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ABSTRACT Technical indicators and mining sequence are often optimized separately when optimizing
metal mine production. This approach ignores the mutual influence between indicators andmining sequence,
and the optimization results may not reach the global optimum. This study focuses on the entire production
process of a metal mine and establishes a model and creates an algorithm for the simultaneous dynamic
optimization of the technical indicators and mining sequence of a metal mine. A model of the dynamic
relationships between technical indicators is initially created in order to derive an optimization model that
dynamically optimizes both the technical indicators and the mining sequence of a metal mine. A hybrid
coding AADE algorithm is developed to solve the optimization equation. A test case of the Huogeqi copper
mine is presented to demonstrate the use of the model and the algorithm. The simultaneous dynamic
optimization of technical indicators and mining sequence produced greater NPV in the test case than the
optimization of technical indicators alone; NPV increased by 1161.01 104 CNY. In addition, the hybrid
coding AADE algorithmwas compared with hybrid coding GA, DE and ADE algorithms. The hybrid coding
AADE algorithm performed searches significantly better than the other three hybrid coding algorithms in
solving the simultaneous dynamic optimization for technical indicators and mining sequence.

INDEX TERMS Metal mine, technical indicators, mining sequence, simultaneous optimization, overall
dynamic, hybrid coding AADE.

NOMENCLATURE
Model Parameters
p1 Boundary grade.
p2 Industrial grade.
p3 Average ore grade.
p4 Extracted grade.
p5 Concentrate grade.
pa Initial boundary grade.
pb Initial industrial grade.
c1 Loss rate.
c2 Depletion rate.

The associate editor coordinating the review of this manuscript and

approving it for publication was Bijoy Chand Chatterjee .

c3 Beneficiation ratio.
Q0 Initial geological reserves.
Q1 Geological reserves.
Q2 Extracted ore volume.
Q3 Concentrate volume.
q Concentrate selling price.
z Constant that depends on the geological conditions

of the ore body.
θ Total NPV.
θv,j NPV of mining area v.
p1,v Boundary grade of mining area v.
p2,v Industrial grade of mining area v.
p3,v Average ore grade of mining area v.
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p4,v Extracted grade of mining area v.
p5,v Concentrate grade of mining area v.
tv Mining time of mining area v.
Qz Annual mining capacity.
h Total cost of production of unit ore.
Gv Total profit of mining area v.
gv Average annual profit of mining area v.
Tv,j,1 Start mining time of mining area v.
T−

v,j,1 Integer component of Tv,j,1.
Tv,j,2 End mining time of mining area v.
T−

v,j,2 Integer component of Tv,j,2.
py Minimum smelting grade.
c4,v Beneficiation recovery rate of mining area v.
R2 Coefficient of determination.
k1 Price adjustment factor.
k2 Compensation price.
λ Trading price of copper concentrate that is mainly

based on 20% grade of concentrate.

Functions

ϕ(x) Mining probability of ore gradewith grade between
boundary grade and industrial grade.

g(x) Ore weight function.
c(x) Probability density function of ore grade

distribution. Algorithm parameters.
DT Total number of decision variables.
NP Population size.
GT Iteration counter.
Gmax Maximum number of iterations.
F Scale factor.
CR Crossover rate.
ψ Probability parameters of F .
ϕ Probability parameters of F .
δl Probability parameters of CR.
δu Probability parameters of CR.
τ1 Mean of the metrics of the proposed algorithm.
τ2 Mean of the metrics of the comparison algorithm.
η Standard deviation of the metrics of the proposed

algorithm,.
n Total number of runs.

Abbreviations

AADE Adaptivemutation operator and adaptive control
parameter for differential evolution algorithm.

GA Genetic algorithm.
DE Differential evolution algorithm.
ADE Self-adapting control parameters in differential

evolution.
NPV Net present value.
MAE Mean absolute error.
RMSE Root mean square error.

I. INTRODUCTION
Metal mine production includes related geological, min-
ing, and mineral treatment processes. The three processes

influence and constrain each other, and each process con-
tinues the previous process and melds into the subsequent
process [1], [2]. Principal technical indicators of metal
mine characteristics include the boundary grade, industrial
grade, geological reserves, average ore grade, loss rate,
depletion rate, extracted grade, extracted ore volume, bene-
ficiation ratio, concentrate grade and concentrate volume [3].
Mine production is a complex activity, and the relationships
between technical indicators are complex [4]. For exam-
ple, boundary grade and industrial grade affect geological
reserves; average ore grade and geological reserves affect
extracted volume and concentrate volume; and average grade
of ore body affects extracted grade and concentrate grade.

Creating an optimization model that accurately represents
mine production processes is an extremely difficult task
because of the multiplicity of factors that affect metal mine
production processes at various levels and the complex-
ity, dynamics, and multiplicity of constraints. Optimization
requires the creation of a model of the relationships between
mine production indicators that is accurate with respect to
both the observed data of mine production and the parameters
identified for optimization. The optimal solution of the model
must be computed by an effective algorithm so that it can be
used to guide the efficient mining of mineral resources.

If the time value ofmoney is considered, the economic ben-
efits of a given profit will vary depending on the time taken
to realize it. Even if the technical indicators are unchanged,
the mining sequence can produce different economic benefits
from the same mine [5]. The mining sequence therefore
affects the optimization of the technical indicators.

Recent research has focused on three aspects of metal mine
technical indicator optimization. (1) Optimizing the technical
indicators but excluding the dynamics of extraction and the
mining sequence [6], [7], [8], [9], [10], [11], [12], [13]. (2)
Dynamic optimization of the technical indicators but with
no consideration of the mining sequence [2], [4], [14], [15],
[16], [17], [18]. (3) Dynamic optimization of the technical
indicators with consideration of the mining sequence but
without simultaneous optimization of the two influences [5].
In summary, there has been no consideration of the over-

all dynamics of technical indicators in conjunction with
the interactions between technical indicators and the min-
ing sequence. Therefore, current attempts at optimization
fail to reach a global optimum. The simultaneous dynamic
optimization of metal mine technical indicators and mining
sequence is required in order to better promote the sustainable
development of metal mineral resources.

The comprehensive simultaneous optimization of dynamic
technical indicators and mining sequence is a mixed integer
single-objective optimization problem with both continuous
(technical indicators) and integer (mining sequence) decision
variables [19]. There are two methods for solving mixed-
integer optimization problems: the exhaustive method, which
consists mainly of branch-and-bound techniques [20], and
the Lagrangian relaxation method [21]. Branch-and-bound
techniques are effective in solving simple mixed-integer
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single-objective optimization problems but cannot rapidly
solve complex mixed-integer single-objective optimization
problems [22], [23], [24]. Lagrangian relaxation methods
are intelligent evolutionary methods that are mainly mixed
coding genetic algorithms and mixed coding differential evo-
lutionary algorithms. These methods have the advantages of
global searching and robustness, and they have been used
to solve mixed-integer optimization problems with good
results [20], [25], [26].

When an adaptive mutation operator and adaptive control
parameter for differential evolution (AADE) algorithm were
used for the dynamic optimization of metal mine technical
indicators considering the spatial distribution of ore grade,
good results were obtained [5]. However, AADE can only be
used to solve continuous variable single-objective optimiza-
tion problems.

To overcome this weakness of the AADE algorithm in
solving the simultaneous dynamic optimization of techni-
cal indicators and mining sequence, we propose the hybrid
coding AADE algorithm that incorporates chromosome cod-
ing and an evolutionary operator to improve the AADE
algorithm. Initially, the concept of hybrid coding is integrated
into the initial population. Technical indicators are treated as
continuous variables and encoded using floating-point rep-
resentation. Conversely, the mining sequence is identified as
an integer variable and is subjected to arrangement coding.
Subsequently, specialized hybrid evolutionary operators are
incorporated into the AADE algorithm. Adaptive differential
evolution mutation and binomial crossover are employed to
execute mutation and crossover operations on the technical
indicators, respectively. Meanwhile, reverse mutation and
partial matching crossover operators are utilized to facili-
tate the mutation and crossover processes for the mining
sequence.

The remainder of the paper is structured as follows.
Section II describes the derivation of a simultaneous dynamic
optimization model and solution algorithm for the technical
indicators and mining sequence. Section III presents an illus-
trative case study to show an application of the algorithm.
Section IV gives our conclusions.

II. SIMULTANEOUS DYNAMIC OPTIMIZATION MODEL OF
TECHNICAL INDICATORS AND MINING SEQUENCE
A. MODEL OF THE DYNAMIC RELATIONSHIPS BETWEEN
TECHNICAL INDICATORS
Metal mine production consists of three main processes:
geological process, mining process, mineral process. Each
process can be characterized by a set of technical indica-
tors [27]. The principal technical indicators used in this study
are shown in Table 1.
A comprehensive model of the dynamic behavior of

metal mine technical indicators has been presented in pre-
vious work. For completeness, this model is now briefly
described [5].

TABLE 1. Principal technical indicators of metal mine production.

The determination of geological reserves and average ore
grade is typically guided by boundary and industrial grades.
Optimizing such processes often necessitates calculating
multiple solutions, making it a substantial task to estimate
the average ore grade and geological reserves through the
enveloping of the ore body using mining software like Geovia
Surpac and 3DMine. A method rooted in mathematics and
statistics was developed, following a comprehensive review
of existing research. This method creates a relevant math-
ematical model for the accurate computation of geological
reserves and average ore grade. The relationships between
geological reserves and average ore grade, boundary grade,
and industrial grade are modeled as follows [17]:

Q1 = f1(p1, p2)

= Q0 ×

∫ p2
p1
ϕ(x)g(x)c(x)dx +

∫ 100
p2

g(x)c(x)dx∫ pb
pa
ϕ(x)g(x)c(x)dx +

∫ 100
pb

g(x)c(x)dx
(1)

ϕ(x) = (
x − p1
p2 − p1

)z(p1 ≤ x ≤ p2) (2)

p3 = f2(p1, p2) =

∫ p2
p1
xϕ(x)c(x)dx +

∫ 100
p2

xc(x)dx∫ p2
p1
ϕ(x)c(x)dx +

∫ 100
p2

c(x)dx
(3)

Extracted grade is determined by average ore grade and
depletion rate [18]:

p4 = p3(1 − c2) (4)

Extracted ore volume is determined by geological reserves,
depletion rate and loss rate [17]:

Q2 = Q1
1 − c1
1 − c2

(5)

Concentrate volume is determined by the ratio of extracted
ore volume to beneficiation ratio:

Q3 = Q2
/
c3 (6)
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For an individual mine, ore properties, beneficiation,
equipment and chemicals all remain essentially the same.
In the case of an individual mine, there are certain rela-
tionships between loss rate and depletion rate, beneficiation
ratio and extracted grade, concentrate grade and extracted
grade and beneficiation ratio, and concentrate grade and
concentrate selling price. The mathematical models of these
relationships are as follows [5].

c2 = f3(c1) (7)

c3 = f4(p4) (8)

p5 = f5(p4, c3) (9)

q = f6(p5) (10)

Eqs. (1)-(10) each embody a model that elucidates the
internal dynamics of various technical indicators. Collec-
tively, these formulas illustrate the dynamic processes inher-
ent to the entire production cycle.

B. MODEL OF SIMULTANEOUS DYNAMIC RELATIONSHIP
OF TECHNICAL INDICATORS AND MINING SEQUENCE
Mining activity moves from one mining area to another [5],
[28]. Since each mining area has a distinct spatial distribution
of ore body grades, mining an area requires decisions to be
made about its technical characteristics that affect subsequent
mining decisions for that mining area. However, mining areas
are not isolated from one another. Therefore, the dynamic
relationships between mining areas need to be considered
when optimizing the entire mining process. The time value
of money and differences in ore body grades between mining
areas are influential factors, and the mining sequence and
technical indicators also interact with each other and need
to be considered in the dynamic optimization of the entire
mining process.

1) DECISION-MAKING VARIABLES
There are two types of decision variable in the simultaneous
dynamic optimization model of metal mine technical indi-
cators and mining sequence: the technical indicators and the
mining sequence. The technical indicators are real variables
and the mining sequence is an integer variable. The total
number of decision variables in the two sets of variables
is DT .

The selection of technical indicator variables for optimiza-
tion depends on the model that relates them, and is in turn
related to the geological characteristics of the deposit, the
mining equipment, mining processes, and the beneficiation of
the mine [17]. It is therefore necessary to first characterize the
mine and then determine which decision variables are used
to represent the technical indicators. The technical indicator
variables are real number variables.

The mining areas are numbered consecutively with the
integers 1, . . . , N . The mining sequence is a variable arrange-
ment of these integers, so the mining sequence Y =

{y1, y2, · · · , ye, · · · , yN } is an arrangement of the integers
in the set {1, 2, · · · ,N } where N is the total number of

mining areas; ye is the position in the mining sequence of
mining area e. To illustrate, if Y = {2, 5, 4, 3, 6, 1}, then
the corresponding mining sequence for the 6 mining areas is
mining area 2 → mining area 5 → mining area 4 → mining
area 3 → mining area 6 → mining area 1.

2) OBJECTIVE FUNCTION
NPV takes account of the time value of money and facilitates
the calculation of return on investment [29], [30]. Maximiza-
tion of NPV is therefore the objective function.

max θ =

N∑
j=1

θv,j (11)

The end time of any but the last mining area is the start
time of the succeeding mining area. NPV is a function of
time. The NPV of an individual mining area is therefore not
independent, but is dynamically related to the NPVs of other
areas. If the start time of mining the entire deposit is 0, then
the NPV of mining area v is calculated in the following steps.
(1) Calculate the mining time of mining area v using

tv =
Q2,v

Qz
(12)

(2) The total profit of mining area v is

Gv = Q3,v ∗ qv − Q2,v ∗ h (13)

(3) The average annual profit of mining area v is

gv =
Gv
tv

(14)

(4) Let the vectors g = [g1, g2, · · · , ge, · · · , gN ] and t =

[t1, t2, · · · , te, · · · , tN ] represent the average annual profit
and mining time of each mining area, respectively. How-
ever, the mining sequence affects the start and end mining
time of the mining area, and the start and end mining time
affects the NPV. Therefore, the elements of the vectors g
and t need to be arranged according to the mining sequence
Y = {y1, y2, · · · , ye, · · · , yN }. When the mining sequence
is Y = {y1, y2, · · · , ye, · · · , yN }, the adjusted vectors are
respectively

g′
=
[
gy1 , gy2 , · · · , gye , · · · , gyN

]
(15)

t ′ =
[
ty1 , ty2 , · · · , tye , · · · , tyN

]
(16)

For example, if Y = {2, 5, 4, 7,3, 6, 1}, then g′
=

[g2, g5, g4, g7, g3, g6, g1] and t ′ = [t2, t5, t4, t7, t3, t6, t1].
(5) The mining start time of the first area is 0. The mining

start time of the mining sequence of mining area j is Tv,j,1 and
it is the sum of the previous mining sequence, calculated by

Tv,j,1 =

m=j−1∑
m=1

t ′(m) (17)

(6) The mining sequence is the end mining time of mining
area j is Tv,j,2, which is the sum of its start time and its own
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mining time, calculated by

Tv,j,2 =

m=j∑
m=1

t ′(m) (18)

(7) The NPV of the mining sequence for mining area j is

θv,j =



gv ∗
(Tv,j,2 − Tv,j,1)

(1 + d)Tv,j,1+1 T−

v,j,1 = T−

v,j,2

gv ∗

(
(T−

v,j,1 + 1 − Tv,j,1)

(1 + d)T
−
v,j,1+1

+ · · · +
1

(1 + d)T
−

v,j,2

+
(Tv,j,2 − T−

v,j,2)

(1 + d)T
−

v,j,2+1

)
else

(19)

(8) The total NPV of all mining areas is

θ =

N∑
j=1

θv,j (20)

The collection of Eqs. (11)-(20) structures a procedure
for the simultaneous optimization of technical indicators and
mining sequence. When these equations are integrated with
Eqs. (1)-(10), a model emerges for the simultaneous dynamic
optimization of technical indicators and mining sequence.

3) CONSTRAINTS
(1) Based on the definition of boundary and industrial grades,
the boundary grade is not greater than the industrial grade,
i.e.,

p1,v ≤ p2,v (21)

(2) Considering smelting requirements, the concentrate grade
is not less than the minimum smelting grade, i.e.,

p5,v ≥ py (22)

(3) Considering the mass conservation of metal elements,
beneficiation recovery rate is <1, i.e.,

c4,v < 1 (23)

(4) Mining area e needs to be mined completely before min-
ing area h is mined, i.e.,

ye < yh (24)

4) OPTIMIZATION MODEL
Combining the preceding decision variables, objective func-
tions and constraints, and using the technical indicators and
mining sequence as described, the complete optimization
model is 

max θ =

N∑
j=1

θv,j

s.t.p1,v ≤ p2,vv = 1, 2, · · · ,N
p5,v ≥ pyv = 1, 2, · · · ,N
c4,v < 1v = 1, 2, · · · ,N
ye < yhe, h ∈ {1, 2, · · · ,N }

(25)

5) HYBRID CODING OF AADE TO SOLVE THE MODEL
Hybrid coding techniques [31], [32] were introduced into
the AADE algorithm to create the hybrid coding AADE
algorithm, which was then used to solve the simultaneous
dynamic optimization model of technical indicators and min-
ing sequence. The basic steps of the optimization algorithm
are as follows [33], [34], [35], [36], [37].

(1) Collect mine production data and determine the model
that relates decision variables to technical indicators, which
together with the mining sequence are the decision variables
for the optimization model.

(2) Parameter initialization. Initialize the population size
NP, the iteration counter GT = 0, the maximum number of
iterations Gmax, the upper (Xu) and lower (X l) limits of the
decision variables, the total number of optimization areas N ,
the probability parametersψ and ϕ for the scaling factor FGT ,
and the probability parameters δl and δu for the crossover rate
CRGT .
(3) Hybrid chromosome coding. The technical indicators

of metal mines are coded using floating point coding, and the
mining sequence is coded using arrangement coding.

(4) Population initialization. Initialize the initial population
at X0 using the following procedure.
(4.1) Set the initial populations X0 = [8] and j = 1.
(4.2) Generate the genetic segment Xj,0 of the technical

indicator using

Xj,0 = X l + random(0, 1) ∗ (Xu − X l)j = 1, 2, · · · ,NP

(26)

(4.3) Generate the genetic segment Yj,0 of the mining
sequence using

Yj,0 = randPerm(N ) (27)

where randPerm(N ) is a nonrepeating random permutation of
consecutive integers 1, . . . , N .
(4.4) Set X0 = [X0;Xj,0,Yj,0] and j = j+ 1.
(4.5) Determine whether or not to terminate. If j > NP,

then stop iterating (i.e.,X0 is the initial population); otherwise
go back to step 4.2.

(5) Calculate the total NPV of the population individuals θ
and the adaptation value fT (XGT ).

(6) Using the scale factor FGT and crossover rate CRGT for
creating each generation of technical indicator chromosomes,
and the variation rate pm,GT and crossover rate pc,GT for
mining sequential chromosomes, the following equations are
calculated:

FGT = Normalrand(ψ, ϕ) (28)

CRGT = Uniformrand(δl, δu) (29)

pm,GT = FGT (30)

pc,GT = CRGT (31)

(7) Mutation operation. Adaptive differential evolution muta-
tion is used as the operation for the mutation of technical
indicators, and reverse mutation is used as the operation for
the mutation of mining sequence.
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FIGURE 1. Reverse mutation process of mining sequence.

FIGURE 2. Binomial crossover process.

(7.1) Mutation operation of technical indicators. If
random(0, 1) < 1−GT

/
Gmax, the DE/rand/1 mutation strat-

egy is invoked; otherwise, the DE/best/1 mutation strategy is
implemented. The corresponding mathematical expression is
as follows:

Vi,GT+1 =


Xr1,GT + F ∗ (Xr2,GT − Xr3,GT )
random(0, 1) < 1 − GT

/
Gmax

Xbest,GT + F ∗ (Xr1,GT − Xr2,GT ) else

(32)

(7.2) Mutation operation of mining sequence. Two disparate
positions within the chromosome are randomly selected.
The gene sequence between these positions is subsequently
inverted and reintegrated into the original chromosome. For
instance, Figure 1 schematically illustrates the reverse muta-
tion process for an 8-dimensional mining sequence.

(8) Crossover operation. Binomial crossover is used as
the crossover operation for technical indicators and partial
matching crossover is used as the crossover operation for the
mining sequence.

(8.1) Crossover operation of technical indicators. The bino-
mial crossover method is chosen for each component. The
associated mathematical expression is articulated below:

U j
i,GT+1

=

{
V j
i,GT+1randj(0, 1) ≤ CRor j = kT
X ji,GT+1else

, j=1, 2, · · · ,DT

(33)

To elucidate, Figure 2 schematically depicts the binomial
crossover process in the context of an 8-dimensional opti-
mization problem.

(8.2) Crossover operation of mining sequence. The par-
tially matched crossover procedure is delineated in the
subsequent steps and is also illustrated in Figure 3:

Step 1: Initially, two chromosomes from the mining
sequence are randomly chosen, along with two specific posi-
tions, as depicted in Figure 3(a).
Step 2: Subsequently, the genes situated between these two

positions are swapped, as illustrated in Figure 3(b).
Step 3: A mapping relationship is established based on the

swapped genes, as indicated in Figure 3(c).
Step 4: In accordance with this mapping relationship, any

conflicting genes outside the designated positions are substi-
tuted, thereby generating two conflict-free offspring genes,
as represented in Figure 3(d).
(9) Select the operator. Create the next generation of indi-

viduals using:

Xi,GT+1 =

{
Ui,GT+1fT (Ui,GT+1) ≤ fT (Xi,GT )
Xi,GT else

(34)

(10) Determine whether or to terminate iteration. If GT <

Gmax, then return to step 4; otherwise, stop iterating.
(11) Output the best technical indicators, mining sequence

and maximum total NPV.
The flowchart of the hybrid coding AADE algorithm

for solving the simultaneous dynamic optimization model
of technical indicators and mining sequence is shown in
Figure 4. The simultaneous optimization of dynamic tech-
nical indicators and mining sequence is a mixed integer
optimization issue involving both continuous (technical indi-
cators) and integer (mining sequence) decision variables.
To address this, hybrid chromosome coding and mixed evo-
lutionary operators are capable of optimizing such mixed
integer optimization problems, while single chromosome
coding and single evolutionary operators are limited to solv-
ing continuous optimization problems. Thus, the hybrid
coding AADE algorithm is appropriate for optimizing both
the technical indicators and the mining sequence in metal
mines concurrently.

III. CASE STUDY
The ore body from 1450 to 1750 m of the Huogeqi copper
mine was used as an illustrative case with actual produc-
tion data and the current production status. The ore body
from 1450 to 1750 m was divided into five mining zones,
and the model we created and the algorithm derived were
applied to simultaneously dynamically optimize the entire set
of technical indicators and mining sequence. The scope and
original geological reserves of each defined copper mining
area of Huogeqi mine are shown in Table 2. The initial
geological reserves are the geological reserves corresponding
to the original cut-off grade (0.3%) and the original industrial
grade (0.5%).

Based on the present mine production level, the lower
limits of the boundary and industrial grades were 0.1% and
the upper limits were 0.8%; the lower limit of the smelting
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FIGURE 3. Partially matched crossover process of mining sequence.

FIGURE 4. Flowchart of the hybrid coding AADE algorithm.

grade was 16%; the annual production capacity of the mine
was 3 kt; the value of the constant z in Equation (2) was 0.66;
the total production cost of ore was 226 CNY/t; the sales price
of #1 copper concentrate was 47,739 CNY/t; and the annual
discount rate was 6%.

Areas for optimization were based on the middle section of
the ore body, and infill mining was used to mine the copper
ore at Huogeqi. It is therefore theoretically possible to mine

TABLE 2. Scope and initial geological reserves of each copper mining
area of Huogeqi mine.

in any optimized area sequence, so the contiguity constraint
of Equation (24) does not apply in this case.

A. MODEL OF DYNAMIC RELATIONSHIPS BETWEEN
TECHNICAL INDICATORS
1) PROBABILITY DENSITY FUNCTION OF THE GRADE
DISTRIBUTION
Kernel density estimation methods fit distributions based on
the characteristics and properties of the data without any prior
knowledge and can fit probability density functions better
than parameter estimation methods [38]. Kernel density esti-
mation was used to fit the probability density distribution
function of the ore grade, and the fitting is shown in Figure 5.
Figure 5 shows that kernel density estimation fitted the ore
grade distribution well.

2) MODEL OF THE ORE BODY WEIGHT AND ORE GRADE
RELATIONSHIP
The scatter plot of ore weight vs copper grade was plotted
for 157 sets of ore body weight and grade data collected
from the Huogeqi copper mine, as shown in Figure 6. The
figure shows that there was no correlation between ore weight
and copper grade. The coefficient of correlation between ore
weight and copper grade was r = −0.004. An F-test was per-
formed to test the relationship between them, which produced
a significance level of 0.9608. The significance level was
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FIGURE 5. Ore grade distribution fitting for each mining area.

>0.05, which indicates that therewas no relationship between
ore weight and copper grade [39]. Thus, ore weight was not
influenced by copper grade, and the ore weight function for
Huogeqi copper ore was obtained using the average value of
ore weight given by

g(x) = 3.16t/m3 (35)

3) MODEL OF THE DEPLETION RATE AND LOSS RATE
RELATIONSHIP
The 1450–1750 more body of the Huogeqi copper mine is
mined using various mining methods (deep hole subsequent

filling, upward horizontal layered filling). The model of the
relationship between depletion rate and loss rate requires
that a single mining method be used, and so the relationship
between loss rate and depletion rate could not be modeled.
In the subsequent optimization, the planned values of both
loss rate and depletion rate were used; both were 9%.

4) MODEL OF THE EXTRACTED GRADE AND BENEFICIATION
RATIO RELATIONSHIP
The scatter plot of copper extracted grade vs beneficia-
tion ratio was drawn using 711 sets of beneficiation data,
as shown in Figure 7. The figure shows that there was a linear
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FIGURE 6. Scatter plot of ore body weight vs grade.

FIGURE 7. Relationship between extracted grade and beneficiation ratio.

relationship between copper extracted grade and the benefi-
ciation ratio. A linear regression function with the correlation
coefficient r = −0.9252 was used to fit the data. An F-
test was performed to test the relationship between them,
which produced a significance level of 1.16 × 10−300. The
significance level was <0.05, so the regression was signif-
icant and the proposed model could be used. The following
linear function was therefore used to describe the relationship
between copper extracted grade and beneficiation ratio:

c3 = −14.8279 ∗ p4 + 35.9238 (36)

5) CONCENTRATE GRADE MODEL
A back-propagation (BP) neural network [40], [41] was used
to model the relationship between the extracted grade and
beneficiation ratio and the concentrate grade using 711 sets of
data; the first 611 sets were used as training samples, and the
last 100 sets were used as test samples. The extracted grade
and beneficiation ratio were the input, and the concentrate
grade was the output. There were 2 nodes in the input layers,
2 nodes in the implicit layers, and 1 node in the output layer.
The training functions and the transfer functions for the input
and output layers were respectively ‘traingdm’, ‘tansig’ and
‘purelin’. The learning rate was 0.1, training error precision
was 0.001, and the maximum number of iterations was 2500.

FIGURE 8. Fitting of copper concentrate grade using the BP neural
network.

TABLE 3. Copper concentrate price adjustment factors and compensation
prices.

The BP neural network fitting to the copper concentrate grade
is shown in Figure 8.

The coefficient of determination of the BP neural network
was 0.9802, MAE was 0.0568, and RMSE was 0.0729. The
coefficient of determination was close to 1, and MAE and
RMSE were both <0.1, which indicates that the BP neural
network well fitted the model relating extracted grade and
beneficiation ratio with concentrate grade.

6) CONCENTRATE PRICES
The study mine is a copper mine. The market trading price of
copper concentrate is based on a 20% concentrate grade, and
the prices of other grades of copper concentrate are adjusted
from this price. The price adjustment factors and compensa-
tion prices are shown in Table 3. Copper concentrate prices
are calculated by [18]:

q = f6(p5) = k1 × p5 × λ+ k2 (37)

B. DECISION VARIABLES AND PARAMETER SETTINGS
1) DECISION-MAKING VARIABLES
Decision-making variables are the technical indicators and
the mining sequence. The model of relationships between
technical indicators developed in section III-A shows that
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FIGURE 9. Iterative process for the optimal NPV.

boundary grade, industrial grade, depletion rate and loss
rate are independent variables and are therefore not influ-
enced by other indicators. The indicators geological reserves,
average ore grade, extracted grade, extracted volume, ben-
eficiation ratio, concentrate grade and concentrate volume
are dependent variables. The loss rate and depletion rate are
influenced by ore body characteristics as well as the mining
technology employed. Consequently, these rates can gener-
ally be regarded as constant over short time frames. We used
the planned values for each mining area as constant values
for these two variables, both of which were 9%. Since the
independent variables are decision variables in optimization,
boundary grade and industrial grade for each mining area are
decision variables for the technical indicators. In summary,
boundary grade, industrial grade and mining sequence for
each mining area are the decision variables of the optimiza-
tion model, so there are 15 decision variables for each of the
five mining areas.

2) SETTING ALGORITHM PARAMETERS
The parameters of the hybrid coding AADE algorithm were
set as follows. The dimensionality of the decision variables
DT was set to 15, the initial population size NP was set to
100, the maximum number of iterations Gmax was set to 100,
and the adaptive control parameters ψ , ϕ, δl and δu were set
respectively to 0.7, 0.1, 0 and 1.

C. OPTIMIZATION RESULTS AND ANALYSIS
The optimization model and the algorithm we created were
used to optimize the technical indicators andmining sequence
of the Huogeqi copper mine using the parameter settings
described. The iterative process for optimal NPV is shown
in Figure 9, and the optimization results are given in Table 4.

Figure 9 shows that optimal NPV converges in approxi-
mately 70 iterations. This indicates that the hybrid AADE
algorithm solves the metal mine technical indicators andmin-
ing sequence and that the dynamic optimization model con-
verges quickly. These results were compared with the results
of optimization without considering the mining sequence,
using the AADE algorithm to solve the optimization model

without considering the mining sequence; the results are
shown in Table 5.
Comparison of Tables 4 and 5 shows that the simultaneous

dynamic optimization of metal mine technical indicators and
mining sequence increases maximum NPV by 1161.01 104

CNY compared to optimization without considering the
mining sequence. This result indicates that optimization
considering the mining sequence is more valuable than opti-
mization of technical indicators only. Therefore, in planning
the production process, the technical indicators and mining
sequence should be simultaneously and dynamically opti-
mized together.

1) ALGORITHM COMPARISON
We demonstrated the superiority of the hybrid coding AADE
algorithm for solving the simultaneous dynamic optimiza-
tion model of technical indicators and mining sequence by
comparing it with the hybrid coding GA algorithm [42],
the hybrid coding DE algorithm [43], and the hybrid cod-
ing ADE algorithm [44]. All three algorithms incorporated
hybrid coding and corresponding evolutionary operators. The
incorporations were similar to that described for our modifi-
cation of the AADE algorithm into the hybrid coding AADE
algorithm, so they are not detailed here.

All four algorithms were used to solve the simultaneous
dynamic optimization model of technical indicators and min-
ing sequence. The parameter settings of the four algorithms
were as follows. The adaptive control parametersψ , ϕ, δl and
δu were set respectively to 0.7, 0.1, 0 and 1 for the hybrid
coding AADE algorithm. The mutation rate and crossover
rate were set respectively to 0.7 and 0.5 for the hybrid coding
GA algorithm. The scale factor F and crossover rate CR
were set respectively to 0.7 and 0.5 for the hybrid coding DE
algorithm. The distribution functions and parameters of the
ADE algorithm were set to be equal to those of the hybrid
coding AADE algorithm. The population size for all four
algorithms was set to 100, and the maximum number of
iterations was set to 100.

To avoid the randomness of error inherent in a single
operation of an algorithm, each of the four algorithms was
independently executed 31 times. For each run, the total NPV
was recorded. The aggregated results are tabulated in Table 6.
The maximum, minimum, and average values for the total

NPV of each algorithm were computed based on the data pre-
sented in Table 6. These calculated metrics are subsequently
presented in Table 7.
Table 7 shows that maximum total NPV, minimum total

NPV and average total NPV produced by the hybrid coding
AADE algorithm were respectively 3306503.29 104 CNY,
304847.41 104 CNY, and 301127.78 104 CNY. These values
were all greater than the corresponding values for any of
the other three hybrid coding algorithms. Since the objective
functionmaximizes NPV, the hybrid codingAADE algorithm
solves the technical indicators and mining sequence, and the
dynamic optimization model searches better than the other
three hybrid coding algorithms. In the event of the worst-case
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TABLE 4. Technical indicators, mining sequence and NPV of the optimized scheme.

TABLE 5. Optimization results without considering the mining sequence.

scenario, the total NPV optimized by our suggested algorithm
is 301127.78 104 CNY, which falls short of the best-case opti-
mized value by a relatively insignificant 1.75%. Therefore,
the hybrid coding AADE algorithm is effective in solving
the simultaneous dynamic optimization model of technical
indicators and mining sequence.

A one-sided t-test was used for statistical analysis to
demonstrate that the AADE algorithm solves the technical
indicators and mining sequence and that the dynamic opti-
mization model has significant advantages [45]. For each
pair of compared algorithms, the t statistic was calculated as
follows.

The significance level is set to be 0.05, and the degrees of
freedom is the total number of runs minus 1, which is 30.
The critical value for the t-test is found at t0.025,30 = 2.042.
If |t| > t0.025,30, then the two algorithms are significantly
different. If |t| ≤ t0.025,30, then the two algorithms are not
significantly different.

Table 6 shows that the standard deviation of the solu-
tion given by the AADE algorithm was 1470.93. Using this
standard deviation and average total NPV from Table 7 in
Equation (36), t values for comparisons of the hybrid coding
AADE with each of the other three hybrid coding algorithms,
are tabulated in Table 8.
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TABLE 6. Total NPV provided by the four algorithms.

TABLE 7. Statistics of the four algorithms for comparison.

TABLE 8. Results of t tests for total NPV.

Table 8 shows that the t statistics for the comparisons of the
AADE algorithmwith each of the other three algorithmswere
greater than t0.025,30 = 2.042. These values indicate that the
hybrid coding AADE algorithm searched significantly better
in solving the simultaneous dynamic optimization model of
technical indicators and mining sequence.

The numerical stability of our proposed algorithm was fur-
ther examined by introducing perturbations to the parameters
within the algorithm. The algorithm was then employed to
optimize the case with the perturbed parameters, the results
of which are presented in Table 9. We used the minimum and
maximum values optimized by the hybrid AADE algorithm,
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TABLE 9. Total NPV of the perturbation parameters.

as listed in Table 6, to set the lower and upper bound-
aries, respectively. This established an interval of [301127.78
306503.29]. Out of the results presented in Table 9, 80%
of the optimized results are within this interval, and the
maximum relative distance outside this interval is a mere 3%.
Thus, this demonstrates the robust numerical stability of our
proposed algorithm in simultaneously optimizing technical
indicators and mining sequence.

IV. CONCLUSION
We investigated the problem of simultaneous dynamic opti-
mization of technical indicators and mining sequence for a
metal mine and created an optimization model and algorithm.
The use of the proposed optimization model and algorithm
was demonstrated as a test case using the Huogeqi copper
mine. Our work is summarized as follows.

(1) A model for the simultaneous dynamic optimization of
technical indicators andmining sequence of a metal mine was
derived. The model was shown to simultaneously optimize
the technical indicators and mining sequence.

(2) The simultaneous dynamic optimization of technical
indicators and mining sequence of a metal mine is a complex
mixed integer single-objective optimization problem. The
mixed coding AADE algorithm was proposed and developed
to solve it. The hybrid coding AADE algorithm was a mod-
ification of the AADE algorithm that incorporated hybrid
coding and a corresponding evolutionary operator.

(3) The simultaneous dynamic optimization of technical
indicators and mining sequence increased NPV over the opti-
mization of technical indicators only.

(4) The hybrid coding AADE algorithm performed
searches significantly better than the hybrid coding GA
algorithm, the hybrid coding DE algorithm, and the hybrid
coding ADE algorithm when solving the simultaneous
dynamic optimization of technical indicators and mining
sequence. The efficacy of the hybrid coding AADE algorithm
can be ascribed to the integration of hybrid chromosome
encoding and hybrid evolutionary operators.

This study provides amodel and an accompanyingmethod-
ology for the simultaneous optimization of metal mine
technical indicators and mining sequence that takes into
account the dynamic relationships between technical indica-
tors. There are three aspects of the model and method that
can be improved in future work. (1) The objective function
considers economic efficiency (NPV). However, resource
use efficiency is also an important objective for mineral
resource extraction. We intend to incorporate both economic
and resource benefits into the objective function in future
research. (2) The model must be further refined to include
other mining activities such as release, transportation, hoist-
ing, crushing, grinding and flotation, which will be the focus
of future studies. (3) The high-performing algorithm intro-
duced within the recent 2-3 years will be taken into account
for future work aimed at optimizing both technical indicators
and mining sequence in metal mines simultaneously.
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