
Received 19 November 2023, accepted 12 December 2023, date of publication 19 December 2023,
date of current version 26 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3345168

HeterGenMap: An Evolutionary Mapping
Framework for Heterogeneous NoC-Based
Neuromorphic Systems
KHANH N. DANG 1, NGUYEN ANH VU DOAN 2, NGO-DOANH NGUYEN 1, (Member, IEEE),
AND ABDERAZEK BEN ABDALLAH 1, (Senior Member, IEEE)
1Graduate School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Fukushima 965-8580, Japan
2Infineon Technologies AG, 85579 Munich, Germany

Corresponding author: Khanh N. Dang (khanh@u-aizu.ac.jp)

This work was supported in part by The University of Aizu Competitive Research under Grant 2023-P26.

ABSTRACT While task mapping for multi-core systems is known as an NP-hard problem, mapping for
neuromorphic systems even scale it up due to a high number of neurons per core and a high number of core
per system.Moreover, mapping for neuromorphic systems also has several challenges such as heterogeneous
computing core or communication fabrics, and potential defects in neurons or routing units. Therefore,
this paper presents a genetic algorithm framework named HeterGenMap which is a Genetic Algorithm
framework for mapping multiple-layer Spiking Neural Network systems to solve the aforementioned
problems. The results show that HeterGenMap improves the overall communication cost by 11.04-26.77%
in comparison to the linear mapping. Moreover, under link faulty scenarios, neuron defects, or multi-
chip designs, HeterGenMap can reduce the communication cost by 3.41-31.34%, 7.01%-41.51%, and
34.21-45.56% in comparison to the linear approach, respectively. The validation in hardware also
demonstrated that HeterGenMap reduces the inference time by 63.10-77.87% from the linear mapping.

INDEX TERMS Fault-tolerance, spiking neural network, neuromorphic system, network-on-chip, max flow,
migration.

I. INTRODUCTION
Spiking Neural Networks (SNN), considered as the third
generation of neural networks, mimics the operations of
biological brains using spike-based computations. The SNN
model is an arrangement of the replicated neurons to simulate
natural neural networks existing in biological brains [1].
The backbone element of SNNs is the replicated version
of neurons that receive input spikes, compute, and issue
possible output spikes. In recent years, numerous works have
investigated how to integrate a large number of neurons
on a single chip while providing efficient and accurate
learning [2], [3], [4], [5], [6], [7], [8], [9].

Software implementations, thanks to their flexibility have
demonstrated the ability to emulate the operation of biologi-
cal brains at low speeds [7], [8]. Meanwhile, implementing

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabian Khateb .

SNNs hardware has been a solution to accelerate the
performance thanks to their parallel structures and to gain
energy and memory efficiency [2], [3], [4], [5], [6]. The
conventional system usually consists of multiple clusters of
neurons connected via an on-chip communication fabric [3],
[9]. Scalability can be obtained by using a multi-chip system
and off-chip interconnect [2], [3].

While providing hardware to accelerate the performance
of the SNN is a promising idea, one of the major challenges
is how to efficiently map the computing models into the
hardware. As we know, mapping tasks into many/multi-
core systems is an NP-hard problem and it can also be
applied to Neuromorphic Computing. The general idea
of task mapping is to allocate a given set of tasks (in
SNN: neuron’s computation) into a given set of computing
units (in Neuromorphic chips/systems: hardware engine and
memory). For an SNN model with n neurons, there are n!
possible mapping combinations. Mapping approaches for

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

144095

https://orcid.org/0000-0001-6702-3870
https://orcid.org/0000-0002-8156-9025
https://orcid.org/0009-0008-9914-5504
https://orcid.org/0000-0003-3432-0718
https://orcid.org/0000-0002-9864-9830

K. N. Dang et al.: HeterGenMap: An Evolutionary Mapping Framework

FIGURE 1. The illustration of the impact of defective weights or neurons
on the overall accuracy.

SNNs can go through a clustering step first, which moves
the mapping to the cluster level [10]. However, it is still
not ideal with heuristic solutions (c! possible solutions for c
computing cores) since task mapping is considered as an NP-
hard problem. The equivalent problem of task mapping is the
quadratic assignment problem [11].

Beside mapping toward lower communication traffic or
reducing the connections, there are two notable problems
for large-scale neuromorphic systems that need to be
addressed. First, the occurrences of defects within the system
could be critical even though the neuromorphic system
can tolerate some level of defects [12], [13], [14], [15].
As being analyzed in [12] the flip-bit position and the
defective layer can have different impacts on the overall
accuracy. In Fig. 1, we analyzed the impact of defective
weight or defective neurons on the overall accuracy of two
benchmarks: MNIST with STDP learning and CIFAR10
using VGG16 and ANN to SNN conversion. In summary,
the overall accuracy drop can be significant if the errors
are not addressed. Because of the reliability issue, mapping
for SNN should also consider the ability to deal with
defective situations that alter the communication fabric.
In this work, we consider the alternated communication fabric
as heterogeneous communication since the connection is no
longer uniform within the system. The second problem is to
have a multi-chip system where each chip alone consists of
a plural set of neurons. To extend to a large-scale model,
it is common to have multiple chips connected to form
a larger number of neurons [2], [3]. However, there is a
difference between intra-chip and inter-chip communication
where inter-chip wires usually consume more power, and
have a higher latency than the intra-chip ones [16]. For this
matter, it will be more efficient to have more frequently
communicating neurons within the chip [17].
Although several mapping approaches for SNN have been

proposed [10], [18], some limitations still exist:
1) A conventional mapping usually goes through clus-

tering first which does not support heterogeneous

mapping. Indeed, it is assumed that every core consists
of the same number of identical neurons. However,
in large-scale systems, a heterogeneous number of
neurons per core could occur due to alternative designs
or defects. Pre-clustering would not work well in this
situation as the number of tasks and the number of
compute units are different.

2) Communication is also considered homogeneous
among mapping algorithms for multi-core systems.
Although this can simplify the mapping process,
neuromorphic systems usually come with a multiple-
chip design. Therefore, communication is no longer
uniform in all cases because it could vary between chips
and between on-chip and off-chip communication
fabrics. Moreover, defects in the communication units
can lead to prohibited routing paths. This alters the
routing path which makes some routing paths longer
than minimal routing paths.

3) Most SNN mapping approaches do not consider the
mapping as an open and extendable optimization
problem. As mentioned earlier, the mapping procedure
is an NP-hard problem, and tackling it is a tedious
and time-consuming task. Therefore, it is necessary
to develop an algorithm that can be flexible so
that the designers can adapt to different targets or
configurations.

To solve the aforementioned issues, this work introduces
HeterGenMap - a genetic algorithm framework for mapping
heterogeneous NoC-based neuromorphic systems. The fol-
lowing are the contributions of this work:

1) A heterogeneous mapping method for neuromorphic
systems that allows a different number of neurons
per core and even a different number of cores per
chip. Here, instead of dividing neurons into clusters of
similar sizes (each cluster fits into one core in NoC),
we propose dividing the neurons by groups. Here,
members of a group are exchangeable and a cluster
(not fixed-sized) consists of a set of sub-sets of groups.
This allows us to reduce the complexity of the mapping
problemwhile still supporting heterogeneous mapping.

2) A model that supports diversifying the communication
model which allows the mapping to consider: (1) multi-
chips mapping with different routing costs between
chips and (2) fault-tolerant mapping with the knowl-
edge of faulty links/routers.

3) As a Genetic Algorithm approach, HeterGenMap
introduces crossover, mutation, and fitness functions
tailored for neuromorphic computing. Additionally,
we present several approaches for crossover/mutations
and how to integrate them into the GA process.
By using a GA, the framework also supports extension
abilities such as (1) switching the cost function or
(2) using existing/known solutions in the evolution
process.

Table 1 shows a comparison between this work and the
state-of-the-art in mapping for neuromorphic computing.

144096 VOLUME 11, 2023

K. N. Dang et al.: HeterGenMap: An Evolutionary Mapping Framework

In summary, our work will tackle the aforementioned
problems which, to the best of our knowledge, remain
unsolved. The platform is also open-sourced and can be
accessed at https://github.com/klab-aizu/HeterGenMap.

The organization of this paper is as follows. Section II
presents the related works. Next, the proposed method is
introduced in Section III and the evaluation is provided in
Section IV. In Section V, we discuss the outlook about this
work, and Section VI concludes the paper.

II. RELATED WORK
In this section, we first summarize the related works on
neuromorphic systems. Then, we will survey mapping for
large-scale neuromorphic systems.

A. NEUROMORPHIC SYSTEMS
There are several considerations in the design of a neuromor-
phic system; however, we would like to focus on three major
points: (1) communication, (2) neuron architecture, and (3)
synapses. For communication, point-to-point or bus-based
fabrics cannot scale up to a large system (i.e., a million
neurons and a billion synapses). Therefore, adopting an
on-chip and off-chip network has been a consensus among
state-of-the-art works [2], [3], [5], [7], [22]. In general,
2D Mesh-based Network-on-Chip [2], [3] is the popular
choice thank its scalability for both on-chip and off-chip
communicating. In [21], 3D Mesh topology is used with the
help of Through-Silicon-Via technology. For better multi-
casting support, [5] used tree-like topology. In [23], the
authors proposed a Dynamic Segmented Bus architecture that
improves the power and latency in comparison toMesh-based
architecture.

In SNN design, due to its low complexity, Integrated-and-
Fire (IF) and it variations have been the popular choice [2],
[3], [5], [7], [22]. While full digital neurons [2], [3], [22]
can perform more complex computation with the trade-off
of larger area cost, mixed-analog-digital neurons [5], [7]
offer lower cost and closer operation to the neuron model.
[22] offer an Izhikevic neuron model in the design; however,
the actual benefits of this type of neuron are not well
demonstrated which still leaves IF-like neurons to stay
dominant. To support more complex neuron computation,
SpiNNaker [4] uses one million homogeneous ARM968
processors for emulation. Each ARM processor can simulate
a thousand neurons allowing the system to save up to a billion
neurons. SpiNNaker uses a fully packetized communication
infrastructure built on a folded two-dimensional toroidal
mesh where each node can communicate with six neighbors.
The SpiNNaker system is also based on the AER format with
table-based multi-casting support.

With such large-scale neuromorphic systems, the number
of neurons, synapses, and even chips could be massive.
Therefore, one of the major challenges is to allocate the
position of the neurons and synapses properly. The next
section will discuss the mapping problem for neuromorphic
computing.

B. MAPPING
As a multi-core system, we can use a conventional mapping
method for placing the neuron [24]. The conventional
multi-core mapping method has prove their efficiency,
mapping for NN is highly complicated due to a large number
of neurons. To solve this issue, SpiNeMap [18] performs
clustering before mapping. In the clustering process, neurons
are divided into clusters which can reduce the mapping
complexity. On the other hand, neurons can just be mapped
linearly [25] which can simplify the mapping process but
it leads to a sub-optimal result. In [3], the authors offer
several mapping algorithms for the placing process and
consider it as a wire-length minimization problem in VLSI
placement. In [26], the authors used Lagrange multipliers
to reduce the run-time complexity. NEUTRAMS [19] uses
the Kernighan-Lin partitioning strategy to split the neurons
into groups. In [27], the authors divide the adjacent layers
into a so-called sub-network. Then, the sub-network will
be partitioned to reduce the complexity of the algorithm.
However, the results still staywith small scale-NoC size.With
large-scale NoC, work in [28] proposed non-meta-heuristic
algorithms with can map much larger-scale neural networks
(up to billions of neurons) into NoC.

Although these mapping can work on neuromorphic
systems, we notice there is no mapping method on fault-
tolerance ones. Conventional multi-core NoC mapping
methods [29] can be used for placing neurons. However, the
mapping process in SNN is unique due to its connectivity.
Instead of reducing the whole cost of the communication
path, it is better to reduce the maximum communication path
as they may affect performance. In [13], the authors use
max-flow-min-cut to migrate the neurons if a fault occurs.
Although this works best for run-time maintenance, we also
observe it is better to remap if the fault appears after the
manufacturing process. Moreover, their method does not
support fault in communication at all.

Despite there are numerous works on mapping neuromor-
phic computing; there are several limitations on mapping
heterogeneous systems as we illustrated in the introduction.
To solve the mentioned limitations, this work will present a
genetic algorithm framework.

III. PROPOSED APPROACH
In this section, we present the proposed genetic algorithm
framework for mapping SNN. First, we show an overview
of the potential system and formulate the problem. Then,
the genetic algorithm approach is presented. We also discuss
different cost functions and the extension on fault tolerance
and multi-chip design. Finally, the complexity of the method
is analyzed.

A. SYSTEM OVERVIEW
Figure 2 shows an overview of a Mesh topology (2D or
3D) NoC-based SNN system. Neurons (N) are clustered
into computing cores (C). Each neuron (N) is attached to

VOLUME 11, 2023 144097

K. N. Dang et al.: HeterGenMap: An Evolutionary Mapping Framework

TABLE 1. Comparison between this work and state-of-the-art works.

its synapses (S). Here, hardware neurons are implemented
in parallel model where each physical neuron performs a
neuron’s computing task. In a serial neuron system such
as [3], there is one physical neuron that will be used
for multiple neurons’ computation along multiple synapse
memories. The communication from one core to other cores
is handled by the Network-on-Chip router (R). If a 3D Mesh
NoC is used, spikes to another layer are sent via an Inter-layer
Vias (V) that connects adjacent silicon layers. Although this
system is based on our previous works on 3D-NoC-based
neuromorphic systems [9], [13], the mapping approach here
is general and could be applied to other systems as well.

Additionally, neuromorphic systems can be implemented
into multiple-chip design thanks to the inter-chip link [2], [3].
Figure 2 illustrates the expansion of Mesh-based NoC into
adjacent chips as the inter-chip links work as router-to-router
links.

In this paper’s evaluation, we mainly consider the mesh
topology as it is the most popular one among neuromorphic
chips [2], [3], [13]. However, there are different mapping
topologies such as tree-based [5] or folded torus [4]. Adapting
to these topologies only requires modifications in the cost
functions as will be detailed in Section III-D.

B. PROBLEM FORMULATION
The mapping problem for SNN is illustrated in Fig. 3. The
development starts by completing the SNN model. Then, the
mapping process helps generate the location of each neuron
in the neuromorphic hardware where the system consists
of a fixed set of cores and each core can host a fixed
number of neurons. There are two types of communication:
(1) intra-core communication where the neurons within the
core exchange the spikes; and (2) inter-core communication
where the neurons in distant cores exchange the spikes.

While the intra-core communication is usually fast and
without noticeable latency; the inter-core communication is

FIGURE 2. A system overview of Mesh topology NoC-based SNN. The
system can consist of multiple chips connecting via inter-chip links.
Within the single chip, Mesh Network-on-Chip is utilized as the
communication infrastructure.

the major problem for NoC-based neuromorphic systems.
As we illustrated in Fig. 3, the neuron’s spikes must travel
several routing units (routers) to be delivered to the destina-
tion. If the mapping process is suboptimal, it leads to long
latency routing paths which give two major consequences:
(1) there are bottle-necks in communication in which the
SNN chip must wait for the spikes for communication, and
(2) higher power consumption due to the routing process.
Because of these reasons, in SNN mapping, inter-core
communication will play an important role in the system’s
performance.

With this mapping formulation, there are two options:
neuron-wise mapping and group-wise mapping. In the
following section, we will discuss the two options.

144098 VOLUME 11, 2023

K. N. Dang et al.: HeterGenMap: An Evolutionary Mapping Framework

FIGURE 3. An overview of the mapping problem.

1) NEURON-WISE MAPPING
As mentioned earlier, the task mapping problem for
multi-core systems can be transferred into an equivalent
problem named quadratic assignment problem [11]. Let us
assume N neurons per system to be mapped into C cores.
A solution s of the problem can be presented as a binary
matrix

sneuron =

ϵ1,1 ϵ1,2 . . . ϵ1,C
...

. . .

ϵN ,1 ϵN ,2 . . . ϵN ,C

 (1)

where ϵi,j represents the mapping of neuron i to core j as
follows:

ϵi,j =

{
1 if neuron i is mapped into core j
0 if neuron i is NOT mapped into core j

(2)

In this formulation, we consider each neuron as one task
in the system and need to map them accordingly. Although a
neuron-wise mapping can lead to fine-grain solutions, we can
easily realize it has high complexity since it must map each
neuron individually. To solve this problem, SpiNeMap [18]
grouped the neurons into clusters where each cluster could
be mapped into a hardware cluster or core. However, in a
heterogeneous system, each hardware cluster could have a
different number of neurons which prevents this clustering
idea from being feasible. Moreover, defects could occur in
large-scale systems (defects in neuron logic or memory cells)
which also alter the number of available neurons in each
cluster.

2) GROUP-WISE MAPPING
Given the challenges and limitations posed by neuron-wise
mapping, we adopt instead a group-wise mapping approach
with the following assumptions:

• A group of neurons does not have a specific size for
fitting into a cluster/core.

• A group of neurons must have a high similarity of
communication so that the neurons can be exchangeable.
For instance, neurons in the same layer of a multi-layer

perceptron are grouped since they share the same inputs
and outputs. By doing so, we map for its representative
group instead of mapping for each single neuron.

• A group will have represent connections (incoming
and outgoing) which is the union of all members’
connections in the group. Here, we eliminated the
sparsity to reduce the complexity of the model. With
sparsely connected models, we can later decide the
position of each neuron based on its connections rather
than its group’s connections.

Here, a group is a task that operates in parallel in several
locations. Neurons are therefore a parallel routine in the task.
By having a representative class, the number of variables
becomes much smaller. After mapping a group, we can place
the neurons as the second mapping problem.
The mapping problem can be reduced to:

sgroup =

ψ1,1 ψ1,2 . . . ψ1,C
...

. . .

ψG,1 ψG,2 . . . ψG,C

 (3)

where G is the number of groups and ψi,j represents the
number of neurons of group i that are mapped to core j.
Certainly, one neuron should not be mapped into multiple

cores and the number of neurons mapped to a core should not
exceed the core capacity. The constraints for the mapping are:

∀i ∈ {1 . . .G}

∑
j∈{1...C}

ψi,j = Group_Capi (4)

∀j ∈ {1 . . .C}

∑
i∈{1...G}

ψi,j ≤ Core_Capj (5)

where Core_Capj is the capacity for core j and Group_Capi
is the capacity for group i.

As mentioned in the introduction, we will consider in
this work the capacity of each core separately as there is
no guarantee that they are identical. For mapping neurons
separately, we can set the group size to one, G = N , and
∀i ∈ {1 . . .G}Group_Capi = 1.

VOLUME 11, 2023 144099

K. N. Dang et al.: HeterGenMap: An Evolutionary Mapping Framework

FIGURE 4. The HeterGenMap framework.

3) FINAL FORMULATION
Finally, we can formalize the problem as follows:

min or maxFcost (s)

s.t. ∀i ∈ {1 . . .G}

∑
j∈{1...C}

ψi,j = Group_Capi

∀j ∈ {1 . . .C}

∑
i∈{1...G}

ψi,j ≤ Core_Capj (6)

The cost function (Fcost) will be discussed later as we
design the framework. We will also discuss how this model
can be extended with different types of cost functions.

With the final formulation, we can now solve the problem
using Genetic Algorithm as in the following section.

C. GENETIC ALGORITHM FRAMEWORK
This section presents the proposed genetic algorithm frame-
work as shown in Algorithm 1. First, the inputs such as the
SNN model, the NoC topology, and the capacity in each
core are loaded. In the beginning, the framework randomizes
K − E mapping solutions (line 1). Then, we could add E
existing/known solutions as part of the initial solution (line 2).
Please note that this step is optional and we can perform
with E = 0. After having K mapping solutions, it starts
G generations of improvement. In each generation, the
algorithm first removes the incorrect mappings by checking
Equation 4 and 5. This ensures the solutions taken into the
crossover and mutation are correct. Then the cost function
such as the communication cost is calculated (line 5). The
details about the cost function are shown in Section III-D.
B best pairs are then selected out of K mapping solutions by
using a tournament selection (line 6). Please note that the pair
must not be identical and a solution can be in more than one
pair.

After having the B best pairs, a crossover operation is
performed to obtain B new offspring. Then, we merge them
to the original B solutions to create B× 2 solutions using the
crossover.

Algorithm 1 Proposed Genetic Algorithm for Neurons
Mapping
Input: SNN model, NoC topology, Core_Cap
Output: sgroup

Initialisation :
1: Randomize to get K-E mapping solutions
2: Add E existing solutions to form K initial solutions
3: for generation g in 1 to G do
4: Remove the wrong solutions using Equation 4 and 5
5: Calculate the cost function for each solution
6: Select the B best pairs using tournament selection
7: Crossover solutions to have a new population
8: Fixing the post-crossover population (see

Algorithm 2)
9: Mutate the population

10: Select K best solutions to create the new population
11: end for
12: Calculate the cost function for each solution of the

population
13: Select the best solution (sgroup) based on the cost function

14: return sgroup

After the crossover generates B × 2 solutions, the GA
eventually repairs the offspring since the crossover can lead to
infeasible solutions (see Section III-C3 for details). Next, the
mutation operation is performed, under a certain probability.

After the mutation, the repair operation is again performed
as the process can lead to infeasible results. Then, we check
whether we satisfy the communication cost in the specifica-
tion. If the communication cost is good enough, we can end
the GA. The GA is also completed after G generations.
At the end of the algorithm, the best solution in terms of

cost function is chosen to generate the configuration.
In the following subsections, we will discuss the tourna-

ment selection, crossover, mutation, and the method to fix
wrong offspring due to crossover and mutation.

1) TOURNAMENT SELECTION
To understand how to select a member of the population, this
section discusses the tournament selection. The overview of
tournament selection is shown in Figure 5. In this selection,
the GA platform selects randomly a subset of population
members. Among the subsets, the best member is chosen
based on the fitness function (minimum or maximum).
By repeating this selection, we can obtain any B best pairs
for crossover.

2) CROSSOVER
The first key operation is crossover. In this work, we proposed
two crossover approaches: (1) Mixing and (2) Single Point.

144100 VOLUME 11, 2023

K. N. Dang et al.: HeterGenMap: An Evolutionary Mapping Framework

FIGURE 5. Overview of tournament selection.

Assuming we have two parent solutions:

sA =

ψ
A
1,1 ψA

1,2 . . . ψA
1,C

...
. . .

ψA
G,1 ψA

G,2 . . . ψA
G,C

 (7)

and

sB =

ψ
B
1,1 ψB

1,2 . . . ψB
1,C

...
. . .

ψB
G,1 ψB

G,2 . . . ψB
G,C

 (8)

Mixing crossover
With the mixing crossover, we assume there are two

probabilities for solutions A and B as pA and pB (pA + pB =

1.0). The offspring solution is obtained as follows:

sC =

ψ
C
1,1 ψC

1,2 . . . ψC
1,C

...
. . .

ψC
G,1 ψC

G,2 . . . ψC
G,C

 (9)

where each element of the matrix ψC i, j is:

ψC i, j = round(pA × ψAi, j+ pB × ψBi, j) (10)

Because of this rounding equation, the constraints in Eq. 4
and 5 are respected. However, in some cases, the values may
be not satisfied due to the rounding process (missing one or
having an extra one). To solve this issue, we must go through
repair operation as detailed in Section III-C3.
Single Point crossover
With the single point crossover, the crossover point P

will be between 1 and N . Here, the offspring from the two
solutions are:

c1 =

ψA
1,1 ψA

1,2 . . . ψA
1,C

...
. . .

ψA
P,1 ψA

P,2 . . . ψA
P,C

ψB
P+1,1 ψB

P+1,2 . . . ψB
P+1,C

...
. . .

ψB
G,1 ψB

G,2 . . . ψB
G,C

(11)

and

c2 =

ψB
1,1 ψB

1,2 . . . ψB
1,C

...
. . .

ψB
P,1 ψB

P,2 . . . ψB
P,C

ψA
P+1,1 ψA

P+1,2 . . . ψA
P+1,C

...
. . .

ψA
G,1 ψA

G,2 . . . ψA
G,C

(12)

In short, the child c1 has the upper part from ψA and
the bottom part from ψB. Meanwhile, the child c2 has the
upper part from ψB and the bottom part from ψA. Note that
the produced offspring might not satisfy the constraints in
Equation 4 and 5. To avoid them being eliminated in S3,
we propose a repairing method in the following section.

Note that it is possible to easily perform crossover using
points in the core dimension. Also, multi-points and random
crossover are possible without any modification.

3) FIXING THE OFFSPRING
After crossover or mutation, the offspring solution can violate
the constraints in two ways:

• Assigning more the capacity of the core with crossover
in neuron dimension.

• Assigning a neuron in multiple cores or no core with
crossover in core dimension.

Here, the repair is done by exchanging the position of the
neuron/core, as shown in Algorithm 2. It first finds the list
of cores that have more or less than their capacity. Then,
it randomizes the moving between these cores (from the over-
populated, referred to as overlist in the algorithm, to the
under-populated, referred to as underlist).

Example: To understand how the cross-over and fixing
of the offspring work, we illustrate them in Fig 6. In this
example, the NoC is a 2D Mesh 3 × 3 with 4 neurons/core.
The SNN architecture is feed-forward with the configuration
of three groups of [12, 12, 10]. Here, we assume the two
solutions sA and sB as in the Fig 6 and the mixing crossover
give us the result sC using the Eq. 10. Due to the natural
feature of the rounding process, the new solution sC has the
total configuration of [11, 11, 10] which gives a residual
of [1, 1, 0] to be fixed. By using the fixing process in
Algorithm 2, we can obtain the final solution sC as in Fig 6.

4) MUTATION
The mutation process is done by exchanging the neuron
mapping. Here, we distinguish the mutation into two types:

• Exchange neurons between cores: in this type of
mutation, we only switch a certain number of neurons
between cores. The other neurons stay at the original
core

• Swap all neurons between cores: in this type ofmutation,
we swap all neurons between two cores. The internal
structures of the cores are unchanged.

During the GA process, the mutation method will be
alternated in a fixed ratio (i.e. 50% for exchanging neurons

VOLUME 11, 2023 144101

K. N. Dang et al.: HeterGenMap: An Evolutionary Mapping Framework

Algorithm 2 Offspring Fixing Algorithm
Input: sgroup
Output: sgroup

Initialisation :
1: under-list = []
2: over-list = []
3: for core c in 1 to C do

residual =
∑

i=1...N ψi,c − Capc
4: if residual > 0 then
5: push [c, residual] to over-list
6: else
7: push [c, residual] to under-list
8: end if
9: end for

10: for [c1, r1] in overlist do
11: for i in 1 to r1 do
12: randomized [c2, r2] with r2>0 in underlist
13: move one neuron from core c1 to core c2
14: [c2, r2] = [c2, r2-1]
15: [c1, r1] = [c1, r1-1]
16: end for
17: end for
18: return sgroup

FIGURE 6. Example of crossover and fixing the offspring.

between cores and 50% for exchanging all neurons between
cores) in order to have different distributions over the search
space. Designers can also add extra mutation methods.
Exchange neurons between cores:

For instance, assuming the solution s has ψa,b > 0 and
ψc,d > 0 (a, b, c and d are randomly picked), the crossover
process will be as follows:

e = min(ψa,b, ψc,d)

ψa,b = ψa,b−e

ψa,d = ψa,d + e

ψc,d = ψc,d−e

ψc,b = ψc,b + e (13)

In short, we exchange the neuron between core b and
core d . The exchanged neuron belongs to class a and c (note:
class can be neuron or layer/group).
The original solution sorig will be represented as

sorig =

ψ1,1 . . . ψ1,b . . . ψ1,C
...

. . .

ψa,1 . . . ψa,b . . . ψa,d . . . ψa,C
...

. . .

ψc,1 . . . ψc,b . . . ψc,d . . . ψc,C
...

. . .

ψG,1 . . . ψG,b . . . ψG,C

,

(14)

and the mutated solution smut will be:

smut =

ψ1,1 . . . ψ1,b . . . ψ1,C
...

. . .

ψa,1 . . . ψa,b−e . . . ψa,d + e . . . ψa,C
...

. . .

ψc,1 . . . ψc,b + e . . . ψc,d−e . . . ψc,C
...

. . .

ψG,1 . . . ψG,b . . . ψG,C

(15)

Swap all neurons between cores
In this type, we follow this equation:

erow = [ψx,1, ψx,2, . . . , ψx,C]

[ψx,1, ψx,2, . . . , ψx,C] = [ψy,1, ψy,2, . . . , ψy,C]

[ψy,1, ψy,2, . . . , ψy,C] = erow (16)

The original solution will be represented as

soriginal =

ψ1,1 ψ1,2 . . . ψ1,C
...

. . .

ψx,1 ψx,2 . . . ψx,C
...

. . .

ψy,1 ψy,2 . . . ψy,C
...

. . .

ψG,1 ψG,2 . . . ψG,C

, (17)

and the mutated solution will be:

smutated =

ψ1,1 ψ1,2 . . . ψ1,C
...

. . .

ψy,1 ψy,2 . . . ψy,C
...

. . .

ψx,1 ψx,2 . . . ψx,C
...

. . .

ψG,1 ψG,2 . . . ψG,C

(18)

Example: Fig. 7 shows the example of two mutation
methods. First, the swapping neurons between cores are

144102 VOLUME 11, 2023

K. N. Dang et al.: HeterGenMap: An Evolutionary Mapping Framework

FIGURE 7. Example of mutation: (a) swapping all neurons between cores;
(b) exchanging neurons between cores.

illustrated in Fig. 7(a) where two cores [1, 0] and [1, 2] are
swapped. Here, the configurations of the groups ([0, 0, 4]
and [3, 0, 1]) are kept but allocated to different positions.
Previously, in the soriginal , the two cores [1, 0] and [1, 2] have
configurations of [0, 0, 4] and [3, 0, 1], respectively. With the
mutation, the core [1, 0] has the configuration of [3, 0, 1] and
the core [1, 2] now has the configuration of [0, 0, 4]. As we
can observe, the overall configuration of the system stays
unchanged and we don’t need any fixing method.

On the other hand, Fig. 7(b) shows the method of
exchanging neurons between cores. In this example, we have
two cores [1, 0] and [2, 0] with the same configuration of
[3, 0, 1]. From Eq. 13, we can conduct the common value e is
1. Then, we perform a mutation of the two cores to move one
neuron from the first group from the core [2, 0] to the core
[1, 0]. In the opposite direction, one neuron of the last group
is moved from the core [1, 0] to the core [2, 0]. The result of
the mutation also satisfies all the constraints.

5) SURVIVOR SELECTION
After the crossover and mutation operations are completed,
the new population size exceeds the predefined population
size. Before moving to the next iteration, we put it through a
survivor selection function where the members with the best
fitness are retained. In this work, we use tournament selection
algorithm in the DEAP framework [30]. The selection is done
by having a random subset of the population selected for a
tournament. The best member out of the tournament is put
into the new population.

D. COST FUNCTION
In this section, we discuss designing the cost function
corresponding to the objective of the framework.

For initial mapping, the common objective is to minimize
the overall communication of the spike. To do so, we can use
the communication cost Fcomm:

Fcomm =

C∑
j=1

G∑
i=1

dij × cij (19)

where dij and cij are the Manhattan distance and the
connection status between neuron i and j, respectively. Since
the data transfer is in a multi-cast manner at each node, cij is
the connection between two PEs. For this type ofFcost , we can
have two options:

cij =

{
1 if group i send spikes to group j
0 otherwise.

(20)

From the communication, we can also convert to a similar
cost function based on so-called average hops (Avghops, which
represent the average distance of hops that spikes travel inside
the NoC.

Avghops =
Fcost

#synapses
(21)

With the genetic algorithm-based framework, HeterGen-
Map can solve by optimizing the cost function. In the
following section, we will discuss how to deal with hetero-
geneous mapping.

E. HETEROGENEOUS MAPPING: USING AS MAPPING FOR
DEFECTIVE AND/OR MULTI-CHIP SYSTEM
In MigSpike [13], a system under defects is remapped into
a new mapping solution for dealing with defects in neurons.
In this work, the cost of migration (moving neurons between
cores) is the major target. As a result, the solution may have
long traversal paths between connected neurons. Therefore,
the communication cost can be high in this situation. To solve
this issue, we reuse the GA framework for dealing with
defects. Unlike in other mapping approaches, the capacity of
each core is no longer uniform. In other words, each core will
have a different capacity. In the FT (fault-tolerance) mode,
Core_Capwill be adjusted according to the number of defects
as follows:

Core_Capj =

{
Core_Capj − n_defectsj if fault-tolerance
Core_Capj otherwise.

(22)

where n_defectsj is the number of defects at core j.
On the other hand, defects on routing units (links, NoC

routers, off-chip wires) can also lead to disconnected paths.
As a consequence, we can end up with non-minimal routing,
as shown in Figure 8. Another issue is the multi-chip
design as illustrated in Figure 9. While on-chip links have a
similar latency, multi-chip design requires inter-chip wires.
This type of interconnect medium may require a different
latency which needs to be modeled accordingly. For instance,
in SpiNNaker [4], the latency of communication between
ARM cores is much lower than the latency from one ARM

VOLUME 11, 2023 144103

K. N. Dang et al.: HeterGenMap: An Evolutionary Mapping Framework

FIGURE 8. NoC routing and fault-tolerance feature: (a) normal situation
with minimal routing; (b) defective links without impact on minimal
routing; (c) defective links with impact on minimal routing; (d) mapping
solution must consider defective parts into consideration.

core to another ARM core located on a faraway PCB
(Printed Circuit Board). Hierarchical architectures such as
H-NoC [31] have different latencies between clusters and
among the clusters.

Due to the aforementioned issues, communication and
computation can be heterogeneous in the context of neuro-
morphic computing. Because of this, state-of-the-art works
such as [3], [19], and [20] may not be suitable for this
problem. To solve this problem with our GA framework,
instead of using the Manhattan distance equation, we build
a table of costs between pairs of neurons. Without het-
erogeneous connections, the value of each member of the
table is identical to the Manhattan distance. In the case of
heterogeneous systems, we find the shortest path using the
Dijkstra algorithm.

1) SUPPORTING FAULT-TOLERANCE AND MULTI-CHIP
SYSTEM
As mentioned earlier, the communication cost usually con-
siders the distances uniformly. As in Eq. 19, the Manhattan
distance dij is used. Following is the distance within
a 3D-NoC:

dij = |xi − xj| + |yi − yj| + |zi − zj| (23)

where xi, yi, zi are the x-, y-, and z-coordinate of the neuron i,
respectively and xj, yj, zj are the x-, y-, and z-coordinate
of the neuron j, respectively. However, we can observe two
challenges:

• Once there is a defect in the minimal routing paths
between i and j, the actual distance of spike traversal is
larger than the Manhattan distance.

FIGURE 9. NoC routing with multi-chip design. Besides router-to-router
on-chip link, inter-chip wires are introduced to scale up the system.

• As it is popular in neuromorphic systems, multiple
chips can be attached on the same PCBs or multiple
PCBs connected in the mainframe are used. Therefore,
communication is no longer only on-chip but also
consists of off-chip communication. Because off-chip
communications usually have a higher latency than on-
chip ones, it cannot be simplified to being similar to
on-chip latency.

Therefore, in this work, we propose a method for supporting
fault-tolerance and multi-chip systems. The distance is no
longer considered as in Eq 23 but is based on the actual
system’s variations. To do so, we build a table of distances
between two neurons’ IDs and the distance will be looked up
during the computation.

2) ROUTING IN NETWORK-ON-CHIP
Since the spike latencies are very critical in SNNs, we must
first cover the routing in the Network-on-Chip. In this work,
we will consider Mesh topology as the main target. However,
the change in topology can be utilized by the change in the
routing mechanism. Generally, the routing for NoC is usually
done by a simple XY or XYZ routing [3], [21].

Figure 8 illustrates the NoC routing and fault-tolerance
feature. Here, we illustrate with a 3 × 3 NoC using Mesh
topology. We assume that there is a connection between two
neurons from the core (source) and the core (destination) as
in Figure 8(a). Here, we use XY routing (X first) to route
the packet and we have the routing path. Once an edge in the
routing path is defective as in Figure 8(b), we certainly need
to adapt the XY routing to have a different routing path which
is still minimal. This is an ideal case that has a small impact
on the latency of the spikes as the routing path is still minimal.
We must note that defective links could create congestion

144104 VOLUME 11, 2023

K. N. Dang et al.: HeterGenMap: An Evolutionary Mapping Framework

and introduce extra latency even if minimal routing paths are
guaranteed.

Figure 8(c) shows a different scenario where two defective
links make the minimal routing infeasible. There are two
possible solutions:

• Using non-minimal routing to route the spikes as in
Figure 8(c). Although non-minimal routing can lead to
a live-lock situation, since spikes are routed separately,
this behavior can be alleviated.

• Remap the system to enforce minimal routing as in
Figure 8(d). Here, the neurons are remapped into the
nearby core which allows a minimal routing path.

These two aforementioned approaches can be used to deal
with permanent faults during the mapping process. Unlike
traditional applications where the communication can be
relaxing; SNNs operation is based on spikes which should
be delivered on time. Therefore, the latency of the packets is
extremely important.

IV. EVALUATION
A. EVALUATION METHODOLOGY
In this section, we will evaluate the proposed genetic
algorithm framework under different configurations of
Network-on-Chip. The genetic algorithm platform is written
in Python using the DEAP library [30]. The mapping
approach is performed using Python 3.0 run on Core i7
11700k. 32 GB memory and RXT 3060. The RTL model is
written in Verilog HDL and simulated using Modelsim. The
configurations for this evaluation can be seen at Table2 and 4.

First, we evaluate the 2D Mesh and then the 3D Mesh
topology in a large range of sizes. Then, we evaluate the
mapping under fault situation: (1) fault in communication;
(2) fault in computing unit and memory; and (3) fault in
communication, computing unit, and memory. In each part,
we evaluate the different cost functions (three options as in
Section III-D). For each mapping, we will use synthetic and
real benchmarks.

To benchmark the proposed GA platform, we use two
synthetic configurations (S#1 and S#2) and two realistic
applications (MNIST and CIFAR-10 classification) as in
shown Table 2.

To understand the efficiency of the proposed method,
we compare this work to the linearmapping approach in terms
of communication costs.We also later compare our work with
other conventional approaches but without heterogeneous
mapping. We also would like to mention that, to the best of
our knowledge, there is no existing heterogeneous mapping
approach (fault-tolerance ormulti-chip) for the neuromorphic
systems.

B. GENETIC ALGORITHM PERFORMANCE
In this section, we discuss the proposed Genetic Algorithm
performance. First, the convergence ofGA is evaluated. Then,
we show the impact of reusing an existing solution as a
member of the initial solution. Fault-tolerant link mapping
and multi-chip mapping are also evaluated.

FIGURE 10. Evolution process of the synthetic SNN applications.

1) CONVERGENCE OF GA
For the first mapping evaluation, we will use both 2D and
3D Mesh topologies. Figures 10 and 11 show the results
of GA convergence on synthetic and realistic benchmarks,
respectively. With small configurations, the GA can converge
around 40 to 60 generations. When increasing the size of the
NoC/SNN, it takes up to 200 generations until it saturates.
Compared to the baseline (using linear XYZ mapping), our
result improves 11.04-26.77% of the communication cost
(fitness).

We also illustrate the distribution of the routing distances
within the neuromorphic system. In comparison to the
baseline model, HeterGenMap has a smaller number of
connections at long distances. Furthermore, we can observe
that the baseline has a longer maximum distance. For
instance, with S#1 in 2D Mesh, as shown in Figure 10(c),
the maximum distance of baseline is 5 while our proposed
HeterGenMap is 4. We can observe a similar behavior in the
S#2 and VGG16-CIFAR configurations.

2) USING AN EXISTING SOLUTION AS MEMBER OF
INITIALIZED POPULATION
Another approach to have better results is to use an existing
solution as a member of the initialized solution. Here, we add

VOLUME 11, 2023 144105

K. N. Dang et al.: HeterGenMap: An Evolutionary Mapping Framework

TABLE 2. Configuration of 2D and 3D Mesh for SNN mapping.

FIGURE 11. Evolution process of the realistic SNN applications.

the baseline as one of the initial solutions (E = 1).
Table 3 shows the results of HeterGenMap with and without
an initial solution. In summary, with the initial solution,

HeterGenMap obtained better results under the same number
of generations/populationmembers. This is because, by using
the baseline as one of the initial solutions, HeterGenMap can
rapidly improve which makes the final solution much better
than using a randomly generated initial population.

C. FAULT-TOLERANT LINKS MAPPING
Another feature of HeterGenMap is allowing heterogeneous
communication links. Indeed, it supports faulty links/routing
units. In this section, we insert defective links randomly
with a probability of 5%,10%, 15%, and 20% to compute
the efficiency of the method. All of the GA simulations are
performed with the baseline being part of the initial solutions
as explained in Section IV-B2.

Figures 12 and 13 illustrate the results of fault-tolerant
mapping in HeterGenMap in comparison to non-fault
tolerant methods. In summary, the fault-tolerant flavor of
HeterGenMap offers lower finesses (less communication)
in comparison to the baseline or the genetic algorithm
without fault awareness. Compared to the baseline, the fault-
tolerant HeterGenMap reduces the communication cost by
3.41-31.34%. Meanwhile, without fault-tolerant support, the
original GA suffers a 1.41-14.78% increment in communica-
tion cost in comparison to its fault-tolerant version.

Moreover, the connection distribution also illustrates the
domination of our approach in comparison to the baseline
or our own method without fault awareness. By reducing
the long-distance connections, the performance can be
significantly better in the fault-tolerant version.

In terms of connection length distribution, we can easily
observe that with the fault-tolerance, HeterGenMap has
less connection with long distances in comparison to other
approaches.

D. FAULT-TOLERANT NEURONS MAPPING
As mentioned earlier, HeterGenMap also supports mapping
under defective neuron situations. Here, we allow the system

144106 VOLUME 11, 2023

K. N. Dang et al.: HeterGenMap: An Evolutionary Mapping Framework

TABLE 3. Fitness value of HeterGenMap platform with and without initial members.

FIGURE 12. Final fitness results and distribution of connection lengths of
the fault-tolerant mappings for synthetic applications under faulty links.

to have spare neurons and use them as replacements for
the faulty ones. As S#1 and S#2 have no spare neurons,
we only simulate MLP-MNIST and CNN-CIFAR10 in this
evaluation. Here, for MLP-MNIST, the system has 86 spare
neurons and we insert faults randomly in 8, 16, 32, 64,
or 86 neurons to understand the impact of faults on the
communication cost. For CNN-CIFAR10, the numbers of
spare neurons are 622 and 502, for for 3D-NoC and 2D-NoC,
respectively. We here insert faults randomly in 16, 32, 64,
128, and 256 neurons for this evaluation.

Figure 14 illustrates the communication cost under defec-
tive neuron situations. In summary, both HeterGenMap and

FIGURE 13. Final fitness results and distribution of connection lengths of
the fault-tolerant mappings for realistic applications under faulty links.

the baseline can easily deal with defective neurons. The
overall communication cost is similar between different
numbers of defects because this type of defect only leads
to some cores (clusters) with a lesser number of neurons.
We also observe a drop in the communication cost of MLP-
MNIST under 86 defective neurons while the communication
costs are similar between other cases. This can be explained
by the 86 defective neurons case is the number of spares
which leads to the case where it is difficult to find a good
solution that offers low communication cost. In other cases,
the number of defective neurons is smaller than the number
of spares, therefore, it allows more flexibility in the mapping

VOLUME 11, 2023 144107

K. N. Dang et al.: HeterGenMap: An Evolutionary Mapping Framework

FIGURE 14. Normalized communication cost in the fault-tolerant
mappings for realistic applications under defective neurons.

FIGURE 15. Final fitness results of the multi-chip mappings.

process. Please also note that since the defects are randomly
inserted; therefore, the result may be slightly different if we
have different positions of defects.

E. MULTI-CHIP MAPPING
Another feature of HeterGenMap’s heterogeneous mapping
is allowing multi-chip systems because each communicating
link can have different costs. In this section, we split the
system into several chips as shown in Table 2 to compute the
efficiency of the method.

In terms of summarized communication cost, Figure 15
shows that with multi-chip awareness,HeterGenMap reduces
it by 34.2-45.56% when compared to the baseline. Even
when compared to the baseline in a single-chip setting, our
method still provides a much better communication cost.
The distribution of connection length is shown in Figure 16
where we can observe that with multi-chip awareness,

FIGURE 16. Distribution of connection length of the final solutions for
multi-chip mapping.

HeterGenMap reduces the maximum length significantly.
For instance, for MLP-MNIST, HeterGenMap with MC
awareness has a maximum connection length of 12 and 11 for
2D and 3D Mesh, respectively. Meanwhile, the maximum
connection lengths for baseline are 15 and 14. We also
can observe that in terms of connection length distribution,
thanks to the awareness of the long latency inter-chip wires,
HeterGenMap rarely ends up with a considerable amount of
long latency routing paths.

F. AVERAGE NUMBER OF HOPE COMPARISON
In this section, we compare the average number of
hops as the main result of the mapping approach. Here,
we extract the result from NeuMap [27] where it is
compared to SNEAP [10] and SpiNeMap [18]. Here,
we evaluate the average number of hops in connec-
tion with the mapping results for six different networks
(CNN-CIFAR10, CNN-Fashion-MNIST, LetNet5-CIFAR10,
LetNet-5-MNIST,MLP-Fashion-MNIST, andMLP-MNIST)

144108 VOLUME 11, 2023

K. N. Dang et al.: HeterGenMap: An Evolutionary Mapping Framework

FIGURE 17. Comparison of the average of hops between HeterGenMap
and the state-of-the-art works.

as can be seen in the Table 4. The results for NeuMap [27],
SNEAP [10], and SpiNeMap [18] are for 8 × 8 2D-NoC and
256 neurons/core. In our HeterGenMap evaluations, we use
8×8 and 4×4×4NoC and 256 neurons/core.We can observe
that, although NeuMap is better than HeterGenMap for CNN
models,HeterGenMap is better for MLP. In comparison with
SpiNeMap or SNEAP, we can see we can reduce 27.89% to
73.21% of the average hops.

On the other hand, with our main focus being on
heterogeneous mapping, none of the existing works can adapt
to fault-tolerant or multi-chip mapping. As we demonstrated
in the previous section, without consideration of faults or
multi-chip links, the average hopes or communication cost
can be increased significantly.

G. VALIDATING MAPPING WITH RTL SIMULATION
In the previous sections, we evaluated the communication
cost with HeterGenMap and compared it to linear mapping.
However, since it is a mathematical model, it could have a
gap between the cost function and reality.

To validate the efficiency of the mapping, we apply
the results of the mapping to our neuromorphic system
from [21]. Since our hardware only supports fully connected
models, we only evaluate the MLP-MInST benchmark.
Table 5 illustrates the execution time of the system under
two mapping. Here, we observe that with MLP-MNIST,
HeterGenMap reduces the execution time by 77.87% and
63.10% for 2D- and 3D-Mesh NoC, respectively. These
significant drops are due to two main reasons. First, the
number of communications in HeterGenMap is significantly
lower than linear mapping. Therefore, there is less traffic in
the NoC which makes the NoC less congested. Since there is
less congestion, the packets are delivered must faster which
the HeterGenMap runs faster. We also observed that the
system has communication bottlenecks since the LIF (Leaky-
Integrate-and-Fire) neuron will need to wait for the spike

to deliver to be able to compute which makes computation
have no impact on the overall latency. Second, the number of
long traversal paths is smaller which makes the long latency
paths less frequent. Because the system will wait for all
spikes to be delivered within the time-step to forward to
the next time-step, this also has a significant impact on the
overall execution times. Because of these two reasons, the
HeterGenMap system yields much lower execution time in
comparison to linear mapping.

V. DISCUSSION AND OUTLOOK
In this work, a genetic algorithm framework for mapping
has been proposed with promising results. However, some
limitations still need to be addressed:

• Although GA offers optimized solutions, one of its
major drawbacks is time and space complexity. Because
of this, our GA could not properly work with large-scale
models such as ResNet. Therefore, we could observe
a certain limitation of the scalability of the approach.
However, we would like to emphasize that with an
extremely large-scale network, linear mapping will
fit large-scale models much better due to its low
complexity. Here, we can certainly improve the GA by
limiting the crossover or mutation which allows it to run
faster.

• Compared to other approaches, our approach has similar
complexity as the meta-heuristic algorithms [13], [18].
However, it has higher computation complexity (in
both time and space) than linear mapping or non-meta-
heuristic approaches [3], [4]. This can be understandable
as Genetic Algorithms require a certain number of
members in a population and a certain number of
generations to converge. The trade-off of this work is
the ability to tune the solution to your desired objective.
Since HeterGenMap can re-use previously generated
solutions as initial ones as in Algorithm 1, we can
cooperate with this platform with pre-existing ones to
further optimize them.

• The major constraint of this work is the neural network
must be grouped efficiently. In other words, we must
classify the neurons into a group that can be exchange-
able between neurons. This constraint can be easily
satisfied by layer-based SNNs such as feed-forwarded
or convolution ones; however, for liquid state machines
or reservoir computing, the grouping approach can be
inefficient.

• Other outlooks of our work lie in its flexibility in
allowing potential extensions. Unlike other approaches
where the design of the mapping is fixed, our genetic
algorithm framework offers several extensions such as:
– Different cost functions: Although we have pro-

posed several cost functions, we can observe that
the designers can change the cost function to fit into
their constraints. Communication may not be the
critical issue and theymay consider different targets
such as temperature, reliability, area cost, and so on.

VOLUME 11, 2023 144109

K. N. Dang et al.: HeterGenMap: An Evolutionary Mapping Framework

TABLE 4. Configuration of different benchmarks. FC: Fully Connected; Conv: Convolution; Pool: Pooling; In: Input layer.

TABLE 5. Average execution time in clock cycles of the RTL simulations.

– Different crossover methods: As we mentioned ear-
lier, the crossover can be done in the core dimension
and different ways: multi-points, randomly, etc.

– Using the output of NoC simulation as a cost
value: Instead of modeling mathematical equations,
we can call a NoC simulator to emulate the
operation of the system. This gives us the most
accurate results. However, since it will take a huge
amount to execute, it is not ideal.

– Multi-objective optimization: Besides a single
objective as we presented above, having multiple
objectives (for example, communication & temper-
ature) optimized simultaneously can also be another
extension. Approaches such as Non-Dominant
Sorting GA (NSGA-II) [33] can be applied to
extend the GA framework.

– Adopting this work in Neuromorphic Systems: In
this work, we already provided the simulation for
the RTL model to validate the efficiency of the
mapping. The next step of this is to bring the
solution into the neuromorphic system such as
Loihi [2] or our neuromorphic design [9].

Because of these potential extensions, several unan-
swered questions could be addressed in future research.

• While dividing the neurons into groups for computing
the GA can reduce the complexity, there are some
models such as liquid state machine where the group is
unclear. Therefore, the proposedGA frameworkmay not
be suitable for those applications or we need a clustering
algorithm that provides us with the grouping.

Besides the compared work, there are existing work on
multi-chip mapping and fault-tolerant mapping:

• Multi-chip mapping for non-SNN applications is also
considered in several works [17], [34]. Here, the major
concern is due to long-latency inter-chip communica-
tion, it may fail to speed up if the mapping is not
efficient. In [17] and [34], the authors empirically
study the multi-chip implementation for ResNet-50
and found out it stops improving from 8-chip upward
because inter-chip communication becomes the bottle-
neck. Here, the neural network is split up based on

the layers. Compared to our work, we here model
the inter-chip communication with a certain penalty
which can help introduce the concept of inter-chip
communication bottle-neck. We also would like to note
that it is sometimes not feasible to control the number
of chips inside the system because manufactured chips
have their computing limitation. In [35], the authors use
multi-chips to extend the size of the model. Here, each
chip is considered to operate a fixed size of image, and
to deal with larger sizes, a 2D mesh of the chips is
considered. The authors introduce the concept of pixel
redundancies to avoid inter-chip communications. The
inter-chip communications are via a serial connection
which can be a huge bottleneck for communication-
intensive applications. By naturally exploiting the
natural structure of the 2D image, there is no mapping
algorithm needed; however, we can certainly observe
the bottleneck issue of multi-chip mapping which is
modeled and optimized in this work. In [36], the authors
from Intel Lab introduce the mapping algorithm for
multiple Loihi-chips systems. The main target of this
algorithm is to reduce the inter-chip communication.
Here, the cut penalty matrix is introduced to model the
extra communication latency due to spreading the SNN
into multiple chips. However, in this work, a greed-
algorithm approach is adopted which makes our method
more optimal due to the nature of the genetic algorithm.
However, compared to this work, our method will
be more computationally intensive. Another common
approach is to unitize reinforcement learning in themap-
ping process [37], [38]. While the work in [37] shows
some domination in comparison to GA; [38] still shows
more room for improvement. In summary, this type
of optimization approach can be interesting; however,
one major problem is it requires actual implementations
or full-system simulations to perform. Meanwhile, our
method and most SNNmappings [3], [18], [19], [36] are
based on modeling of the communication and compu-
tation. The major trade-off will be quick adaptation to
different networks and systems. Furthermore, in terms
of fault-tolerant mapping, reinforcement learning-based
approaches must deal with case-by-case; however, our
work can be easily adapted to different scenarios.

• On the other hand, fault-tolerant mapping for a
NoC-based system is a well-known issue and has been
addressed in several existing works. In [18], the authors
proposed adding spare cores and swapping the core

144110 VOLUME 11, 2023

K. N. Dang et al.: HeterGenMap: An Evolutionary Mapping Framework

functionalities from faulty core to healthy core as
the method. In our previous work [13] also proposed
adding spare neurons and migrating fault neurons to the
spare one as a fault-tolerant method. However, in this
type of approach, they did not consider the impact of
defective routing modules on communication. This type
of problem is addressed in this work as we model the
communication cost using the shortest path between
a source and a sink. In [39], the author proposed a
mapping approach with faulty neuron consideration.
However, unlike conventional computations, spiking
neural network models consist of a large number of
neurons and connections which will be addressed in our
work. Furthermore, as we stated in Algorithm 1, our
HeterGenMap platform can take a mapping solution as
an initial member of the initial population. Therefore,
our approach can re-use the other approaches and could
further improve the efficiency of them.

VI. CONCLUSION
In this paper, we presented a Genetic Algorithm-based
methodology to map multiple-layer SNN models into a
NoC-based neuromorphic system. To reduce the complexity,
we introduced an approach that uses layers as groups where
the neurons in the group are exchangeable. Furthermore, the
GA is performed with customized crossover and mutation
approaches. To model heterogeneous designs, the GA
platform allows the modeling of multi-chip systems, fault
awareness, and different cluster sizes within the mapping
process. Future works of the framework could be extending
the selection of NoC topology or modeling the thermal/power
properties of the NoC. With the change of NoC topology,
the impact of faults and the communication costs can be
varied. On the other hand, the temperature issue could
be very important for large-scale SNNs, especially 3D-IC-
based systems. Moreover, as we discussed, multi-objective
optimization could also be another direction of this research.

REFERENCES
[1] W. Maass, ‘‘Networks of spiking neurons: The third generation of neural

network models,’’ Neural Netw., vol. 10, no. 9, pp. 1659–1671, Dec. 1997.
[2] M. Davies et al., ‘‘Loihi: A neuromorphic manycore processor with on-

chip learning,’’ IEEE Micro, vol. 38, no. 1, pp. 82–99, Jan. 2018.
[3] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla,

N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba, M. Beakes,
B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson, and
D. S. Modha, ‘‘TrueNorth: Design and tool flow of a 65 mW 1 million
neuron programmable neurosynaptic chip,’’ IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 34, no. 10, pp. 1537–1557, Oct. 2015.

[4] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, ‘‘The SpiNNaker
project,’’ Proc. IEEE, vol. 102, no. 5, pp. 652–665, May 2014.

[5] B. V. Benjamin, P. Gao, E.McQuinn, S. Choudhary, A. R. Chandrasekaran,
J.-M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K.
Boahen, ‘‘Neurogrid: A mixed-analog-digital multichip system for large-
scale neural simulations,’’ Proc. IEEE, vol. 102, no. 5, pp. 699–716,
May 2014.

[6] J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier, and S.
Millner, ‘‘A wafer-scale neuromorphic hardware system for large-scale
neural modeling,’’ in Proc. IEEE Int. Symp. Circuits Syst., May 2010,
pp. 1947–1950.

[7] M. Stimberg, R. Brette, and D. F. Goodman, ‘‘Brian 2, an intuitive and
efficient neural simulator,’’ eLife, vol. 8, Aug. 2019, Art. no. e47314.

[8] H. Hazan, D. J. Saunders, H. Khan, D. Patel, D. T. Sanghavi,
H. T. Siegelmann, and R. Kozma, ‘‘BindsNET: A machine learning-
oriented spiking neural networks library in Python,’’ Frontiers Neuroin-
form., vol. 12, p. 89, Dec. 2018.

[9] M. Ogbodo, T. Vu, K. Dang, and A. Abdallah, ‘‘Light-weight spiking
neuron processing core for large-scale 3D-NoC based spiking neural
network processing systems,’’ in Proc. IEEE Int. Conf. Big Data Smart
Comput. (BigComp), Feb. 2020, pp. 133–139.

[10] S. Li, S. Guo, L. Zhang, Z. Kang, S. Wang, W. Shi, L. Wang, and
W. Xu, ‘‘SNEAP: A fast and efficient toolchain for mapping large-scale
spiking neural network onto NoC-based neuromorphic platform,’’ 2020,
arXiv:2004.01639.

[11] E. L. Lawler, ‘‘The quadratic assignment problem,’’ Manage. Sci., vol. 9,
no. 4, pp. 586–599, 1963.

[12] T. Spyrou, S. A. El-Sayed, E. Afacan, L. A. Camuñas-Mesa,
B. Linares-Barranco, and H.-G. Stratigopoulos, ‘‘Reliability analysis
of a spiking neural network hardware accelerator,’’ in Proc. Design,
Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2022, pp. 370–375.

[13] K. N. Dang, N. A. V. Doan, and A. B. Abdallah, ‘‘MigSpike: A migration
based algorithms and architecture for scalable robust neuromorphic
systems,’’ IEEE Trans. Emerg. Topics Comput., vol. 10, no. 2, pp. 602–617,
Apr. 2022.

[14] R. V. W. Putra, M. A. Hanif, and M. Shafique, ‘‘ReSpawn: Energy-
efficient fault-tolerance for spiking neural networks considering unreliable
memories,’’ in Proc. IEEE/ACM Int. Conf. Comput. Aided Design
(ICCAD), Nov. 2021, pp. 1–9.

[15] T. Spyrou, S. A. El-Sayed, E. Afacan, L. A. Camuñas-Mesa, B. Linares-
Barranco, and H.-G. Stratigopoulos, ‘‘Neuron fault tolerance in spiking
neural networks,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
Feb. 2021, pp. 743–748.

[16] S. Furber, S. Temple, and A. Brown, ‘‘On-chip and inter-chip networks for
modeling large-scale neural systems,’’ in Proc. IEEE Int. Symp. Circuits
Syst., May 2006, p. 4.

[17] Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N.
Jiang, B. Keller, A. Klinefelter, N. Pinckney, P. Raina, S. G. Tell,
Y. Zhang, W. J. Dally, J. Emer, C. T. Gray, B. Khailany, and S.
W. Keckler, ‘‘Simba: Scaling deep-learning inference with multi-chip-
module-based architecture,’’ in Proc. 52nd Annu. IEEE/ACM Int. Symp.
Microarchitecture, Oct. 2019, pp. 14–27.

[18] A. Balaji, A. Das, Y. Wu, K. Huynh, F. G. Dell’Anna, G. Indiveri,
J. L. Krichmar, N. D. Dutt, S. Schaafsma, and F. Catthoor, ‘‘Mapping
spiking neural networks to neuromorphic hardware,’’ IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 28, no. 1, pp. 76–86, Jan. 2020.

[19] Y. Ji, Y. Zhang, S. Li, P. Chi, C. Jiang, P. Qu, Y. Xie, and W. Chen,
‘‘NEUTRAMS: Neural network transformation and co-design under
neuromorphic hardware constraints,’’ in Proc. 49th Annu. IEEE/ACM Int.
Symp. Microarchitecture (MICRO), Oct. 2016, pp. 1–13.

[20] A. Das, Y. Wu, K. Huynh, F. Dell’Anna, F. Catthoor, and S. Schaafsma,
‘‘Mapping of local and global synapses on spiking neuromorphic
hardware,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
Mar. 2018, pp. 1217–1222.

[21] A. Ben Abdallah and K. N. Dang, ‘‘Toward robust cognitive 3D brain-
inspired cross-paradigm system,’’ Frontiers Neurosci., vol. 15, Jun. 2021,
Art. no. 690208. [Online]. Available: https://www.frontiersin.org/
articles/10.3389/fnins.2021.690208

[22] C. Frenkel, M. Lefebvre, J.-D. Legat, and D. Bol, ‘‘A 0.086-mm2

12.7-pJ/SOP 64 k-synapse 256-neuron online-learning digital spiking
neuromorphic processor in 28-nm CMOS,’’ IEEE Trans. Biomed. Circuits
Syst., vol. 13, no. 1, pp. 145–158, Feb. 2019.

[23] A. Balaji, P. K. Huynh, F. Catthoor, N. D. Dutt, J. L. Krichmar, and
A. Das, ‘‘NeuSB: A scalable interconnect architecture for spiking
neuromorphic hardware,’’ IEEE Trans. Emerg. Topics Comput., vol. 11,
no. 2, Apr. 2023. [Online]. Available: https://ieeexplore.ieee.org/
abstract/document/10026801/

[24] Y. Ji, Y. Zhang, H. Liu, andW. Zheng, ‘‘Optimized mapping spiking neural
networks onto network-on-chip,’’ in Proc. Int. Conf. Algorithms Archit.
Parallel Process. Cham, Switzerland: Springer, 2016, pp. 38–52.

[25] X. Jin, ‘‘Parallel simulation of neural networks on spinnaker universal
neuromorphic hardware,’’ Ph.D. dissertation, Dept. Comput. Sci., Univ.
Manchester, Manchester, U.K., 2010.

VOLUME 11, 2023 144111

K. N. Dang et al.: HeterGenMap: An Evolutionary Mapping Framework

[26] G. Kim, V. Kornijcuk, J. Kim, C. S. Hwang, and D. S. Jeong, ‘‘Optimal
distribution of spiking neurons over multicore neuromorphic processors,’’
IEEE Access, vol. 8, pp. 69426–69437, 2020.

[27] C. Xiao, J. Chen, and L. Wang, ‘‘Optimal mapping of spiking neural
network to neuromorphic hardware for edge-AI,’’ Sensors, vol. 22, no. 19,
p. 7248, Sep. 2022.

[28] O. Jin, Q. Xing, Y. Li, S. Deng, S. He, and G. Pan, ‘‘Mapping very large
scale spiking neuron network to neuromorphic hardware,’’ in Proc. 28th
ACM Int. Conf. Architectural Support Program. Lang. Operating Syst.,
vol. 3, Mar. 2023, pp. 419–432.

[29] P. V. Bhanu, P. V. Kulkarni, and J. Soumya, ‘‘Fault-tolerant network-on-
chip design with flexible spare core placement,’’ ACM J. Emerg. Technol.
Comput. Syst., vol. 15, no. 1, pp. 1–23, Jan. 2019.

[30] F.-A. Fortin, F.-M. De Rainville, M.-A. G. Gardner, M. Parizeau, and
C. Gagné, ‘‘DEAP: Evolutionary algorithms made easy,’’ J. Mach. Lang.
Res., vol. 13, pp. 2171–2175, Jul. 2012.

[31] S. Carrillo, J. Harkin, L. J. McDaid, F. Morgan, S. Pande, S. Cawley,
and B. McGinley, ‘‘Scalable hierarchical network-on-chip architecture for
spiking neural network hardware implementations,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 24, no. 12, pp. 2451–2461, Dec. 2013.

[32] P. U. Diehl, G. Zarrella, A. Cassidy, B. U. Pedroni, and E. Neftci,
‘‘Conversion of artificial recurrent neural networks to spiking neural
networks for low-power neuromorphic hardware,’’ in Proc. IEEE Int. Conf.
Rebooting Comput. (ICRC), Oct. 2016, pp. 1–8.

[33] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ‘‘A fast and elitist
multiobjective genetic algorithm: NSGA-II,’’ IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[34] Y. S. Shao, J. Cemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang,
B. Keller, A. Klinefelter, N. Pinckney, P. Raina, S. G. Tell, Y. Zhang,
W. J. J. Dally, J. Emer, C. T. Gray, B. Khailany, and S. W. Keckler,
‘‘Simba: Scaling deep-learning inference with chiplet-based architecture,’’
Commun. ACM, vol. 64, no. 6, pp. 107–116, 2021.

[35] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, ‘‘Hyperdrive: A multi-
chip systolically scalable binary-weight CNN inference engine,’’ IEEE
J. Emerg. Sel. Topics Circuits Syst., vol. 9, no. 2, pp. 309–322, Jun. 2019.

[36] C.-K. Lin, A. Wild, G. N. Chinya, T.-H. Lin, M. Davies, and H. Wang,
‘‘Mapping spiking neural networks onto a manycore neuromorphic archi-
tecture,’’ ACM SIGPLAN Notices, vol. 53, no. 4, pp. 78–89, Dec. 2018.

[37] N.Wu, L. Deng, G. Li, andY.Xie, ‘‘Core placement optimization formulti-
chip many-core neural network systems with reinforcement learning,’’
ACM Trans. Design Autom. Electron. Syst., vol. 26, no. 2, pp. 1–27,
Mar. 2021.

[38] J. Choudhary, J. Soumya, and L. R. Cenkeramaddi, ‘‘Raman: Rein-
forcement learning inspired algorithm for mapping applications onto
mesh network-on-chip,’’ in Proc. ACM/IEEE Int. Workshop Syst. Level
Interconnect Predict. (SLIP), Nov. 2021, pp. 52–58.

[39] L. Liu, C. Wu, C. Deng, S. Yin, Q. Wu, J. Han, and S. Wei, ‘‘A
flexible energy- and reliability-aware application mapping for NoC-based
reconfigurable architectures,’’ IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 23, no. 11, pp. 2566–2580, Nov. 2015.

KHANH N. DANG received the M.Sc. degree
from the University of Paris XI and the Ph.D.
degree from The University of Aizu. He is
currently an Associate Professor with the Depart-
ment of Computer Science and Engineering,
The University of Aizu. His research interests
include network-on-chips, 3D-ICs, neuromorphic
computing, low-power, and fault-tolerant systems.

NGUYEN ANH VU DOAN received the Ph.D.
degree in electrical engineering from Universit
libre de Bruxelles, Belgium, in 2015. He is cur-
rently with Infineon Technologies AG, Germany.
Previously, he was with Fraunhofer IKS as a
Senior Scientist, after working as a Postdoctoral
Researcher, with the Amano Laboratory, Keio
University, Japan, and then with the Chair of Inte-
grated Systems, Technical University of Munich,
Germany. His research interests include design

space exploration, design automation, multiobjective optimization, and
multicriteria decision aiding.

NGO-DOANH NGUYEN (Member, IEEE) is
currently pursuing the master’s degree with
the Graduate School of Computer Science and
Engineering, The University of Aizu, Aizuwaka-
matsu, Japan. Previously, he was with Vietnam
National University, Hanoi, from 2018 to 2022,
as a Research Engineer on system integra-
tion and VLSI design for artificial intelligence.
His research interests include hardware/software
co-design and verification, and low-power solu-

tions for artificial intelligence.

ABDERAZEK BEN ABDALLAH (Senior Mem-
ber, IEEE) received the Ph.D. degree in computer
engineering from The University of Electro-
Communications, Tokyo, in 2002. From April
2014 to March 2022, he was the Head of the
Computer Engineering Division, The University
of Aizu, Japan. Since April 2022, he has been
the Dean of the School of Computer Science and
Engineering, The University of Aizu, where he
is currently a Full Professor. He is the author of

four books, four registered and eight provisional Japanese patents, and
more than 150 publications in peer-reviewed journal articles and conference
papers. His research interests include adaptive/self-organizing systems,
brain-inspired computing, interconnection networks, and AI-powered cyber-
physical systems. He is a Senior Member of ACM.

144112 VOLUME 11, 2023

