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ABSTRACT Ultra-wideband (UWB) is regarded as the technology with the most potential for precise indoor
location due to its centimeter-level ranging capabilities, good time resolution, and low power consumption.
However, Because of the presence of non-line-of-sight (NLOS) error, the accuracy of UWB localization
deteriorates significantly in harsh and volatile indoor conditions. Therefore, identifying NLOS conditions
is crucial to enhancing the accuracy of UWB location. This paper proposes a convolutional neural network
(CNN) classification method based on an improved Dung Beetle Optimizer (DBO). Firstly, based on the
standard DBO, the Circle chaotic mapping, non-uniform Gaussian variational strategy, and multi-stage
perturbation strategy are used to optimize the exploration capability and enhance the performance of original
DBO method, the superiority-seeking ability of IDBO is demonstrated by testing 23 benchmark functions.
In addition, based on the IDBO algorithm, we propose an IDBO-CNN classification model, with the help
of IDBO, the accuracy of NLOS identification is improved by adjusting the hyperparameters of CNN
to be closer to the optimal solution. Experiments conducted on the open-source dataset demonstrate that
IDBO-CNN is capable of achieve the desired effect. In comparison to the conventional CNN approach, the
F1-score achieved by IDBO-CNN is enhanced by 3.31%, which demonstrates that IDBO-CNN has superior
identification accuracy.

INDEX TERMS UWB localization, NLOS identification, IDBO, circle chaotic mapping, non-uniform
Gaussian variation, multi-stage dynamic disturbance, CNN.

I. INTRODUCTION
The advancement of the Internet of Things technology has
revolutionized the way we live, more and more people are
becoming interested in location-based services in indoor
environments, this is because most of the human activi-
ties take place indoors. UWB, acoustic [1], ZigBee [2],
infrared [3], visible light communication (VLC) [4], radio
frequency identification (RFID) [5], and hybrid positioning
systems employing multiple technologies are the most popu-
lar indoor positioning methods at the moment. It is generally
agreed that the UWB technology is the most promising tech-
nique for accurate location among these several technologies
due to its good time resolution, centi-meter-level ranging
capabilities, low power consumption, great penetration, and
good anti-multipath effect, and other advantages.
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As a time of arrival (TOA) based approach, the
UWB-based positioning system has centimeter-level posi-
tioning accuracy, however, its positioning performance
deteriorates sharply under indoor non-line-of-sight (NLOS)
propagation conditions [6]. NLOS is a common phenomenon
in wireless signal transmission, as shown in Fig. 1, where
the direct signal transmission path between anchor and tag is
obstructed or blocked by the barriers (furniture, wall, goods,
glass window, e.g.). In this situation, the signal between
the transmitter and the receiver may be propagated through
multiple paths, such as diffraction, reflection, refraction, and
penetration [7], consequently, the distance estimated based
on whether TOA or received signal strength indicator (RSSI)
is biased. NLOS propagation can be observed in a variety of
positioning situations in production and daily life, such as
indoor navigation, asset tracking, etc. It is worth mentioning
that UWB positioning is usually located by range-based
methods such as TOA or time difference of arrival (TDOA),
which has high-ranging accuracy, so NLOS propagation has
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FIGURE 1. LOS and NLOS propagation in the UWB-based system.

a more serious impact on the UWB positioning system.
Therefore, high-precision positioning technology must find
a solution to the crucial issue of how to identify and correct
NLOS errors.

In recent years, researchers have proposed many methods
to NLOS identification and mitigation, these methods are
mainly divided into traditional methods, machine learning-
based methods, and deep learning-based methods. Tradi-
tional LOS/NLOS identification method using characteristic
parameters of transmission channel, such as the Rice fac-
tor, kurtosis, skewness, mean excess delay (MED), etc. this
method accuracy is not high and is only suitable for static
environment. Themethod based onmachine learning requires
manual extraction of useful information from UWB signals,
which require much human labor. The methods based on
deep learning generally adopt convolutional neural networks
(CNN), residual network (ResNet) and its combination with
other technologies, current research mainly focuses on the
CNN network structure, ignoring the influence of model
parameters on the recognition rate. To solve the above prob-
lems, this paper proposes a CNN identification method based
on an improved Dung Beetle Optimizer (IDBO), IDBO was
used to optimize CNN parameters and improve recognition
rate. In summary, this paper makes following contributions:

(1) Aiming at the shortcoming of standard DBO, the circle
sequence, non-uniform Gaussian mutation and multi-stage
dynamic perturbation strategy are used to increase the search
space of the algorithm and avoid local optimality.

(2) The benchmark function of CEC2017 is used as the
fitness function, including unimodal, multimodal, separable
and indivisible. Through Wilcoxon rank sum test and sensi-
tivity analysis, it is proved that IDBO has strong optimization
ability and fast convergence speed.

(3) Simulations using channel impulse response (CIR) data
sets show that the IDBO-CNN model does a better job of
identifying NLOS, the identification performance of the sug-
gested IDBO-CNNmodel is comparedwith the existing CNN
model, which shows that the proposed IDBO-CNNmodel has
better feature extraction and identification abilities for NLOS
signals.

The structure of this paper are as follows: The various
related works pertaining to NLOS classification are discussed
in Section II. The fundamental concepts of CNN and DBO
are introduced in Section III, and elaborates the model of

IDBO. In Section IV, the validity of the suggested IDBO
is tested and assessed by benchmark functions. Section V
utilizes open-source data sets to verify and test the validity
and feasibility of NLOS identification based IDBO-CNN.
Finally, we wrap up the study and talk about further research
in Section VI.

II. RELATED WORK
A. NLOS IDENTIFICATION
To enhance indoor location accuracy, many scholars have dis-
cussed several NLOS identification methods from different
perspectives, and current NLOS identification can be split
into three categories according to the basic algorithm used:
traditional methods, machine learning-based methods, and
deep learning-based methods [8].
Traditional NLOS identification methods can be divided

into three categories, namely statistics-based methods [7],
[9], range-based methods [10], location-based methods [11].
Statistics-based methods use the probability density function
(PDF) or the statistical features of CIR, such as the Rice
factor, kurtosis, skewness, MED for NLOS identification.
This method usually needs to extract UWB signal features
and set a reasonable threshold, but the appropriate threshold
is difficult to determine [12] and easy to be affected by the
environment [8]. Range-based methods use variance of range
estimates or PDF of the received signal to identify NLOS, this
method requires a lot of distance measurements, therefore not
suitable for application in real-time UWB positioning sys-
tem. Location-based methods identify NLOS by comparing
external environment information (maps, geometric location,
path continuity) [11] with different subsets of actual ranging
estimates, which are not suitable for indoor scenes with large
changes. In summary, traditional methods are limited by prior
knowledge or the existence of time delays, or it is difficult to
determine the appropriate distribution function or additional
constraints are required.

Machine learning includes random forests (RF) [13], deci-
sion trees (DT) [14], and other methods, these methods need
to manually extract UWB CIR characteristics and estab-
lish the relationship between signal features and LOS/NLOS
propagation through supervised learning. In Reference [15],
an NLOS identification method with fuzzy credibility-based
support vector machines (FC-SVM) and dynamic threshold
comparison (DTC) is proposed, this is done in two steps,
starting with a coarse-grained NLOS classification using the
DTC approach, then moving on to a fine-grained result using
FC-SVM. A UWB positioning system based on RF is pro-
posed in Reference [16], the RF algorithm is innovatively
applied to Kalman filter measurement update, and the Taylor
algorithm is adopted to improve the estimation accuracy.
To address the performance degradation caused by the dispro-
portionate number of LOS and NLOS signals, Che et al. [17]
proposed the Weighted Naive Bayes algorithm to reduce the
impact of the limited number of NLOS components on the
train themodel. The recognition effect of themethod based on
machine learning largely depends on offline data collecting
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and labeling, and selection of channel statistical character-
istics. However, some deep-level features are unknown to
human beings, the collection and labeling of offline data
consume a lot of manpower and are not suitable for dynamic
indoor environment, which limits the further improvement of
recognition performance of machine learning methods.

In recent years, deep learning has developed rapidly in
image processing, natural language processing, etc. Deep
learning techniques are capable of learning complicated,
non-linear and high-dimensional features from massive CIR
data, it has been introduced into NLOS identification by
researchers and has achieved promising results. The research
mainly focuses on CNN [18], temporal convolutional net-
works (TCN) [19], Long Short-Term Memory (LSTM)
[20], and the combination of different technologies [21].
Cui et al. [22] presents a LOS/NLOS classification technique
based on CNN and Morlet wave transformation, which can
identify NLOS scenarios in time-frequency domain, but this
technique is more suitable for deployment in static scenes.
In Reference [23], a network that combines the TCN and
attention mechanisms with the CIR as its input is proposed
to be used to detect NLOS propagation. The particle swarm
optimization (PSO) method is utilized choose the network’s
main parameters, resulting in improved accuracy and a faster
processing speed. The UWB positioning system described
in Reference [20] employs LSTM and uses the CIR of
the UWB signal received to differentiate between LOS and
NLOS conditions. Generative Adversarial Networks (GAN)
are used in Reference [24] to produce diagnostic information
for frame transmission under NLOS circumstances, then,
NLOS situations are identified using CNN. In Reference [25],
the LSTM is used to identify LOS/NLOS situations using
the combined channel features, which are made up of four
characteristics of channel state information (CSI) and CIR.
A reliable approach for identify NLOS utilize fuzzy deci-
sion tree (FDT) that is based on Bayesian optimization
is presented in Reference [26], this technique extracts the
classification characteristics from CIR, generates FDT with
Bayesian optimization, and detects the propagation circum-
stances of the UWB signal. Deep learning technology has
developed rapidly in NLOS identification, but it also has
some shortcomings. The current research focuses on the
adjustment and optimization of the CNN model structure,
ignoring the influence of the model hyperparameters on the
identification performance, which is one of the key factors
affecting the model performance.

B. PARAMETER OPTIMIZATION
Before the CNN model is applied to NLOS recognition, the
internal hyperparameters must be set, which is one of the
key factors affecting the performance of the model [27].
Although genetic algorithm (GA) and PSO have some effects
in parameter optimization, their search in hyperparameter
space is often inefficient. In contrast, DBO [28] is a new
meta-heuristic algorithm and has strong search ability and

fast convergence speed, which can optimize CNN param-
eters more effectively. Some scholars have begun to study
using DBO to optimize CNN parameters. Yuan et al. [27]
introduced a new water-body detection method, which estab-
lished a DBO-CNN model and used the DBO algorithm to
optimize hyperparameter of CNN model to improve detec-
tion performance. Guo et al. [29] proposed a DBO-CNN
model, which automatically adjusts CNN hyperparameters
to identify speakers. By testing the data set of 50 people,
it is proved that the average recognition rate of this method
is improved by 1.22∼4.39%. Zhao et al. [30] proposed a
combined traffic flow prediction model. Firstly, an improved
IDBO algorithm is used to optimize LSTM parameters, then
the predicted value of the subsequence is recombined to get
the final result, indicating that IDBO-LSTM improves the
accuracy of prediction. Zhang and Zhu [31] improved the
DBO algorithm with three strategies, and then optimized a
back-propagation (BP) neural network with IDBO algorithm,
proving that IDBO-BP has a superior performance in pre-
dicting the parameters of heat treated larch sawed timber.
By using DBO algorithm to automatically iteratively search
the optimal LSTM parameters, Zhang et al. [32] proposed
a short-term power load combination prediction model of
DBO-LSTM, the average prediction error was reduced by
25.13%. However, every meta-heuristic algorithm has its lim-
itations and cannot solve all problems. Due to the randomness
of DBO algorithm, it may lead to local optimization, so there
is still room for improvement.

To resolve the problems above, a new IDBO algorithm
is proposed to optimize CNN parameters by using several
strategies. Simulation results show that the CNN classifier
with optimized parameters can identify NLOS conditions
more accurately in complex indoor environments, compared
with existing state-of-the-art algorithms.

III. MODELS AND ALGORITHMS
A. CONVOLUTIONAL NEURAL NETWORK
Themain feature of CNN is convolutional operation, themain
steps of CNN are as follows: (1) extraction of initial features
by the convolutional layer; (2) extraction of main features by
the pooling layer; (3) aggregation of various features by the
fully connected layer; and finally, classification prediction.

(1) Convolutional layer: Convolution in CNN is to calcu-
late the product of each element point in the input data matrix
with the corresponding element point in the coverage of the
convolution kernel matrix and add up all the products, the
cumulative sum is the output obtained from each convolution
operation (feature graph).

(2) Pooling layer: The purpose of the pooling layer is to
decrease the dimensionality of the data while preserving the
characteristics of the resulting feature graph. In essence, the
pooling layer divides the feature graph generated by convo-
lution into multiple non-overlapping n×n regions, and uses
the sliding window to slide through each region successively
and pool the elements within the region. This paper adopts
maximum pooling.
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FIGURE 2. CNN structure.

(3) Fully connected layer: Operations such as the con-
volution layer and pooling layer in CNN are equivalent to
mapping the input data to the feature space, while the full
connection layer is equivalent to mapping the previously
obtained features to the sample space. The fully connected
layer concatenates all the features of the input data into a
one-dimensional feature space. A weighted summation of the
fully connected layer inputs and an activation function can
obtain the corresponding output.

B. DBO ALGORITHM
The DBO was suggested based on the behavior of dung
beetles, which roll, dance, forage, steal, and breed [28]. This
algorithm introduces certain techniques, such as identify-
ing the direction of advancement based on dance behavior.
With respect to convergence time and solution accuracy,
this algorithm is competitive with existing optimization
techniques. The four DBO behaviors are listed below:

1) ROLLING BALL
Dung beetles roll huge dung balls, they make the ball trav-
elling in a line by using the sun as a guide. As it rolls, the
rolling dung beetle alters its position in accordance with the
equation:

xi(t + 1) = xi(t)+ α × k × xi(t − 1)+ b×1x

1x =
∣∣xi(t)− Xw∣∣ (1)

where, the iteration count is denoted by t , the location of the
i-th beetle during the t-th iteration is represented by xi(t).
a constant parameter denoting the deviation factor is k ∈
(0, 0.2], b ∈ (0, 1) is a fixed constant, the value of α is 1 or
−1, Xw and 1x are the worst location and light brightness
variation, respectively.

Dung beetles encounter obstacles, they must dance to
reposition themselves and find another way. To imitate this
dancing action, a tangent function is employed. The ball is
kept rolling backwards until the dung beetle decides on a new
direction. the following is the dung beetle’s position formula:

xi(t + 1) = xi(t)+ tan(θ ) |xi(t)− xi(t − 1)| (2)

where, θ represents the deflection angle and [0, π] indicates
the value of the variable.

2) SPAWNING
Female dung beetles hide dung balls in a safe area to lay
their eggs in nature. Motivated by this action, the following
methodology of selecting boundaries is used to imitate the
dung beetle oviposition area:

Lb∗ = max
(
X∗ × (1− R),Lb

)
Ub∗ = min

(
X∗ × (1+ R),Ub

)
(3)

where X∗ indicates the location that is currently the most
optimal, the lower and upper boundaries of the oviposition
area are denoted by Lb∗ and Ub∗, R = 1− t/Tmax, Tmax rep-
resents the maximum number of iterations, the optimization
problem’s upper bounds and lower bounds are denoted by Lb
and Ub.

The female beetle will choose an egg to lay in the desig-
nated oviposition area once it has been identified. According
to Equation (3), the value of R will primarily determine how
dynamically the oviposition area’s boundary range changes.
During iteration, the egg’s position dynamically changes,
as specified as:

Xi(t + 1) = X∗ + b1 ×
(
Xi(t)− Lb∗

)
+ b2 ×

(
Xi(t)− Ub∗

)
(4)

where the location of the i-th egg in the t-th iteration is
indicated by Xi(t), the two stochastic vectors b1 and b2 not
connected with one another and have dimensions of 1 D. The
optimization problem’s size is D.

3) FORAGING
Female beetle eggs hatch and expand throughout time,
in search of food, some grown small beetles will emerge from
the soil, the optimum foraging habitat for small beetles is
depicted below:

Lbb = max
(
Xb × (1− R),Lb

)
Ubb = min

(
Xb × (1+ R),Ub

)
(5)
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FIGURE 3. Comparison of random generation method and circle chaotic
mapping method (a) Circle chaotic mapping initialization; (b) Random
initialization.

Xb is the global optimal position, the lower and upper bound-
aries of the ideal foraging area are denoted by Lbb and Ubb,
as a result, The following is an updated description of the little
dung beetle’s location.

xi(t + 1) = xi(t)+ C1 ×

(
xi(t)− Lbb

)
+ C2 ×

(
xi(t)− Ubb

)
(6)

where xi(t) denotes the little dung beetle’s location at the t-th
iteration. C1 stands for normal-distributed random variable,
C2 is a random vector that ranges from 0 to 1.

4) STEALING
Some beetles are known as thieves because they take other
beetles’ dung balls. Since Xb is the ideal food supply accord-
ing to Equation (5), it follows that the location around Xb

is the best area for competitive food. The thief’s location is
updated as follows during the iteration process:

xi(t + 1) = Xb + S × g×
(∣∣xi(t)− X∗∣∣+ ∣∣∣xi(t)− Xb∣∣∣)

(7)

where xi(t) denotes the thief’s position at the t-th iteration.
the value of s is fixed constant, while g is a 1-dimensional
random vector that follows a normal distribution.

C. IMPROVED DBO
The traditional DBO algorithm has several drawbacks,
including limited global searchability and the tendency to fall
into local optimality, this research suggests a more effective
dung beetle optimizer to overcome these shortcomings.

1) CIRCLE CHAOTIC MAPPING
In the original DBO algorithm, random population initializa-
tion is adopted, which may lead to insufficient population
diversity and excessive convergence in subsequent itera-
tions. A metaheuristic algorithm’s population diversity can
be increased by using chaotic sequences because of their
randomness and ergodicity [33]. The fundamental strategy
utilizes chaos models to map chaotic sequences into individ-
ual search areas, such as Kent [34], Tent [35] or Logistic [36]
chaos mapping.

When choosing a chaotic map, two important properties
must be considered: simplicity and ergodicity. Due to its
uniform phase distribution and straightforward Equations,
piecewise linear chaotic mapping satisfies these require-
ments. In this paper, a random sequence is produced via circle
chaotic mapping, the following is the formula:

xi+1 = mod
(
xi + 0.2−

(
0.5
2π

)
sin (2πxi) , 1

)
(8)

Particle distribution using Circle mapping in (a) is more
uniform than random distribution in (b), avoiding the sit-
uation where there are fewer dung beetle populations near
the optimal solution. The initial position distribution of the
improved population was more uniform, which expanded
the search scope of dung beetle groups in space, increased the
diversity of group positions, and fixed the algorithm’s flaw of
being susceptible to local extreme values, thus enhance the
optimization efficiency of the DBO algorithm.

2) MULTI-STAGE DYNAMIC DISTURBANCE STRATEGY
The rolling ball process can enhance the search randomness
and the population diversity, but the solution of the new
individual dung beetle may not be accurate and may be prone
to noise, which may negatively affect the search effect of
the DBO algorithm. In this article, a multi-stage dynamic
perturbation strategy is proposed for the rolling ball process
to update the optimal solution position by stage dynamic
perturbation to avoid falling into local optimal. Its formula
is shown in (9):

xi(t + 1) = N (xi(t), σ ) (9)

where σ represents the uncertainty relative to xi(t + 1) and is
non-increasing function with t iterations, this is its modified
formula:

σ =


σ1 , t < α1T

σ1 −
(σ1 − σ2) (t − α1T )

(α2T − α1T )
α1T < t < α2T

σ2 , t > α2T

(10)
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TABLE 1. Major notations used in this paper.

where, α represents the radius parameter of the normal dis-
turbance to the original optimal dung beetle position, and
σ1 < σ2; in this paper, α1 = 0.000001, σ2 = 0.9; α1, α2 are
the control parameters of the change of radius; and α1 < α2,
in this paper, α1 = 0.4, α2 = 0.7; the iterations number is t ,
and the maximum iterations number is T .

3) NON-UNIFORM GAUSSIAN VARIATION STRATEGY
The spawning process refers to the iterative process of the
algorithm, in which dung beetles exchange information and
merge updates to speed up the search speed and expand the
search space. This process can be separated into two steps:
information exchange and information merging. Information
merging may result in multiple dung beetles merging with
each other, but the resulting individual solution may not be
as good or worse than the original one. This may cause the
solution set of the algorithm to shrink and the search effi-
ciency to decrease. In this paper, we propose a non-uniform
Gaussian variation strategy for the reproduction process,
namely:

xi(t + 1) = xi(t)+1
(
t,GDjt

)
(11)

1(t, y) = y

(
1− r

(
1−t
Tmax

)b)
(12)

GDit = N
((
F − x ij

)
, σ
)

(13)

where, 1
(
t,GDjt

)
is the step size of non-uniform varia-

tion, it is a mutation operator that adaptively adjusts the
step size by Gaussian distribution

(
GDjt

)
; r is a uniformly

generated random number within the range of 0 to 1; b is
a system parameter, determines the uniformity of variation

calculations, values for b = 2; F is the target position; The
Gaussian distribution has a standard deviation denoted by σ .
The non-uniform Gaussian variation strategy has the fol-

lowing characteristics: 1) The update object is the dung
beetle with the worst fitness in the population, instead of
all the individuals in the current population, which reduces
the complexity; 2) As can be seen from Equation (9), the
update formula takes the individual itself as the basis, selects
the information merging object and the current individual
for Gaussian distribution, and adaptively adjusts the learning
strategy of variation step length. This approach to updating
is helpful for sustaining population variety and enhancing the
global search capability of the algorithm.

D. IDBO ALGORITHM FRAMEWORK AND COMPLEXITY
ANALYSIS
Assuming that N , M , D represents the population size, the
problem dimension and the maximum number of iterations,
respectively. The time complexity of the initial phase is C1=
O (N ∗ D) and the complexity during iteration is C2 = O
(M ∗ N ∗ D), so the complexity of the DBO is C1 + C2
which is O(N ). IDBO does not use greedy strategies, reverse
learning, etc., which would add complexity, the complexity
of IDBO algorithm is O(N ) in both the initialization stage
and the rolling stage. Assuming that spawning dung beetles
account for P%, so the complexity of the spawning stage isO
(P ∗ M ∗ N ∗ D), The total complexity is O(N ), so the IDBO
has the same complexity as the DBO algorithm [37].

Algorithm IDBO Algorithm
Require: The maximum iteration , the size of the particle’s popula-
tionN . Obtain an initialized population using circle chaotic mapping
strategy.
Ensure: Optimal position Xb and its fitness value .

1: Initialize the particle’s population i← 1,2,. . . , N and define
its relevant parameters

2: while ≤ do
3: for i = 1 to Number of rolling dung beetles do
4: α = rand (1)
5: if ≤ 0.9 then
6: Update Rolling Dung Beetle Location by Eq. (1).
7: else
8: Rolling the ball in the encounter of obstacles by Eq. (9)

and Eq. (10) to update.
9: end if
10: end for
11: The value of the nonlinear convergence factor is calculated

by R = 1− t/Tmax .
12: for i = 1 to Number of Spawning dung beetles do
13: Updating of Spawning dung beetles by Eq. (10), Eq. (11)

and Eq. (12).
14: end for
15: for i = 1 to Number of Foraging dung beetles do
16: Updating of foraging dung beetles by Eq. (5) and Eq. (6).
17: end for
18: for i = 1 to Number of Stealing dung beetles do
19: Updating of stealing dung beetle by Eq. (7).
20: end for
21: end while
22: Return Xb and its fitness value fb;
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FIGURE 4. Optimization process of CNN parameters using IDBO algorithm.

E. CNN METHOD BASED ON IDBO OPTIMIZATION
The NLOS identification model is established in this research
using the CNN approach, however, it is challenging to deter-
mine the ideal hyperparameter combination for a given task
because CNN has many hyperparameters. Using past empiri-
cal methods to replicate the parameter values used in other
problems, or to find the best value through trial and error
will consume a lot of cost and time, and may not be the
optimal solution. Therefore, the IDBO-CNN is suggested
in this paper, the essence of IDBO-CNN is to adjust the
hyperparameters of CNN to the optimal solution by using
the fast convergence rate and accurate global search ability
of IDBO, so as to enhance identification accuracy. Fig. 4
shows the IDBO-CNN procedure, the following is the major
procedures:

(1) IDBO algorithm initialization, including the population
size, the percentage of dung beetles’ four behaviors, variable
parameter dimension, maximum iterations (Tmax), and upper
and lower bounds (Lb,Ub).
(2) Initialize each dung beetle’s location.
(3) Record the global optimum position after the fitness

values are calculated. In this research, we develop the fitness
function by computing the disparity between the true and
forecasted values using Mean Square Error, the following is

the formula:

MSE =
1
n

n∑
i

(̂yi − yi)2 (14)

(4) Update each dung beetle’s location as follows: for the
rolling dung beetle, move it in obstacle-free mode or dance in
obstacle mode using Equations (1) or Equations (2); for the
breeding dung beetle, calculate its location Equations (11),
Equations (12), and Equations (13); for a foraging dung
beetle, calculate its location using Equations (5) and
Equations (6); for the thieving dung beetle, calculate its
location using Equation (7).

(5) After the update, check whether each dung beetle’s
location surpasses Lb and Ub. If so, repeat step 3. Otherwise,
continue to execute.

(6) Updated optimal solution and value.
(7) Repeating Steps 3, 4, 5, and 6 until the maximum

iteration count is reached, and then feed the parameters into
the CNN model.

IV. RESULTS ANALYSIS
In this section, through a set of simulation experiments
employing benchmark functions, the efficacy of the IDBO
method is evaluated.
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TABLE 2. Benchmark function.

FIGURE 5. 3D view of partial unimodal functions.

A. BENCHMARK FUNCTIONS FOR OPTIMIZATION
To evaluate the IDBO optimization algorithms, twenty-
three test functions, previously published in [38] and [39],

were selected. We evaluated the convergence time and
accuracy of the method using the unimodal test functions
F1–F7, which possess a unique global optimal solution.
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FIGURE 6. 3D view of partial multimodal functions.

FIGURE 7. 3D view of partial multimodal functions with fix dimension.

TABLE 3. Benchmark function.

The global search of the method was evaluated using
the multimodal test functions F8–F14, which have one
global optimum solution and many local optimal solu-
tions. Multimodal test functions for the functions F14–F23
with fixed dimensions. The dimensions, search ranges, and
theoretical optimum solutions of these benchmark test func-
tions are listed in Table 2. To make these test functions

and their optimum solution easier to understand, some
of these functions are seen in three-dimensional form in
Figs. 5, 6, and 7.

B. PARAMETER SETTINGS
Since the DBO algorithm has fewer variants, to assess its
reliability, we compare IDBO with five other fundamental
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TABLE 4. Benchmark function optimization results.
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TABLE 4. (Continued.) Benchmark function optimization results.

FIGURE 8. The IDBO method and other optimizers’ convergence curves.

meta-heuristics methods: Elephant Herding Optimization
(EHO) [40], Comprehensive Learning Particle Swarm Opti-
mizer (CLPSO) [41], Grey Wolf Optimization (GWO) [42],

Whale Optimization Algorithm (WOA) [43] and DBO [28].
The details parameter settings of these optimization
algorithms are shown in Table 3.
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TABLE 5. Wilcoxon rank sum test.

Maximum iterations are set at 200 and a uniform popula-
tion size of 50 so that the IDBO method and its comparison
algorithms can be evaluated more accurately. Moreover, each
model was run independently twenty times, the dimensions
were defined as 2, 4, 10, 30 and 50. So as to mitigate the
impact of the random factor on the experiment, the most
optimal values, standard deviations, averages, and of the
optimization algorithm were recorded one by one for each
simulation experiment.

MatlabR2022b was used to simulate the experiment on
a Windows 10 operating system with an i7-13700 proces-
sor. IDBO and other classical optimization algorithms were
tested in a standard test function to illustrate the validity by
comparing the best value, mean value and standard errors of
fitness.

C. ANALYSIS OF CONVERGENCE CURVES
Unimodal functions are very suitable for verifying the devel-
opment abilities of algorithms in exploring optimal solutions.
Meanwhile, multimodal functions can be used to evalu-
ate IDBO’s ability to evade local optimal solutions during
exploration. The final results of the optimization method
are presented in Table 4. The optimal solution is shown
in boldface. Except for F13 and F19, IDBO is superior to
other algorithms, and its Standard deviation, average value,

and optimal value are all optimal. It is apparent that the
effectiveness of the IDBO is superior to that of the DBO,
demonstrating that the suggested algorithm presented in this
paper can enhance the search capability.

For more intuitive observation and comparison of the con-
vergence speed, accuracy, and capacity to avoid local optima
of each algorithm, Fig. 8 shows the convergence curves of
IDBO and five basic meta-heuristics methods. The number of
iterations is shown on the horizontal axis, and the magnitude
of adaptation value is represented on the vertical axis. The
adaptation value is expressed as a logarithm in base 10 to
better illustrate the convergence trend.

According to Fig. 8, IDBO demonstrates the quickest con-
vergence as well as the highest accuracy in the functions
F1-F12, F15-F18, and F20-F23, this suggests that IDBO is
more likely to find and converge to the global optimum,
which is due to the circle chaotic mapping in population
initialization stage, so that the distribution of dung beetles
is more uniform than random distribution. For function F13,
although IDBO is not the optimal solution, it has little differ-
ence from the results of other algorithms, it may be that noise
is generated in the mutation process. For function F14, the
performance is unstable, most of the time IDBO converges
quickly at the inflection point and reaches optimal accu-
racy after iteration, and occasionally the result is the worst,
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this is because the dynamic disturbance makes the IDBO
algorithm exhibit strong ability in F14, F18 and some other
functions. For function F19, DBO obtains the optimal value
after convergence, followed by WOA and IDBO, probably
because it is trapped in a local optimum. In conclusion,
the circle sequence, non-uniform Gaussian variation strat-
egy, andmulti-stage perturbation strategy effectively improve
the IDBO algorithm’s global and local optimization capa-
bilities, indicating that the improved strategy suggested in
this paper effectively enhances the convergence speed and
accuracy.

D. WILCOXON RANK SUM TEST
To verify the effectiveness of IDBO, it is not enough to
compare the convergence analysis, standard deviation and
mean, we need to compare algorithm effectiveness at the
statistical level such as theWilcoxon statistical test [44], [45].
TheWilcoxon rank sum test is a nonparametric statistical test
used to determine whether there are significant differences
between IDBO and different algorithms, therefore, we tested
each of the six algorithms 50 times independently on 23 test
functions. The Wilcoxon rank sum test was performed at the
significance level of 0.05 to determine the significant differ-
ence between the six compared algorithms and the solution
results of IDBO. As shown in Tables 5, when the comparison
result of the IDBO with other algorithms is less than 5%,
it indicates that there is a noticeable variation. Conversely,
when the comparison result is greater than 5%, the difference
between the two algorithms is not noticeable. From Tables 4,
it can be seen that the IDBO algorithm is different from
the other algorithms. In summary, IDBO has a significant
advantage over DBO, GWO,WOA, CLPSO, and EHO, so the
superiority of the IDBO algorithm proposed in this paper is
statistically significant.

E. SENSITIVITY ANALYSIS
This section illustrates the effect of different IDBO improve-
ment strategies through sensitivity analysis. each function
was run 20 times independently, and the average value was
used to analyze the impact of not adopting the improvement
strategy on IDBO. Specifically, IDBO1 does not use the circle
chaotic mapping strategy in population initialization and will
adopt the traditional population random deployment setup.
In IDBO2, the proposed non-uniform Gaussian variational
strategy is no longer used to perform mutation operations
on the dung beetle with the worst fitness in the population,
random selection is performed according to the original DBO.
In IDBO3, the multi-stage dynamic disturbance strategy for
each iteration is no longer used, and the resulting tests are
shown in Table 6.

It can be seen fromTable 6 that the performances in IDBO1
significantly decreases if the circle chaotic mapping strategy
in population initialization is removed, which indicates that
the circle chaotic mapping strategy serves a critical part
in the features of the IDBO. While the IDBO2 has better

TABLE 6. IDBO and other formats run results.

convergence accuracy than IDBO1, probably non-uniform
Gaussian variational maintains population diversity and
enhances the global search ability of the algorithm. There is
little difference in convergence between IDBO2 and IDBO3,
probably multi-stage dynamic disturbance strategy in rolling
ball may be prone to noise while updating the position of the
optimal solution. This demonstrate that the effect of different
strategies on algorithm performance improvement is also dif-
ferent, but if the three strategies are used at the same time, not
only the accuracy is improved, but also improve the stability
of the algorithm, proving that the improvement strategy has
authenticity and effectiveness.

V. NLOS IDENTIFICATION EXPERIMENTAL RESEARCH
To verify the effectiveness of our proposed IDBO-CNN
for NLOS identification, this section leverages UWB
data collected from real-world environments to set up
simulation experiments to evaluate NLOS identification
performance.

A. DATA PRESENTATION AND PREPROCESSING
The dataset used in this paper comes from the elastic
Wireless Networking Experimentation (eWINE) project,
which uses a DWM1000 RF transceiver to collect indoor
UWB signals. UWB signals in seven different environments,
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FIGURE 9. The proposed CNN structure and parameters in this paper.

collected 3000 LOS data and 3000 NLOS data for each
scene. The dataset collected a total of 42000 data, includ-
ing 21000 LOS and 21000 NLOS, more information can be
found at https://www.ewine-project.eu/. The dataset consists
of 7 CSV format files, each of which stores 6000 UWB
data collected in different scenarios. Each dataset file has
1024 columns of data, including whether it is an NLOS
signal, 1016 CIR data from CIR0 to CIR1015, time of flight,
noise standard deviation, length of leading code, and other
characteristic data.

According to the tips of the eWINE project, the CIR data
needs to be divided by the number of obtained leading code
samples. In this paper, 7 data set files are processed by CIR
data according to the tips of the eWINE project, and then the
unused data is deleted, leaving only 1016 columns of data that
need to be used. The CIR data is normalized to increase the
training speed of the model, and the dataset in this paper was
obtained through the above operations.

B. NETWORK STRUCTURE
When the input CIR signal is more complex, that is, more
sample data are included in the CIR to be identified, in order
to improve the recognition rate of NLOS, convolutional neu-
ral networks generally need to gain a deeper understanding
of the input data by analyzing its more abstract and complex
characteristics. In order to enable the CNN to learn more
feature parameters, more layers are usually set reasonably in
practice. This research utilized a CNN with an output layer,
two fully-connected layers, three pooling layers, and three
convolutional layers. Fig. 9 shows the proposed convolutional
neural network topology in this paper.

The hierarchical distribution determines that CNN has
many hyperparameters, and the hyperparameter optimization
problem is to select an optimal hyperparameter collocation in
the networkmodel. For a given problem, it is difficult to know
the best combination scheme of hyperparameters, it will cost
many experimental and time to reproduce the values used
in other problems by the previous empirical method or to

find the best values through repeated trials, and you may not
obtain the optimal solution. Therefore, this paper proposes
to IDBO based on circle sequence, non-uniform Gaussian
variation strategy, and multi-stage perturbation strategy, and
then optimize the parameters of CNN. The hyperparameter
this study focuses on are as follows:

(1) BatchSize. The larger the BatchSize, the faster the
training, the larger the memory usage, but the slower
the convergence. Smaller batch sizes help to general-
ize performance, while larger ones can improve accuracy,
speed.

(2) L2 Regularization. Larger values of L2 regulariza-
tion parameter make the model more generalized, but set-
ting the parameter too high will reduce the model fitting
ability.

(3) Learning rate. If the learning rate is too low, it is easy
for the model to fall into a local optimum, and if it is too high,
it is easy to miss the global optimum and fail to complete the
training.

The essence of IDBO-CNN is to adjust the hyperparam-
eters of CNN near the optimal solution by using the faster
convergence rate of IDBO and accurate global optimization
ability. Thus, it can reduce the time of model construction
and improve the accuracy of prediction. The position of
each beetle is represented by a 3-dimensional vector Pi(pi1,
pi2, pi3), whose dimension is equal to the number of hyper-
parameters to be optimized. Specific optimization methods
are as follows: the hyperparameter of the CNN model is
used as the beetle’s location parameter, the recognition rate
of the CNN model is regarded as the fitness of the beetle
at the current position. Then, let each beetle move to a new
position according to the strategy in Section III-C. The beetle
population is set to 50, and the number of searches is set to
30. After all searches are done, the beetle with the greatest
fitness is selected, and its positional parameters represent the
best hyperparameters.

C. ANALYSIS OF EXPERIMENTAL RESULTS
In this paper, six environments in the dataset (one of two
office environments is selected) are selected for experiments,
the dataset for each environment is separated into training and
test sets, with 80% of the data assigned to the former and
20% to the latter. After IDBO optimization, the optimal initial
learning rate is 0.2, the optimal L2 regularization coefficient
is 0.1, the minimum batch size is set to 16, iterations are
limited to 2000, the random gradient descent optimizer is
used, and the contribution of update parameters from the
previous iteration to the current iteration’s random gradient
descent is set to 0.9.

According to the parameters and model evaluation indexes
set above, IDBO-CNNmodels belonging to 6 kinds of indoor
scenes are trained, respectively. The training accuracy of
scene 6 (the boiler room) is illustrated by the change curve
in Fig. 10, which is progressively increasing over iterations.
It can be seen that there is no overfitting phenomenon in the
scenario 6 model, and the final F1 value is 90.96%.
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TABLE 7. NLOS identification performance of IDBO-CNN in different scenarios.

TABLE 8. Hyperparameter setting.

TABLE 9. Comparison of NLOS identification performance between the suggested method and existing CNN methods.

FIGURE 10. The curve of the training process: (a) Accuracy curve; (b) Loss
curve.

Each of the six environments in the dataset has specific
multipath propagation characteristics, thus increasing the
robustness of the identification model. In this paper, the
performance of six scene classification models was tested.
Table 7 shows that the NLOS classification accuracy of all

six scenes reached more than 86%, from the overall clas-
sification performance, bedroom scene and office scene are
better than other scenes, the workshop scene model has the
worst classification performance. A rough estimate is that this
dataset is affected by the multipath effect and NLOS during
measurement, and the dataset lacks generalization ability,
resulting in lower classification performance than other
scenes.

To assess the NLOS classification performance of the
IDBO-CNN model more accurately, a comparison test of
the CNN classification model was set up. The experimental
data set of scenario1(office scene) is selected, Table 8 and
Table 9 show the parameter Settings and experimental results
respectively.

Table 9 shows that the accuracy the proposed method in
scenario 6 is 90.91%, which performs better than traditional
CNN method with 89.32% and 88.73% accuracy, it is also
higher than the method proposed by Jiang et al. [46]. There-
fore, in the same scene, by using the IDBO to optimize the
parameters of CNN, the feature extraction ability and identi-
fication ability of the model for NLOS signals are improved,
and the overall performance is better than the existing con-
volutional neural network recognition method with manually
set parameters.

VI. CONCLUSION
The indoor positioning accuracy of UWB decreases in
NLOS scenarios, and identifying NLOS can achieve bet-
ter positioning accuracy. Aiming at the problem of NLOS
identification in UWB positioning, this paper proposes
a CNN classification algorithm based on multi-strategy
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improved DBO. Firstly, based on the standard DBO, the
Circle chaotic mapping, non-uniform Gaussian variational
strategy, and multi-stage perturbation strategy are used to
enhance the optimization performance of the DBO method,
the superiority-seeking ability of IDBO is demonstrated by
testing 23 different types of benchmark functions. In addition,
based on the IDBO algorithm, we suggested an IDBO-CNN
model to improve the NLOS identification effectiveness.
Through the utilization of IDBO’s quicker convergence time
and more accurate global optimization capability, the hyper-
parameters of CNN are tuned to reach the optimal solution,
thereby enhance the precision of NLOS identification. The
results of the simulation experiment show that IDBO-CNN
achieves the expected effect in 6 different indoor scenes,
and the F1 score is enhanced by 3.31% compared with the
traditional CNN method, which proves that IDBO-CNN has
better identification accuracy and robustness.

IDBO-CNN still has some shortcomings because the pro-
posed algorithm in this paper is to train the respective
signal identification models in different scenarios, and when
one identification model is applied to another scenario, the
NLOS signal identification effect is not ideal, in future work,
we hope to realize anUWBNLOS signal identificationmodel
suitable for different scenarios and to enhance the model’s
robustness and identification accuracy.
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