanisms such as
Proof of Learning [127].

In a typical blockchain network, miners compete to solve
a computational puzzle, a process known as PoW [10].
However, Proof of Learning replaces this process with
ML model training [127]. Miners train models and sub-
mit their performance values. Full nodes in the network
then validate these performance values. The miner with
the best-performing model can write the next block in
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the blockchain. This approach promotes the efficient and
sustainable use of computational resources and energy for
ML training [127].

Smart contracts, self-executing contracts with the terms of
the agreement directly written into code [47], play a crucial
role in this process. In the context of PoL, smart contracts can
be used to define the rules of the model training competition,
including the evaluation metrics and the reward distribution.

When a miner believes they have a model that meets
the required performance criteria, they can submit it to the
network. The smart contract then automatically verifies the
model’s performance and, if it meets the requirements,
updates the blockchain and awards the miner their reward.

Proof of Learning provides several advantages as a
consensus mechanism tailored for ML but also poses some
challenges in implementation. It provides a transparent,
auditable, and fair process for model selection [127]. It also
allows for the decentralized execution ofML tasks, increasing
security and reducing reliance on a single central authority.

b: ADVANTAGES OF PROOF OF LEARNING
Proof of Learning offers several potential benefits for
decentralized systems due to its blockchain nature, which
ensures transparency, security, and privacy:

1) Incentivizing participation: By rewarding participants
for their contributions to developing high-quality
ML models, Proof of Learning encourages increased
network participation and expertise sharing [128].

2) Improving model quality: As participants compete to
produce the best ML models, they are motivated to
put forth their best efforts, resulting in accurate and
generalizable models [127].

3) Decentralizing ML: Proof of Learning enables the
development and deployment of ML models decen-
tralized, promoting a more distributed and democratic
approach to ML [128].

4) Reducing computational waste: By using Proof of
Useful Work instead of Proof of Work, Proof of
Learning minimizes computational waste, directing
resources toward valuable outcomes [127].

5) Supplying computational power to AI-based systems:
Proof of Learning can channel the computational
energy dedicated to mining activities into supporting
AI-based systems, facilitating the advancement of
artificial intelligence [127].

c: DISADVANTAGES OF PROOF OF LEARNING
1) Complexity of implementation: Proof of Learning

introduces more sophisticated mechanisms than tra-
ditional consensus algorithms, making it more dif-
ficult to implement and maintain in decentralized
systems [128].

2) Scalability issues: The competition for accurate
ML models may require significant computational
resources, potentially leading to scalability concerns as
the network grows [127].

3) High storage requirements: Storing ML models, train-
ing data, and test data within the blockchain may
impose substantial storage burdens, impacting overall
system efficiency [128].

4) Network latency: The submission of MLmodels, train-
ing parameters, and test data can introduce network
delays, potentially affecting the overall performance of
the blockchain [127].

5) Heterogeneous models and datasets: As participants
compete with diverse ML models and datasets, achiev-
ing a consensus on the best model can be challeng-
ing, potentially resulting in longer block validation
times [127].

6) Potential centralization risks: As powerful entities may
have access to better hardware, data, and expertise,
there is a risk that the Proof of Learning system could
inadvertently centralize control over the network [128].

7) Quality assurance challenges: Ensuring the qual-
ity and integrity of the models and data used in
the Proof of Learning system can be difficult and
resource-intensive, requiring constant monitoring and
validation [127].

d: COMPARISON OF PROOF OF LEARNING WITH THE
OTHER CONSENSUS ALGORITHMS
Proof of Learning is a consensus algorithm that fosters the
decentralized development of ML models. Unlike traditional
consensus algorithms that rely on various mechanisms like
computational challenges or stake ownership to primarily
secure blockchain networks, Proof of Learning uniquely
utilizes the ML process, employing models’ training as a
basis for achieving consensus within the network [127].
Table 7 illustrates a comparison of Proof of Learning with

other consensus algorithms:
Systems like WekaCoin illustrate how Proof of Learning

can be applied, using blockchain to incentivizemodel training
and validation.

e: WEKACOIN AND PROOF-OF-LEARNING
WekaCoin [127] operates on a peer-to-peer network utilizing
a unique blockchain framework. This framework incorpo-
rates distinct roles: ‘‘trainers’’ develop ML models using
new datasets provided by ‘‘suppliers,’’ ensuring that the
training involves previously unseen data. ‘‘Validators’’ then
assess these models based on supplier-defined performance
metrics and contribute to the blockchain by validating new
blocks. The highest-performing trainers are rewarded with
WekaCoins, while validators receive compensation through
transaction fees and the issuance of new WekaCoins. This
structure ensures the integrity of transaction blocks and
builds a verifiable database with a comprehensive record of
transactions, ML models, and related experiments.

The paper introduces the concept of Proof of Learning,
which harmonizes two distinct tasks: validating transac-
tions in a distributed ledger and storing ML models and
experiments in a decentralized database. Proof of Learning
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TABLE 7. Comparison of proof of learning with other consensus algorithms.

is designed to efficiently combine these tasks, drawing
inspiration from mechanisms such as reCAPTCHA.

The Proof of Learning workflow involves three primary
actors:

• Suppliers: These entities host ML competitions.
• Trainers: They are responsible for training models and
submitting solutions for available tasks.

• Validators: Validators evaluate models on test data,
reach a consensus on winning models, and propose new
blocks to the blockchain.

WekaCoin implements three distinct types of transactions:
• Standard Transactions: These transactions facilitate
the transfer of WekaCoins between users.

• Task Publication Transactions: Suppliers propose ML
competitions using these transactions.

• Model Transactions: Trainers employ these transac-
tions to submit solutions for specific tasks.

Suppliers can publish ML tasks, including details such
as training data, rewards, performance metrics, and test-
ing release schedules. A task publication transaction also
includes a standard transaction for transferring the reward and
a task hosting fee. Suppliers who fail to release the testing
data as scheduled face penalties in the form of lost tokens.

WekaCoin transactions are validated by the Proof-of-
Learning process, illustrated in Figure 17. There are three
types of actors involved in this process: 1) suppliers who host
ML competitions; 2) trainers who train and submit models for
any available task; and 3) validators who evaluate the models
on the test data, reach consensus about the winning system,
and propose new blocks to the chain.

Trainers select tasks and train ML models using training
datasets. Models are submitted through model transactions,
which include essential information like the model’s hash,
a timestamp, and performance scores based on the training

FIGURE 17. Illustration of wekacoin transaction validation process [127].

data. While trainers can submit multiple models, a nominal
participation fee discourages spam submissions. Models are
considered fully submitted after the release of the test data.

Validators, selected through a cryptographic sortition
method, are crucial in proposing new blocks by evalu-
ating models for an assigned task. Models must meet
specific criteria, including successful download, execution,
and correct performance scores. Validators create candidate
rankings based on model performance and share them among
themselves.

Genuine validators reach a consensus on the proposed
block and rankings. Transactions are subsequently added to
the block, including:

• Reward transfers to the owners of the top-performing
models.

• Distribution of task hosting fees to valid validators.
• Redemption of participation fees for trainers with top-
performing models.

• Compensation for validators involved in handling dis-
qualified models.

• Distribution of newly minted WekaCoins among valid
validators.

Metadata for validation purposes is included in each block,
digitally signed by corresponding validators. This ensures
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transparency and facilitates the verification of the block’s
validation process.

WekaCoin combines blockchain with ML tasks, allowing
decentralized model training, validation, and rewards. Proof
of Learning aligns two unrelated tasks, creating a distributed
repository of ML models and datasets while securing the
blockchain. Validators play a crucial role in maintaining the
system’s integrity, and transactions ensure fair compensation
for participants.

As an extension of Proof of Learning, Proof of Deep
Learning is an emerging concept leveraging blockchain’s
capabilities for optimizing and securing deep learning
models [129].

3) PROOF OF DEEP LEARNING
One of the related papers on this topic, titled ‘‘Proof of Learn-
ing (PoLe): Empowering ML with Consensus Building on
Blockchains,’’ [19] presents a novel consensus mechanism,
PoLe, that leverages blockchain to optimize neural networks
(NN) while achieving consensus. The paper introduces PoLe,
a consensus mechanism that directs computational power
spent on consensus toward optimizing NN. PoLe involves
releasing training/testing data to the blockchain network,
where consensus nodes train NN models as PoLe. The
paper compares PoLe with Proof of Work and demonstrates
its benefits regarding stability in block generation rates
and efficient transaction processing. A cheating prevention
mechanism, the Secure Mapping Layer (SML), has also been
introduced.

The proposed system comprises a decentralized peer-to-
peer network comprising data and consensus nodes. Data
nodes initiate ML tasks, including training datasets, model
specifications, accuracy requirements, and rewards. These
tasks are broadcast to the network and added to the global task
list. Consensus nodes, or miners, compete in training models
that meet data nodes’ requirements and receive rewards.
The blockchain also functions as a decentralized data store.
Figure 18 depicts an overview of this system.

Data nodes commission ML tasks, including encrypted
training datasets, model specifications, accuracy require-
ments, and time limits. They sign timestamps to prevent
forgery and release test data only after receiving trained
models. This ensures the test data’s integrity and prevents
malicious nodes from using it prematurely.

Consensus nodes, or miners, supply computational power
to the network and compete for tasks issued by data nodes.
The PoLe consensus algorithm directs their behavior. Miners
select the highest-value task from the task list, initialize
model parameters, and create the SML based on the current
block hash. They optimize the specified ML model and
broadcast a new block when the minimum training accuracy
is achieved (see Algorithm 1 in Figure 19).
The winning block and ommer blocks are added to the

miner’s blockchain. Blocks consist of headers and bodies,
with headers containing block ID, winner’s ID, selected task,

previous block hash, and more. Block bodies store data in a
Merkle Tree structure, including uncompleted tasks, newly
collected tasks, encrypted data, transactions, and test datasets
(see Figure 20).
The paper introduces an encryption mechanism to prevent

nodes from starting training prematurely. This mechanism
employs inner-product functional encryption and query
vectors generated based on the previous block’s hash. The
inner product between data feature vectors and query vectors
is used for decryption.

The PoLe design encourages accurate estimation of
training time by data nodes, as overestimation leads to lower
task priority. Consensus nodes receive rewards from data
nodes and additional rewards by referring to ommer blocks.
The SML prevents malicious nodes from starting training
early (see Algorithm 2 in Figure 21). PoLe also enhances
security by making it costly for attackers to manipulate data.

This paper introduces PoLe as a novel consensus mecha-
nism that optimizes neural networks while achieving consen-
sus on a blockchain network. It provides a detailed system
architecture, tools for data node interactions, consensus node
behaviors, and secure data storage. Additionally, it discusses
incentives and security measures to ensure the system’s
integrity.

4) HAWK
Hawk [130] primarily addresses the issue of transactional
privacy, often overlooked in existing systems where transac-
tional data is openly and publicly recorded on the blockchain.
This transparency poses a significant barrier to adopting
smart contracts in sectors like finance, where transactional
data is susceptible. As depicted in Figure 22, a Hawk program
consists of a private section designed to secure participants’
data and monetary exchanges and a public section that does
not interact with data or funds. The private area conceals the
flow and amounts of money by transmitting encrypted data
to the blockchain. The manager and the user can execute
the protocol’s rules to maintain financial integrity. While the
user can contribute regular data and currency to the protocol,
the manager oversees the transaction without influencing its
results and faces penalties for dishonest actions. The protocol
is divided into a private section, which conceals financial
and other sensitive data through encryption, and a public
section, which includes non-sensitive elements like incentive
mechanisms.

In [130], the authors introduce a decentralized smart
contract system that keeps financial transactions private,
not storing them in plaintext on the blockchain. Hawk
allows programmers to create private smart contracts that
establish rules for economic fairness without requiring man-
ual cryptography implementation, as Hawk automatically
generates the necessary cryptographic protocols. Both users
and managers (or monitors) can execute Hawk contracts.
Notably, the manager does not require trust, as penalties
are imposed for contract abortions, compensating the user.
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FIGURE 18. The overview of the proposed system in the PoLe [19].

FIGURE 19. Algorithm 1: The PoLe consensus algorithm [19].

According to the authors, Hawk is the first system to define
a cryptographic model for blockchain formally.

5) DINEMMO
The architecture, known as Decentralized Incentivization for
Enterprise Marketplace Models (DInEMMo) [131], is an

FIGURE 20. Validating and adding blocks to the blockchain in the PoLe
consensus algorithm [19].

FIGURE 21. Algorithm 2: VerifyBlock (blk, PHS, train_data) in the PoLe
Consensus Algorithm [19].

extensive marketplace that facilitates data and model sharing.
It operates at the intersection of decentralized AI and
blockchain technologies. This platform allows users to
upload new ML models or improve existing ones by con-
tributing their datasets. Fig. 23 depicts a diagram illustrating
this marketplace. The paper demonstrates the marketplace’s
utility through a medical diagnostic case involving data
from two hospitals. The DInEMMo framework comprises
three primary modules—BLOCKCHAIN, KEY STORE, and
ML SERVICE. Initially, the Controller collects users and
activates the Model Manager, which collaborates with the
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FIGURE 22. Hawk architecture: roles of manager and user in protocol
execution with private and public sections for data security and
transparency [130].

Marketplace to identify a fitting model through a validation
process. Next, the Service Adapter communicates with the
ML SERVICE module to acquire the privacy-preserving key
of the selected model from the KEY STORE module. The
Service Adapter then updates the newly trained ML model,
and the Model Manager uploads it to the Model Store for
subsequent utilization. The Incentive Engine calculates the
rewards for those who contributed data, while the Pricing
Engine establishes the model’s price.

In this context, DInEMMo offers a secure platform
for hospitals to exchange data and collaboratively refine
ML models without exposing sensitive patient information.
Recall, accuracy, and precisionmetrics determine themodel’s
cost. The architecture supports several key functionalities:

1) Users can choose the most suitable model for their data
using a built-in validation mechanism.

2) Contributors who enhance the performance of an ML
model are rewarded based on a unique Incentive Engine
(IE), differing from the DanKu contract’s first-place-
only reward system.

3) Users looking to solve an ML problem can purchase
an appropriate model from the marketplace, with the
Pricing Engine (PE) determining the model’s cost.

The creators of DInEMMo claim it to be the first platform
to reward ML model contributors equitably. It considers both
domain-specific properties andML attributes when allocating
rewards. The architecture also features configurable smart
contracts that serve multiple purposes, such as representing
ML and use case attributes, generating new or enhanced
ML models based on user contributions, determining model
pricing based on user policies, and calculating incentives for
model owners and co-contributors.

V. CHALLENGES AND FUTURE RESEARCH DIRECTIONS
The integration of blockchain and ML technologies presents
a myriad of opportunities and challenges. This section

discusses the potential benefits and hurdles associated with
the fusion of these two technologies.

A. CHALLENGES
Despite the promising opportunities, integrating blockchain
and ML also presents several challenges that must be
addressed to exploit these technologies’ potential.

1) TECHNICAL CHALLENGES
a: SCALABILITY AND PERFORMANCE
Both blockchain and ML systems can be resource-intensive,
and their integration can exacerbate scalability issues. Devel-
oping scalable solutions that can handle large datasets and
complex learning tasks without compromising performance
is a crucial challenge [131], [132], [133].

b: CONSENSUS MECHANISMS FOR ML
Traditional blockchain consensus mechanisms may not be
suitable for ML applications, especially those that require
real-time decision-making. Developing new consensusmech-
anisms that can support the specific needs of ML is a
significant area of research [30], [132].

c: INTEROPERABILITY AND TECHNICAL COMPLEXITY
MLmodels and blockchain systems are often developed inde-
pendently using different protocols and standards. Ensuring
interoperability between these systemswhen integrating them
is a technical challenge [9], [134].

2) DATA SECURITY AND PRIVACY
a: SECURITY
Security is a primary concern in any technology, and
the intersection of blockchain and ML is no exception.
While blockchain can provide security to ML models,
the underlying data used by these models can still be
vulnerable to attacks. Research is ongoing in developing
robust privacy-preserving ML algorithms that can work
effectively in a blockchain environment [135]. Ensuring the
security of the integrated system requires addressing the
vulnerabilities in both blockchain and ML components.

b: PRIVACY
The significance of safeguarding data privacy is paramount.
Data contributors may hesitate to disclose their information
or transactions on a public blockchain, where any user
possessing the key can access the data. Several solutions to
this challenge are as follows:

1) As suggested by the authors in [123], one approach
is to avoid directly submitting data to the smart
contract. Instead, contributors could submit encrypted
inputs or provide inputs to a concealed model that
operates behind an Application Program Interface
(API), thereby not being publicly accessible.

2) Utilizing blockchain effectively can standardize and
monitor the usage of stored data, thereby preventing
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FIGURE 23. DInEMMo framework: interplay of BLOCKCHAIN, KEY STORE, ML SERVICE modules, with focus on model
selection, training, incentive calculation, and pricing [131].

misuse and privacy breaches. Smart contracts can be
engineered to disclose hashed data or data models
rather than raw data, as demonstrated in [28] and [122].

3) As noted in [28], the model weights in DanKu contracts
are not fully anonymized. To address this, homomor-
phic encryption techniques could be integrated into
the protocol to ensure the anonymity of the models
submitted to the smart contracts.

4) Most existing protocols and marketplaces have yet to
address transaction privacy. Further research in this
area is warranted, as indicated in [130].

3) REGULATORY AND ETHICAL ISSUES
Integrating blockchain and ML raises regulatory and ethical
issues, such as data ownership, the right to explanation, and
algorithmic bias. Addressing these issues is crucial for the
responsible deployment of these technologies [39], [136].

4) DATA MANAGEMENT
a: DATA ACCESSIBILITY CHALLENGES
Access to relevant data sets for training ML models can
be limited, especially when the ideal data is proprietary.
This restriction can lead to high costs in data collection
or hinder the development of effective models. Conversely,
data set holders may struggle to find suitable ML models.
A potential solution is a marketplace that facilitates data
exchange and ML models, bridging the gap between data
availability and model accessibility. Such a platform could
foster collaboration and efficiency in ML development [4].

b: MALICIOUS CONTRIBUTORS AND ERRONEOUS DATA
Even with access to updatable data for the ML model, not
all contributors may be trustworthy. Spammers or malicious
providers might upload incorrectly labeled data, leading to
suboptimal training results. The updated ML model may
perform poorly without properly filtering this erroneous
information [4].

5) ENERGY WISE RESOURCE UTILIZATION
Optimizing energy-wise utilization of resources is a critical
challenge in blockchain and ML systems. Task scheduling
is essential for efficient resource usage but becomes more
complex when considering energy demands. While ML has
been applied for energy-aware scheduling, most techniques
predict resource needs rather than optimize schedules [137].

Furthermore, proof-of-work consensus in blockchain net-
works is computationally intensive, raising sustainability
concerns [2]. Integrating ML in the consensus process
provides opportunities for more energy-wise alternatives. For
instance, ML can predict energy consumption in cloud data
centers and optimize resource allocation accordingly.

However, existing energy management limitations in
cloud computing warrant innovative solutions to enhance
performance while minimizing energy demands. As ML
and blockchain integration mature, a core focus should be
leveraging ML to optimize task scheduling, resource usage,
and consensus protocols for improved energy efficiency.

Studies have also explored the accuracy vs. energy
trade-offs in ML models. Significant energy savings can be

145354 VOLUME 11, 2023



O. Ural, K. Yoshigoe: Survey on Blockchain-Enhanced Machine Learning

achieved with minimal loss in model accuracy by careful
tuning and optimization [138]. This highlights the importance
of considering sustainability alongside model performance.

A key research direction is developing ML techniques to
optimize resource usage in blockchain networks and cloud
data centers for energy-efficient operation.

6) FINANCIAL ASPECTS
a: INCENTIVE MECHANISMS
This subsection delves into incentive structures that effec-
tively promote data sharing and ML models. One issue
that could arise is the risk of overfitting during the reward
allocation phase. For instance, the Rewards mechanism based
on prediction markets, as described in [123], may not be a
reliable method for assessing the quality of submitted data
solely based on reducing the loss function. A decrease in the
loss function may not necessarily indicate a well-generalized
model; it could result from overfitting. Positive rewards,
therefore, may not serve as valid evidence of high-quality data
submission. Even if the model is adequately trained, relying
solely on the loss function may not capture its generalization
capabilities effectively.

b: MANAGING COMPUTATIONAL AND OPERATIONAL
COSTS
The architects of the protocol and the marketplace should
consider cost management, particularly regarding gas fees.
Storing datasets, models, transactions, and other pertinent
data in smart contracts andmarketplaces can be gas-intensive.
The gas limitations could even prevent complex models from
executing. Solutions outlined in [28] offer ways to mitigate
these gas expenses. For example, storing large files and
datasets on alternative platforms like IPFS [139] or Swarm,
rather than on the blockchain, could keep costs manageable.
Solidity language enhancement could make smart contracts
more efficient and less costly. Additionally, adopting ML
improvements, such as utilizing 8-bit integers, further reduces
expenses. This might require popular ML libraries to adapt
to integer-based computations, given that Solidity primarily
operates with integers.

7) COMPLEX MODELS
Due to blockchain’s storage and computational resource
limitations, many existing ML and blockchain integrations
are primarily built around basic models, such as the per-
ceptron model. However, addressing more intricate problems
necessitates the use of more advanced models. For instance,
in complex applications like detecting traffic signs in
autonomous vehicles, the detection outcomes are influenced
by various factors, including weather, lighting, and angles,
and involve large volumes of collaboratively gathered data.
As such, these systems could benefit from incorporatingmore
complex models, like deep learning algorithms, to discern
more nuanced patterns in the data, tackle more difficult
challenges, and facilitate ongoing training.

Looking ahead, we highlight several promising research
directions that can help address these challenges and advance
innovations at the intersection of blockchain and ML.

B. FUTURE TRENDS AND RESEARCH DIRECTIONS
1) SECURITY AND PRIVACY ENHANCEMENTS
The foremost opportunity presented by integrating
blockchain with ML is enhanced security and privacy.
Blockchain’s immutable nature can secure ML models
against tampering, while its decentralized architecture
can ensure privacy-preserving data analysis. Moreover,
blockchain can provide foundations for robust internet
security infrastructures, offering solutions to mitigate
emerging cybersecurity threats [140].

a: DEVELOPMENT OF ROBUST PRIVACY-PRESERVING ML
ALGORITHMS
Developing robust privacy-preserving ML algorithms suit-
able for blockchain environments is a critical research
direction [141]. These algorithms must be designed to protect
data privacywhile ensuring the accuracy and reliability ofML
models. Papernot [142] also emphasizes the need for a formal
framework for security and privacy inML, aligningML goals
such as generalization with security and privacy desiderata
like robustness or privacy.

Another notable example is the blockchain-based federated
learning framework, which leverages blockchain for global
model storage and local model update exchange. This
framework effectively reduces the amount of consensus com-
puting andmitigates malicious attacks, thereby enhancing the
security of federated learning [143].

2) ENHANCING TRANSPARENCY AND TRACEABILITY WITH
BLOCKCHAIN IN ML
In future trends and research directions, blockchain inte-
gration into machine learning (ML) systems is a pivotal
area, particularly for enhancing transparency and traceability.
These attributes are especially critical in regulated industries
such as finance and healthcare [140]. The immutable nature
of blockchain ensures an unalterable and reliable audit
trail for ML data inputs, processes, and outputs, which is
invaluable for compliance and auditing in sectors where data
integrity is paramount.

The decentralization aspect of blockchain further aug-
ments the trustworthiness of ML systems. By distributing the
data ledger across a network, blockchain eliminates single
points of failure and significantly reduces risks associated
with centralized data repositories. This feature is crucial
in financial applications, where maintaining the integrity
and reliability of data is essential for consumer trust and
regulatory compliance.

In the healthcare sector, for instance, blockchain can
securely track and validate the lineage of patient data used
in ML algorithms, ensuring the accuracy of diagnostic tools
and personalized treatments. Similarly, blockchain-enriched
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financial ML systems provide transparent and traceable
records for transactions and automated trading algorithms,
offering security levels that traditional systems find
challenging.

Furthermore, integrating blockchain and ML offers signif-
icant data privacy and security advancements. Blockchain’s
inherent encryption capabilities provide robust data protec-
tion, ensuring that sensitive information is securely stored
and managed. Smart contracts, a key feature of blockchain,
enable automated, secure, and transparent data access control,
aligning with rigorous data protection standards such as the
General Data Protection Regulation (GDPR) and the Health
Insurance Portability and Accountability Act (HIPAA). This
integration enhances the security of data transactions and
ensures compliance with global data privacy regulations,
thereby offering the dual benefit of enhanced security and
regulatory adherence in ML applications.

Despite the promise, blockchain integration with ML has
challenges, including scalability and increased computational
demands. However, ongoing advancements in blockchain
technology, such as developing more efficient consensus
mechanisms, are gradually overcoming these obstacles,
paving the way for broader adoption in various sectors.

This convergence of blockchain and ML is thus a
significant trend in the field, opening new research avenues
for achieving higher reliability and trust in data-driven
applications [140].

3) NETWORK EFFICIENCY
a: OPTIMIZATION OF CONSENSUS MECHANISMS AND
DATA TRANSACTIONS
ML algorithms can aid blockchain in optimizing consen-
sus mechanisms, reducing computational requirements, and
facilitating efficient data transactions [140]. This optimiza-
tion can significantly enhance the services and promote
the development of IIoT [144]. ML algorithms can also be
leveraged to optimize energy management and security in
IIoT networks [145], [146].

b: SCALABILITY AND ENERGY WISE USE OF RESOURCES IN
BLOCKCHAIN NETWORKS
Addressing the challenges of scalability and energy-wise
use of resources in blockchain networks is an important
research direction. As the size of the distributed ledger
grows, it can result in slow transaction speeds and increased
computational needs. Research is needed to develop ML
techniques that can handle large datasets and optimize
the performance of blockchain networks while minimizing
energy demands [147].

For instance, ML can help optimize task scheduling and
resource allocation in blockchain networks to improve energy
efficiency [148]. Techniques like proof-of-learning can also
channel computing power towards valuable ML tasks rather
than cryptographic puzzles [127].

Furthermore, integrating ML and blockchain to cre-
ate robust decentralized marketplaces can lead to more
energy-wise use of collective resources. ML can optimize
incentive mechanisms on blockchain platforms to reward
contributions that enhance sustainability [140].

A key focus in merging these technologies should be
leveraging ML to enhance blockchain’s scalability and
optimize resource usage for energy efficiency. This can pave
the way for more practical and sustainable applications.

4) MARKETPLACES AND INCENTIVES
a: DECENTRALIZED ML MARKETPLACES
One of the key future trends is the development of
more efficient consensus mechanisms using ML algorithms.
ML can be used to optimize the consensus process in
blockchain networks, leading to improved scalability and
energy. This aligns with the concept of Proof-of-Learning,
which could gain traction as a sustainable alternative to
traditional consensus mechanisms like Proof of Work [127].
Furthermore, the emergence of decentralized AI or ML
marketplaces is another anticipated trend. As suggested by
Jamil et al. [149], blockchain can democratize access to
AI tools and high-quality data by creating a secure and
transparent platform for trading these resources. This could
lead to the democratization of AI, making it more accessible
to a broader range of users.

Blockchain can help create decentralized ML market-
places, leading to the democratization of AI. It eliminates
single points of failure and the need for third-party
intermediaries in IT systems. It ensures the integrity of
data storage and exchange with encryption and hash
functions [140].

b: INCENTIVE MECHANISMS FOR DATA SHARING AND
COMPUTATION
As posited by the authors in [123], there is a need for
further investigation, scrutiny, and experimentation concern-
ing incentive mechanisms, particularly focusing on model
compatibility and overfitting risks. In light of this, we suggest
the following enhancements:

1) The loss function could be further optimized. The
number of training epochs could be limited to prevent
an excessively small and continuously decreasing
loss function value, thereby mitigating the risk of
overfitting. This is crucial because model performance
should be evaluated based on validation data, not
just the decrease in the loss function. To this end,
we recommend implementing cross-validation [150] to
provide an unbiased evaluation and insights into the
model’s generalization capabilities.

2) The Incentive Engine in [131] primarily focuses on
accuracy changes for reward computation. However,
in scenarios with imbalanced data, accuracy may
not be an adequate performance metric. We suggest
incorporating more robust metrics like the F1-score,
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which considers both Precision and Recall and other
factors such as the training data size.

In addition to incentives, integrating advanced techniques
like PoL and PoDL with smart contracts represents another
active research direction.

5) ADVANCED BLOCKCHAIN ENHANCED ML MECHANISMS
a: PROOF-OF-LEARNING AND SMART CONTRACTS IN ML
MODEL SELECTION
The future landscape of this domain is poised for trans-
formation through several avenues. One of the critical
advancements is the development of more streamlined
consensus mechanisms tailored for ML tasks. This enhances
the efficiency of decentralized networks and paves the way
for more secure and robust AI marketplaces. Additionally,
the sector faces the imperative challenges of scalability,
energy efficiency, practical computational work, and security,
which require innovative solutions for sustainable growth.
Fusing blockchain with emerging technologies such as
the Internet of Medical Things is also anticipated to
redefine the application spectrum, particularly in safety-
critical areas. These collective advancements signify a
paradigm shift in how ML models are selected, deployed,
and managed, thereby shaping the future of decentralized
AI ecosystems [105].

b: PROOF-OF-DEEP-LEARNING AND SMART CONTRACTS IN
ML MODEL SELECTION
PoDL is also an emerging concept in the intersection of
blockchain and ML, which can be seen as an extension of the
Proof-of-Learning consensus mechanism. PoDL leverages
the power of deep learning algorithms to solve complex
problems and provide proof of computational work in a
blockchain network. In a PoDL-based blockchain network,
the miners must train deep-learning models to solve complex
tasks. The performance of thesemodels is then used as a proof
of work, replacing the traditional cryptographic puzzles used
in Proof-of-Work consensus mechanisms. This approach
makes the blockchain network use computing resources more
wisely and generates practical computational work in trained
deep learning models [151].

Smart contracts can be crucial in implementing PoDL in
a blockchain network. They can be used to define the deep
learning tasks that the miners need to solve, specify the
performance metrics for evaluating the models, and automate
the reward distribution process based on the performance
of the miners [86]. Moreover, smart contracts can facilitate
the optimal selection of ML models in a PoDL-based
blockchain network. They can encode the criteria for model
selection into the blockchain, ensuring a transparent and
tamper-proof process for model evaluation and selection [86].
Integrating PoDL and smart contracts in ML model selection
represents a promising direction for the future development of
blockchain-based ML systems. It can potentially enhance the
efficiency, transparency, and fairness of ML model selection

while also contributing to the sustainability of blockchain
networks [151].

However, implementing PoDL and smart contracts in
ML model selection presents several challenges. These
include the high computational requirements of deep learning
algorithms, large and diverse datasets for model training,
and the potential security risks associated with using smart
contracts [151]. Future research is needed to address these
challenges and fully realize the potential of PoDL and
smart contracts in ML model selection. While the fusion of
blockchain and ML presents numerous opportunities, it also
brings challenges that must be addressed to exploit these
technologies’ potential. Future research in this field will
likely focus on developing efficient consensus mechanisms,
creating decentralized AI marketplaces, and managing the
challenges of scalability, energy efficiency, and security.

In summary, we foresee many innovations blending
blockchain and ML to shape future advancements in decen-
tralized, transparent, and secure AI systems.

VI. CONCLUSION
This survey has explored the intersection of two transforma-
tive technologies: blockchain and ML. We began the paper
by outlining the challenges, objectives, and motivation for
researching their integration, which remains an emerging
field with many open questions.

In the background section, we reviewed blockchain
systems’ architectural layers, from data to incentive and
contract. Additionally, we explored major ML approaches,
including supervised, unsupervised, and reinforcement learn-
ing. We also delved extensively into the growing domain of
blockchain-enhanced deep learning.

The section on related works summarized existing survey
papers and synthesized significant research contributions at
the crossover of blockchain and ML. Our discussion on
applications and innovations highlighted various frameworks
and protocols, such as Blockchain-Enhanced Federated
Learning Systems and LearningChain Marketplace, pushing
the boundaries in securing ML models and incentivizing data
and model sharing.

We identified critical opportunities created by this integra-
tion, such as improvements in security, privacy, transparency,
and optimization of consensus protocols tailored for ML.
However, we also outlined pressing challenges around
scalability, efficiency, model complexity, and standardization
that remain to be addressed through future research.

We foresee increased convergence and permeation
between blockchain and ML. Advancements in privacy-
preserving algorithms, specialized consensus protocols
like Proof-of-Learning and Proof-of-Deep-Learning, and
decentralized marketplaces were highlighted as promising
directions that could accelerate development at this intersec-
tion.

In summary, integrating blockchain and ML unlocks
immense possibilities but requires focused efforts to tackle
open problems before their full potential is realized. Through
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this survey, we aimed to provide researchers and practitioners
with a comprehensive reference on the state-of-the-art and
trajectory of blockchain-enabled ML systems. By shedding
light on this emerging intersection, we hope to have inspired
more profound research and innovation that harnesses
their synergies. The combined capabilities of blockchain
and ML could profoundly impact artificial intelligence’s
development, deployment, and governance.
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