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ABSTRACT Salient object detection is a critical task in the field of computer vision. However, existing
detection methods still face certain challenges, such as the inability to effectively integrate multimodal
features and the blurring of detection result boundaries. To address these issues, this paper proposes a
novel RGB-D salient object detection method that combines multimodal feature fusion and contour-guiding
techniques. Initially, we employ ResNet50 as the backbone network, and by removing its final pooling layer
and fully connected layer, we construct a fully convolutional network specifically for feature extraction
from RGB images and depth images. Subsequently, we leverage channel attention mechanism and spatial
attention mechanism separately to optimize the RGB image features and depth image features. Following
this, we design an interactive feature fusion module to blend the optimized features, thereby obtaining the
multimodal fusion features. Furthermore, based on the localization ability of high-level fusion features,
we constrain the low-level fusion features, eliminate non-salient objects, and generate salient object contour
features. Eventually, we use this contour feature to guide the recognition process of salient objects, resulting
in salient objects with clear boundaries. Our approach has been validated across seven RGB-D salient object
detection datasets. The experimental results indicate an improvement of 0.21% ~ 1.84% and 0.32% ~ 1.25%
respectively in maxF and S metrics, compared to the best competing methods (CMINet, CIR-Net, and CPFP).

INDEX TERMS RGB-D salient object detection, multimodal feature fusion, contour guidance, attention
mechanism, fully convolutional network.

I. INTRODUCTION
Salient Object Detection (SOD) holds a significant place
in the field of computer vision, with its primary objective
being to identify and emphasize the most attention-grabbing
objects within images [1], [2], [3], [4]. SOD has been widely
adopted in numerous practical application domains, such
as image and video editing [5], [6], object tracking [7],
[8], human-computer interaction [9], autonomous driving
[10], [11], robotic navigation [12], [13], and medical image
analysis [14], [15].

Existing salient object detection methods [18], [19],
[20], [211, [22], [23], [24], [25], [26] primarily rely on
deep learning technologies, especially Convolutional Neural
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Networks (CNNs). However, consecutive convolution and
pooling operations significantly reduce the size of deep
feature maps, which, although able to accurately locate
salient objects, cannot finely segment them. Methods based
on U-Net [64], [65] connect encoders and decoders to
form a U-shaped structure, gradually recovering resolution
and learning local detailed features through upsampling of
high-level feature maps and direct inter-layer connections
of the encoder and decoder. Nevertheless, due to the
information loss during the upsampling process, the obtained
salient object contours are blurred. Therefore, introducing
salient object contour information and using it to guide the
segmentation of salient objects can yield clear salient object
boundaries. Currently, various contour-enhanced RGB image
salient object detection methods [51], [52], [53], [54], [55],
[56], [57], [58], [59], [60] exist, however, in many challenging
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scenarios, such as complex backgrounds, low contrast, and
similarity between foreground and background, salient object
detection still faces significant challenges. Fortunately, with
the widespread use of depth sensors, depth maps can
provide geometric and spatial information, becoming a vital
supplement to RGB image information. Therefore, how
to combine RGB image and depth map information, and
introduce salient object contour guiding technology on this
basis, becomes key to solving the problem. At present,
some research on RGB-D salient object detection based on
multimodal and contour guidance has been carried out [61],
[62], [63]. Jiang et al. [61] and Zhang et al. [62] extract
contour features from RGB images, but do not consider
depth image information. Liu et al. [63] extract the contour
prior information of salient objects from depth images but
do not consider RGB image information. Since RGB images
and depth images have complementary fusion characteristics,
considering the features of both modalities can extract more
accurate contour features. Therefore, we attempt to perform
cross-modal contour feature extraction and further guide the
contour features into salient object detection.

In summary, this paper proposes an RGB-D salient object
detection method based on multimodal fusion and contour
guidance (MFCG-Net), which integrates multimodal feature
fusion and contour-guided techniques. Firstly, we extract
features from the RGB and depth images, and apply an
attention mechanism for feature optimization. Subsequently,
we design an interactive feature fusion module to blend
the optimized features, thereby generating the fused features
across modalities. Then, we leverage the saliency localization
capability of the top-layer fused features to guide the
lower-layer fused features, eliminating background noise and
producing salient object contour features. Finally, we use
these contour features to guide the identification process
of the salient objects, resulting in salient objects with
clear boundaries. In conclusion, we have made three main
contributions in this study:

1) In order to make effective use of features from different
modalities, we have devised an interactive enhancement
fusion module. This module, through interactive feature
learning, fully explores and utilizes the correlation between
different modalities, thus achieving mutual reinforcement
of features across modalities. Concurrently, we implement
optimized feature fusion via element-wise multiplication and
convolution smoothing. Building on this foundation, the
fused features are sequentially propagated to the next layer,
thereby realizing cross-level feature integration.

2) In order to fully explore the contour information
of salient objects, we have designed a unique contour
feature extraction module. Within this module, we directly
convey the spatial position information of top-level fusion
features to the low-level fusion features, thus constraining the
contours of non-salient objects and accurately extracting the
contour features of salient objects. Upon collecting contour
features and modality fusion features, we utilize the contour
features to guide the modality fusion features. Through the
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complementary information between the two, we achieve
the extraction of salient objects with clear boundaries and
prominent features.

3) We validated our approach on seven RGB-D salient
object detection datasets. The experimental results reveal
that our method outperforms existing techniques in terms
of both accuracy and effectiveness. This strongly indicates
that our approach can effectively utilize the information from
RGB and depth images, while fully exploiting the contour
information of the salient objects, thereby enhancing the
performance of salient object detection.

Contour GT Ours Baseline

Original Image

FIGURE 1. Visual effects of the method we proposed. Once we model the
salient object contour information and guide the generation of salient
maps via these contour features, non-salient objects are effectively
eliminated. Simultaneously, the edge contours of salient objects appear
more distinctly and strikingly.

Il. RELATED WORKS

A. SALIENT OBJECT DETECTION

The development of salient object detection (SOD) has
evolved from manually extracting features to utilizing
Convolutional Neural Networks (CNN) and Fully Convo-
lutional Networks (FCN). Early methods primarily relied
on manually extracted features [16], [17]. However, manual
feature extraction often requires expert experience and
domain knowledge, implying that the feature selection
process might be influenced by individual preferences.
If inappropriate features are selected, it could negatively
impact the performance of the model. Furthermore, manual
features often can only handle relatively simple patterns.
For complex patterns and non-linear relationships, manually
extracted features may not effectively capture them. With
the advancement of deep learning, the emergence of CNN
and FCN has automated the feature extraction process
and facilitated processing of more complex image patterns,
significantly improving the efficiency and performance of
salient object detection. Therefore, methods based on CNN
and FCN gradually replaced those based on manual feature
extraction.

B. MULTI-MODAL FUSION-BASED SALIENT OBJECT
DETECTION

Significant progress has been made in the research of
using Convolutional Neural Networks (CNN) for RGB-
D salient object detection [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30]. For instance,
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Fan et al. [19] utilized two parallel CNNs to independently
process RGB and depth images, and then organically fused
the outputs of these two networks. They utilized the semantic
localization information provided by high-level features to
effectively eliminate the interference introduced by low-level
features, thus generating the final saliency map. This method
ingeniously utilizes the complementarity of RGB and depth
information. Han et al. [20] proposed an innovative RGB-D
salient object detection method called Layered Interactive
Attention Network (LIANet), which mainly consists of
feature encoding, layered fusion mechanism, and feature
decoding. In the feature encoding stage, they introduced a
concise and efficient attention module (SAM), which defined
an energy function that considers the weights of channel and
spatial dimensions, enabling the network to learn more dis-
criminative neurons without adding extra parameters. They
then designed a layered interactive fusion module (LIFM),
which significantly enhances the interaction between RGB
features and depth features, simultaneously eliminating the
interference in the depth map, accurately highlighting the
features of salient objects. Finally, through feature decoding
and a mixed loss function, they further optimized and trained
the model. Zhao et al. [21] designed a deep model that
can utilize global and local context information to capture
the saliency of objects. To better initialize the training of
the deep neural network, they explored several different
pre-training strategies and designed a pre-training program
tailored to the specific task, allowing the multi-context model
to adapt to the saliency detection task, thus improving
the performance of saliency detection. Huang et al. [23]
proposed a multi-modal feature interaction module, which
captures their cross-modal complementary information by
jointly using several simple linear fusion strategies and
bi-linear fusion strategies. They then proposed a fusion
module guided by saliency prior information to utilize the
multi-level supplementary information of fusion cross-modal
features at different levels. Finally, they designed a saliency
refinement and prediction module to more effectively utilize
the extracted multi-level cross-modal information for RGB-D
saliency detection, which can more comprehensively use the
information of RGB-D images. Endo and Premachandra [24]
proposed a bathing accident monitoring system using a depth
sensor. The system aims to prevent accidental drowning
caused by loss of consciousness during bathing. To protect
the privacy of bathers, no RGB images were captured using a
2D camera. Matsumura and Premachandra [25] provided an
accident prevention method using deep learning techniques
to notify visually impaired individuals about the presence
of height and steps when approaching stairs. The study
employed deep learning on generated 3D point cloud data
to detect stairs. A preprocessing stage was proposed to
reduce the weight of the point cloud data for application
in deep learning-based training. We investigated a method
for extracting salient object contour information from cross-
modal fused features and applying it to improve RGB-D
salient object detection.
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C. CONTOUR-GUIDED SALIENT OBJECT DETECTION

To preserve important structural information in salient object
detection, an increasing number of networks incorporate
contour information to improve the effectiveness of RGB
salient object detection. Chen et al. [51] proposed a contour-
aware salient object segmentation model that achieved better
segmentation results through Contour Loss and global atten-
tion modules. Wang et al. [52] introduced a deep model called
Focal-BG for salient object detection and segmentation.
By jointly learning the segmentation mask and boundary
detection of salient objects, the model accurately captures
the shape details, especially near the object boundaries.
Guan et al. [53] proposed an edge-aware convolutional neural
network for salient object detection. By combining global
contextual information and low-level edge features, and
utilizing pyramid pooling modules and auxiliary side-output
supervision, this algorithm generates more distinct edge-
aware features and effectively utilizes multi-scale global
information. Zhuge et al. [54] proposed a boundary-guided
feature aggregation network for salient object detection.
This network utilizes multi-level convolutional features and
edge information for salient object detection, achieving
precise localization through feature extraction, boundary
prediction, and feature fusion. Wu et al. [55] proposed
a method called SCRAN for edge-aware salient object
detection. By bidirectionally propagating information and
iteratively improving features at each layer, this method
optimizes the accuracy of both salient object detection and
edge detection. Zhou et al. [56] introduced SE2Net, a Siamese
edge-enhanced network for salient object detection. SE2Net
employs a multi-stage Siamese network architecture to aggre-
gate low-level and high-level features and simultaneously
estimate the edge and region saliency maps. By enhancing
edge response and suppressing background false alarms,
SE2Net improves the accuracy and semantics of salient
objects. Additionally, the paper also presents edge-guided
inference algorithms that further improve salient masks
along the edges. Su et al. [57] proposed a boundary-aware
salient object detection method that addresses the selectivity-
invariance dilemma by combining boundary localization and
internal perception. Continuous dilated modules are used
to enhance feature extraction capabilities, and transitional
compensation flow is introduced to address the problem
of transition regions. Lin et al. [58] presented a boundary-
aware salient object detection method that improves detection
performance by introducing a cyclic bidirectional guided
refinement network (RTGRNet). This method leverages the
complementarity between saliency and boundary features and
progressively refines these features iteratively. Specifically,
RTGRNet consists of two streams of guided refinement
modules (TGRMs), each composed of a guidance block and
saliency/boundary feature streams. The refined features from
the previous TGRM are used to improve the performance
of the saliency and boundary feature streams in the current
TGRM. Zhang et al. [59] proposed a novel deep learning
approach to address three major challenges in visual saliency
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detection: complex scenes, multiple salient objects, and
salient objects at different scales. By introducing a fully
convolutional neural network, combining handcrafted and
deep learning features, and utilizing contextual information,
saliency detection is performed. Wang et al. [60] introduced
a new method called PAGE-Net for detecting salient objects
in images using convolutional neural networks (CNNs). This
method enhances saliency representation and improves the
localization and segmentation of salient objects through
a pyramid attention structure and salient edge detection
module.

Ill. PROPOSED METHOD

A. OVERVIEW

In the field of RGB salient object detection, contour informa-
tion has been thoroughly investigated [51], [52], [53], [54],
[55], [56], [57], [58], [59], [60]. However, comparatively,
research into RGB-D salient object detection is still in its
infancy. Existing methodologies either focus on extracting
contour features from RGB images [61], [62] or concentrate
on mining contour information from depth images [63],
without fully utilizing cross-modal information for contour
feature extraction. Considering the complementary nature
of RGB image features and depth image features, the
comprehensive use of both modal information can enhance
the performance of salient object detection. Therefore,
we carry out cross-modal contour feature extraction and
further guide the extracted contour features to the phase of
salient object detection, aiming to augment the performance
of the latter.

The overall architecture of our proposed RGB-D salient
object detection method (MFCG-Net), which is based on
multi-modal fusion and contour guidance, is illustrated
in Fig. 2. In this method, we adopt ResNet50 as the
backbone network architecture, and by removing its final
pooling layer and fully connected layer, we construct a
fully convolutional network. This network independently
performs feature extraction from both the RGB and depth
images. The extracted features from the RGB image are
denoted as F{{, while the features from the depth image are
represented as F},, where i is a natural number ranging from
1to5.

1) Attention Optimization Mechanism: As shown in Fig. 2,
we use the Channel Attention mechanism to optimize the
RGB image features, resulting in the optimized features Fi{c.
We also utilize the Spatial Attention mechanism to optimize
the features of the depth image, leading to the optimized
features Fi)s-

2) Interactive Modal Feature Fusion: We have designed
an interactive feature fusion module to combine the two
sets of optimized features, resulting in the fused modal
features Fi;

3) Contour-Guided Salient Object Detection: We utilize
the positioning capability of the high-level fused features
to constrain the low-level fused features, thus eliminating
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non-salient objects and forming the contour features of
the salient objects. Subsequently, guided by these contour
features, we conduct the detection process of the salient
objects, ultimately obtaining salient objects with distinct
boundaries.

B. ATTENTION OPTIMIZATION MECHANISM

In this study, the ResNet50 network is used to extract features
from the input RGB images and depth images, respectively.
On this basis, we apply two different attention mechanisms
to optimize the features of RGB images and depth images.
The attention mechanism provides an efficient strategy for
deep learning models, which focuses on and understands key
parts of the input data, thereby enhancing the performance of
the model, improving the interpretability of the model, and
opening up the possibility for the implementation of more
complex tasks.

Currently, there are three commonly used attention mecha-
nisms in the field of deep learning: channel attention, spatial
attention, and self-attention. In this paper, according to the
inherent attributes of different features, we have chosen
the corresponding attention mechanism for optimization.
As the RGB image is a color three-channel image with rich
channel data, we choose to handle it with channel attention
mechanism. As for the depth image, it is a single-channel
image, mainly showing the spatial position of the salient
object, with relatively less channel information, therefore we
choose to handle it with spatial attention mechanism.

The implementation process of channel attention is shown
in Fig. 3, which is described as follows:

Crnax = FC(0/(FC(P 5 (F)))) 6]

Crnean = FC(0 (FC(Ppean(FR)))) ()
Fic = 8(Cimax ® Crnean) * Fi

ie{l,2,34,5} 3)

where Pp,x denotes the maximum pooling operation per-
formed on each feature map, while Ppcqn signifies the average
pooling operation also applied to each feature map. FC stands
for the fully connected layer. The symbol o represents the
Relu activation function, the symbol § represents the Sigmoid
activation function, and the symbol * indicates the element-
wise multiplication operation carried out in spatial expansion.

The spatial attention mechanism, as illustrated in Fig. 4,
can be described as follows:

Fiys = 8(Convs,3( concat(Qpax (Fhy),QueanFh)))) © Fpy
ief{l,2,34,5} “4)

where Qmax denotes the maximum pooling operation carried
out along the channel, while Qmean signifies the average
pooling operation also performed along the channel. Convs 3
represents a convolution operation with a 3 x 3 kernel, and
concat() denotes a concatenation operation. The symbol ©
stands for an element-wise multiplication operation executed
in channel expansion.
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C. INTERACTIVE ENHANCEMENT FUSION MODULE

To effectively achieve cross-modal feature fusion, we have
designed an Interactive Enhancement Fusion Module
(IEFM). The operating process of IEFM consists of two
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CFEM:Contour Feature Extraction Module
CGM:Contour Guidance Module

4’

J:Contour Supervision

§:Ground Truth Supervision
J:Contour Feature Guidance
C: convolutional operation

stages: initially, interactive modal feature enhancement is
conducted; thereafter, modal feature fusion takes place.

During the first stage, we adopt an interactive enhance-
ment strategy. Both modal features undergo a convolution
operation with a 3 x 3 kernel, followed by a batch
normalization operation, and then activation via a Sigmoid
activation function. The resulting feature maps enhance the
other modal feature through an element-wise multiplication
method. Subsequently, another convolution operation with a
3 x 3 kernel is conducted, and a residual connection with the
original modal feature is established. Ultimately, we obtain
the interactive enhanced modal features FiIR and FiID. The
specific process can be described as follows:

Fi, = BRConv3,3(8(BN(Convs,3(Fiyg))) @ Fi) @ Fi
5

Fip, = BRConv3,3(8(BN(Convs,3(Fh))) ® Fig) @ Fhg
(6)
where BN stands for batch normalization operation, ®
represents element-wise multiplication operation, and &

denotes element-wise addition operation. BRConvs 3 refers
to the convolution operation with a 3 x 3 kernel, which
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FIGURE 5. Interactive enhancement fusion module.

is followed by a batch normalization operation and a Relu
activation function

In the second stage, we carry out an element-wise
multiplication operation on the two interactively enhanced
modal features, followed by a smoothing process using a
convolution operation with a 3 x 3 kernel. Subsequently,
the result is concatenated with the fused feature from the
previous layer. The concatenated result goes through another
convolution operation with a 3 x 3 kernel to obtain the fused
feature of the current layer. This process can be described as
follows:

F’F = BRConvsy3(concat(BRConvs 3
x (Fig ® Fip).Down(F5 ")) (7)

where Down() signifies the process of downsampling the
feature map to half of its original size.

It should be noted that when i equals 1, in the absence
of fused features from the previous layer, we only need to
compute the features of the RGB image and depth map of the
current layer. This process can be described as follows:

F}. = BRConvs,3(BRConvs,3(Fig ® Fip)) (8)

D. CONTOUR FEATURE EXTRACTION MODULE

In this module, our aim is to model the contour information
of salient objects and extract contour features from it.
The backbone network for salient object detection usually
contains multi-layer features, where the low-level features
can capture the detail information of the object, such as its
shape and edges, while the high-level features can capture
semantic information, such as the category and location of
the salient object. Therefore, we have carefully designed a
method to extract the edge contour information of salient
objects from low-level fusion features F% and F% At the
same time, we also need semantic location information from
high-level fusion features. Given that the receptive field of
the top-level fusion feature FIS: is the largest, its localization
capability is also the most accurate. For this reason, we have
designed a top-level guided localization mechanism, which
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directly propagates location information of top-level fusion
features to low-level fusion features, constraining the outline
of non-salient objects and thereby obtaining the contour
features of salient objects. The calculation process of contour
features can be described as follows:

CloneSize(Fy, Fj,) = UP(BRConvy, (FR).Fp)  (9)
Lr = FL @ CloneSize(F3, Fi)
ief{l,2) (10)

where FiCF represents the contour feature of the i-th layer.
UP(A,B) denotes the operation of upsampling feature map
A to the same size as feature map B. BRConv; refers
to a convolution operation with a kernel size of 1 x 1,
followed by a batch normalization operation and a ReLU
activation function. The purpose of this convolution operation
is to change the number of channels in the features.
CloneSize(A,B) indicates the operation of adjusting the size
of feature map A to match the size of feature map B.

After obtaining the contour features, we perform three
convolution operations on them. The first two operations
use a 3 x 3 convolution kernel, which primarily serves to
enhance the contour features. The third operation employs a
1 x 1 convolution kernel, the purpose of which is to adjust the
number of channels in the feature map to 1, thus obtaining
the predicted contour map. We use the real contour map to
supervise the generation of the predicted contour map. The
supervision method utilizes a cross-entropy loss function.
The specific process can be described as follows:

CF!

= BRConv; X1(BRConV3X3(BRConV3X3(Fé:F))) (11
L(CF', GTC)
=— D logpy, =D~ > logp(y, =0) ie{l2)
keU+ keU—
(12)

where CF' represents the i-th predicted contour map, while
GTC stands for the real contour map. U+ denotes the set of
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contour pixel points in the real contour map, and U- signifies
the set of background pixel points in the real contour map.
logp(y; = 1) represents the probability that pixel point k
in the predicted contour map is predicted as a contour, and
log p(y; = 0) signifies the probability that pixel point k in
the predicted contour map is predicted as a background.

E. LAYER-BY-LAYER CONTOUR GUIDANCE MODULE

After obtaining the contour features and modality fusion
features, our goal is to use the contour features to guide the
modality fusion features, and to capture salient objects with
clear boundaries by utilizing the complementary information
between the two sets of features. During the decoding phase,
in order to fully utilize the multi-resolution modality fusion
features, we adopt a network structure similar to UNet,
integrating the modality fusion features layer by layer from
the higher layers to the lower ones. To avoid dilution of the
contour information during the integration process, we design
a layer-by-layer contour guidance module. In each layer of
the decoding process, we incorporate the contour features
into the decoding features, thus making the predicted position
of the salient objects more accurate, the edges clearer, and
the detail of segmentation better. The entire process can be
described as follows:

DF’ = CloneSize((CloneSize(F, Fap) @ Fép), Fép) © Fép

(13)

UF' = CloneSize(DF' !, Fi.) @ Fi. (14)
DF’ =CloneSize((CloneSize(UF’, F&g) ® F2p), Flp) ®F g
ie(1,2,34) (15)

Herein, DF' represents the decoding features at the i-th
layer.

(L):CloneSize operation

The i-th
layer
modality
fusion
features

T

The 2nd The Ind
layer layer
contour contour
features features

FIGURE 6. Contour guidance module.

After obtaining the decoding features, we perform four
convolution operations on each layer of decoding features.
Specifically, for the first and second layers, we first carry out
three convolution operations with a 3 x 3 convolution kernel.
For the third, fourth, and fifth layers, we initially conduct
three convolution operations with a 5 x 5 convolution kernel.
Finally, for all five layers of decoding features, we each use
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a1 x 1 convolution kernel for a single convolution operation
to adjust the number of channels to 1, thereby obtaining
the predicted saliency map. Subsequently, we merge these
predicted saliency maps to obtain the final fused saliency
map. This process can be described as follows:

PF = BRConv«1(BRConvs,3(BRConv3,3(BRConvs, s

(DFY)))) ie (1,2} (16)
PF = BRConv; «1(BRConvs, 5(BRConvs,s(BRConvs, s
(DF)))) j€{3.4,5} (17)
5
S=> oPF (18)
i=1

Herein, PFX represents the k-th predicted saliency map,
and S denotes the fused saliency map, which is the final
prediction result. The real saliency map is used to supervise
the predicted saliency map and the fused saliency map.
For the supervision method, we use the cross-entropy loss
function. This process can be described as follows:

L(PF, GT) = — > logp(y, = 1)~ > logp(y,, = 0)

meV+ meV—
ie{l,2, 345} (19)
LS.GT)=— > logp(y,,=1)— > logp(y,, = 0)
meV+ mevV —

(20)

Herein, GT represents the real saliency map, V4 denotes
the set of pixel points of the salient object in the real
saliency map, and V- represents the set of pixel points of the
background in the real saliency map. log p(y,, = 1) indicates
the probability of pixel point m in the predicted saliency map
or the fused saliency map being predicted as a salient object,
while log p(y,, = 0) indicates the probability of pixel point
m in the predicted saliency map or the fused saliency map
being predicted as background. The total loss function can be
expressed as follows:

2 5
Lair = L(S, GT) + ZL(CF" ,GTC) + ZL(PFj ,GT)
i=1 j=1
(21

IV. EXPERIMENTS

In subsection A, we introduce some key details of the exper-
iments. Subsequently, in subsections B and C, we provide
detailed descriptions of the datasets used and the evaluation
metrics respectively. Further, in subsection D, we conduct
both quantitative and qualitative comparisons between the
newly proposed method and other advanced methods. Lastly,
in subsection E, we present the results of ablation experiments
conducted on seven different datasets.

A. EXPERIMENTAL DETAILS
We utilize ResNet50 [31] as the backbone network and train
our model on the NJU2K [32] and NLPR [33] datasets.
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Our model, implemented using PyTorch, was executed on
an NVIDIA RTX 3090 GPU for all experimental processes.
The hyperparameters were set as follows: learning rate = le-
4, gradient clipping threshold = 0.5, and batch size = 10.
We trained the model for 200 epochs, reducing the learning
rate by a tenth every 50 epochs. When processing input
images, we first resized them to 352 x 352, then applied
random flipping, random cropping, random rotation, and
color enhancement. In the inference process, we obtained
two predicted contour maps and five predicted saliency maps.
By fusing the five predicted saliency maps, we produced the
final saliency map.

B. DATASETS

In this study, we conducted an in-depth evaluation of
MFCG-Net, covering seven widely used RGB-D datasets,
specifically NJU2K [32], NLPR [33], STERE [34], SSD
[35], SIP [36], DES [37], and LFSD [38]. The STERE
dataset contains 1,000 pairs of RGB-D images, primarily
focusing on the representation of outdoor scenes. The NJU2K
dataset includes 1,985 pairs of RGB images and their
corresponding depth images, providing a rich array of objects
and complex environmental scenarios for the study. The
NLPR dataset, as a representative dataset, encompasses 1,000
stereo images, with depth images obtained under diversified
lighting conditions and capture scenes. The LFSD is a
challenging dataset that contains 100 color images with
complex backgrounds and foregrounds. The SSD dataset is
relatively small, containing just 80 images selected from
stereoscopic movies, these images cover various aspects
of movie scenes, including characters, animals, buildings,
and other foreground elements. SIP is a newly released
dataset that includes 929 high-definition RGB-D images of
individuals, making it highly suitable for research in the field
of human detection. The DES dataset contains 135 images,
most of which display relatively simple foreground objects
and visual scenes, and the depth maps in this dataset are of
excellent quality.

C. EVALUATION METRICS
In order to quantitatively evaluate the data, we employed a
series of methods, including Precision-Recall (P-R) curves,
F-measure [39], E-measure [40], S-measure [41], and Mean
Absolute Error (MAE). We set multiple thresholds to process
the saliency maps, and by comparing the binarized saliency
maps after processing with the ground truth salient maps,
we obtained a set of precision-recall values, which were then
used to plot the Precision-Recall curves.

The F-measure is a comprehensive evaluation metric,
defined as the weighted harmonic mean of precision and
recall, with the specific definition as follows:

_(+BHP xR

Fg = 2
P~ "B xP+R @2)
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Herein, B2 is set to 0.3, where P represents precision and
R represents recall. In this experiment, we only report the
maximum F-measure (maxF) value.

The definition of E-measure comprehensively considers
both the values of local pixels and the average value of the
entire image, which aligns with the philosophy of cognitive
visual research. The specific definition is as follows:

i W H o
En = g 2, 2 V) (23)

i=1 j=I

Herein, W and H respectively represent the width and
height of the saliency map, while i represents the enhanced
alignment matrix. In this experiment, we only report the
maximum E-measure (maxE) value.

The S-measure is an evaluation method used to assess
the structural similarity between the saliency map and the
ground truth salient map. The specific definition is as
follows:

Sy =& X So + (1 —a)S; 24)

Herein, the weight coefficient « is set to 0.5, indicating that
object S, and region S; contribute equally to the structural
similarity.

MAE is used to calculate the Mean Absolute Error between
the saliency map S and the ground truth salient map GT, with
the specific formula expressed as follows:

1 W H
> D 186G = GTG )l (25)
W x H i1 =1

MAE =

Herein, W and H respectively represent the width and
height of the saliency map.

D. COMPARISON WITH STATE-OF-THE-ART METHODS

To fully demonstrate the effectiveness of our proposed
MFCG-Net, we compare it with nine existing RGB-D based
salient object detection (SOD) methods, including DCMF
[42], CIR-Net [43], CFPF [44], DMRA [45], UCNet [46],
HDFNet [47], CMINet [48], JLDCF [49], and HINet [50].
To ensure a fair comparison, we use the saliency maps
provided by the authors. If no such maps are provided,
we generate them using the source code and model files
provided by the authors.

1) QUANTITATIVE COMPARISON

Table 1 presents the quantitative evaluation results for four
assessment metrics. It is clear from the table that our
proposed MFCG-Net method excels in all four metrics,
surpassing most of the cutting-edge methods. In datasets
such as NJU2K, NLPR, LFSD, SIP, SSD, and STERE, our
method outperforms all compared algorithms in terms of
performance. This can be primarily attributed to our carefully
designed multimodal fusion strategy and contour-guided
technique. By optimizing multimodal features through dif-
ferent attention mechanisms, and then integrating them in
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TABLE 1. Comparison of evaluation results on four assessment metrics - MAE, max F-measure (maxF), max E-measure (maxE), and S-measure (S) - across
seven datasets. The arrow 1 indicates that a higher value is better, while | signifies that a lower value is preferable. The best performance in each row is

highlighted in bold.

datasets | assessment | Comparison Methods
metrics
HDFNet | JL-DCF UCNet | CPFP DMRA CIR-Net DCMF HINet CMINet Ours
DES MAE | 0.022 0.021 0.019 | 0.036 0.031 0.029 0.023 0.022 0.016 0.018
maxF 1 0.921 0.918 0.930 | 0.851 0.889 0.892 0.924 0.922 0.939 0.941
maxE 1 0.970 0.957 0.976 | 0.932 0.941 0.941 0.968 0.967 0.979 0.974
ST 0.926 0.928 0.934 | 0.875 0.903 0.907 0.932 0.927 0.940 0.943
LFSD MAE | 0.077 0.081 0.067 | 0.086 0.074 0.068 0.095 0.076 0.063 0.062
maxF 1 0.862 0.854 0.863 | 0.824 0.858 0.882 0.815 0.847 0.874 0.890
maxE 1 0.896 0.887 0.905 | 0.870 0.905 0.909 0.877 0.889 0.913 0.925
ST 0.854 0.849 0.864 | 0.831 0.845 0.876 0.827 0.852 0.879 0.890
NJU2K MAE | 0.039 0.039 0.035 | 0.028 0.049 0.035 0.036 0.039 0.031 0.026
maxF 1 0.910 0.915 0.910 | 0.937 0.892 0.928 0.925 0.914 0.934 0.949
maxE T 0.944 0.951 0.949 | 0.962 0.937 0.955 0.958 0.945 0.957 0.977
ST 0.908 0.913 0.911 | 0.930 0.889 0.925 0.925 0.915 0.933 0.944
NLPR MAE | 0.023 0.022 0.025 | 0.034 0.030 0.028 0.029 0.026 0.021 0.020
maxF 1 0.917 0.918 0.903 | 0.870 0.875 0.907 0.906 0.906 0.922 0.933
maxE 1 0.963 0.965 0.956 | 0.922 0.942 0.955 0.954 0.957 0.963 0.971
ST 0.923 0.931 0.920 | 0.890 0.898 0.921 0.922 0.922 0.932 0.939
SIP MAE | 0.048 0.049 0.051 | 0.062 0.082 0.069 0.062 0.066 0.044 0.042
maxF 1 0.894 0.894 0.879 | 0.855 0.835 0.866 0.872 0.855 0.910 0.912
maxE 1 0.930 0.931 0.919 | 0.906 0.883 0.905 0911 0.899 0.939 0.945
ST 0.886 0.885 0.875 | 0.853 0.816 0.862 0.870 0.856 0.899 0.904
SSD MAE | 0.046 0.052 0.049 | 0.081 0.057 0.052 0.073 0.049 0.051 0.043
maxF 1 0.870 0.839 0.849 | 0.792 0.849 0.855 0.811 0.852 0.860 0.886
maxE T 0.925 0.909 0.921 | 0.869 0.911 0.912 0.897 0.916 0.903 0.930
ST 0.880 0.864 0.869 | 0.812 0.855 0.873 0.838 0.865 0.873 0.887
STERE MAE | 0.042 0.044 0.039 | 0.050 0.064 0.046 0.043 0.049 0.036 0.034
maxF 1 0.900 0.895 0.899 | 0.878 0.852 0.897 0.906 0.883 0916 0.927
maxE 1 0.943 0.942 0.944 | 0.919 0.917 0.939 0.946 0.933 0.951 0.962
ST 0.900 0.900 0.903 | 0.881 0.838 0.901 0.910 0.892 0.918 0.925

a complementary fusion, we have successfully extracted
discriminative information from RGB images and depth
images, forming a fused feature. Following this, the contour-
guided technique effectively eliminates non-salient objects
and enhances the clarity of the boundaries of salient objects.
As for the DES dataset, apart from the MAE and maxE
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metrics, our method surpasses all other methods in the
remaining two metrics, maintaining a leading position. Fig. 7
shows the comparison results of the PR curves for different
methods, which also reflects the superior performance of our
method across seven datasets, thereby confirming that our
method outperforms all compared methods.
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FIGURE 7. Comparison of P-R curves for different methods on seven RGB-D datasets. Our MFCG-Net method is represented by

the red solid line.

2) QUALITATIVE COMPARISON

Fig. 9 displays several typical scenarios, including
those where the foreground and background are similar
(rows 1 and 2), the background is complex (rows 3 and 4),
the quality of the depth image is poor (rows 5 and 6),
multiple objects coexist (rows 7 and 8), and small
objects are present (rows 9 and 10). From a visual
perspective, our proposed method displays exceptional
performance. Our method is capable of more precisely
locating salient objects and generating more accurate saliency
maps. Thus, both qualitative and quantitative evaluations
sufficiently demonstrate the effectiveness of our proposed
method.

In the process of salient object detection, the absence of
guidance from contour features often results in the generated
saliency maps having blurred boundaries. The multi-modal
fusion module is capable of achieving complementary
integration of RGB image features and depth image features,
thereby assisting in the elimination of background interfer-
ence in complex scenarios and enhancing the precision of
saliency detection. Figure 8 displays the segmentation results
of predicted saliency maps in three complex scenarios, with
only boundary guidance (column 4) and only multi-modal
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fusion (column 5) being applied, respectively. By exam-
ining Figure 9, we can observe that, when only applying
boundary guidance, the predicted saliency map still retains
background noise, while when only employing the multi-
modal fusion method, although most of the background noise
is successfully removed, the boundaries of the salient objects
appear blurred. Therefore, only by integrating the advantages

of both techniques can we generate accurate and clear
saliency maps.

ATEY WY

RGB Ours Contour Multi-model

FIGURE 8. Visual comparison of applying only boundary guidance and
applying only multi-modal fusion.
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FIGURE 9. Visual comparison between MFCG-Net and the state-of-the-art RGB-D models.

E. ABLATION STUDY

The ablation analysis shown in Table 2 clearly reveals
the effectiveness of each module. Herein, CAM stands for
Channel Attention Module, SAM denotes Spatial Attention
Module, IEFM represents Interactive Enhancement Fusion
Module, CFEM signifies Contour Feature Extraction Mod-
ule, and CGM refers to the Contour Guidance Module.
The terms “without CAM”, “without SAM”, “without
IEFM”, and “without CFEM&CGM” represent the resultant
models after removing the corresponding modules from
the MFCG-Net model. By comparing the data in the
fifth and seventh columns, it is evident that the incor-
poration of the IEFM module significantly improves the
model’s performance. Similarly, comparing data from the
sixth and seventh columns shows that the inclusion of
the CFEM&CGM module notably enhances the model’s
performance. Furthermore, the CAM and SAM modules
also contribute to the model’s performance boost. These
results underscore the importance of the four sets of
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modules: the CAM module optimizes RGB image features
by introducing channel attention, the SAM module enhances
depth image features by introducing spatial attention, the
IEFM module realizes complementary fusion of different
modal features, and the CFEM&CGM module implements
contour guidance to exclude non-salient objects and refine
the boundaries of salient objects. These four functional
modules all significantly improve the model’s performance.
The final column of data demonstrates that the MFCG-Net
model, which integrates all four sets of modules, achieves the
best results.

In order to reduce computational load, we replaced
the backbone network in this paper, consisting of
two ResNet50 networks, with a Siamese network that
includes a single ResNet50. Table 3 presents a com-
parison of different backbone networks used. Exper-
imental data demonstrates that our proposed method
outperforms Siamese network-based method in terms of
performance.
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TABLE 2. Comparison of ablation study results.

datasets | assessment Without Without Without Without MFCG-Net
metrics CAM SAM IEFM CFEM&CGM
DES MAE] 0.021 0.020 0.025 0.030 0.018
maxF1 0.920 0.923 0.912 0.903 0.941
maxEf 0.964 0.964 0.956 0.941 0.974
ST 0.928 0.930 0.924 0.915 0.943
LFSD MAE| 0.072 0.077 0.081 0.088 0.062
maxF1 0.861 0.858 0.841 0.844 0.890
maxE1 0.900 0.895 0.888 0.880 0.925
N 0.863 0.851 0.843 0.838 0.890
NJU2K | MAE|] 0.037 0.038 0.042 0.045 0.026
maxF1 0917 0.919 0.908 0913 0.949
maxE7 0.945 0.950 0.942 0.938 0.977
St 0915 0.916 0.910 0.907 0.944
NLPR MAE] 0.024 0.026 0.029 0.032 0.020
maxF1 0.914 0.907 0.901 0.893 0.933
maxEf 0.960 0.955 0.951 0.944 0.971
ST 0.927 0.922 0.919 0.912 0.939
SIP MAE| 0.054 0.060 0.062 0.069 0.042
maxF1 0.883 0.879 0.874 0.866 0912
maxE1 0.919 0913 0911 0.904 0.945
ST 0.878 0.872 0.863 0.858 0.904
SSD MAE| 0.049 0.048 0.059 0.067 0.043
maxF1 0.851 0.855 0.819 0.805 0.886
maxET 0.910 0.916 0.878 0.859 0.930
St 0.871 0.874 0.852 0.832 0.887
STERE MAE] 0.043 0.051 0.053 0.062 0.034
maxF1 0.897 0.876 0.878 0.859 0.927
maxEf 0.939 0.928 0.925 0.918 0.962
ST 0.903 0.884 0.881 0.870 0.925
TABLE 3. Experimental results of different backbone networks.
DES LFSD NJU2K NLPR SIP SSD STERE
st |Magl| sT |MAELl | sT |MAE!| sT |MAE!| sT |MAEL| sT |MAELl | sT |MmaE!
Siamese |0.935]0.020|0.872|0.071 |0.9190.034 |0.932| 0.021 [0.891| 0.047 [0.870| 0.051 {0.914] 0.039
Ours 0.943]0.018(0.890| 0.062 |0.944|0.026 |0.939|0.020 [|0.904| 0.042 |0.887| 0.043|0.925| 0.034

V. CONCLUSION

The RGB-D salient object detection method proposed in this
paper aims to effectively integrate multimodal features and,
based on this, use contour features to guide the segmentation
of salient objects. Our approach ingeniously combines
attention mechanisms, interactive cross-modal feature fusion,
contour supervision, and contour feature guidance tech-
niques, thereby effectively eliminating background noise and
achieving clear boundary saliency maps. Compared with the
most advanced methods on various widely-used datasets, our
method demonstrated superior performance. Our approach
provides a novel perspective for understanding and utilizing
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the characteristics of RGB-D images, as well as the contour
information of salient objects. We believe that this innovative
method will offer significant inspiration and impact for
both the research and practical application of salient object
detection.
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