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ABSTRACT Coupled nonlinear dynamical systems are known to display remarkable behavioral similarities
to some aspects of neural activity in biology. When considering the computational properties of such
a neuromorphic network (or even an electronic biomimetic computation device underpinned by such a
network), the question of whether (and how) such a network realizes fundamental logic operations must
be examined. In this work, a dynamical system of coupled noisy overdamped nonlinear bistable elements
is considered. The background noise floor is used to drive information flow by helping each element
switch randomly between its stable states, with the system response quantified via a long-time probability
density function. A theoretical representation of such a system is developed and a simple five-element
realization is used to demonstrate a continuous version of an XOR gate, through the proper choice of
coupling coefficients and controllable external biases. This is a first step towards synthesizing more general
functions, a prerequisite for advanced computing and learning applications. Finally, a silicon implementation
is proposed and simulated using a verified process model that could be fabricated to generate a working
analog computing system.

INDEX TERMS Dynamical nonlinear oscillator, network, noise-floor, stochastic differential equation, XOR
gate.

I. INTRODUCTION
Artificial Neural Networks (ANNs) [9] are ubiquitous in
increasingly sophisticated scenarios in the general areas of
computer vision, natural language processing, and neuro-
morphic computing. Such systems afford capabilities beyond
traditional methods, and they hold out the tantalizing promise
of more elegant and efficient applications in areas such
as robotics and artificial intelligence. There also exist a
number of dynamical mathematical models that mimic
certain aspects (e.g. spiking, long term potentiation) of
biological neural networks (see e.g. [4]). Such models can

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

facilitate the modeling of the interaction between the cell
body and synapses, allow one to explore spatiotemporal
complexity, and provide a framework to examine the effects
of background noise. This dovetails with recent interest in
collective behavior in large scale brain models, as a possible
driver of brain functions, e.g., cognition and perception [1],
[2], [3]. However, these models can be limited in terms of
algorithmic implementation, as they evolve towards larger
and more complex networks. In recent years, many-core
neuromorphic processors [5] as well as Very Large-Scale
Integration (VLSI) emulations of large neural networks with
as many as 106 silicon neurons [6] have been developed.
In this work, we present a potential method for driving
neural-like dynamics by taking advantage of the inherent
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(thermal or other) noise in networks of coupled nonlinear
dynamic elements, each with a noise floor; this results in
sufficiently complex behavior to perform more advanced
tasks such as function approximation.

As a necessary prerequisite for universal function approxi-
mation, artificial neural networks should be able to reproduce
the basic logic gate functions. The AND and OR gates can
each be implemented by a single layer network consisting
of two input elements and one output element. In contrast,
implementing the XOR gate requires a two layer network,
with an additional two elements in a ‘‘hidden’’ layer.
We focus on implementing an XOR function, operating
on analog variables, due to its ubiquity in the machine
learning literature. This can be viewed as a first step towards
synthesizing more complicated functions.

Here, we examine how noise-driven coupled nonlinear
dynamical systems can yield XOR functionality. We consider
a network of bistable nonlinear dynamic elements with
nonlinear coupling and a noise-floor attributed to each
element. These elements qualitatively mimic the dynamic
behavior of neurons, with the important caveat that they
do not produce spiking; the bistability (underpinned by a
nonlinear potential energy function) occurs between two
fixed points, rather than between a fixed point and a
limit cycle. This system provides a reasonable model for
describing, in the mean, the interaction between the noise
floor and the stimulus in the network; the deterministic
solution is supplanted by a statistical solution wherein
the averaged response can be calculated, and connected
to observables in the real system. Our proposed system
is inspired by conventional ANNs, which may be viewed
as consisting of static coupled nonlinear elements. Our
choice of nonlinearity closely mimics the usual sigmoidal
transfer characteristic commonly used in ANNs, with the
coupling also being a sigmoidal (hence bounded) function
with suitably chosen coefficients or ‘‘strengths’’.

Our dynamical network also resembles a ‘‘liquid state
machine’’ (LSM), which has been proposed for comput-
ing with time series [10]. Like LSMs, our network can
handle time-dependent inputs, and offers the possibility of
quadrature via techniques involving time scale separation.
Furthermore, although we take the coupling coefficients to
be constants in this study, they can readily be described
statistically for more complex scenarios. Nonlinear dynamic
elements comprising LSMs can also exhibit cooperative
dynamical behavior arising from the interplay between
nonlinearity, coupling, and noise, most notably when cast in
the framework of driven dynamical systems. One example of
such behavior is the oft-studied Stochastic Resonance (SR)
effect [11], which is known to be amplified in a nonlinear
sensor network via the interplay of coupling, applied signal
(often taken to be time-periodic), and noise floor [12], [13].
Of particular interest in the context of this paper, we note
the ‘‘Logical Stochastic Resonance’’ (LSR) [14], [15], [16]
scenario, wherein a noisy bistable element accepting two
random data streams can reproduce the fundamental logic

operations (AND/OR, NAND/NOR) and morph from one
to the other using a controllable dc bias to perturb the
underlying potential energy function; the gate probability
is unity over a definite regime of noise intensity. Notably,
a possible biological realization of LSR was proposed by
Dari et al. [17], [18] in a theoretical description of an
engineered gene network.

In this work, all the computational elements are dynamic
in nature, including the output node; each nonlinear element
is characterized via a stochastic differential equation with
nonlinear inter-element coupling terms, and subject to a
deterministic (taken to be constant in this work) applied bias
signal. The network elements switch between their stable
steady states in the presence of noise with an appropriate
selection of coupling strengths. The output of the system
will thus not be deterministic, and any result stemming
from the network has a probabilistic structure from which
statistical measures, such as mean values can be computed,
via a long-time probability density function. In Section II,
we construct an array consisting of a single overdamped
bistable ‘‘reference’’ element coupled to an ensemble of
‘‘bath’’ elements which evolve on significantly faster time
scales than the reference element. Hence, the long-time
system behavior is well approximated by the dynamics of
the reference (or ‘‘slow’’) element. It is assumed that the
bath is never far from its long-term steady state. Under these
assumptions, the dynamics of the reference element can be
obtained in closed form using an adiabatic elimination tech-
nique or ‘‘slaving principle’’ first propounded by Haken [19].
The response (for assorted constant input signals and noise
intensities) of the network is quantified by the steady-state
(i.e. at long time) probability density function of the reference
element. As an aside, we note the similarity of our system to
‘‘liquid networks’’ [20]. Analogous to liquid networks, our
noisy system yields a random 2-state time series solution.
However, the relevant information for realizing the XOR is
contained in the long-time probability density function P(y1)
of the readout element, rather than the actual time-series
solution.

We consider, in this work, the particular case of a small
network of five elements, based on the architecture of a
particular ANN which implements the XOR. The network
consists of two input elements (each of which accepts an
input dc signal) coupled to a single output or readout element
while passing through an intermediate or ‘‘hidden’’ layer
comprising two elements. Each element has its own noise
floor (assumed to be uncorrelated from element to element).
Hence, our system implements an analog transform that
approximates the XOR function in probability space. The
transform has analog inputs, whereas the output consists
of probability distributions that can be partitioned into two
equivalence classes representing a ‘‘TRUE’’ or ‘‘FALSE’’
result based upon whether the dc inputs have opposite signs,
or the same signs, respectively. We note that the theory
derived in Section II is valid for networks of arbitrarily
sized inputs and hidden layers and involves forward and
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backward coupling, subject to certain constraints on the
parameters.

In Section II, we introduce the network via a system of
coupled stochastic differential equations (SDEs). A Fokker
Planck Equation (FPE) for the network is set up, then decou-
pled using the above-mentioned adiabatic approximation.
The FPE is a diffusion type equation that describes the
evolution of the (N− body) probability density function; it
involves averaged quantities such as the mean and variance
of the noise in each element, rather than the noise itself.
The FPE-based approach is particularly advantageous for the
network under consideration; we will touch on this point later
in greater detail. Eventually, we are led to a single effective
SDE for the readout element (this is the ‘‘slow’’ element in the
framework of the adiabatic approximation), which is the goal
of the theory. From this SDE, we readily derive a closed form
probability density function for the readout element in the
long time limit; we will see that the FPE description coupled
with the ‘‘slaving’’ argument accomplishes this goal quite
neatly. The effects of the remaining ‘‘fast’’ elements in the
network are manifested in a skewing of the slow element
probability density function; effectively the fast elements
constitute a ‘‘bath’’ to which the slow (i.e. readout) element
is coupled. It will, additionally, become clear that our general
procedure based on a decoupling of the many-body FPE can
be readily applied to larger networks and even more complex
coupling schemes.

In Section III-A, the results obtained via the analytic model
of our network are compared with numerical simulations
and shown to match within the constraints of our approx-
imations; these constraints will be defined as we proceed
with the calculations. Finally, in Section IV, we consider
the implementation of the coupled dynamical system in
hardware by carrying out circuit simulations using a validated
Process Design Kit (PDK). We demonstrate that the circuit
implementation yields nonlinear dynamic behavior (in this
case hysteresis) in the output (or readout) element, which
matches the predictions of the theoretical model remarkably
well. While we do not explicitly use the nonlinear circuit
to realize the XOR (this is left to an upcoming paper), the
agreement of the theory with the circuit realization gives
us the confidence to use it as a roadmap to adjust the
circuit parameters to obtain the desired dynamical behavior.
This is especially important as the number of elements
and/or complexity of the system grows, and direct simulation
becomes time prohibitive.

II. THE COUPLED DYNAMICAL NETWORK
We consider a network of coupled overdamped bistable
elements, each subject to noise and a constant deterministic
signal. The choice of nonlinearity in our dynamics is
important. We use a hyperbolic tangent function that is
bounded above and below and, hence, reproduces the
sigmoidal transfer function that historically has been used to
mimic the on-off dynamics of biological neurons.

In its most general form, the network can be described
by the coupled system of stochastic differential equations
for a generic state variable y(t) (e.g. in a nonlinear circuit,
as considered later in this work, yi(t) represents the voltage
in the ith element)

ẏi = qi({yj}) + Ni(t) (1)

where the overdot denotes the time-derivative. The noise
Ni(t), in the ith element, is assumed to be Gaussian, and
delta-correlated with zero mean and variance σ 2

i ; further the
noise sources in different elements are assumed uncorrelated.
We note that this so-called ‘‘white’’ noise is an idealization.
Rigorously, Ni(t) should be correlated (or ‘‘colored’’) noise
obtained via an Ornstein-Uhlenbeck process [23], [24] that
leads to exponentially correlated noise with correlation time
τc which is, roughly, the inverse of the noise bandwidth:

⟨Ni(t)Ni(s)⟩ =
σ 2
i

2τc
exp

[
−

| t − s |

τc

]
(2)

which corresponds to a power spectral density

Si(ω) =
σ 2
i

1 + ω2τ 2c
. (3)

In the limit τc → 0, the rhs of (2) becomes a δ function
i.e. we obtain Gaussian δ− correlated noise, having (by
definition) zero mean:

⟨Ni(t)⟩ = 0, ⟨Ni(t)Nj(t ′)⟩ = σiδijδ(t − t ′). (4)

The power spectral density, in this ‘‘white’’ limit, becomes
a constant equal to the noise variance σ 2

i . We point out that
having the noise autocorrelation function (in the colored case
and the corresponding white limit) that is a function only of
the time difference, is a hallmark of a Markov process [23].

As noted above, the (theoretical) concept of infinite
bandwidth or ‘‘white’’ noise is unrealistic and unrealizable
in experiments; the noise can usually be adjusted to have
very large (however, not infinite) bandwidth. In practice, it is
sufficient that the noise have a bandwidth much greater than
other system frequencies of interest (e.g. the inverse of the
time constants ai and any externally applied frequencies),
in order to use the white noise representation (4). We note
that the noise arising in real systems can have a wide range
of bandwidth, arising from the underlying physics. As an
example, Superconducting Quantum Interference Devices
(SQUIDS) [28] typically have a noise floor with gigahertz
bandwidth, whereas noise in some biological systems might
have a bandwidth of only a few hertz. In both these cases the
noise may be taken to be broadband; what matters is for the
bandwidth to be larger than any other frequency (or inverse
time) in the system. In Section III we will detail how the noise
bandwidth and the simulation time-step are intertwined.

We observe that, in our notation employed in (1), the noise
Ni(t) has unit variance and is multiplied by the standard
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deviation σi. The rhs of (1) is

qi({yj}) = −aiyi +
N∑
j=1

Jij tanh yj + εi (5)

where each element is subject to a constant bias term εi. The
nonlinear terms include the ‘‘self’’ coupling with strength
Jii, as well as nonlinear coupling (via a coupling coefficient
Jij, j ̸= i) to the other elements. The coefficients ai have units
of inverse time and must be positive to maintain dynamic
stability.

A. BACKGROUND: SINGLE ISOLATED ELEMENT
We begin with a concise dynamical description of a single
uncoupled (i.e. isolated) element, which is the basic building
block of our network. Its dynamics are (we drop the subscripts
for convenience)

ẏ = −ay+ J tanh y+ ε + N1(t)

≡ −
∂

∂y
U (y) + N (t), (6)

with the potential energy function given by

U (y) =
a
2
y2 − J ln cosh y− εy, (7)

and the ‘‘switching curve’’ corresponding to the deterministic
portion of the rhs of (6)

∂

∂y
U (y) = 0 = ay− ε − J tanh y. (8)

Clearly, in the presence of additive (Langevin) noise, the
extrema of the potential energy function are obtained using
the deterministic dynamics. The noise manifests itself when
we consider the probability density function of element y.
This probability density function can be obtained by setting
up the Fokker Planck Equation (FPE) that governs its
temporal evolution: [23]:

∂P(y, t)
∂t

= −
∂

∂y
[A(y)P(y, t)] +

σ 2

2
∂2P(y, t)

∂y2
, (9)

with the drift (or streaming) term having the kernel A(y) =

−∂U (y)/∂y. The important thing to note is that the FPE
contains the noise dependence in a second order diffusion
term involving the variance σ 2. In general, solving the FPE
can be quite daunting, except when the kernel A(y) is linear
or possessed of some other convenient functional form [23].
However, in the absence of an explicit time dependence on the
rhs of (9), one may write down the long time or steady-state
solution to (9) by setting its lhs to zero, and integrating the
resulting differential equation [23]. The result is:

P(y) = N exp
[
−

2
σ 2U (y)

]
(10)

where N is a normalization constant. This indicates
that the spread of the probability density function is
directly dependent on the noise variance. We note that,
for a more complicated case wherein there is an explicit

time-dependence on the rhs of (9), one cannot simply write
down a solution of the form (10); it would be necessary to
obtain the full time dependent solution to (9), and then find
its limit as t → ∞. In simulations, one would assemble
a time-series of the stochastic variable y(t). Depending on
the choice of parameters this series displays a single state or
bistable state behavior, corresponding to a potential energy
function that is monostable or bistable. All the important
system characteristics are manifested in the potential energy
function (7) wherein the parameters (a, J ) are obtained from
the physics of the particular system under consideration.
Knowing this potential energy function is the critical stepping
stone to understanding the system behavior.

The locations of the extrema of the potential energy
function, for the bistable case, can be determined using
simple calculus. First, we consider the symmetric case
(ε = 0). The extrema of the potential energy are given by the
roots of y − η tanh y = 0 (where η ≡ J/a), the rhs of the
(previously defined) switching curve. The trivial solution is
y = 0, which can be shown to correspond to the unstable
fixed point (maximum) of the potential function. We readily
observe that η > 1 is the condition for bistability. For
η ≤ 1 the potential function becomes monostable, however
it becomes perfectly parabolic only in the J → 0 limit.
The remaining extrema are found by approximately obtaining
the (non-zero) roots of the switching curve. We find for the
(stable) minima y±(ε = 0):

y±(ε = 0) = ±η

[
1 −

1 − tanh η

1 − η sech2 η

]
≈ ±η tanh η (11)

where the approximation becomes exact for large η, and the
unstable fixed point is, as noted above, at y = 0. For non-zero
ε the minima are shifted and a simple expansion yields

y±(ε) = y±(ε = 0) + δ; δ =
ε

1 − η sech2 y±(ε = 0)
,

(12)

which can be simply written as:

y±(ε) = ±η tanh η +
ε

1 − η sech2(η tanh η)
(13)

For this case (ε ̸= 0), the unstable fixed point is, of course,
located at y = δ. Implicit in the derivation of (13) is
the assumption that ε/J ≪ 1. The last statement requires
qualification. If ε is too large, it will render the potential
monostable. In this case the three roots of the switching
curve become a single real root and two complex conjugate
roots. Hence, if we require the potential to remain bistable (as
throughout this paper), this constrains the dc signal ε.

B. FEED-FORWARD NETWORK
1) STATIC XOR
In this work, we wish to create a network that replicates
the behavior of an XOR gate. At its core, the XOR gate
is a function of two Boolean variables returning FALSE if
the input variables are the same, and TRUE if the input
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variables are different. If we encode TRUE as+1 and FALSE
as −1, we can define an analog version of an XOR gate
acting on real-valued variables as any continuous function
f : R2

−→ R satisfying

f (1, 1) = f (−1, −1) = −1

f (1, −1) = f (−1, 1) = 1. (14)

We also add the requirement f (x, y) ≤ 0 if xy ≤ 0 and
f (x, y) ≥ 0 if xy ≥ 0. One particular ANN that approximates
these requirements is the two layer network with functional
form

fβ (x, y) = tanh
(
β(1 + x + y)

)
+ tanh

(
β(1 − x − y)

)
(15)

wherein the error–defined as the discrepancy between fβ and
f in (14)–can be made arbitrarily small by increasing β. The
decision boundary of this network (the zero-locus of fβ ) can
be made arbitrarily close to the pair of parallel lines x + y =

±1. The implementation of the XOR in an ANN is described
in [21] and [22].

In the next section, we create a network of coupled
dynamical oscillators with the same architecture as this ANN,
and with parameters guided by (15). This network will be
the underpinning of a ‘‘dynamic XOR’’. We also demonstrate
that N = 5 elements is the minimum configuration required
to implement the XOR, similar to the case with ANNs.

2) DYNAMIC XOR
Based on the discussion above, we set up a coupled dynamical
system of five elements in a two-layer configuration (see
Figure 1). For simplicity, we do not include backcoupling,
making this a feed-forward network. We start from our
general network equation (1) and write out the qi:

q1 = −a1y1 + J11 tanh y1 + J12 tanh y2 + J13 tanh y3 + ε1

q2 = −a2y2 + J22 tanh y2 + J24 tanh y4 + J25 tanh y5 + ε2

q3 = −a3y3 + J33 tanh y3 + J34 tanh y4 + J35 tanh y5 + ε3

q4 = −a4y4 + J44 tanh y4 + ε4

q5 = −a5y5 + J55 tanh y5 + ε5. (16)

The structure of these terms describes an input layer
comprised of 2 elements y4,5, with dc inputs ε4,5 and
(uncorrelated) noise terms N4,5(t). The intermediate layer,
comprising elements y2,3 with analogous dc and noise driving
terms, was coupled to the input layer. Finally, the (single)
readout element y1 draws its input from the intermediate
layer.

System (1) with definitions (16) cannot be solved ana-
lytically in the presence of noise sources unless appropriate
approximations are made. We follow our previous work [12]
and assume that the ‘‘readout’’ element y1 evolves far
slower than the remaining elements, thereby allowing us to
look at the problem as a system (the ‘‘slow’’ element y1)
coupled to a ‘‘bath’’ of (in this case) 4 elements, with
the latter reaching their steady states far more rapidly
than the reference or readout element y1. The conditions

FIGURE 1. A schematic representation of a 5-element, 2-layer system. Jik
are the coupling coefficients between the individual elements, whereas
εi=1−5 are the (controllable) constant (i.e. dc) biases applied to each
element. ε4,5 are, therefore, dc inputs to the system. y1 is a ‘‘slow’’
element, whereas yi=2−5 are ‘‘fast’’ elements (see text). The steady state
probability distribution of the y1 element is taken as the relevant output
of the system. y2,3 constitute an ‘‘intermediate layer’’ which is subject to
dc bias (ε2,3) and noise (N2,3). For simplicity, this paper focuses only on a
feed-forward network with all back-couplings (J21, J31, J42, J52, J43, J53)
set to zero.

for this to occur are detailed in [12] and [19]. For our
purposes the condition can be boiled down to demanding
that a1 ≪ ai, i = 2 . . . 5. We demand that each individual
element is bistable when isolated, meaning that Jii/ai >

1 ∀i. This sets us up to consider the most interesting case
while realizing that the coupling and dc forcing terms can
render one or more elements monostable in the (coupled)
network. An analytic solution of the coupled stochastic
differential equations (SDEs) (1) would be impossible under
any other scenario; however, using the above-mentioned
adiabatic approximation [19], we aim to obtain the long-time
probability density function P(y1, t → ∞) which we denote
as P(y1) for convenience. The structure of P(y1) under
assorted coupling, noise and forcing scenarios will inform the
realization of the XOR gate.

The starting point is the N -body Fokker-Planck equation
(FPE) for the probability density function P({yi}, t) corre-
sponding to the system of variables yi (corresponding to the
dynamically evolving nodes in the network of Figure 1) that
satisfy the coupled SDEs (1). This may be written as [23]

∂P({yi}, t)
∂t

=

N∑
i=1

−
∂

∂yi
(qiP) +

σ 2
i

2

∑
j

∂2P
∂yi∂yj

 (17)

with the drift terms defined in (16) and the noise terms
manifesting themselves in the second order diffusion terms.
The ‘‘slaving’’ argument [19] then leads us to factor the
probability P({yi}, t) as follows

P(y1, y2, . . . , yN ) = h(y2, y3, . . . , yN | y1)P(y1) (18)

(suppressing t to simplify our notation) where h is to be
interpreted as a conditional probability density for finding
yj>1 given y1 (both h and P are normalized to unity). The
slaving constraints (i.e. the separation of time-scales embod-
ied in the relative values of the coefficients a1 and ai>1) then
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imply that we may substitute the factored probability density
function (18) into the original FPE (17) and separate the slow
variable y1 from the fast one(s) [12], [19]. After some algebra,
we obtain

∂h(yi>1, t)
∂t

=

∑
i>1

−
∂

∂yi
(qih) +

∑
j>1

σ 2
i

2
∂2h

∂yi∂yj

 (19)

∂P(y1, t)
∂t

= −
∂

∂y1
[A(y1)P(y1)] +

σ 2
1

2
∂2P

∂y21
(20)

with the kernel A(y1) defined by

A(y1) ≡

∫
. . .

∫
h(y2, y3, . . . , yN | y1)

× q1(y1, y2, . . . , yN )dy2dy3 . . . dyN . (21)

The above equation represents the formal (N -element)
decoupling of the Fokker-Plank equation with the probability
density function P(y1, t) representing the slow element
dynamics. We have assumed, in deriving the above (decou-
pled) FPEs that the derivative of h with respect to y1 may
be neglected compared to derivatives with respect to yi>1,
an approximation stemming from the slaving assump-
tion [19]. We will specialize the theoretical calculations to
our case of N = 5 using the feed-forward coupling scheme
embodied in (16).

Wewill be concernedwith steady state solutions for the fast
and slow element probability density functions. By this we
mean that, in the absence of explicit time-dependent terms on
the rhs of (19), the solution to the FPE at long times provides
a very good representation of the system behavior. In other
words, we are concerned with the solution h(y2 . . . yN , t) in
the t → ∞ limit. In a practical system, this limit is reached
after allowing the transient behavior of the system to die
down; the rate at which this occurs depends on the time
constants ai, with the fast elements y2 . . . yN settling down to
their steady states very rapidly, compared to the slow element
y1. Theoretically, the long time limit corresponds to setting
the lhs of (19) equal to zero and integrating the resultant
equation; this approach is valid only when the rhs of (19) does
not contain explicitly time-dependent terms [23].
The utility of the FPE is now clear. As long as one can

decouple fast and slow variables leading to the separate
FPEs (19) and (20), the steady state solution becomes amatter
of integrating an ordinary differential equation subject to the
appropriate boundary conditions. This steady state solution
which can be (in our system) written down analytically, using
a procedure analogous to our derivation of (10), is precisely
what we will need in our characterization of the XOR
function. Conveniently, the FPEs to be integrated do not
involve the noise terms directly, only their moments (in this
case the mean and variance); this is because the FPE is a
diffusion type equation, for a probability density function,
in contrast to the original SDEs (1) which involve the original
random variables yi and, explicitly, the noise terms.

We note that the theoretical approach (underpinned by a
steady state solution to the FPE) is equivalent to (numerically)

integrating the coupled system (1) and fitting a probability
density function to the ensuing time-series solution. As long
as we have allowed transients to die out (in practice this
can be accomplished by discarding a tranche of data at
the front-end of the time series), this numerically generated
density function corresponds to the long time solutions
to (19) and (20). Clearly, an experimental manifestation of
the coupled system, as carried out in Section IV, wherein
data is collected as a time series, would yield the same
probability density function as the above-described procedure
involving numerical integration of (1). Finally, when making
comparisons between numerical integration results and non-
linear circuit simulations, a rigorous conversion of abstract
dimensionless quantities (e.g. Jij, ai, σ 2

i ) to corresponding
quantities (and their correct units) defined via the circuit, is of
great importance; we do this in Section IV.

Our choice of coupling scheme allows us to further
simplify the system. We note that the dynamics of the input
elements y4,5 are independent of the remaining elements, due
to the absence of back-coupling. Similarly, the elements y2,3
can be regarded as independent, having no direct coupling to
one another, no back-coupling to the input elements,and only
forward coupling to the readout element y1. For this special
case, we can factor the entire density function for the fast
variables according to

h(y2, y3, y4, y5) =

∏
i=2...5

h(yi) (22)

which we substitute into (21) and work systematically
through the integrals, remembering that each density function
is normalized to unity. As an example, we canwrite the steady
state solutions for the input elements y4,5 as follows

h(y4) = N−1
4 exp

[
−

2

σ 2
4

U (y4)

]
U (y4) =

a4
2
y24 − J44 ln cosh y4 − ε4y4 (23)

with a similar expression for h(y5). Here, N4 is the
normalization constant; note that each elemental probability
density function is normalized to unity. These solutions are
obtained by solving the FPEs for the steady state density
functions h(y4) and h(y5); in the absence of back-coupling
these FPEs do not depend on the elements y2, y3) to which
(y4, y5) are forward coupled only.

Knowing the steady state density functions for the input
elements, we can write the dynamics of y2,3 in the form:

ẏ2 = −a2y2 + J22 tanh y2 + C2 + N2(t),

C2 ≡ ε2 + J24tanh y4 + J25tanh y5 (24)

ẏ3 = −a3y3 + J33 tanh y3 + C3 + N3(t),

C3 ≡ ε3 + J34tanh y4 + J35tanh y5. (25)
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Here we have defined

tanh y4 ≡

∫
∞

−∞

tanh y4 h(y4) dy4

tanh y5 ≡

∫
∞

−∞

tanh y5 h(y5) dy5. (26)

The effect of the input elements on the intermediate layer
(comprising the elements y2,3) is to offset the dynamics
by constant terms C2,3 which adjust the asymmetry in the
y2,3 dynamics. As noted in the preceding subsection, this
results in a skewing of the potential energy functions with a
concomitant effect on the corresponding probability density
functions (see (7) and (10).

We now address the integrals in (26) using the y4 integra-
tion as an illustration. We assume that the density function
h(y4) sharply peaks at approximately its two stable steady
states y4±. Then one can replace the integral by the sum of
two separate integrals in the left and right quadrants, and
expand the exponents to second order about each stable state
point y4± (the first-order terms vanish because the stable
states are extrema; in this case, the maxima of the probability
density function) and break up each integral into two summed
integrals over [−∞, 0] and [0, ∞]. We note the necessity
of choosing parameters such that the integrands are sharply
peaked about the stable minima of the potential energy
function (or the maxima of the corresponding probability
density function). The normalization is carried out in the same
manner and is included in the calculation. After some work
we obtain

tanh y4 ≃ A/B (27)

where

A =

√
πσ 2

4

U ′′(y4−)
tanh y4− exp

[
−

2

σ 2
4

U (y4−)

]
+ (y4− → y4+)

B =

√
πσ 2

4

U ′′(y4−)
exp

[
−

2

σ 2
4

U (y4−)

]
+ (y4− → y4+), (28)

where the double prime denotes the second derivative, and
the steady states are given by (see the preceding subsection)

y4± = ±y40 + 14

14 ≡ ε4/(a4 − J44 sech2 y40)

y40 =
J44
a4

tanh
J44
a4

. (29)

We can do some additional simplification to finally obtain

tanh y4 ≃

tanh y4− + f4 tanh y4+ exp
[
−

2
σ 2
4
1U4

]
1 + f4 exp

[
−

2
σ 2
4
1U4

] (30)

with the definitions

f4 ≡

√
a4 − J44 sech2 y4−
a4 − J44 sech2 y4+

, 1U4 ≡ U4(y4+) − U4(y4−).

(31)

In (27) and (30), the denominators arise via the normaliza-
tions. An analogous (to (30)) expression can be written for
tanh y5. Thus, we have evaluated the constants C2,3 on the rhs
of (25); the input signals ε4,5 are contained in these constant
terms, together with all other parameters (including the noise
variances) contained in the input elements.

Equations (30) and (31) can be simplified further. We can
easily set f4 ≈ 1 because of the behavior of sech x at large
x; this assumes that the parameters (a4, J44) are selected
such that U (y4) is bistable and the (stable) fixed points are
reasonably well separated from the unstable fixed point.
Further, we can calculate the quantity 1U4

1U4 = U (y4+) − U (y4−)

≡ U (y40 + 14) − U (−y40 + 14). (32)

Using the definition in (29), we are readily led to

1U4 ≃ −2ε4y40 (33)

with a similar result for 1U5. To arrive at (33), we perform
a Taylor expansion of (32) to O(14). We now consider (30),
and use the definitions in (29) for the fixed points, to expand
the hyperbolic functions to O(14). After the calculation we
obtain

tanh y4 ≈ tanh

(
2y40ε4

σ 2
4

)
+ 14 sech2 y40 (34)

where we have set tanh y40 ≈ 1. Following the same line of
calculation

tanh y5 ≈ tanh

(
2y50ε5

σ 2
5

)
+ 15 sech2 y50. (35)

With these evaluations, the equations for y2,3 are closed
and we can write the steady state density functions

h(y2) = N−1
2 exp

[
−

2

σ 2
2

U (y2)

]
,

U (y2) =
a2
2
y22 − J22 ln cosh y2 − C2y2 (36)

with an analogous expression for h(y3).
Let us, now, recall that the y1 dynamics are given by

ẏ1 = A(y1) + N1(t), (37)

with the definitions

A(y1) = −a1y1 + J11 tanh y1 + C1

C1 ≡ ε1 + J12tanh y2 + J13tanh y3 (38)
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and, as before,

tanh y2 ≡

∫
∞

−∞

tanh y2h2(y2)dy2

tanh y3 ≡

∫
∞

−∞

tanh y3h3(y3)dy3. (39)

With the (now) closed form expression (36) and the analogous
expression for h(y3), we can compute the integrals above
exactly as done previously. Finally, we are led to the steady
state probability density function (10) for the reference (or
readout) element y1 in closed form, with the potential energy
function

U (y1) =
a1
2
y21 − J11 ln cosh y1 − C1y1 (40)

which has its extrema located at

y1± = ±y10 + 11

11 ≡ C1/(a1 − J11 sech2 y10)

y10 =
J11
a1

tanh
J11
a1

(41)

withN1 being the normalization.
The above results led us to consolidate the all-important

expressions for Ci

C2 = ε2 + J24 tanh

(
2y40ε4

σ 2
4

)
+ J25 tanh

(
2y50ε5

σ 2
5

)

C3 = ε3 + J34 tanh

(
2y40ε4

σ 2
4

)
+ J35 tanh

(
2y50ε5

σ 2
5

)

C1 = ε1 + J12 tanh

(
2y20C2

σ 2
2

)
+ J13 tanh

(
2y30C3

σ 2
3

)
(42)

where we have dropped the second terms on the rhs of (34)
and (35), as well as in the corresponding (not shown)
calculated quantities from (39), because (for all reasonable
parameters) these terms are quite small. Importantly, the
expansion in e.g. (29) and (41) require the second (and higher
order) terms to be≪ 1. It is possible that these terms are≈ 1,
depending on the choice of parameters. However, multiplying
these terms by sech2 yi0, i = 2 . . . 5 (and higher powers
thereof) renders the second (and higher) terms on the rhs
of e.g. (34), (35) ≪ 1 so that they can be dropped when
compared to the leading terms.

Equation (40), in which the deterministic constant C1 con-
tains the net effects of coupling to the rest of the network,
is used to realize theXORgate based on the structure ofU (y1)
or, equivalently, P(y1). We note that the effect of the fast
elements is to contribute to the asymmetry (corresponding
to C1 ̸= 0) of the probability density function P(y1) of the
reference (or readout) element. The noise variances in the
input elements and the intermediate layer are also incorpo-
rated in C1, together with all the other system parameters
appearing in (16). Finally we observe that, for the special
case of all εi = 0, the integrals in (26) and (39) vanish such

that the potential energy function U (y1) and the associated
probability density functionP(y1) are bistable and symmetric.

Later (Section IV), we describe circuit elements that can
replicate this system in a CMOS environment. For now,
however, we close this section with an important note. Our
system (Figure 1) does not have back-coupling, meaning
that terms in J21, J31 etc., are taken to be zero. In turn
this allows a decomposition of the ‘‘bath’’ density function
into the product of individual density functions, as given
in (22). For our particular system (1) without back-coupling,
this means that the fundamental tenet of the adiabatic (or
slaving) assumption (a1 ≪ ai>1) can be relaxed. However,
in the presence of back-coupling, this assumption becomes
necessary to achieve a smooth decoupling of the system into
slow and fast elements; this is exemplified in our earlier
work [12]. With non-zero back-coupling, the calculation is
more complicated, however, it remains tractable. Regardless,
we chose to display, formally in (17)-(21), the decoupling
via the ‘‘slaving principle’’, to demonstrate how it could be
carried out for the more general case. It should be clear that
our procedure (even with back-coupling included) can be
applied to larger arrays even though, in this work, we focus
on a small feed-forward network. In our earlier work [12] we
did, in fact, treat a simplified network with back coupling,
using the slaving principle to achieve the decoupling of fast
and slow elements.

Before concluding this subsection, we return to the
consideration of the minimum number of elements required
to realize the XOR in our dynamical network. Focusing on the
sub-network defined by the elements 3, 4 and 5, and viewing
it as an isolated single-layer network with two inputs and one
output (or readout) element, the expression for C3 in (42)
provides a mapping from the input variables to the effective
offset or skewing constant which completely characterizes
the probability density of the output element:

{ε4, ε5} 7−→ ε3 +

5∑
i=4

αi tanhβiεi (43)

Here, we have subsumed the constants appearing in (42) into
αi and βi. After suitable re-indexing and re-labeling, this
functional form should be compared with (15) and is readily
seen to be manifestly inadequate to realize the XOR. This
stems from the monotonicity of the tanh function and the
separation of the input variables in the arguments. Therefore,
in order to realize the XOR with our dynamical network,
we need a hidden layer containing at least two elements,
so that the total number of dynamical elements is N = 5;
this is similar to the case with conventional ANNs. We note
that for the case of ANNs, the requirement that N = 5 at
minimum to realize the XOR is described in [21] and [22].

C. STRUCTURE OF THE PROBABILITY DENSITY FUNCTION
P(Y1)
The preceding analysis has shown that the effects of the
background noise terms in the fast elements enter into the
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FIGURE 2. Transition to monostability. The dashed curves depict the
transfer characteristic A(y1) corresponding to the critical cases (inequality
replaced by equality) of equations (46) (bottom) and (47) (top). Middle
(solid curve) corresponds to C1 = 0 (symmetric bistability). The critical
points (switching curve touching the horizontal axis) are yp (bottom
curve) and ym (top curve).

slow element dynamics via the constant term C1 defined
in (38). The effect of this constant term is to skew the density
functionP(y1). IfC1 = 0 (which can be achieved by judicious
adjustment of the magnitude and sign of the dc bias term ε1,
or by adjusting other parameters in (16)), the density function
is bimodal and symmetric, with the peaks centered about the
deterministic fixed points y1±. The transition between mono-
and bi-modality is governed by the streaming term A(y1) (38),
whose zeros yield the locations of the extrema of the potential
energy function (this point was also discussed in our analysis
of a single bistable element, above). The extrema of the
probability density function P(y1) are, exactly, the extrema
of the potential energy functionU (y1) with the minima of the
potential energy function corresponding to the maxima in the
probability density, and the unstable fixed point between
the potential minima corresponding to the minimum (located
between the 2 maxima) of the probability density.

The transition from bistability to monostability corre-
sponds to the three real roots of the transfer function A(y1)
collapsing into a single real root and two complex conjugate
roots. It is worth quantifying the threshold at which this
occurs. Figure 2 shows a plot of the function A(y1) for an
arbitrary (for purposes of illustration) choice of parameters
a1, J11 selected so that, in the absence of a constant term
on the rhs, the system is bistable, meaning that A(y1) has
three real roots; this means taking |J11| > |a1|. In the
middle curve we set C1 = 0 yielding a transfer characteristic
that is symmetric about the vertical axis and has three real
roots. The potential energy function for this case is bistable
with wells of equal depth with the minima occurring at the
intersections of A(y1) with the horizontal axis. These minima

are also, as mentioned above, the locations of the peaks in
the probability density function obtained by using (40). The
unstable point of the potential is at y1 = 0.

As C1 steadily decreases from zero, the area between the
curve and the positive axis in the right half plain steadily
decreases. This corresponds to one of the potential wells
becoming deeper than the other until, at the critical value
(shown in the bottom curve), a minimum in the potential
energy function (in this case, on the right side) has been
replaced by an inflection point (occurring at y = yp). Past
this point the transfer function admits one real root and two
complex conjugate roots; the potential is monostable (but not
parabolic). Completely analogous changes occur in the steady
state probability density function; it transitions from bimodal
(and symmetric) to unimodal (in this illustration, on the left
side, with the peak located at the real root of A(y1).

Simple calculus allows us to quantify this transition.
We begin with the streaming term in Equation (38). At y1 =

yp (the bottom curve in Figure 2), one has an extremum so
that A′(yp) = 0. This leads to yp = tanh−1

√
1 −

a1
J11

. Very
close to the critical case (for the bottom curve in Figure 2),
we can expand A(y1) about yp

A(y1) = A(yp) − a1(y1 − yp)2 tanh yp. (44)

Rearranging terms, we obtain a quadratic in y1 which can be
solved for the roots

y1 = yp ±

[
A(yp)

a1 tanh yp

]1/2
(45)

where tanh yp is given above. Referring to Figure 2 it is
clear that, for the transition occurring at y1 = yp we must
have A(yp) > 0 for bistability (3 real roots), A(yp) = 0 at
the critical point (where the bottom curve just touches the
y1 axis), and A(yp) < 0 for one real and two complex
conjugate roots; in the last case, the single real (and negative)
intersection of the transfer curve with the y1 axis marks
the location of the (single) peak of the monomodal density
function. Putting all this together, we obtain

A(yp) = −a1 tanh−1
√
1 −

a1
J11

+ J11

√
1 −

a1
J11

+ C1 < 0

(46)

as the condition for monostability in the Left Half Plane
(LHP). The critical case (shown in the bottom curve of
Figure 2) occurs for A(yp) = 0. In an entirely analogous
manner (in this case, by increasing C1) we can obtain a
monomodal density function for the Right Half Plane (RHP).
The condition for this is found to be

A(ym) = a1 tanh−1
√
1 −

a1
J11

− J11

√
1 −

a1
J11

+ C1 > 0

(47)

with the critical case now occurring for A(ym) = 0. The
rhs of the above equalities determine the critical values of
the constant term C1 as the density function transitions from
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being monostable (in the LHP) and peaked at the positive root
of the transfer characteristic (bottom curve in (2)), to being
monostable in the RHP (top curve). Between these extreme
cases, various ‘‘degrees’’ of bistability are obtained. We note
that the mean value ⟨y1⟩ =

∫
∞

−∞
y1P(y1)dy1 traverses from

right to left as we progress through the situations (top-to-
bottom) depicted in Figure 2. Concomitantly, the mean value
⟨y1⟩ =

∫
∞

−∞
y1P(y1)dy1 traverses from left to right as we

progress through the situations (top-to-bottom) depicted in
Figure 2. When P(y1) is perfectly monomodal the mean value
corresponds to the location (given by Equation (41)) of the
peak. For the middle case in Figure 2, the mean value is zero,
corresponding toC1 = 0 in (38), that is, a symmetric bimodal
probability density function P(y1).
Clearly, with all other parameters fixed, the constant

forcing term ε1 may be adjusted to realize the critical
(from (46) or (47)), or any other desired value (from (42))
of C1. If ε1 is to be kept fixed (or zero), the other system
parameters in (16) ca be adjusted to realize the required
value of C1. This is a fairly complicated proposition because
of the sheer number of available parameters. We reiterate
that, in general, the crossing points of the switching curve
A(y1) = 0, as shown in Figure 2, are functions of every
element in the network i.e. they depend on all the parameters
in the array (16) as well as the noise variances σ 2

i>1 of the
‘‘fast’’ or ‘‘bath’’ elements.

The above analysis, aimed at determining the charac-
teristics of the probability density function P(y1), e.g. the
locations and relative heights of the peaks, are essentially
deterministic, containing the noise variances σ 2

i>1 as parame-
ters that change the peak locations and heights through their
effect on the quantities (26) and (39) and, ultimately, onA(y1),
the deterministic contribution to the y1 dynamics (37). The
slow element noise variance σ 2

1 appears only in the slow
dynamics (20) leading to the long time behavior quantified
in (40); its sole effect is to change the width of the lobes of
the probability density function P(y1). It does not affect the
locations of the peaks of P(y1).

We can investigate this behavior further by examining
the regimes where the constant C1 forces the probability
density P(y1) to transition from bi- to mono-modality; this
is central to our characterization of the XOR and is done in
the following sections.

III. APPLICATION OF THE THEORY TO THE XOR
TRANSFORM
In what follows, we apply the theoretical results of Section II
to the realization of the analog equivalent of the XOR
function in probability space. We show that this network
provides a realization of an XOR (predicated on the structure
of the probability density function P(y1) of the readout
element) except in well-defined regions of parameter space.
In a subsequent section, we validate our theoretical results
with numerical simulations and propose a nonlinear circuit
implementation of the 5-element system.

We begin by recapping the observation that the probability
density P(y1) can transition between mono- and bi-modality
as shown in Figure 2. The transition between these configu-
rations is controlled by the parameter C1 as calculated in (38)
and (42). For C1 = 0 the probability density function is
bimodal with symmetrically placed peaks of equal heights.
As C1 starts to deviate from zero, the density function
transitions towards monostability in the left or right half,
depending on the sign of C1. The critical point at which
purely monostable behavior is obtained can be calculated
using (46) or (47). Given the large number of parameters in
our 5-element system, we keep the matrix of couplings Jij
fixed in our analysis going forward, while ensuring that all
elements are bistable, that is Jii/ai > 1. We then examine the
XOR in probability space by varying only the noise variances
σ 2
i and the constant bias terms εi.
Our approach consists of calculating the parameter C1 as

a function of ε4,5, the constant biases applied to the input
layer. As a representative case, Figure 3 shows the contours of
C1 in the 2D space of ε4,5. The long time probability density
function P(y1) is symmetrically bimodal along the contour
C1 = 0 shown in the figure. On either side of the C1 =

0 contours, we have a gradual transition to monomodality
with the critical C1 calculated using (46) or (47). For this
specific set of parameters, the C1 = 0 contours serve as
delineations between the two logic output states. Different
bias bias and system parameters can create different (but still
bistable) probability distributions than those in Figure 3, but
the requirement is the same: two different distinguishable
distributions, one resulting from (ε4, ε5) in quadrants I and
III, the other from (ε4, ε5) in quadrants II and IV.
Note that, due to the immense number of adjustable

parameters in the theoretical model, we have selected a
particular set of parameters, for the simulations. In particular,
we keep the matrix Jik , i, k = 1 . . . 5, the column vector
of time constants ai, i = 1 . . . 5, the dc biases ε1,2,3,
and the noise variances σ 2

i i = 1 . . . 5 fixed. This allows
us to examine the XOR in the space of the two input dc
bias signals ε4,5. These parameters are kept fixed for the
numerical simulations, as well. It is clear, that changing the
magnitudes and signs of some of the parameters, e.g. the
coupling coefficients, could lead to much different behavior,
including changing where the XOR is realized in the space
of ε4,5. For this paper, we deliberately chose parameters
such that every element in the system (1) remains bistable,
assuming that the bias signals are chosen to be small enough
to retain the bistability in each element.
The ratios of the peak heights in the density function P(y1)

are important for characterizing the XOR; this is evident from
Figure 3. These can be calculated in terms of the density
function P(y1) or its associated potential energy function
U (y1). We begin with the potential energy function. The
difference (underpinned by the constant C1) in well-depths
can be expressed as

1U1 ≡ U (y1−) − U (y1+) = 2C1y10 (48)
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FIGURE 3. Topographical representation defining an XOR transform as a function of the constant inputs ε4 and ε5. Green
region (inputs ε4,5 have the same signs) represents a probability distribution favoring a negative value of the random
variable y1 (nominally ‘‘FALSE’’), whereas red (ε4,5 have opposite signs) represents a probability distribution favoring a
positive y1 (nominally ‘‘TRUE’’). Other parameters are: J11 = 100, Jii = 500 (i > 1), J12 = J13 = J24 = J25 = 60, J34 = J35 =

−60, a1 = 10, ai = 100 (i > 1), ε1 = −25, ε2,3 = 50, σ2
i = 100 (i = 1 . . . 5).

where we have used (40) and (41) and expanded to leading
order in 11. Given that y10 = (J11/a1) tanh(J11/a1) is
positive by definition, the sign ofC1 determines which well is
deeper. A similar calculation can be carried out for the ratio
of the peak heights in the probability density function P(y1)

1P1 ≡ P(y1−)/P(y1+) = exp(−2C1y10) (49)

which is also, approximately, the ratio of the areas enclosed
by each peak when using the Gaussian approximation (as
was performed in Section II). This ratio is the ratio of
the probabilities of the system being in one state (negative
quadrant) or the other (positive quadrant). In the event of
equal probability of being in the two states (that is, perfectly
symmetric bistability), C1 = 0 and the ratio is unity,
as expected.

Analogous to Figure 3, we can examine the structure of
the probability density function P(y1) as a function of the
inputs ε4, ε5 for different selections of the input noise. This
is illustrated in Figure 4. In each sub-figure the case for
C1 = 0 (corresponding to symmetric bistability) is shown.
We recall that the noise variance in the elements yk , where
k = 2, 3, 4, 5 can affect the structure (including the fixed
points) of the individual density functions h(yk ) and, hence,
the structure of the readout element density function P(y1);
this is evident when we compare the figures. As an example,
in the bottom center figure where noise is increased in
both the hidden and input layers, the transition to complete
monostability in the RHP occurs for C1 = 76, within the red
regime depicted in Figure 3. The critical points for transition
to monostability can be calculated using Equations (46)
and (47).We reiterate that the noise variance σ 2

1 in the readout

element only affects the spread of its density function, with no
effects on the fixed points. Accordingly, in Figure 4 we hold
σ 2
1 fixed. In addition, for simplicity, the matrix of coupling

coefficients Jik and the constants ai are also kept fixed.

A. COUPLED ELEMENT SIMULATIONS
To validate the theoretical model developed in the preceding
section, we solved system (16) numerically. The general
stochastic differential equation

dy
dt

= f (y, t) + σξ (t) (50)

y(0) = y0

is solved by Euler-Maruyama integration [25]. Using the
definition of white noise ξ (t) = dW/dt as the derivative of a
Wiener process, we rewrite (50) as

dy = f (y, t)dt + σdW . (51)

Let 1t be the integration step, and let ti = i1t . At ti+1, y is
incremented by approximately

1y = y(ti+1) − y(ti) ≃ f (y(ti), ti)1t + σ1Wi (52)

where 1Wi is drawn from a normal distribution N (0,
√

1t)
with mean zero and variance 1t .

The characteristic time scale of the system (1) is defined
by the fastest element: τ = 1/max{ai}. In order for the Euler
method to be stable, we must have 1t ≪ 2τ . Balancing
the need for accurate simulations with the execution time,
we chose a time step 1t = τ/B, and solved (52) for
t ∈ [0,Mτ ], thereby generating 5 sequences of B · M
points {yi(tj)}. We discard the first few points to let transients
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FIGURE 4. Four contour plots of C1 (as in Figure 3) on the same scale showing the effect of changing noise intensity in the first two
layers. The ‘‘baseline’’ case (top panel) has noise variances σ2

i = 100 for all elements i . Contours labeled ‘‘0’’ are the locus of
symmetric bistability, while the dashed contours mark the transition to ‘‘complete’’ monostable density functions. Other parameters
as in Figure 3. See text for further details.

die down. Then, the steady state probability densities for yi
are calculated by applying a kernel density estimator with
bandwidth 0.2 to the resulting sequences, with smoother
appearing densities for larger values of M . For Figure 5,
we used B = 10 andM = 106.
In Figure 5 we plot the simulated steady-state probability

density functions for all elements yi in response to four pairs
of Boolean inputs defined by pairs (ε4, ε5) where ε4,5 = ±7
(all other εi are fixed). When the two inputs have the same
signs (i.e. either both at -7, or both at +7, corresponding
to (‘‘FALSE’’, ‘‘FALSE’’) or (‘‘TRUE’’, ‘‘TRUE’’)) the
distribution P(y1) is left-skewed and an output of ‘‘FALSE’’
is expected. However, when the system is presented with
inputs having opposite signs (i.e. one at −7, the other at +7,
corresponding to (‘‘FALSE’’, ‘‘TRUE’’)), the distribution
P(y1) is right-skewed and the output ‘‘TRUE’’ is expected.
In addition, the corresponding theoretical steady-state (i.e.
in the t → ∞ limit) probability density functions (23), (36),
and (40), obtained in Section II, demonstrate good agreement
(in particular the peak locations and relative heights) with the
numerical simulations. While this result is for Jij and (fixed)
εi that were not selected via any definitive criteria, the critical
point is that J and ε are chosen such that the four input
pairs reduce to two output probability distributions which

are sufficiently distinct that they can be differentiated and
equated to representations of logical ‘‘TRUE’’ or ‘‘FALSE’’,
thus comprising an XOR transform. The characteristics of
the distributions generated from a given choices of J and
ε (peak locations, height, etc.) are immaterial as long as a
correspondence can be made.

IV. NONLINEAR COUPLED CIRCUIT IMPLEMENTATION
Finally, we implemented the computationalmethod presented
here in physically realizable hardware. As fabrication of
components is extremely expensive, we chose a technology,
CMOS, that has well established simulation suites such
as Cadence. Although it is difficult to verify noise driven
switching in the Cadence iterative simulation environment,
CMOS represents a reasonable first exploration into circuit
realizations. It provides initial evidence that our underlying
assumptions are valid while offering an environment in which
implementation can be validated. Established platforms for
integrated circuit design and simulation, such as Cadence,
are not designed for validating transient solutions in systems
wherein the noise to signal environments approach unity.
As a result Cadence is slow and difficult if not impossible
for system validation in the time domain. We used Cadence
to simulate the coupled N = 5 system without added
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FIGURE 5. XOR demonstration via simulated steady state probability density function
P(y1) of readout element. In this example, the self-coupling terms are J11 = 5,
Jii = 50 for i > 1. The cross-coupling terms are J12 = J13 = 1.5, J24 = J25 = 15,
J34 = J35 = −15. ε1 = −1.5 Each box shows probability density function derived from
theory (Section II) in blue and simulation in green. The theory, despite invoking an
expansion of the form (29) to calculate the fixed points, predicts the extrema
remarkably well. The theoretical probability density function is calculated in the t → ∞

limit and would yield better overall agreement with the simulations if the latter were
run for longer times. Nonetheless, the ratios of peak heights (or equivalently, the ratios
of areas enclosed by each peak) show good agreement between theory, i.e. (49), and
simulations.

noise (meaning there may still be component noise present),
and showed good agreement with the theory of Section II.
We demonstrate this comparison of theoretical results to
those obtained via the circuit simulation, by observing the
hysteresis behavior and comparing it to the (deterministic)
switching curves depicted in Figure 2.

A. THE TANH FUNCTION GENERATING CIRCUIT
To construct a physical circuit implementing the dynamical
system (16), each non-zero coupling coefficient Jij is
embodied by a tanh generating circuit. It is well known
that CMOS devices operating in subthreshold are readily
configured to achieve a five-device tanh function [26] (see

Figure 8 for a simplified depiction of three such circuits
implementing row 1 of the J matrix).

A symbolic representation of a prototypical tanh generat-
ing circuitC is shown in red in Figure 6. This circuit produces
a differential output current proportional to the tanh of the
differential input voltage

Iop − Iom = I tanh
(

Vid
2κUT

)
(53)

whereVid = Vip−Vim is the differential input voltage, κ is the
subthreshold slope (extracted as 1.07 from Global Foundries
12LP), and UT = kBT/q is the thermal voltage (where kB
is Boltzmann’s constant, T is the absolute temperature, and
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FIGURE 6. Prototypical circuit Cij with tanh generating block in red.
When i = j , the dotted lines are connections and Vod = Vid, representing
the self-coupling coefficient Jii .

FIGURE 7. Circuit for 5 element realization. Negative weights Jij are
implemented by crossing the output wires. Red elements are as displayed
in Figure 6.

q is the electronic charge). The differential output voltage is
defined to be Vod = Vop − Vom.
When C is connected in parallel with a load resistor R,

capacitor C , and external current source IE as shown in
Figure 6, Kirchoff’s current law dictates that the state of the
circuit evolves according to

C
dVod
dt

= −
Vod
R

+ I tanh(bVid) + IE + Inoise (54)

where b = 1/(2κUT ). The noise current Inoise is explicitly
defined later in this paper. Here, C includes both the intrinsic
and extrinsic parasitics of the CMOS cell.

For each non-zero coupling coefficient Jij, we create a
fully differential circuit Cij with tail current Iij (explicitly
defined later), input terminals at voltagesVipj, Vimj and output
terminals at voltages Vopi, Vomi. AllCi∗ outputs in row i are at
the same voltage as the input terminals of Cii. All C∗j inputs
in column j are at the same voltage as the output terminals
of Cjj. Figure 7 shows a block level circuit topology for the
network of five elements implementing the XOR function.

To complete the mapping of this network to a system of
stochastic differential equations, we define the state of the
i-th element as the differential voltage of Cii

vi = Vidi = Vodi = Vopi − Vomi. (55)

Inserting indices into (54) as appropriate, vi obeys the state
equation

Ci
dvi
dt

= −
vi
Ri

+

∑
j

Iij tanh(bvj) + IEi + siξ (t). (56)

The noise current Inoisei is modeled as an additive Gaussian
white noise signal Ni(t) = siξ (t) of average power spectral
density [26]

s2i =
2
3
4 kBT

Itrani
2κUT

=
4q
3κ
Itrani (57)

where Itrani = 2
∑

j Iij is the current through the transistors in
row i which contribute to the noise, and q is the charge of an
electron.

By substituting yi = bvi and dividing by Ci/b, we obtain
the equations as described in Section II:

dyi
dt

= −aiyi +
∑
j

Jij tanh yj + εi + σiξ (t). (58)

The conversions between circuit parameters and abstract
dynamical system are: ai = (RiCi)−1, Jij = bIij/Ci, εi =

bIEi/Ci, σi = bsi/Ci.
Figure 7 introduces a block level circuit topology that

implements the set of equations in (16). It uses the following
parameters:

I11 = 105, Ijj = 500(j > 1), I12 = 25 = I13,

I24 = 100 = I25, I34 = −100 = I35(nA)

R1 = 1.4,Rk>1 = 0.4(M�);C11 = 500,Ck>1 = 100(fF)

IE1 = 0, IE2 = IE3 = 50(nA)

ϵ4 = ±50, ϵ5 = ±50(nA) are ‘‘TRUE’’/‘‘FALSE’’

network inputs.

Noise computations for the circuit in Figure 7 can be
derived from the methods presented in [26]. The effective
bandwidth of the idealized white noise signal Ni(t) is
approximately �i = 1/(4RiCi), resulting in a noise current
with 1-sigma amplitude

si
√

�i =

√
q
3κ

Itrani
RiCi

≃ 0.1 nA (59)

which is significantly less than the typical noise amplitudes
used in the simulations of (58). Based on these estimated
results we expect to have to inject noise into each diagonal
element of Figure 7. The signal-to-noise ratio desired is a
trade off between acquiring a satisfactory sample size and the
bandwidth of the inputs.

A simplified schematic of the implementation of element
v1 is shown in Figure 8. Note that Figure 8 is the basis
for all five rows in Figure 7. Each term Iij tanh(bvij(t)) of
Equation (56) is implemented by MOSFET devices M1-M5,
with the tail currents of M5 setting the weights Iij. In this
example, the current through M5A sets the diagonal weight
I11, whereas the currents through M5B and M5C set the
off-diagonal weights I12, I13. Cascode transistors M3 and M4
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FIGURE 8. Simplified circuit representing a general element of layer 1 and 2. The left most cell is the diagonal tanh element providing
self-coupling, and the right two are the off-diagonal elements providing coupling from the previous layer. Pin and current labels within the figure
are specific to element v1. Green arrows at the top represent current flow when all biases IEi

= 0.

FIGURE 9. Hysteresis loops obtained from Cadence circuit simulation
(red/brown) and numerical integration of (56) (blue/green). The
XOR=‘‘TRUE’’ case corresponds to the loops on the right (green/brown)
which have only one crossing of the vertical axis (monostable probability
density function). The loops on the left (blue/red) have two crossings of
the vertical axis (bistable probability density function), corresponding to
XOR=‘‘FALSE’’. The unstable segments (dotted) can be obtained via the
theory, however they are not realized in the experiments. See text for
additional details.

isolate each tanh function developed by M1, M2, and M5.
Note the currents of M1CMA & B ensure fully differential
operation through the use of a common mode circuit (not
shown). The common mode circuit maintains equal currents
through M1CMA & B totaling the sum of tail currents
through M5.

The general nature of each row lends extendability to
the hardware implementation of large computational arrays
as demonstrated by Figure 7 and Figure 8. The approach
presented here can also be easily extended to arrays
with backcoupling connections. As a direct result of this
extendability, a simple cell library consisting of 30 diagonal
and off-diagonal cells and their common mode cells will
result in a powerful toolbox exploiting cell reuse in the
fabrication of large weight arrays.

Figure 9 is a combination of a theoretical (from direct
integration of the deterministic system) hysteresis loop
(blue/green) and the loop (red/brown) obtained via the
circuit. The red curve was generated directly from a Cadence
simulation by incrementally adjusting the input current over
the range [−150, 150] nA while holding ϵ4 = ϵ5 = 50 nA;
this yields the symmetric case where two ‘‘TRUE’’ inputs

generate a ‘‘FALSE’’ output with the hysteresis curves almost
symmetric about the vertical axis. The blue curves were
generated by numerically integrating a deterministic version
of equations (56), where an additional inhomogeneous
forcing term was added to the equation for v1. The input
current is swept from −150 nA to 150 nA and back. The
second hysteresis loop (on right–brown) is generated in a
similar manner, with ϵ4 = 50 nA and ϵ5 = −50 nA; this is
the case where one ‘‘TRUE’’ input and one ‘‘FALSE’’ input
generate a ‘‘TRUE’’ output with its corresponding numerical
integration case (green).

We note very good agreement between the theoretical and
circuit results. These hysteresis loops should be viewed in
the context of Figure 2. The (blue) switching curve, derived
directly from the theory, is shown in the symmetric case
(left set of loops in Figure 9) with its corresponding curve
from the simulated circuit results (red). In this case, the
blue and red switching curves cross the vertical axis in three
places (three real roots). The hysteresis loops are nearly
symmetrical about the vertical axis with the potential energy
function (Equation 40) being nearly symmetric-bistable.
The corresponding probability density function consists of
two peaks of nearly equal area, centered at the points
of intersection of the switching curves with the vertical
axis. This is a case where the XOR function evaluates
to ‘‘FALSE’’. The other set of hysteresis loops on the
right portion of the figure (green/brown) where one input
is ‘‘TRUE’’ and the other is ‘‘FALSE’’ display switching
curves which will have only one intersection with the vertical
axis (one real root and two complex conjugate roots); these
hysteresis loops are shifted to the right. For this case, the
probability density function is monomodal, the switching
curve (not shown) intersects the vertical axis at a single
point, and the XOR function evaluates to ‘‘TRUE’’. In both
cases, the roots of the switching curves (that is, the locations
of the extrema of the probability density function P(y1)),
as well as the y-axis crossings of the hysteresis loops, are
nearly identical via the theory and its circuit realization.
It is important to note that the dotted segment of the
blue switching curve (shown in the symmetric case) is
dynamically unstable. It can be derived from theory, however,
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it does not appear in the experimental data. For the red curves
we obtain vertical jumps between the two steady states,
as explained above, and the dotted red curve in the symmetric
case has been synthetically added for comparison with the
theoretical switching (blue) curve, to illustrate agreement
between theory and experiment.

This agreement suggests that, given a set of theoretical
parameters which point to a regime (e,g, in Figure 3 or
Figure 4) wherein theXOR can be realized, a nonlinear circuit
manifestation of the coupled systemwould generate the XOR
for the parameters obtained from the theory (and carefully
transformed to the corresponding circuit parameters).

V. DISCUSSION
A. UNIVERSAL FUNCTION APPROXIMATION
We have focused on the use of coupled nonlinear dynamic
elements to produce a network that implements an XOR as
a concrete example. Our networks have, in principle, the
same representation power as standard ANNs with a sigmoid
activation function. Focusing on networks with a layer of n
input nodes, an internal layer of m nodes, and a single output
node, an ANN implements a function f : Rn

−→ R, which
can be written as

f (x) =

m∑
i=1

αiσ (θi + ytix). (60)

Here, σ is the usual sigmoid activation function, and θi ∈ R,
yi ∈ Rn are the network biases and weights, respectively.
It was shown in [27] that sums of the form (60) are dense
in the space C(In) of continuous functions on the unit
hypercube In = [0, 1]n ⊂ Rn with the uniform (supremum)
norm. This means any continuous function f : In −→ R
can be approximated arbitrarily closely by an ANN with
a single hidden layer (albeit with m possibly very large).
In this context, we reiterate that our theoretical approach
of Section II can be applied to an arbitrary sized network
and also incorporate back coupling when needed. This was,
in fact, demonstrated by us in a simplified network (N = 2)
in our previous work [12].
As described in Section II, a coupled network of dynamic

elements with n input elements, m internal elements,
and a single output element is essentially performing the
computation

x 7→ α0 +

m∑
i=1

αi tanh
(

θi +

n∑
j=1

αij tanh(βijxj)
)

. (61)

While the summands of (61) are somewhat different from
those in (60), it can be shown using the same technique as
in [27] that sums of the form (61) are also dense in C(In).
Therefore, in principle, one can set up a dynamic network
to approximate any desired computation. What is missing,
however, is a systematic procedure for finding the right
parameters, akin to training an ANN with backpropagation.
Once such a procedure is established, one could foresee
the ability to perform complex tasks, for example, pattern

recognition on data sets such as images, where pixel RGB
values are encoded as constant bias signals into the input
layer.

B. POWER CONSUMPTION
At this stage, some remarks on power consumption in the
nonlinear circuit in Section V are warranted. A classical
figure of merit for low power analog circuits is the dynamic
range (DR). Dynamic range is limited by the signal amplitude
which in turn, is limited by the power supply (VDD) and the
system noise floor. For the system under consideration, the
dynamic range (DR) can be written as [31]

DR =
(VDD − 20UT )2

κ/I
∝ IV 2

DD (62)

where κ is a constant taken from the noise term in (51) and
the 20UT ensures all devices generating weight elements (see
Figure 8) remain in their active analog regimes. The power
consumption is proportional to DR [31], [32]

P = I VDD ∝
DR
VDD

(63)

with equations (62) and (63) being strictly valid at low noise
where the system gain is approximately linear.

Note that thermal noise, in the circuit presented here, is the
driving force behind the sampling or changes of state. From
the hysteresis loops in Figure 9, it is apparent that a change
greater than 60 nA (from +30 nA to −30 nA or vice versa)
is required to generate a change in state (i.e. a switch). This
change of state represents a ±30 nA change in the output
current I , which at 5σ , suggests that the noise standard
deviation will be on the order of 12 nA. As a result, the
DR can be defined as the state change divided by the noise
standard deviation; in this specific example, one obtains a
DR = 20 log(60/12) = 13.98 dB. Therefore, the desirable
DR should be approximately 10− 16 dB. Note that too large
a noise signal can distort the system, resulting in unreliable
results, whereas a noise signal that is too small will not
produce a result at all. Hence, an optimal DR likely exists;
however, determining its exact value for this system is beyond
the scope of this study. This behavior is in contrast to classical
analog systems, such as analog-to-digital converters, where
the desired DR’s are 60 dB to 150 dB or higher.

From a hardware perspective, there are many other
hysteretic, nonlinear elements beyond CMOS circuits that
are more susceptible to noise, and thus might be suitable
for this method of computation. These include a range of
nonlinear devices such as superconducting elements [28],
memristors [29] and ferromagnetic nanowires [30]. Once
the circuit is constructed using one of these devices as the
nonlinearity, considerations such as the appropriate amount
of noise necessary for the computation, determination of the
coupling coefficients for a desired transform, etc., can be
explored within this framework, using the theory as a guide.

All in all, the creation of an analog computing environ-
ment, due to a lower DR, is likely to produce computations
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that can accomplished with less power than traditional analog
approaches, not to mention being able to function in noise
environments unsuitable for classical digital computing. The
application of this method is more suited to systems where
the system switching is driven by the combination of the
‘‘hidden’’ digital signal and noise contained within the signal
and power constrained hardware, e.g. quantum mechanical
systems including spintronics, or systems based on SQUID
devices.

C. NOISE
Since the noise floor has been an important component of
the dynamics addressed in this paper, some general (noise-
related) closing remarks are in order. The noise terms Ni(t)
in (1) are assumed to arise internally (e.g. thermal noise).
However, in real-world applications there could also be
external noise attached to an input signal (e.g., the dc
inputs εi), and in some sensor applications of an array
of the form (1) there would be other sources of noise.
As an example of the latter, we can envision an array of
coupled magnetic field sensors which would be susceptible
to atmospheric magnetic noise arising from variations in
the terrestrial magnetism, lightning strikes, seismic activity,
etc. Environmental monitoring sensors are also susceptible
to external noise, because signals to be monitored are,
usually, aperiodic and could easily be overlapped by external
broadband noise. The (external) noise effects usually have to
be dealt with on a case-by-case basis, for example during
design time, for characterization purposes. In the system
studied in this paper, one could have an additional (additive)
noise term in one or all of the equations; this leads to
additional diffusion terms in the FPE (17). As long as the
additional noise terms are additive, the ensuing FPE and its
solution will have a similar structure to what we obtained
in Section II. Their effects on the switching dynamics of
the array and the realization of the XOR can be studied as
a function of the different noise standard deviations; these
effects are, of course, intimately connected to the nonlinearity
and coupling strengths (i.e. the matrix Jik ). In this paper
the noise terms in each equation are taken to represent
a combination of internal noise, as well as fluctuations
superimposed on the applied dc signals. For the sake of the
phenomenology discussed in this paper, this is a sufficient
treatment.

In a nonlinear device with readout dependent on switching
between stable states, a reasonably large switch rate is
desired to achieve reasonable sampling of the output in a
short observation time. This is especially true when these
devices are used in computation/logic circuits. In general, the
switch rate is governed by the energy barrier height, applied
external power, and noise floor intensity. In a coupled system,
as described in this work, the effective energy barrier of
the readout element is a function of the input signals, the
coupling coefficients, and the noise floor standard deviation
in each element, evident in our N = 5 system, from
equations (40)-(42). Subsequently, the net power required

to switch the readout element can be adjusted by adjusting
these (deterministic) parameters. Adjusting them effectively
adjusts the noise floor through their effects on the energy
barrier; in turn, this changes the switching rate. This is
analogous to the stochastic resonance scenario [11], wherein
such an adjustment has been referred to as ‘‘tuning’’ to the
noise. In our coupled system, the readout element can be
made to operate efficiently at a lower dynamic range. Thuswe
can speculate that in systems/devices with larger noise floors,
for example Resistive Random Access Memory (RRAM)
[33] arrays, the background noisemight significantly enhance
the array performance, with careful parameter adjustments;
however, too much noise could degrade performance.

VI. CONCLUSION
We have demonstrated the potential viability of a novel
method of computation using a set of coupled noisy
nonlinear elements, configured to yield XOR logic. This
method represents a new way of generating neural-like
dynamics, in the sense of both computational neuroscience
and machine learning. Theoretical calculations and basic
CMOS modeling of the system are in good agreement for the
parameter regimes wherein the XOR can be realized. While
scaling this technology up to practical use would require
significant additional investment in fabrication technologies
or simulation capacity, our results validate a powerful method
of attacking a large set of problems. Optimization of the
coupling parameters for any required scenario is virtually
impossible through numerical simulations alone, due to the
sheer number of parameter combinations available. However,
with a theory that agrees with simulations and the circuit
replication of our coupled system, such an optimization can
be more efficiently achieved from a physically-informed
starting point.

The overall good agreement of the theoretical results
with the CADENCE simulations comes with an important
caveat, however. CADENCE, while convenient, is slow,
and is sometimes unable to faithfully reproduce all the
desired circuit functionalities and characteristics, particularly
when the circuit models contain complex dynamics. Other
errors can arise from the circuit hardware not reproducing
complex functions precisely. For instance, we know that the
tanh(y) function is not properly reproduced in the circuit (the
deviations occur mainly for large ±y); this likely accounts
for the small differences in the theoretical and experimental
hysteresis loops in Figure 9.

The above remarks must be tempered by the observation
that real-world circuit parameters are never exact; this is
well-known in the circuit repertoire. This discrepancy can be
addressed, theoretically, by allowing the system parameters
(e.g. the dc inputs εi) (16) to have small deviations (with
an appropriate distribution) about a mean value. Then, for
example we might have εi = ε̄i + δεi with the first term
representing the deterministic value as used throughout this
paper, and the second term representing small parameter
deviations occurring in the circuit. At the end of the
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calculation, one would carry out an additional average over
this distribution of the deviations. This process can get quite
complicated/tedious if many adjustable parameters deviate
in this manner from their expected values. A far more
complicated situation can occur if the system parameters
(e.g. the coupling coefficients) that are attached to functions
of the dependent variable are actually affected by circuit
noise leading to them being time-dependent and having
their own correlation functions similar to (4). In this case
one has multiplicative or ‘‘state-dependent’’ noise terms
due to products of the fluctuating coupling coefficients and
functions of the state variables yi. The analytic treatment of
Section II becomes far more complicated due to the FPE (17)
having state-dependent diffusion terms (these are the second
order terms on the rhs of (17) [23]). The above scenarios are,
however, beyond the scope of this paper.

Finally, we be note that a neuromorphic system such as the
one discussed in this work is inherently less sensitive to noise
(or might actually take advantage of cooperative behavior
mediated by the noise-floor), and can, in fact, be designed to
operate in noisier environments. It is, therefore, reasonable
to conjecture that our methodology may fit applications
wherein the noise-floor might otherwise be detrimental to
performance, better than traditional approaches. As just
one example, we cite the case of wireless communication
with drones where we could anticipate receiving noise
contaminated data [34].

Further work will help to determine whether the highly
distinct energy cost profiles associated with this method will
enable truly low-power computation by taking advantage
of its atypically reduced DR requirements, especially in
environments with noisy signals or in technologies where the
inherent noise is higher.
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