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ABSTRACT With the widely used fingerprints to identify criminals, the influence of fingerprint deformation
arouses attention in forensic science. To date, many approaches have been proposed to rectify distorted
fingerprints. However, the performance in handling low-quality fingerprints extracted at a crime scene is less
high quality than expected. This paper presents a combined method to rectify the latent fingerprints extracted
at a crime scene. The method is a coarse-to-fine approach, combining the robustness of traditional pattern
recognition and the accuracy of deep learning networks. We conducted several experiments to compare
our approach with other approaches, including the nearest-neighbor search and network methods. The
results show a remarkable improvement in fingerprint matching, especially in low-quality latent fingerprints.
The top 25 cumulative match rate improves from 0.65 (original) to 1 (proposed method), whereas other
approaches improve the result to 0.85 at best.

INDEX TERMS Latent fingerprints, distortion rectification, coarse-to-fine method, DCNN.

I. INTRODUCTION
Fingerprints refer to the impression left by the ridges on the
human finger. The primary reason for the widespread adop-
tion of the automated fingerprint identification system (AFIS)
is that the error rates are extremely low on high-quality finger-
print images [1]. AFIS is typically used in security domains.
There are two primary recognition scenarios. In the positive
scenario, the system should identify the user; in the negative
scenario, the user’s interest (e.g., criminal) is unwilling to
be identified. These systems use an automated procedure to
identify a person based on captured images stored in the
system [2]. However, the recognition rate for low-quality
fingerprints is far from satisfactory, and low-quality images
are not uncommon [3], [4].

Fingerprints are one of the most crucial biometric identifi-
cations in forensic science for their uniqueness and stability.
In the past several decades, AFIS has assisted in many
criminal investigations. The typical AFIS comprises three
primary steps. First, a raw fingerprint image is read with
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preprocessing. Second, the ridge patterns, local features, and
minutiae are extracted. Third, a matching score between two
fingerprints is calculated by pairing the features extracted in
the second step. The core of AFIS involves determining the
similarity degree between fingerprints by the ridge structure
and the distribution of minutiae points [5]. The distortion in
fingerprint images primarily significantly reduces the match-
ing score. Therefore, the fingerprint matcher is sensitive to
image quality [6]. Distortion rectification transforms the dis-
torted fingerprint into a normal one to increase the matching
score [7].
Since fingerprints are the oldest biometric traits, many

techniques and algorithms have been proposed in the lit-
erature for fingerprint recognition [8]. Studies on remov-
ing fingerprint distortion in forensics have considerably
improved in recent years [9]. The most widely used distorted
correction algorithms are minutiae-based methods [10].
Minutiae are discriminating and dependable. The primary
idea of minutiae-based methods is to search for optimal
matched minutiae pairs between distorted and reference
fingerprints [11], [12], [13], [14]. Based on minutiae-
matching methods, ridge-based methods have been presented
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to improve the accuracy. Similarly, these algorithms aim to
find optimal ridges matching [15], [16], [17], [18]. Multiple
attractive feature-extracting algorithms have been proposed
to correct distorted fingerprints [13], [19], [20], [21], [22],
[23]. These new algorithms are much more accurate than
traditional minutiae-based or ridge-based methods. With the
development of convolutional neural networks (CNNs), some
scholars have proposed approaches based on convolutional
network techniques [24], [25], [26], [27], improving accuracy
with fewer constraints. Despite deep convolutional neural
networks demonstrate its extraordinary power on various
tasks. However, it is still changing to deploy state-of-art mod-
els into real-work applications [28]. In forensics, the search
result of low-quality distorted fingerprints in large-capacity
databases is far from satisfactory.

Some literature proved validity in the public test databases,
including FVC2004 DB1, FVC2006 DB2, Tsinghua DF,
NIST SD14, and NIST SD27 [13], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [29]. Application scenarios
are limited in practical work due to two primary reasons.
(1) The capacity of the test database is too small. The typi-
cally used largest database is NIST SD14, containing 27,000
fingerprints. Improving tens of thousands of databases does
not make much sense in forensic science because we focus on
rank improvement rather than the score. Experts would check
the watch list given by AFIS. If there is a genuine match in
the top 50 candidates, we regard the result as a hit; otherwise,
it is a missed result. In practice, the low-quality latent fin-
gerprints extracted in crime scene investigations (CSIs) can
obtain a missed result when searching a database contain-
ing tens of millions of fingerprints. (2) The fingerprints in
the test database differ considerably from those extracted in
CSIs. Ridges overlapping, interrupting, and blurring, inter-
ference of the object background, the uneven surface of the
object, surface attachment, and interference after enhancing
latent fingerprints are typical factors reducing fingerprint
quality.

In the convolution process, the input fingerprint image
would be divided into many small blocks to extract fea-
tures. Most samples in the test database selected to evaluate
the performance in published literature are inked images.
The orientation and ridges maps could be calculated reli-
ably due to coherent and high-contrast ridges with little
interference. Latent fingerprints with various interferences
mentioned above are common in CSI, for the clear traces
are more likely to be cleaned up by criminals to avoid
investigation. Distorted fingerprints extracted on curved
objects are usually challenging to identify for AIDS. Seri-
ous nonlinear distortion would reduce the performance of
minutiae-based methods, and the interferences caused by
attachment, ridges, background, the surface of an object, and
enhanced operations would reduce the performance of learn-
based methods. When searching in the large fingerprints
database, if we input low-quality fingerprints extracted in CSI
directly, the genuine match could not be found in the watch
list.

This paper presents a combined coarse-to-fine method
to rectify distorted latent fingerprints on curved objects.
The robustness against multifarious interferences and the
accuracy of correction are both we are concerned about.
The traditional part could estimate the preliminary distortion
fields in the coarse stage, which is rarely affected by interfer-
ences in CSI. Then, the region detector is used to detect the
area with reliable extracted ridge features. Finally, the trained
DCNN is introduced to modify the distortion field in the fine
stage. Experimental results show better accuracy than other
methods [13], [24], [25], especially on low-quality images.
The comparison is based on the Shanghai Public Security
Bureau (SPSB) test database containing over 20,000,000
fingerprints. Furthermore, the distorted fingerprint samples
used in our paper are closer to forensic practice and differ
significantly from other studies. We conducted 40 latent fin-
gerprints left on curved objects (e.g., Coca-Cola bottles and
doorknobs), smoked by 502 glue, enhanced with magnetic
powder, and extracted by forensic photograph technology.
The rank of genuine matches between original and rectified
ones evaluates the effect of rectification.

This paper proposes a coarse-to-fine approach to rectify the
latent distorted fingerprints extracted at a crime scene. The
primary contributions of the proposed method are as follows:

(1) We propose a novel coarse-to-fine approach for recti-
fying latent distorted fingerprints on a curved object at crime
scenes, leveraging a fusion of traditional pattern recognition
methodology and deep neural network (DNN).

(2) We incorporate a deep convolutional neural network
(DCNN) model to enhance the rectification performance,
particularly when reliable ridge features can be extracted.

(3) The incorporation of traditional methodologies ensures
the robustness of the algorithm in environments characterized
by diverse interferences.

(4) Rectification can be achieved with a single distorted
fingerprint, thus meeting the practical requirements of CSI
investigations.

(5) The cumulative match characteristic (CMC) results
demonstrate a significant enhancement, particularly in
low-quality distorted images, within a database containing
more than 20,000,000 fingerprints, providing strong evidence
of improved performance in the forensic field.

The remainder of this paper is organized as follows.
Section II reviews some studies related to distorted fin-
gerprints. Section III presents our combined coarse-to-fine
method in detail, and Section IV describes the experimental
results and evaluates the performance of CMC compared with
other methods [13], [24], [25]. Section V summarizes the
paper and discusses future research directions.

II. RELATED WORKS
Researchers have proposed several methods to address the
distortion in fingerprint images, which could be coarsely
classified into three categories.

The first approach accounts for distortion in the acquisi-
tion stage. Dorai et al. [30], [31] and Fujii [32] observed a
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video sequence of motion processing. The hardware rejects
severely distorted records and measures the distortion across
successive frames. It is desirable to detect andmeasure distor-
tion during fingerprint acquisition automatically. Zhang et al.
[33] proposed a novel real-time algorithm called block-based
rolled fingerprint construction, which can evaluate the distor-
tion in rolled fingerprints and rectify it. Due to the real-time
attribute, these rectifications did not play a role in CSI.

In the second approach, the distortion is estimated during
the matching stage. Increasing the bounding zone is pop-
ular for distortion-tolerant matching [18]. Most algorithms
increase the size of the bounding box to tolerate the further
apart matched minutiae pairs. Ratha et al. [12] proposed an
algorithm combining a global rigid transform and a local
tolerant window to address skin elasticity. Although the algo-
rithms decrease the false rejection rate (FRR), this method
leads to a higher false acceptance rate (FAR) as a side
effect. Chen et al. [11] proposed a fuzzy similarity mea-
sure based on changeable bounding box size. The features
concluded from genuine and impostor matches are applied
in computing the probability to judge the matched minu-
tiae pairs. It is a novel algorithm to cope with nonlinear
distortion in fingerprint matching, balancing FRR and FAR,
but it has obvious limitations in forensic science. Many fin-
gerprints at a crime scene are latent and low quality. The
algorithm will reject the minutiae extracted from heavily
distorted ridges, while the fingerprints at a crime scene are
frequently limited in the quantity of minutia. Kovacs-Vajna
[34] introduced a fingerprint verification system based on the
classic minutiae-matching method, with triangular matching
to address distortion. It was proved valid in NIST SD4.
A noticeable flaw of the method is that 40–60 minutiae are
required, while it is uncommon for latent fingerprints at a
crime scene.

Gu et al. [19] used a thin-plate spline (TPS) model to
compare two minutiae sets extracted from fingerprints. They
introduced the TPS function to address nonlinear deformation
caused by elasticity, with excellent matching performance.
Ross et al. [15] proposed a TPSmodel with ridge curve corre-
spondences instead of minutiae correspondences, increasing
the matching reliability. Lin and Kumar [16] presented a
more robust TPS (RTPS) by minimizing transformed point
localization errors to ensure the robustness of matching con-
tactless and contact-based fingerprints. Such methods [15],
[16], [19] have two primary limitations in application in
forensic science. (1) The performance of the method highly
depends on the number of impressions of the same finger.
(2) The core of these methods is the TPS function, which
has proved valid in rectifying elastic distorted fingerprints.
This paper focuses on latent fingerprints left on a complex
curved surface typical in CSI, not distortion caused by skin
elasticity. Khongkraphan [23] introduced an efficient match-
ing approach to address nonlinear distortion in fingerprint
matching. It represents a fingerprint with minutiae features,
including position, ridge orientation, and neighbor features.

The alignment method uses the data-clustering concept to
find corresponding substructure pairs. Finally, a matching
score could be computed to represent the similarity of two
fingerprints. The approach performed better in FCV2002 and
FCV2004 than in other approaches.

Recently, Rungchokanun and Areekul [29] applied a
weight–distance model to address elastic deformation effects,
assuming that the elastic deformation could not change the
minutiae’s order in the friction ridge flow; therefore, the
closest neighbor minutia is more crucial than further ones.
The proposed distance combines the Euclidean distance and
the angle between the observed minutia’s direction and its
neighboring minutia. The model could cope with high-curved
and highly deformed areas with additional features such as
orientation and segmentation. Such approaches [23], [29]
have significant obstacles in CSI. (1) These approaches are
incompatible with the existing AFIS. (2) Evidence found in
CSI is always low-quality latent fingerprints, which differ
significantly from the samples used in these papers.

In the third approach, the distortion is removed before
the matching stage. Anusha and Kumar [35] reported a
CNN-based algorithm to detect and rectify latent distorted
fingerprints. Despite achieving a high accuracy rate of 99%
recognition rate, appropriate enhancement should be given
to CNN first. It is not always available for CSI. Senior and
Bolle [7] proposed a novel and interesting method for dis-
tortion removal, assuming that the ridge frequency within a
normal fingerprint is constant. Compared to previous studies,
the approach offers crucial accomplishments in single fin-
gerprint processing; however, Wan and Zhou [14] reported
that the ridge frequency is not constant within the entire
fingerprint area. Lan et al. [20] proposed the preregistration of
distorted fingerprints based on the correlation and orientation
fields. The difference map between deformed and reference
fingerprints estimates the deformation field based on the
correlation and orientation fields. It has three primary steps.
In the first step, the correlation is adapted to correct the
entire translation. Second, the orientation field is used to cor-
rect nonrigid deformation. Finally, the registered fingerprint
would be obtained by combining the correlation and orienta-
tion fields for iteration. The algorithm improves the matching
accuracy in FCV2004 DB1, Tsinghua DF, and NIST SD27
compared with the Bloy and Verma [36], Tang et al. [37],
and Fayad et al. [38] methods. Despite the better accuracy
mentioned above, the reference fingerprint is the base of the
method, making little sense in CSI because a single distorted
fingerprint without reference is problematic.

Another nonrigid registration method is proposed by
Lan et al. [22]. The novel approach combines the ridges’
traditional minutiae and direction information, while the
ridges’ direction is frequently neglected or used indirectly.
First, one query and one reference fingerprint were used to
calculate their image field and difference map. Then, the
deformation field is obtained using the model. Finally, the
query fingerprint was rectified according to the deformation
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field. Experiments have been conducted on four databases,
including FCV2004 DB1, Tsinghua DF, NIST SD27, and
NIST SD30. Despite the validity shown in the experiments,
wemust highlight that the method could not be applied in CSI
because the criminal’s identity is unclear, and no reference
fingerprint is available when inputting a query fingerprint.

Si et al. [21] proposed a dense method to correct
distorted fingerprints. It combines the advantages of the
minutiae-based and image-based matching methods. The
composite initial registration step decreases the distortion
globally using the TPS model. The dual-resolution block-
based registration step addresses the distortion locally. It has
twomain disadvantages. (1) Concluded from the CMC curve,
the top 200 candidates’ identification rate is under 0.5 on
NIST SD27. (2) The method requires a reference fingerprint,
severely restricting the application in CSI. Si et al. [13]
suggested a novel algorithm to detect and rectify distorted
fingerprints called the nearest-neighbor search. First, the ori-
entation and period maps extracted from a reference image
establish the distortion fields. Then, the distorted finger-
prints could be rectified by geometric transformation using
an estimated distortion field. The experimental results show
recognition rate improvement in the distorted fingerprints in
some public databases. The two disadvantages of this method
are speed and practicability. The method performs poorly in
NISD SD27, which was collected in CSI. Therefore, some
researchers have made new progress.

Based on Si et al. [21] work, Guan et al. [26] pro-
posed a novel dense method to estimate the distortion field.
A self-reference relationship is constructed to finely estimate
the detailed distortion patterns, so no reference fingerprint
is required for rectification. A scaled mask is introduced
in the feature extraction module, and the gradient of the
estimated distortion field is presented in the loss function.
The method achieves the state-of-the-art rectification perfor-
mance in Tsinghua DF established by Si et al. [13]. The
limitation of the method is that the training fingerprints are
relatively clean; thus it may not be effective in the case of low-
quality images. Cui et al. [27] proposed an attractive approach
based on dense registration. The approach is a coarse-to-fine
method containing two prime steps. First, minutiae matching
roughly aligns the fingerprint. Second, a pixel-wise dense dis-
placement field is computed for rectification. The matching
experiments on FCV2004, Tsinghua DF, and NIST 27 show
that the proposed approach outperforms previous dense regis-
tration methods in accuracy. Despite such improvements, the
CMC curve on NIST27 indicates the application is still far
from proof in forensics, for the top 20 cumulative match rate
is not higher than 0.8 in only 258 pairs.

Gu et al. [19] optimized Si et al. [13] method in speed
by introducing the Hough forest-based fingerprint pose
estimation algorithm and support-vector-based fingerprint-
distortion field estimation algorithm, more than 30 times
faster than Si et al. [13] method with fair accuracy. However,
the latent fingerprint database in NIST SD27 is omitted,
which is quite significant in forensic science. Dabouei et al.

[24] proposed a more powerful approach using deep CNNs
(DCNNs). Compared with Si et al. [13], Dabouei et al. [24]
study reduces the consuming time considerably and improves
the accuracy in FVC2004 DB1 and FVC2006 DB2. Two pri-
mary advantages could be concluded in the nearest-neighbor
search method [13], the Hough forest and support vector
method [19], and the DCNN-based method [24]. (1) A sin-
gle distorted image is enough for rectification. (2) They are
more precise than other methods in single-image distortion
estimates.

Karabulut et al. [39] applied generative adversarial net-
works (GANs) in distorted fingerprint rectification. The
model consists of two GANs in a cyclic fashion and trained
in accordance. The database is provided for the research
by GEYCE Biometrics and is not open for public access.
Images displayed in the paper indicate distorted images
are high-quality images that differ considerably from those
extracted in CSI.

Zhengfang et al. [25] introduced a novel network in fin-
gerprint identification last year called Siamese rectangular
CNNs (SRCNNs). In the training phase, two fingerprint
image pairs are simultaneously inputted into the network,
and one pair is of the same person, whereas the other is not.
In the convolution operation, the traditional square convolu-
tion kernel is replaced by a rectangular kernel because the
rectangular kernel contains long curves, which can pass more
friction features than the square kernel. The experimental
results show that the accuracy of the SRCNN model is 4%
higher than the compared method. Although the SRCNN
improves the accuracy in NIST SD4, we must highlight that
the existing results are insufficient to prove the validity in CSI
because the capacity of the test database is only 2000 pair
fingerprints.

Comprehensively considering the characteristics of the
studies above, Dabouei et al. [24] model, Si et al. [13]
algorithm, and Zhengfang et al. [25] network are selected as
comparative methods to evaluate our method. Our approach
shares the advantages of previous methods [13], [19], [24],
[25] and can deal with a single distorted fingerprint image
in CSI. Besides, our method overcomes the most noticeable
defects in these methods [13], [19], [24], [25] and robustness
in various interferences of latent fingerprints in CSI.

III. METHODOLOGY
This paper proposes a new method to rectify distorted fin-
gerprints, combining traditional pattern recognition and deep
neural networks. We propose a coarse-to-fine approach to
address the latent distorted fingerprints on a curved object
at a crime scene. It has three primary steps. First, nonlinear
deformation caused by curved surfaces is estimated using two
standard scales affixed to the curved object, and the measure
is robust to various interferences commonly met in CSI. Sec-
ond, similar to Dabouei et al. [24] method, a DCNN model is
introduced to estimate the distortion field of the input image.
The final step combines the advantages of both approaches.
Fig.1 shows a flowchart of the proposed rectification.
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FIGURE 1. Flowchart of the proposed distorted fingerprint rectification method.

The dashed line at the top shows a part of the traditional
pattern recognition, which is the coarse stage in our approach.
The latent fingerprints would be enhanced and extracted by
forensic techniques. Then, the preliminary distortion field
would be estimated based on the curved surface model. The
distortion field would be divided into horizontal and verti-
cal parts. In general, the distortion field is determined by
the position in the image, which is estimated by standard
scales attached to the surface. The dashed line at the bot-
tom shows a part of the deep learning network. This part is
inspired by the approach proposed by Dabouei et al. [24].
The nonlinear transformations are learned by DCNN in the
training phase. We used 401,000 synthetic distorted finger-
print samples to train the network, similar to the operation
conducted by Dabouei et al. [24]. Due to the significant gap
between training samples and latent fingerprints extracted in
CSI, the traditional and network parts should be combined to
improve the rectification performance. The local distortion
field of each part would be computed to judge the mode
and parameters of fusion. The low similarity of the two parts
indicates extracted ridge features influenced by interferences
seriously. Then, the rectification results of DCNN would
be discarded. In contrast, high similarity reveals ridge fea-
tures extracted well in the local block. Then, the estimated
distortion field could be modified by DCNN to improve
rectification performance.

A. SIMULATION SAMPLES AND TEST DATABASE
In this paper, we conducted 40 latent fingerprint samples on
multiple objects, including eggs, Coca-Cola bottles, mouse
buttons, and doorknobs. Fig.2 shows two simulation samples
used in this paper. To meet the realistic demand of foren-
sics, the extraction progress refers to practical work in CSI,
smoked by 502 glue, enhanced with magnetic powder, and
extracted using a specialized optical method. Furthermore,
the ridge condition is closer to reality, the interruption of
the ridge, the vagueness of the core region, and background
interference. However, the public fingerprint databases used
in other studies are often inked impressions, which are too
idealized for forensic science. Fig.3 shows two test samples
used in Dabouei et al. [24] method.

(a) Latent fingerprint on an egg, enhanced with magnetic
powder, (b) latent fingerprint left on a bottle, smoked with
502 glue.

(a) Slight distortion sample, (b) severe distortion sample.
In this paper, the Shanghai Public Security Bureau finger-

print (SPSB) fingerprint test database was selected to verify
the performance of rectification. It contains over 20,000,000
fingerprints, while the largest typically used database, NIST
SD14, only comprises 27,000 fingerprints. The database con-
sists of inked fingerprints of people with criminal records or
other reasons prescribed by law, scanned or photographed
in the JPG or BMP format with high image quality.
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FIGURE 2. Samples of simulation fingerprints in this paper.

FIGURE 3. Two samples of the testing fingerprint in Ali Dabouei’s
approach.

Generally, planar and roll samples would be collected for
each fingerprint to increase the hit rate. For each image,
the AFIS would extract fingerprint features automatically,
such as the pattern of the core region, center point, and
pattern triangular region. In order to ensure the quality
of the input image, extracted features would be manu-
ally reviewed before finally entering the database. Some
samples of the SPSB fingerprint test database are shown
in Fig.4.

In our paper, inked fingerprint and simulated latent finger-
print images will be conducted first. Then, the inked image
would be put into the SPSB fingerprint test database as
samples for comparison. Next, original or rectified images
would be searched in the database containing more than
20,000,000 fingerprints as a query fingerprint. As a result,
the watch list would be returned by AFIS, and the rank of
genuine matches would be checked. In forensic practice, the
rank of the genuine match and the capacity of the database
are negatively correlated. For low-quality fingerprints, the
phenomenon is more obvious. The rank of the genuine match
would drop dramatically with the increasing capacity of the
database, which would lead to a missed result. Instead of the
score, the rank is much more crucial for matching in forensic
science because experts would check the top 50 candidates
in the watch list to determine whether there are genuine
matches. Therefore, the CMC curve is typically used to com-
pare the fingerprint-matching accuracy. In the CMC curve,
the ordinate is the cumulative match rate, and the abscissa is
the rank. For example, the point (50, 0.9) means the rate of
genuine match in the top 50 candidates in the watch list is
0.9. The database capacity in this paper is much larger than
any other test database in the references; therefore, the CMC
curve in this test database is more convincing in the forensic
field.

FIGURE 4. Samples in the SPSB fingerprint test database used in our
paper.

FIGURE 5. Sample of standard scales attached to the curved object
surface.

B. ALGORITHM ARCHITECTURE
1) TRADITIONAL PATTERN RECOGNITION PART
In this paper, the input image is distorted fingerprints on a
curved surface. Two standard scales should be attached to
the curved surface of the objects for rectification (Fig.5). The
curved object is regarded as curve L2 generated by rotation
along curve L1, and the sketch is shown in Fig.6

The horizontal red dashed line represents L1, and the ver-
tical red dashed line represents L2.

The interval between the scales should be even in the image
without distortion, and the smaller interval suggests a greater
distortion degree. The first rectification step is computing the
horizontal distortion field in L1 using the horizontal scale. Let
cn denote an array prepared to match. cn is calculated using
Equation 1, and the sketch map is shown in Fig.7.

cn = bn + an + bn+1 (1)

bn and bn+1 represent the interval between adjacent scales,
and an is the width of the scale.
The least deformation position in L1 is determined by

solving the following formula:

arg maxt balance(

∑t−1
1 cn∑n
t+1 cn

) (2)

where t denotes the maximum projection position, the can-
didates of the maximum projection position comprise the
largest part of cn; a lower bound is 99% of the maximum
element. Function balance() returns theminimum of the input
function and its reciprocal. Equation 2 ascertains the position
with the least deformation in L1. Next, an optimal match
surface with a fixed radius is determined by solving the
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FIGURE 6. Sketch of the standard scales attached to the surface.

FIGURE 7. Schematic diagram of computing cn.

following equation:

arg minθ ∥cn − match(θ, t)∥ (3)

Function match() means matching a curved surface with
a fixed radius in position t , ∥·∥ counts the norm-2 distance,
and θ denotes the curvature radius. Fig.8 shows an intuitive
presentation.

The solid blue line refers to the curved object surface,
and the red dashed line shows the optimal match surface
computed using Equation 3. The red dot t is the position
determined by Equation 2.
In CSI, curved objects with latent fingerprints do not

always have a fixed radius. The matching surface should be
modified based on Equation 3 as follows:

arg minA,B

∥∥∥cn − (match (θ, t) + A× θ + B× θ2)
∥∥∥ (4)

A and B are coefficients based on the result of Equation 3.
Given a set of discrete horizontal distortion fields obtained by
Equation 4, serialization is the following step to rectification.
The discrete horizontal distortion field could be transformed
into continuous functions, as in Formula 5. The explanatory
drawing is shown in Fig. 9∫ θ2

α
cos θdθ∫ α

θ1
cos θdθ

=
Ll
Lr

(5)

The blue curve refers to the object’s surface, θ1 and θ2 are
angles of adjacent scales in the object’s surface, and α is an
arbitrary point in the arc. The red dashed line represents the
projection results for fingerprints extracted by the photograph
originally. Supposeα is an arbitrary point in L1, the horizontal
distortion field βh(α) could be estimated as follows:

βh(α) =

√
1 − (

Lr × sin θ2 + Ll × sin θ1

Ll + Lr
)
2

+ A× θx + B× θ2x (6)

FIGURE 8. Sketch map of the matching process.

FIGURE 9. Draft picture of the serialization step.

All parameters except θx in the above formula can be
indexed in Equation 4, where θx is determined by the angle
corresponding to the adjacent scale in Equation 5. Thus far,
the horizontal distortion field in L1 has been estimated. The
vertical distortion field in L2 takes a similar approach, and the
results are recorded as βv(α).
Then, generalizing the computation of the distortion field

to an arbitrary point in the curved surface is another critical
point for rectification. The distortion field can be determined
using L1 and L2 through a curved surface model. To the
horizontal distortion field, the curved objects can be viewed
as a vertical stack similar to L1. The horizontal distortion field
βh(τ ) at arbitrary point τ is described as formula follows:

βh(τ ) = transformh(x, y, βh(α)) (7)

where x and y are coordinates of τ , and the function
transformh() means mapping relationship corresponding to
the horizontal distortion field βh(α) in L1. An intuitive expla-
nation is shown in Fig.10

(a) The blue curves refer to the object surface in different
vertical positions, similar to the corresponding relationship
between A1 to B1, A2 to B2, and A3 to B3. (b) The ratio of
similitude is decided by r2 divided by r1. The vertical dashed
line represents the position of t determined by Equation 2, and
the solid curved line L2 is the vertical distortion field. Then,
r1 is the distance between t and L2 in the vertical position
of L1, and r2 is the distance between t and L2 in the vertical
position of the arbitrary point in the curved surface.

To the vertical distortion field, the curved objects could be
viewed as a horizontal stack of curve clusters transformed
from L2. The vertical distortion field βv(τ ) at arbitrary point
τ is described as equations follow:

k =

∫
sin cos−1L1∫
sin cos−1R

(8)

βv(τ ) = transformv(x, y, k, βv(α)) (9)
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FIGURE 10. A diagram of the function transform().

In Equation 8, L1 and R represent the horizontal distortion
field of L1 and the fixed radius, respectively, and k is the ratio
used in Equation 9. Similar to Equation 7, x and y are the
coordinates of the arbitrary point, and function transformv()
is the mapping relationship corresponding to the vertical
distortion field βv(α) in L2. An intuitive explanation is shown
in Fig.11.

(a) The solid blue curve is the horizontal distortion field
βh(α) in L1, and the red dashed line refers to a virtual curve
with a fixed radius. The distance between the arbitrary point
and curved surface in the depth dimension is r1, when it
comes to a virtual curve with a fixed radius, namely r2.
(b) The red dashed line is a vertical distortion field βv(α) in
L2, and the blue solid line refers to the result of the trans-
formed vertical distortion field L,

2. The L
,
2 can be regarded as

a stretch transformation from L2, with the ratio decided by r1
divided by r2.

2) DCNN PART
Learning-based models become a novel rectification
approach in recent years. The supervised learning method
could provide prior knowledge during the training pro-
cess, which improves the generalization capability of the
method [40], [41]. Some references have reported that the
performance of fingerprint rectification could be improved
with the DCNN introduced.

In the field of forensic science, meeting the criteria for
the reference fingerprints cited in the literature ( [15], [16],
[19], [20], [22], [35]) is challenging. Single latent dis-
torted fingerprints are frequently encountered in CSI. The
DCNN part of our method is inspired by the rectification
approach proposed by Dabouei et al. [24], due to the abil-
ity to handle a single image and excellent performance
in public databases such as FVC2004 and FVC2006. The
results reported by Dabouei et al. [24] indicate that such a
designed DCNN could improve the rectification performance
compared with other methods in fingerprints with little inter-
ference. In our paper, the DCNN part acts as a fine stage
to modify the distortion field estimated by the coarse stage.
The database used in the training phase, the generation of
synthetic distorted fingerprints, and the training methods
are all the same as in Dabouei et al. [24]. We generated a
distorted synthetic database using 1033 normal fingerprints
from the BioCOP 2013 database. Each normal sample was
transformed into 400 distorted images by sampling the two

FIGURE 11. A diagram of the function transformv().

principal distortion components extracted from the Tsinghua
database. We matched minutiae pairs between original and
distorted samples to extract displacement due to distortion.
Based on such matching operation, it is possible to represent
distortion as displacement of corresponding minutiae on the
original grid and distorted grid as follows equation:

di = xDi − xNi (10)

where di represents the displacement of minutia for the
ith pair of distorted and corresponding normal fingerprints.
The distortion field could be approximated using the PCA
method [42], [43] as the following equation:

d̂ = d̄ +

∑t

i=1
ci

√

λ iei (11)

In equation 11, t is the number of selected principal compo-
nents, ci is the coefficient of the corresponding eigenvector
component, λi is the eigenvalue and ei is the corresponding
eigenvector component. First, two significant eigenvectors
of distortion were used to generate synthetic samples for
training. Some examples of synthetic distorted samples are
shown in Fig. 12. To verify the validity of Dabouei et al. [24]
work, the receiver operating characteristic (ROC) curve of
matching experiments is shown in Fig. 13-14. As the exper-
iments conducted and reported in Dabouei et al. [24] work,
original fingerprints rectified by Si et al. [13] were selected
as comparison results in the experiment. The compared result
conducted on the Tsinghua DF database (320 fingerprint
videos) and FVC 2004 database (3,520 fingerprints) indicates
that DCNN could get excellent performance under appropri-
ate conditions.

The DCNN minimizes the norm-2 distance between the
coefficients and outputs. Our method uses input-distorted
images to train the DCNN by 40 epochs. Each epoch com-
prised 6265 iterations, with a batch size equaling 64. The
Adam optimization method uses beta = 0.5 and learning
rate = 10−4. All layers except the last one are convolutional.
The input image is 256 × 256 × 1. Each layer except the
last one comprises convolution, batch normalization, rectified
linear unit (ReLU), andmax poolingwith strides equal to two.
The detailed properties of the network are shown in Table 1.
All layers except the last one comprise convolution (Conv),
batch normalization (BN), ReLU, and max pool (MP). All
max-pooling operations are 2 × 2 with a stride of two. All
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FIGURE 12. Examples of synthetic distorted fingerprints generated for
training the network.

FIGURE 13. Compared results conducted on the Tsinghua DF database.

convolution strides are one, and all inputs to convolutions
are padded to have the same size outputs. Different from the
inked impressions in Dabouei et al. [24] approach, the dis-
torted latent fingerprints in our paper are extracted according
to the CSI standard. Preprocessing must meet the require-
ments of the DCNN model.

In this paper, our focus is the rectification performance of
latent fingerprints, especially low-quality images. Different
kernel sizes, including 3 × 3, 5 × 5, and 7 × 7 with the
same channels are tested to determine the optimal size. The
compared results and analysis are shown in Section IV.

3) COMBINATION PART
Traditional pattern recognition and DCNN play different
roles in rectifying distorted latent fingerprints. For conven-
tional pattern recognition, robustness is a prominent advan-
tage. As reported by Si et al. [13], the complex background
of latent fingerprints interferes with period and orientation
map extraction from images. Low-quality images lead to
unsuccessful rectification in NIST SD27. In Dabouei et al.
[24] approach, the test databases are inked fingerprints. The
traditional part is robustness to latent fingerprints, which can
estimate the distortion field reliably. For DCNN, accuracy
is the key advantage compared with other methods, and it

FIGURE 14. Compared results conducted on FVC2004-DB1-4 set A.

TABLE 1. Architecture of DCNN.

gains the best rectification result when the ridge map can be
extracted reliably. Our method was designed as a coarse-to-
fine process, combining the advantages of both approaches.
DCNN is used to estimate the distortion field in a dependable
ridge region; otherwise, the traditional part takes over the
job. Since the input image of DCNN is 256 × 256, we first
segment the image into 32 × 32 blocks. Then, the matching
relationship between the grid of the output of DCNN and
traditional works can be established. The draft picture is
shown in Fig. 15.

(a) Four 32 × 32 matching blocks in the DCNN input
image (b) Four 32 × 32 matching blocks in the output image
rectified by DCNN (c) Four 32 × 32 matching blocks in the
output image rectified by the traditional part.

The combination depends on the similarity of the matching
blocks between the DCNN model and the traditional part.
A low similarity indicates that the image quality does not
meet the requirement of the trained DCNN. However, a high
similarity implies that the accuracy of DCNN can achieve
a better effect than the traditional part. The parameter γ of
similarity could be defined as the following equation:

γ =

⇀r 1 ∗
⇀r 2∣∣∣⇀r 1∣∣∣2 × |r2|2 −

⇀r 1 ∗
⇀r 2

×

⇀r 3 ∗
⇀r 4∣∣∣⇀r 3∣∣∣2 × |r4|2 −

⇀r 3 ∗
⇀r 4

(12)
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FIGURE 15. Draft picture of four 32 × 32 matching block mapping.

FIGURE 16. A sketch map of diagonal vectors in similarity computing.

where ⇀r 1,
⇀r 2,

⇀r 3, and
⇀r 4 denote the diagonal vectors of the

matching blocks, ∗ is the inner product of vectors, and γ

represents the similarity threshold. The sketch map is shown
in Fig.16.

(a) The 32 × 32 matching block in the output image
rectified by DCNN; r1 and r3 are diagonal vectors (b) The
32 × 32 matching block in the output image rectified by
traditional parts; r2 and r4 are diagonal vectors.
Different matching blocks, including 16×16, 32×32, and

64×64 are compared to determine the optimal size. Besides,
the similarity threshold conducts the same comparison with
the range from 0.7 to 0.9. Based on the results shown in
section IV, the matching block is selected 32 × 32, and the
similarity threshold is set to 0.8 in our method.

If the similarity does not reach the threshold, the tradi-
tional part takes over the rectification, and DCNN will not be
accepted in the block. However, the rectification of DCNN
can be used for fine adjusting in the block. The principle of
fine adjusting is modifying the internal distortion field with
a matching block shape invariable. The internal transform in
the block follows the equation:

(x ′

1, y
′

1) = transformco(transformob ((x1, y1)) (13)

In the above equation, (x ′

1, y
′

1) denotes the coordinates after
internal adjusting, and (x1, y1) represents the coordinates of
traditional part addresses. The function transformob() refers
to the transformation from the ordinal number in the rectifica-
tion block of the conventional part to that in the rectification
block of the DCNN. Function transformco() is the trans-
formation from the coordinates in the rectification block of
DCNN to those in the rectification block of the traditional
part. The abridged general view is shown in Fig.17

(a) The blue dashed line is the general shape of 32 ×

32 blocks rectified by the traditional part, the tiny red square
is the distortion field in each pixel in the block, and the solid
black box represents the ordinal result of the arbitrary point
before transformob(), and the black dotted box represents the

FIGURE 17. Abridged general view of fine adjusting.

coordinate results after transformco(). (b) The blue dashed
line is the general shape of 32 × 32 blocks rectified by
DCNN, the tiny red square is the distortion field in each pixel
in the block, and the solid black box represents the ordinal
result after transformob(). The solid black box mapping from
(a) to (b) is the function transformob() that guarantees a
constant ordinal relationship. The mapping between the solid
black box and black dotted box from (b) to (a) is a function
transformco() that guarantees a constant length percentage in
each coordinate axis.

Due to the similarity of the adjacent distortion field, the
mapping from (x1, y1) to (x ′

1, y
′

1) is modified by the following
formula: {

x ′′

1 =
(
x ′

1 − x1
)
× ωi + x ′

1
y′′1 =

(
y′1 − y1

)
× ωi + y′1

(14)

where (x ′′

1 , y′′1) denotes the final coordinates, andωi represents
the coefficient decided by the satisfied similarity threshold in
the connected 32 × 32 blocks. The abridged general view is
shown in Fig.18.

The center box denotes 32 × 32 blocks under transform
computing, and the connected boxes indicate the adjacent
32 × 32 blocks. (a) The satisfied threshold of similarity
equals 1, then ω1 = 0.25. (b) The satisfied threshold of
similarity equals 2, then ω2 = 0.5. (c) The satisfied threshold
of similarity equals 3, then ω3 = 0.75. (d) The satisfied
threshold of similarity equals 4, then ω4 = 1.

IV. EXPERIMENT RESULTS
A. OPTIMIZATION PARAMETER EXPERIMENTS
Control variable experiments were conducted to determine
our method’s optimal parameters based on the SPSB test
database. The same minutiae were selected manually in
different images of the same fingerprint, similar to when
fingerprints are extracted in CSI. The database contained
more than 20,000,000 fingerprints. Different matching block
sizes (16 × 16, 32 × 32, 64 × 64), different kernel sizes
of DCNN (3 × 3, 5 × 5, 7 × 7), and different similarity
thresholds (0.7, 0.75, 0.8, 0.85, 0.9) were used to test one by
one combination on the SPSB test database. Tables and CMC
curve are demonstrated as follows.

Fig. 19 and Table 2 show the results of different matching
block sizes with the same kernel size (3 × 3) and the same
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FIGURE 18. The abridged general view of coefficient adjust.

FIGURE 19. The CMC curve of different block sizes.

similarity threshold (0.8). The result of 64 × 64 is fairly
proximate to that obtained solely by the traditional module.
It can be explained that the block size of 64× 64 occupies an
excessive portion of the entire fingerprint image (256×256).
Consequently, the segmentation of the image is too coarse,
and the similarity threshold could hardly be satisfied. The
result of 16×16 is usually slightly worse than that of 64×64.
This can be attributed to the relatively diminutive size of
16 × 16 within the entire image. In low-quality fingerprints,
mixed interference would significantly impact ridge features
extracted by a learning-based model. The above phenomena
generally exist in combinations of different kernel sizes (5×5,
7×7) and different similarity thresholds (0.7, 0.75, 0.85, 0.9).
Fig. 20 and Table 3 show the results of different kernel

sizes with the same matching block size (32 × 32) and the
same similarity threshold (0.8). All the kernel sizes could
improve the genuine match compared to the original images,
especially in low-quality fingerprints. It could be explained
that severe deformation has beenmodified in the coarse stage.
In general, small kernel size performs better than large kernel
size. It could be explained that small kernel size brings out
the advantage of deep learning networks. Distortion field
estimated more precise with small kernel size in the region
ridge information extracted reliably. The above phenomena
generally exist in different matching block sizes (16 × 16,
64 × 64) and different similarity thresholds (0.7, 0.75, 0.85,
0.9) combinations.

Fig. 21 and Table 4 show the result of different similarity
thresholds with the same kernel size (3 × 3) and the same
matching block size (32 × 32). It could be explained that the
appropriate similarity threshold obtains optimal performance
for the coarse stage and fine stage combined well. Different
from other parameters, the change of matching block size
significantly affects the tendency of CMC curves, while the

TABLE 2. The compared rank of genuine matches of different matching
block.

kernel size doesn’t. Small kernel size achieves a slight advan-
tage over large size in all the comparison results. Results of
the influence of matching block size are shown in Fig. 22-23
and Table 5 -6.

Fig. 22 and Table 5 show the result of different similarity
thresholds with the same kernel size (3 × 3) and the same
matching block size (64× 64). The rank of genuine match is
almost constant with various similarity thresholds. It could be
explained that the 64 × 64 matching block size is too rough
for the entire fingerprint image (256×256). Interference seri-
ously disturbs the ridge features in almost matching blocks,
leading to a significant gap between diagonal vectors between
the coarse and fine stages. Changing the similarity threshold
could not be enough to locate those blocks that should be
modified.

Fig. 23 and Table 6 show the different similarity thresholds
with the same kernel size (3 × 3) and the same matching
block size (16×16).With the increase of similarity threshold,
the performance of rectification rises rapidly at first and
then tends to be stable. It could be explained that the 16 ×

16 matching block size is too tiny for the entire fingerprint
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FIGURE 20. The CMC curve of different kernel sizes.

TABLE 3. The compared rank of genuine matches of different kernel size.

(256 × 256). The advantage of robustness acquired from the
coarse stage is not fully exploited. Some disturbed blocks are
also corrected by the deep learning module, which reduces
the rank of genuine matches. When the similarity threshold
reaches the specific value, the CMC curve tends to be stable
for the method degenerates into a rough module working
alone.

FIGURE 21. The CMC curve of different thresholds of combination.

TABLE 4. The compared rank of genuine matches of different threshold.

We clearly find out that the best performance under the
condition of 64×64matching block size and 16×16matching
block size is not as good as the optimal result with the small
kernel size (3 × 3) and appropriate matching block size
(32×32). So, the parameters in our approach are set as 32×32
(matching block size), 3× 3 (kernel size), and 0.8 (similarity
threshold).

VOLUME 11, 2023 144161



Q. Bao et al.: Coarse-to-Fine Approach for Rectifying Distorted Latent Fingerprints

FIGURE 22. The CMC curve of different thresholds of combination.

TABLE 5. The compared rank of genuine matches of different threshold.

B. ABLATION EXPERIMENTS
After optimal parameters were determined in our approach,
ablation experiments were conducted on the SPSB test
database to verify the contribution of the traditional part,
network part, and fusion performance. The individual recti-
fication result of each part and the combined result is shown
in Table 7, and the corresponding CMC curve is shown in
Fig. 24.

FIGURE 23. The CMC curve of different thresholds of combination.

TABLE 6. The compared rank of genuine matches of different threshold.

The results of the ablation experiment show that each
part would contribute to the performance of rectification
and combined works best. The traditional part significantly
improves the genuine match when the original fingerprint
images are of poor quality. The fact indicates the conven-
tional part is robust to interferences commonly appearing
in the fingerprints extracted in CSI. The network part
improves the genuine match roughly equal regardless of the
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FIGURE 24. The CMC curve of ablation results.

TABLE 7. The compared rank of genuine matches of ablation results.

fingerprint image quality. So, the network part could be used
to make up for the shortcomings of traditional modules.
The coarse-to-fine approach proposed in our paper fuses
the advantages of the conventional and network parts. For
low-quality fingerprints, our method could strongly resist
various interferences compared with the network part. The

FIGURE 25. The CMC curve of the compared results conducted on the
SPSB test database.

TABLE 8. The compared rank of genuine matches conducted on the SPSB
test database.

rank of genuine matches improves dramatically, significantly
reducing the possibility of missing results. For relatively
high-quality fingerprints, our method further improves rec-
tification performance with traditional parts. The rising rank
could help experts verify the genuine match faster and more
confidently.
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FIGURE 26. Group images of the same fingerprint.

FIGURE 27. Group images of the same fingerprint.

FIGURE 28. Group images of the same fingerprint.

FIGURE 29. Group images of the same fingerprint.

FIGURE 30. Group images of the same fingerprint.

FIGURE 31. Group images of the same fingerprint.

C. COMPARED EXPERIMENTS
We quantitatively evaluated the contribution of the pro-
posed method by conducting experiments on the SPSB test
database. Several representative single-image methods were
selected as comparison methods.

The ranks of genuine matches are shown in Table 8: orig-
inal latent fingerprints (no rectification), latent fingerprints
rectified by Si et al. approach [13], latent fingerprints rectified
by Dabouei et al. approach [24], latent fingerprints rectified
by Zhengfang et al. approach [25], and the latent fingerprints
rectified by the proposed method. The CMC curve is shown
in Fig. 25.

FIGURE 32. Group images of the same fingerprint.

FIGURE 33. Group images of the same fingerprint.

FIGURE 34. Group images of the same fingerprint.

FIGURE 35. Group images of the same fingerprint.

FIGURE 36. Group images of the same fingerprint.

FIGURE 37. Group images of the same fingerprint.

FIGURE 38. Group images of the same fingerprint.

Some visible samples are presented to compare our
approach with others in detail. The images from left to right
are the (a) original, (b) Xuanbin’s approach, (c) Dabouei’s
approach, (d) Zhengfang’s approach, (e) and the proposed
approach. The rank of genuine matches is described in the
figure note. Such examples are given in Fig. 26-39.
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FIGURE 39. Group images of the same fingerprint.

Overlap ridges in the core region are the obstacle to identi-
fying: (a) rank 231, (b) rank 94, (c) rank 65, (d) rank 40, and
(e) rank 10.

Attachment to the surface of the object is the obstacle to
identify: (a) rank 126, (b) rank 15, (c) rank 7, (d) rank 6, and
(e) rank 1.

Severe nonlinear distortion and uneven distribution of
magnetic powder are the obstacles to identifying: (a) rank
273, (b) rank 108, (c) rank 151, (d) rank 74, and (e) rank 23.

Excessive 502 glue is the obstacle to identify: (a) rank 60,
(b) rank 41, (c) rank 35, (d) rank 1, and (e) rank 4.

Too small a ridge region and a trace of wipe are the
obstacles to identify: (a) rank 106, (b) rank 82, (c) rank 65,
(d) rank 33, and (e) rank 8.

Blurry ridges in the core region and strip interference are
the obstacles to identify: (a) rank 59, (b) rank 53, (c) rank 51,
(d) rank 3, and (e) rank 5.

The roughness of the surface of an object is the obstacle to
identifying: (a) rank 39, (b) rank 30, (c) rank 18, (d) rank 12,
and (e) rank 7.

The interference of the pattern inherent in the object is the
obstacle to identifying: (a) rank 6, (b) rank 18, (c) rank 22,
(d) rank 4, and (e) rank 6.

Severe nonlinear distortion is the obstacle to identifying:
(a) rank 105, (b) rank 76, (c) rank 43, (d) rank 25, and
(e) rank 14.

Incoherence and interruption of the ridges are the obsta-
cles to identifying: (a) rank 54, (b) rank 35, (c) rank 50,
(d) rank 29, and (e) rank 6.

The missing ridge in the core region is the obstacle to
identify: (a) rank 88, (b) rank 110, (c) rank 56, (d) rank 90,
and (e) rank 7.

Ridges showing opposite hues in different regions are the
obstacle to identifying: (a) rank 108, (b) rank 58, (c) rank 53,
(d) rank 37, and (e) rank 1.

See Fig. 26-37 for several examples in which the proposed
method is significantly better than the compared approaches.
Various factors, such as interference, blur, missing ridges,
and severe distortion, can lead to low-quality distorted finger-
prints, typical in CSI. The training and testing samples used in
the compared methods are far from realistic in forensic prac-
tice. The reasons have been explained briefly in Fig. 26-37.
Note that the illustration only highlights the primary reason,
and the mixture of factors dominates the investigation.

Fig. 38 is an example of equal performance. It is easy
for AFIS to match the fingerprint for slight distortion and
adequateminutiae. (a) rank 1, (b) rank 1, (c) rank 1, (d) rank 1,
and (e) rank 1.

Fig. 39 shows that the performance of the proposedmethod
is not as good as the compared approaches because the image
quality is close to the training samples in the compared meth-
ods. The ridges are coherent and contrast the background.
(a) rank 7, (b) rank 1, (c) rank 1, (d) rank 1, and (e) rank 6.

The results reveal the following. (1) Both rectification
algorithms improve the recognition rate compared with
the original. (2) Our approach improves matching accu-
racy in distorted latent fingerprints compared with other
approaches [13], [24], [25]. The highest top 25 cumu-
lative match rate of the proposed method is 1, whereas
that of the compared methods is not higher than 0.85.
(3) The proposed approach significantly achieves improve-
ments compared with the other methods [13], [24], [25] in
correcting low-quality distorted fingerprints. For Xuanbin
et al.’s approach, rectification performance benefits signifi-
cantly from detection with the center and upper core points,
which are rarely found in CSI. Significant gaps exist in the
training and extracted images in CSI for Dabouei et al.’s and
Zhengfang et al.’s approaches. As a learning-based method,
the similarity between the test and training sets significantly
affects performance.

V. CONCLUSION
Fingerprint deformation poses a considerable challenge for
fingerprint-matching performance. In CSI, latent fingerprints
on curved objects are low-use-rate evidence due to poor
image quality and severe distortion. Forensic science can-
not adopt most existing rectification methods because (1) a
reference fingerprint is a prerequisite for correction, (2) the
rectification performance of low-quality fingerprints is poor,
and (3) improvements are only verified in small volume
databases far from proof in forensic science.

This paper presents a coarse-to-fine algorithm to rectify
distorted latent fingerprints. The proposed method combines
the advantages of robustness and accuracy when address-
ing distorted latent fingerprints extracted at crime scenes.
The experimental results show that our method improves
the matching performance significantly compared with other
approaches, especially in low-quality fingerprints.

The limitation of our combined method is that the perfor-
mance depends on the previous manual processing, including
fingerprint extraction and image preprocessing. Future direc-
tions could focus on (1) improving accuracy for low-quality
fingerprints and (2) reducing reliance on manual operations.
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