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ABSTRACT Over the last decade, deep learning applications in biomedical research have exploded,
demonstrating their ability to often outperform previous machine learning approaches in various tasks.
However, training deep learningmodels for biomedical applications requires large amounts of data annotated
by experts, whose collection is often time- and cost- prohibitive. Self-Supervised Learning (SSL) has
emerged as a prominent solution for such problems, as it allows learning powerful representations from
vast unlabeled data by producing supervisory signals directly from the data. The high number of recent
works employing the self-supervised learning paradigm for the analysis of biomedical signals (biosignals)
can make it difficult for researchers to have a complete picture of the current research state. Therefore, this
paper aims at outlining and clarifying the state-of-the-art in the domain. The article: briefly summarizes
the nature and acquisition modality of the main biosignals; introduces the self-supervised learning method,
focusing on the different pretraining strategies; provides a concise overview of the works employing SSL
for the analysis of different types of biosignals; provides an overall analysis of critical aspects to consider
when employing SSL to biosignals, also highlighting current open challenges. The analysis of the scientific
literature highlights the importance of SSL, confirming its potential to improve models’ performance and
robustness, and to promote the integration of deep learning into clinical tasks.

INDEX TERMS Biosignals, contrastive learning (CL), deep learning (DL), electrocardiography (ECG),
electroencephalography (EEG), electromyography (EMG), multimodal, self-supervised learning (SSL).

I. INTRODUCTION
In the last decade, deep learning has emerged as a pow-
erful and versatile tool capable of achieving state-of-the-
art performance in various fields. Starting from AlexNet
[1], winner of the 2012 Imagenet Large Scale Visual
Recognition Challenge (ILSVRC) [2], many of the biggest
companies have invested considerable resources to promote
and introduce deep learning applications in their products
and software. Notorious examples are Google DeepMind’s
AlphaZero [3], a reinforcement learning algorithm capable
of winning against the strongest humans and computer
engines on various board games (e.g., chess, go, shoji),
Google DeepMind’s AlphaFold [4], winner of the 13th and
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14th Critical Assessment of Techniques for Protein Structure
Prediction (CASP), and the novel OpenAI’s ChatGPT,1 con-
sidered a fundamental step in Natural Language Processing
(NLP). The mentioned examples demonstrate how deep
learning can be successfully applied in various research areas;
therefore, medicine was not excluded by the ‘‘golden fever’’
of Artificial Intelligence (AI). Looking at PubMed,2 one of
the most used search engines for biomedical literature [5],
it is possible to see that the number of yearly published
works involving deep learning has increased from less than
300 in 2016 to approximately 17 000 in 2022 (a remarkable
increase of approximately 5 700%). However, despite the
rocketing number of applications, the use of deep learning

1[Online]. Available: https://openai.com/blog/chatgpt/
2[Online]. Available: https://pubmed.ncbi.nlm.nih.gov/
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is still limited in common clinical practice [6]. Deep neural
networks are usually trained in a supervised way, where
a manually labeled dataset is fed to train, optimize and
test the model. At first, given the novelty of the field, this
approach was able to often outperform previous state-of-the-
art algorithms based on more naive approaches [7]. More
recently, considering the increasing complexity of models
and tasks where deep learning can be involved, limitations
have started to be highlighted [8]. Training large neural
networks that can generalize well in the biomedical domain
requires a huge amount of highly heterogeneous annotated
data, which is difficult to collect in medical research [9].
In fact, manually labeling medical data is a time-consuming
task that only experts in the field can perform. Furthermore,
their collection is often hindered by ethical (e.g., trial
approval, anonymization) and economical aspects, which
make data provision and annotation extremely challenging.
In contrast, thanks to the digitization of the healthcare
sector, a large amount of unlabeled data is generated every
day, with an order of magnitude already reaching the
exa-scale [10]. Exploiting them could greatly improve the
performance and robustness of deep learning models, which
is why the research community has started to propose novel
unsupervised solutions.

Self-Supervised Learning (SSL) has emerged as one of
the most prominent paradigms in this context. Its goal is to
learn robust general-purpose representations from the data
by exploiting an auxiliary task (pretext task); then, transfer
the acquired knowledge to a new model designed to solve
the target (medical) task. Self-supervised learning has been
successfully applied in many fields, such as natural language
processing [11], computer vision [12], speech recognition
[13], and robotics [14]. In medical research, computer vision
is themost investigated area [15]. Here, self-supervised learn-
ing is employed for classification, segmentation, registration
and reconstruction of different types of images, from 2D
microscopy for digital pathology [16] to 3D MRI (magnetic
resonance imaging) [17]. The interested reader can consult
the work of Saeed et al. [18] and that of Xu [19], who
have already reviewed SSL implementations in the medical
imaging domain.

Biomedical signals (biosignals) represent a fundamental
resource in the medical domain, including many modalities
such as electroencephalography (EEG), electromyography
(EMG), and electrocardiography (ECG). Moreover, with the
progress of the IoT (Internet of Things) and the spread of
wearable devices, their role is increasingly becoming more
relevant, especially in telehealth and precision medicine [20].
As a matter of fact, several researchers have already proposed
SSL strategies for the analysis of biosignals. However,
considering the large and constantly growing number of
publications, it is difficult to keep up with the progress of
the state of the art. A review targeting SSL applications
to biosignals is not available according to the best of
our knowledge. In fact, previously cited works focus on

different types of data (medical imaging) [19], [20], specific
biomedical signals (EEG) [21], or specific self-supervised
learning paradigms (contrastive learning) [15]. Moreover,
they often tend to extensively describe SSL pretraining
strategies and the surveyed works but do not put the same
effort into discussing special aspects to consider when
employing existing SSL techniques for a specific biosignal
analysis task (the work of Rafiei et al. [21] for EEG data
is an exception), which are crucial for effectively designing
novel strategies. Therefore, this paper aims at solving these
limitations by providing a resource where readers can receive
an outline of the main principles behind the most commonly
used SSL frameworks for the analysis of biomedical signals
and have an overview of the current state-of-the-art of the
domain, regardless of the nature of the signal or of the
investigated self-supervised paradigm.

The rest of the work is organized as follows. Section II
provides a brief description of the most important types of
biosignals, with a focus on the ones encountered during the
survey. Sections III and IV introduce the self-supervised
learning paradigm, describing its main concepts and different
pretext task strategies. In Section V, a brief description of
the survey methodology is provided to the reader. Section VI
reports and analyzes SSL applications for the analysis of
different types of biosignals (e.g., ECG, EEG, and EMG),
also considering multimodal approaches. Section VII aims to
answer to different questions related to the application of SSL
for biosignals analysis, while also providing a description
of critical issues and open challenges. Finally, Section VIII
summarizes the most important outcomes of the work.

II. BIOSIGNALS
As per Bansal’s Real-Time Data Acquisition in Human
Physiology [25]: ‘‘Biological signals, or Biosignals, are
space, time, or space–time records of a biological event
such as a beating heart or a contracting muscle. The
electrical, chemical, and mechanical activity that occurs
during these biological events often produces signals that
can be measured and analyzed. Biosignals, therefore, contain
useful information that can be used to understand the
underlying physiological mechanisms of a specific biological
event or system, and which may be useful for medical
diagnosis’’.

Most of the biosignals are of the electrical type, collected
by electrodes placed in specific parts of the body (e.g., head
for electroencephalography, chest and limbs for electrocar-
diography, eyes’ region for electrooculography), generally in
a noninvasive way. Moreover, with the spread of wearable
devices, the acquisition and collection of various types of
biological signals has become much easier, hence their
exploitation for clinical tasks [26]. For example, Continuous
Glucose Monitoring (CGM) devices can help diabetic people
manage their disease by detecting real-time variations of
the blood glucose concentration at intervals of usually one,
three, or fiveminutes [27].Moreover, other devices like smart
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FIGURE 1. Example of four seconds of three different biosignals (ECG, EEG, and EMG) with normal (top) and abnormal (bottom) conditions. Left: lead II
ECGs selected from the PTB-XL dataset [22]. Healthy subject is subject 18, and pathological subject (atrial flutter) is subject 33. Middle: single-channel
EEGs selected from the BONN EEG dataset [23]. Healthy subject is subject 2 from set B, while pathological (epileptic) subject is subject 6 from set E.
Right: single channel EMGs selected from the NinaPro dataset [24]. Intact right-handed subject is subject 16 from dataset 2, while amputated
right-handed subject is subject 4 from dataset 3. Note how, regardless of their type, it is possible to spot some differences in amplitude and/or
waveforms between normal and abnormal biosignals.

wristbands (e.g., Empatica© E4) can simultaneously record
different types of biosignals by means of multiple sensors,
introducing the possibility to combine their acquisitions with
other types of data to improve the diagnosis and prognosis
of several pathologies. Biosignals collected by wearable
devices may include blood volume pressure, electrodermal
activity (i.e., variation in the electrical properties of the skin),
temperature readings, motion-based activity data, and many
more. Give a complete description of all the biosignals is
beyond the scope of this work. Nevertheless, it is important
to at least introduce the main ones encountered during the
survey:

• Electrocardiography (ECG ): this type of signal
records the electrical activity of the heart. ECGs are
generally recorded with the 12-lead method, which
consists of placing ten electrodes, six on the chest and
the remaining on the limbs, to calculate a set of electric
potentials. The combination of the measurements from
all the electrodes gives a unique quantitative and spatial
information about the heart’s electrical activity, called
lead. An ECG machine processes the information
coming from all 12 leads to produce a graphical repre-
sentation. ECGs possess a particular structure (P wave,
QRS complex, ST segment, T wave, and U wave) given
by the sequential repolarization and depolarization of
the heart’s atria and ventricles. Unusual variations in the
amplitude, time, or frequency of these structures provide
information about the normal or abnormal activity of
the heart, thus leading to the diagnosis of a particular
pathology [28] (see exemplary ECGs provided in the left
part of figure 1);

• Electroencephalography (EEG ): this type of signal
records the electrical activity of the brain cells generated
by the exchange of ions between the inside and outside

the neurons. EEGs are usually recorded by placing
several electrodes around the subject’s scalp in specific
configurations, which can vary depending on the number
of electrodes and the study objective. EEG signals are
really complex and are usually analyzed both in the
time and frequency domains. In fact, clinically relevant
information for diagnostic and prognostic purposes can
be retrieved by looking at specific bandwidths of the
signal, namely: delta (0.3-4 Hz), theta (4-8 Hz), alpha
(8-14 Hz), beta (14-30 Hz), and gamma (>30 Hz). EEGs
are widely adopted by neuroscientists for cognitive
tasks as well as for the study of several neurological
disorders such as epilepsy (exemplary EEGs provided
in the middle part of figure 1), dyslexia, and mental
diseases [29];

• Electromyography (EMG ): this type of signal records
the electric currents that are generated during muscle
contraction. EMGs are usually recorded by surface elec-
trodes, butmore invasive types like needle electrodes can
be adopted to improve the signal-to-noise ratio and to get
access to single motor unit action potentials (MUAP).
EMGs are generally used to detect anomalies in the
activity of the muscles (e.g., myopathy, neuropathy) as
well as in biomechanics for the development of body
prosthetics [30] (see exemplary EMGs provided in the
right part of figure 1);

• Other types of biosignal: other biosignals used for
various clinical tasks and therefore worthy of being
mentioned are the magnetoencephalography (MEG),
which measures the magnetic field generated by the
activity of brain cells and has many applications such
as brain connectivity, cognitive studies on newborns,
and epilepsy research; the phonocardiography (PCG),
which measures the sound produced by the heart’s beat
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and is used for the detection of heart diseases; the elec-
troretinography (ERG), which measures the electrical
activity of various cell types in the retina and is mainly
used for diagnostic reasons; the electrooculography
(EOG), which measures the electric potential that is
generated by the cornea and the retinal activity during
eye movement; eye tracking data, which measures the
orientation of the eye in space or the position of the eye
with respect to the subject’s head [31]. Unfortunately,
researchers have not yet used most of these signals to
train deep learning models in a self-supervised way.
However, future works may include them, especially in
multimodal approaches.

III. SELF-SUPERVISED LEARNING
Training deep neural networks with fully supervised methods
requires large amounts of data. In medical research, however,
it is usually difficult to assemble very large datasets. The
acquisition of medical data is in fact expensive in terms
of time, costs and administrative procedures (e.g., ethics).
It also requires specific instrumentation and human vol-
unteers. Moreover, data annotation can be performed only
by medical experts in a laborious and time-consuming
process. Ultimately, medical data are highly heterogeneous
(e.g., instrumentation, acquisition protocols and settings,
subject-variability), and the model’s robustness and general-
ization capability are inherently affected by that [32].
In contrast, the amount of unlabeled data is enormous.

For this reason, researchers have started to investigate
new methodologies to exploit unlabeled data [33] such as
semi-supervised learning [34], weakly-supervised learning
[35], or self-supervised learning, as described in this section.

Self-supervised learning attempts to address the issue of
having limited annotated data by extracting general-purpose
features from vast unlabeled data [36]; hence, it is usually
referred to as an unsupervised technique. Despite that, self-
supervised learning differs from common unsupervisedmeth-
ods like clustering [37] or Principal Component Analysis
(PCA) [38]. In particular, clustering techniques aim at finding
groups of similar objects by agglomerating or separating
samples based on specific metrics (distance functions)
designed to evaluate the grade of dissimilarity between
the investigated data. PCA is instead used to reduce the
dimensionality of a dataset by finding new variables that
are linear functions of the original ones, that successively
maximize variance, and that are uncorrelated with each other
[39]. Both techniques are mainly used as exploratory tools for
data analysis to infer statistical properties of the investigated
feature set.Moreover, they don’t include any type of label, nor
are they used to predicting some outcome from unobserved
data, like in supervised approaches. On the contrary, SSL
aims at predicting part of its input from other parts of its
input, converting the unsupervised problem into a supervised
one (hence its name). As it will be clarified in the next
section, self-supervised learning can generate its own form
of supervision directly from the data; hence, it can use

way more supervisory signals than standard fully supervised
approaches. That’s why it is more proper and less misleading
to allocate SSL algorithms to a separate category rather than
trying to associate them with other unsupervised methods.

Figure 2 summarizes how the self-supervised learning
paradigm works. First, a deep neural network is trained to
solve an auxiliary task, also called pretext task, upstream
task, or simply pretask, whose primary goal is to learn
general-purpose features of the given data without having
access to any sort of external supervision. During this
phase, no information about the target (medical) task or the
real (physiological) meaning of the given data is explicitly
used. Moreover, no interest is given to the model’s perfor-
mance, as the pretext task has (often) no connection to the
target one, and it is designed with the assumption that solving
it requires the network to learn useful information intrinsic to
the data; in other words, model them. Although pretraining
strategies can highly differ from each other, this phase usually
includes the generation of artificially created pseudo-labels
from the unlabeled dataset, here used as the target variable.
Training samples are then fed to the model to predict the
constructed target. Finally, model predictions are used to
calculate the value of a given objective function, which is
then used to update the model weights with backpropagation.
Once the model is pretrained, the weights of its feature
extractor (encoder) are transferred to a new model, which
will be trained to solve the target task, usually called
downstream task. The new model shares the same backbone
structure, while its head (final set of hidden layers) is slightly
modified to make it compatible with the downstream task,
for example by adding a softmax or a regression layer in
case of classification or regression problems, respectively.
Model transfer is performed by applying transfer learning,
a method that consists of employing the knowledge that
has been learned in a source task (here upstream task)
to another target task (here downstream task) to improve
the performance and generalization capability of the new
model [40].

The final step, which is performed after the encoder’s
weights are transferred to the new downstream model,
consists of learning more task-specific features using the
limited amount of labeled data in a process called fine-
tuning. The fine-tuning phase shares many similarities with
a standard fully supervised training procedure; the main
difference resides in the fact that themodel weights, instead of
being randomly initialized, originated from the solved pretext
task. Another important difference is that, as described in
[21], it is common practice to divide the fine-tuning process
into two steps. The first consists of freezing all the backbone
weights and updating only the modified final hidden layers;
then, conclude the training process with the whole network
unfrozen.

In conclusion, self-supervised learning, although more
complex than a standard fully supervised approach, is sup-
posed to help improve accuracy and mitigate overfitting in
contexts where the amount of labeled data is limited or where
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FIGURE 2. A simple schematic representation of the self-supervised Learning paradigm. First, a model is pretrained with only unlabeled data to solve
an auxiliary task (pretext task). Then, the backbone’s weights are transferred to the downstream model, which is then fine-tuned with the limited
amount of labeled data.

multiple heterogeneous datasets can be aggregated, which is
likely the biomedical context.

IV. PRETEXT TASKS
Pretext tasks are the core of the self-supervised learning
paradigm. Although they are designed for the same scope,
which is to learn general-purpose features without hav-
ing access to manually annotated data, pretext tasks can
accomplish their goal in different ways. Some of them
have been developed for specific types of data, such as
the Rubik’s cube method for 3D images (e.g., magnetic
resonance imaging) [41]. Others are more versatile and allow
researchers to work with different types of data. This section
focuses on approaches that are compatible with biosignals
and that were encountered during the survey. Various
classification schemes have been proposed to organize the
pretext tasks, depending on the domain of application [42].
Here, methodologies will be grouped into the following three
categories: predictive, generative, and contrastive learning
pretext tasks.

A. PREDICTIVE PRETEXT
Predictive pretext is a family of supervised pretraining
methods characterized by the construction of classification
or regression problems as an auxiliary task. This approach
makes use of artificially created pseudo-labels, which are
assigned to the unlabeled data, to pretrain the model in
a supervised way. The generation of pseudo-labels, which
needs to be automatic and knowledge-free, is what really
differentiates one approach from the other. For example, one
can simply construct a transformation recognition problem,
where single or multiple transformations (e.g., scaling,
permutation, time shift, noise addition) are applied to the
original sample with the goal of predicting or classifying
them. Others can exploit specific (biological) properties of
the signal and construct more complex targets to predict
[43]. An example of such a strategy can be found in
[44]. Here, the authors have applied two different sets of

transformations to EEG data to produce abnormal samples.
The first transformation amplifies portions of the signal in the
time domain, while the second alters the original sample in
the frequency domain. Both original and transformed samples
were fed to the pretraining model to predict the type of
transformation, thus building a 3-class classification problem.
The model was pretrained to optimize the cross-entropy loss,
and its head (the final softmax layer) was discarded during
model transfer. Similar protocols can be applied to other
biosignals or to build regression predictive pretext tasks. For
example, authors in [45] have built a regression task based
on the prediction of features extracted directly from the ECG
signal (characteristic intervals and amplitudes). Predictive
pretext tasks are fairly easy to implement and do not require
many computational resources compared to other methods.
However, the specificity of the task has a strong impact on the
quality of representations. Therefore, careful consideration
must be given to its design, as wrong choices could degrade
model performance.

B. GENERATIVE PRETEXT
Generative pretext [46] is a family of unsupervised methods
widely used in natural language processing (like BERT
[47]) which is living a new life in other domains like
computer vision and signal processing [46]. Its goal is to
train general-purpose features by learning either to regenerate
an augmented version of the input data or to generate
new samples from the same distribution of the training
repository. Since the pretext task is treated as a generative
problem, architectures like auto-encoders [48] or Generative
Adversarial Networks (GAN) [49] are utilized in this
category. In the signal domain, the most adopted generative
pretext task is masked modeling, whose goal is to learn robust
representations by reconstructing a portion of the signal that
was previously cropped or masked. Masked modeling is
widely adopted for other types of data as well. Two examples
are the masked autoencoders for imaging data [50] and the
work presented in [51] for audio data. Another example of
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such a strategy can be found in [52]. Here, the authors have
applied a set of transformations to EEG data to generate new
corrupted samples. Such transformations not only include
the cited masking operation but also other ones typically
employed in predictive pretext tasks such as the noise
addition, the moving average filtering, or the EEG channel
dropout. However, in contrast to predictive pretraining
strategies, no artificial pseudo-labels were generated, and the
original samples were used directly as the predictive target. In
this setting, theMean Square Error (MSE) between the output
of themodel and the original sample was used as the objective
function to evaluate the quality of the reconstructed samples
and update themodel weights. Practical challenges associated
with generative pretexts, such as the higher computational
costs and repository size required to efficiently pretrain the
model, make this approach rarely adopted compared to other
supervised pretext tasks. In fact, GAN-based approaches like
the one proposed in [53] require learning two different neural
blocks: a generator, responsible for creating new samples, and
a discriminator, responsible for distinguishing between the
original and the generated sample, which is the only block
that is kept after pretraining. The presence of two different
neural blocks, usually with numerous parameters, inevitably
increases the computational demand and, consequently, the
training time and the needed GPU memory.

C. CONTRASTIVE LEARNING PRETEXT
Contrastive Learning (CL) is a family of methods that
aims at learning robust general-purpose representations
from the data by embedding augmented versions of the
same sample close to each other while trying to push
away representations from different samples [54]. This
goal is achieved either by learning to discriminate between
similar (positive) and dissimilar (negative) samples, or by
maximizing only the agreement between pairs of similar
views. Data augmentation is the core of contrastive learning.
Positive and negative samples are generated by applying a
set of transformations to the original sample (e.g., noise
addition, scaling, permutation, horizontal or vertical flip),
which aim at introducing some differences while at the
same time preserving the data’s global features. Contrastive
learning has gained enormous attention due to its simplicity
and effectiveness in training general-purpose encoders. For
this reason, a large variety of approaches can be found in the
literature, usually employing siamese architectures (weight-
sharing neural networks applied on two or more inputs)
[55] to compare the augmented samples. Here are reported
only those baseline methodologies that have been applied in
works selected during the survey, whose schematic views are
collected in Figure 3:
(a) CPC (2019 ): Contrastive Predictive Coding (CPC)

is a modality-agnostic framework designed to suit
any type of data (e.g., images, text, speech, signals)
[56]. Its goal is to predict high-level information of
future time steps of a sample given a series of past
ones. However, instead of simply trying to predict

future observations, CPC aims to learn the underlying
shared information between different parts of the
(high-dimensional) signal. Figure 3(a) summarizes
how CPC works. First, sequences of observations
xt+k , k ∈ Z, are passed to a nonlinear encoder to
produce a set of latent representations zt+k ; then, latent
representations of the past portion of the signal are
fed into an autoregressive model, which is used to
summarize all the encoded information and produce
a context latent representation ct . Finally, the context
latent representation is used to predict the latent
representation of future portions of the signal (target).
The encoder and the autoregressive model are trained
to jointly optimize a loss based on noise-contrastive
estimation (NCE) [57], which is called InfoNCE loss.

(b) SimCLR (2020 ): A simple framework for Contrastive
Learning Visual Representation (SimCLR) is an end-
to-end framework designed to learn high-quality rep-
resentations by maximizing the agreement between
differently augmented views of the same data example
via a contrastive loss in the latent space [58]. SimCLR
relies on two simple key ideas. The first is to use
heavy random data augmentation; the second is to
adopt large batch sizes rich of negative examples.
Figure 3(b) illustrates how SimCLR works. Each
sample x is augmented twice with randomly selected
transformation functions. Then, each of the augmented
samples is fed to a backbone encoder to produce a
set of representations h; after that, representations are
passed to a small neural block called projector head,
which will output a set of projections z in a new
latent space. Finally, projections are used to maximize
the agreement between positive pairs, i.e., pairs of
augmented samples of the same original data. The
encoder and projector head are trained to jointly
optimize the normalized temperature-scaled cross-
entropy loss (NT-Xent), defined as:

Li,j = − log
exp(sim(zi, zj)/τ )∑2N

k=1 1[k ̸=i]exp(sim(zi, zk )/τ )
(1)

with sim(zi, zj) the cosine similarity between two
projections, and τ the temperature parameter.

(c) MoCo (2020 ): Momentum Contrast (MoCo) [59]
is a method that, in its updated version (MoCo
V2 [60]), outperformed end-to-end frameworks like
SimCLR. MoCo took the problem of learning good
representations by performing look-up operations on
a large dictionary rich of negative examples, which
is continuously updated to keep it consistent during
training. The dictionary, which can be considered an
improvement of the memory bank introduced in [61],
allows for lessening the memory burden while keeping
the number of negative pairs sufficiently high. In
fact, the dictionary size can be much larger than a
typical batch size and is treated as a queue, where
newer keys from the current mini-batch are enqueued
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FIGURE 3. Schematic view of some contrastive learning frameworks. (a) Contrastive Predictive Coding (CPC); (b) Simple Contrastive Learning
(SimCLR); (c) Momentum Contrast (MoCo); (d) Bootstrap Your Own Latency (BYOL); (e) Simple Siamese (SimSiam); (f) Swapping assignment
between views (SwAV). x denote the original sample, x̂ its augmented version, h the encoder output, z the latent representation, k the new
enqueued keys in MoCo, p the prediction of the online network in BYOL, ct the context latent representation in CPC. Momentum network modules
are represented with a lighter color compared to their online counterparts to highlight their little difference in weight values. Also, note that all
methods are similar to each other but have clearly distinct peculiarities.

while the oldest ones are removed. Unlike SimCLR,
where the two branches of the siamese architecture
share the same parameters, MoCo adopts two different
networks identical in structure (encoder plus projection
head) but different in weight values (see Figure 3(c)).
The first is the online network (parametrized by θ ),
which is responsible for generating a set of projections
z (as in SimCLR). The second is the momentum
network (parametrized by ξ ), which is responsible for
encoding the new dictionary keys k to be enqueued.
The online network is trained to optimize the InfoNCE
loss and is updated through stochastic gradient descent.
On the contrary, since the dictionary does not allow
back-propagation on the momentum network, the latter

is updated with an exponential moving average of the
online network weights, defined as:

ξ = mξ + (1 − m)θ (2)

with m ∈ [0, 1) momentum coefficient, usually bigger
than 0.995.

(d) BYOL (2020 ): Bootstrap Your Own Latent (BYOL) is
a method that, unlike SimCLR or MoCo, uses neither
negative pairs nor contrastive losses [62]. In particular,
BYOL sets up a regression task as the learning
problem, where the embedding of one augmented
version of a sample is used to predict the embedding
of another augmented version of the same data. It
is important to note that using only positive pairs
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could potentially lead to a collapsing solution [63],
i.e., the trend of siamese architectures to ‘‘collapse’’
to a constant output. However, the authors empirically
demonstrated that an asymmetrical architecture and the
momentum encoder could avoid this problem. As can
be seen in Figure 3(d), BYOL adopts two different
networks to learn. The first is the online network
(parametrized by θ ), which added a predictor block
qθ after the usual encoder and projector blocks, and is
used to make the predictions. The second is the target
network (parametrized by ξ ), which is used to provide
the regression target to be predicted by the online
network. During training, two augmented versions of
a sample are fed into the networks. Then, outputs
are ℓ2-normalized and the mean square error (MSE)
is calculated. Finally, the online network is updated
through stochastic gradient descent, while momentum
updates are used to change the target network weights.

(e) SimSiam (2020 ): Simple Siamese Representation
Learning can be considered a simplified version of
BYOL without the momentum encoder [64]. The key
element of this minimalist approach is the stop-grad
operation. The authors empirically showed that this
operation is sufficient to avoid the collapsing solution
and nomomentum encoder, like in BYOL, is necessary.
However, the gain in simplicity is counterbalanced by
a slight drop in performance.

(f) SwAV (2020 ): Swapping Assignments Between
Views (SwAV) is a cluster-discrimination-based
framework [65]. SwAV does not directly compare
features extracted from different transformations
of the same sample, like in previous approaches.
Instead, it combines online clustering with a swapped
prediction mechanism to enforce consistency mapping
between augmentations of the same original data.
Figure 3(f) illustrates the structure of SwAV. In
particular, each augmented sample is fed into an
encoder to produce a vector representation. Repre-
sentations are then ℓ2-normalized and mapped to a
set of trainable normal vectors, i.e., prototypes, thus
computing a ‘‘code’’ Qi. In other words, prototypes
can be considered as the clusters where the data are
being partitioned and codes the results of the online
clustering. Finally, with the assumption that different
views of the same image should maintain similar
information, the model is trained to predict the cluster
assignment of a view from the representation of another
view (swapping prediction).

Aside from the ones already listed, other contrastive
learning methods can be employed with time-series data.
Such methods mainly differ in the structure of the network,
the formulation of the contrastive loss, and the way negative
samples are exploited. Few examples are PIRL [66], Barlow
Twins [67], VICReg [68], W-MSE [69], TNC [70], MoCo V3
[71], and DINO [72]. The interested reader can consult the
work of Balestriero et al. [73], which provides amore detailed

analysis of the self-supervised learning paradigm, with lots of
insights on critical aspects of its implementation.

D. NOVEL METHODS FOR TIME-SERIES DATA
The previously cited baseline methods were used as a
reference for the development of novel approaches for
time-series data that were not specifically designed for
medical applications, but still tested on medical repositories.
For example, Cheng et al. [74] proposed a subject-aware
contrastive learning method for biosignals whose core
element was the addition of an adversarial subject identifier
module to promote subject-invariance during pretraining
and mitigate the negative effects of inter-subject variability.
Gorade et al. [75] proposed a BYOL-based approach based
on the combination of two different sets of projector
plus predictor designed to extract, respectively, low- and
high-frequency characteristic features from the embedding.
Zhang et al. [76] developed a contrastive pretraining method
that promoted the alignment of time- and frequency-based
representations projected in a shared latent space. Ultimately,
Wickstrøm et al. [77] proposed a novel contrastive learning
approach that combined a custom contrastive loss with a
new data augmentation scheme designed to generate new
data by mixing two training samples. All methods listed in
this subsection demonstrate that ideas from other research
areas can be successfully imported into the medical domain.
However, as it will be discussed in section VII, special
considerations about the physiological nature of the signal
and the target clinical task must be taken into account in order
to avoid failures in the application of SSL strategies.

V. SURVEY METHODOLOGY
This section summarizes the methodology followed to search
and identify relevant literature on self-supervised learning
for the analysis of biosignals. To summarize, it consists of
a first selection of papers from various literature sources,
followed by multiple exclusions, if necessary, using specific
criteria. For the literature search, the following bibliographic
databases were used as primary references:

• PubMed3

• IEEE Xplore,4

• Springer Link,5

• ScienceDirect,6

In addition, the research was extended to other sources of
literature, namely:

• Google Scholar7

• ArXiv Preprints8

Google Scholar allows researchers to automatically gather
articles from the previously listed literature databases. How-
ever, we preferred to investigate directly all the single sources

3[Online]. Available: https://pubmed.ncbi.nlm.nih.gov/
4[Online]. Available: https://ieeexplore.ieee.org/
5[Online]. Available: https://link.springer.com/
6[Online]. Available: https://www.sciencedirect.com/
7[Online]. Available: https://scholar.google.com/
8[Online]. Available: https://arxiv.org/
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and use Google Scholar only to double-check and refine
the research in case of possible missing works. Moreover,
we carefully checked arXiv preprints before considering their
inclusion, as they did not undergo a full peer-review process.

Each source was queried by combining a set of selected
keywords, using at first only general terms (e.g., self-
supervised learning, contrastive learning, time-series, biosig-
nal); then, research was refined by addingmore specific terms
related to each type of biosignal (e.g., ECG, EEG, EMG,
EOG). An example of such an approach, using the Google
Scholar query format for simplicity, is reported below:

1) ‘‘Self-Supervised Learning’’ AND ‘‘time-series’’;
2) ‘‘Self-Supervised Learning’’ AND ‘‘biomedical’’;
3) ‘‘Self-Supervised Learning’’ AND ‘‘biosignals’’;
4) ‘‘Self-Supervised Learning’’ AND ‘‘wearable sen-

sors’’;
5) ‘‘Self-Supervised|Contrastive Learning’’ AND

‘‘Electrocardiogram|ECG’’;
6) ‘‘Self-Supervised|Contrastive Learning’’ AND

‘‘Electroencephalography|EEG’’;
7) ‘‘Self-Supervised|Contrastive Learning’’ AND

‘‘Electromyography|EMG’’;
8) ‘‘Self-Supervised|Contrastive Learning’’ AND

‘‘Electrooculogram|EOG’’.
Self-supervised learning is a novel technique that has only

recently made its way into medical research. In addition, this
field is very mutable and the state of the art can rapidly
change. For this reason, only works published no earlier than
2016 were considered, focusing on the period 2019 - 2023,
when their number has increased considerably. In particular,
we included only those papers that adopted self-supervised
learning on biosignals to solve medical tasks. We also
considered publications that present novel SSL methods not
specifically designed for medical tasks but still tested on
biomedical datasets, gathered for organizational reasons in
the subsection IV-D. From the selected list, we excluded
works that adopted the same SSL methodology to solve a
particular task or works that have been updated by another
one. In those cases, we kept the one that we considered the
most relevant by weighing several factors such as the number
of citations, the impact factor of the journal or conference,
and the type of work. Finally, we considered research works
cited in the bibliography or in the related works sections of
the selected papers.

VI. SELF-SUPERVISED LEARNING ON BIOSIGNALS
The survey resulted in a selection of 61 works describing
SSL applications for the analysis of biosignals. As can
be seen in Figure 4, there is a high imbalance between
applications on ECG or EEG signals and other types of
data, probably associated with the higher availability of
public datasets. Taking this into account, the results were
grouped into four categories, namely: SSL on ECG, SSL on
EEG, SSL on other types of biosignals, and multimodal SSL
with biosignals. Each category will present the investigated
medical tasks and the adopted pretraining strategies, delving

FIGURE 4. Number of works per SSL strategy grouped by the type of
biosignal (ECG: electrocardiography, EEG: electroencephalography, EMG:
electromyography, PCG: phonocardiography) adopted and the type of
upstream task. The ‘‘other’’ category refers to those works that have
tested multiple SSL pretraining strategies or have proposed hybrid
approaches, i.e., a combination of the previous three.

into those works that present novel SSL approaches. At the
end of each section, a summary table reports a synthesis
of the main information for each of the presented works,
namely: upstream task, downstream task, datasets used, year
of release, and, if necessary, the type of data. Tables were
sorted by year and author names. Moreover, works sharing
the same downstream task were grouped to improve the
organization and consultation of big tables.

A. SELF-SUPERVISED LEARNING ON ECG
ECG is one of the two major categories of biosignals where
self-supervised learning has been adopted until now. Out of
all the investigated tasks, classification of cardiac pathologies
(e.g., arrhythmia) plays a central role in SSL ECG-based
analysis, with 19 out of 23 works evaluating such a medical
task. This aspect reflects the high demand for integrating
deep learning models into decision support systems to be
used in real-world scenarios, which still suffer from the great
variability associated with such data. In fact, most of the
datasets listed in table 1 are open repositories released by
large hospitals or collected for highly competitive challenges
(CinC datasets) organized to improve ECG medical analysis.

In contrast to the identified trend in the investigated
downstream tasks, the choice of the pretraining strategy
is highly variable but reveals an overall preference for
contrastive learning pretext tasks (see table 1). Moreover, the
provided survey reveals that works often attempted to exploit
biological properties of the ECG signal during pretraining,
for example by exploiting its peculiar waveform [45], its
periodicity [80], [83], or its associated variability [89].

1) CARDIAC PATHOLOGY
Concerning single- or multi-class pathology classification
tasks, contrastive learning was the primary choice in most of
the studies. Nakamoto et al. [109] adapted the baselineMoCo
for left ventricular systolic dysfunction detection, while Lai
et al. [114] improved the loss of the same algorithm to
recognize 60 diagnostic terms on a large-scale private dataset.
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TABLE 1. Self-supervised learning on ECG.

Mehari and Strodthoffet al. [108] compared baseline con-
trastive learning approaches (e.g., SimCLR, BYOL, SwAV,
CPC) to assess their ability to extract good representations
from the ECG signal, while Soltanieh et al. [110] provides
an extensive analysis on the efficacy of different data
augmentations. Lee et al. [107] proposed a variant of the
contrastive learning algorithm VICReg (VIbCReg) which
slightly modified the loss function and included, after the
projector of the siamese network, an additional iterative
normalization layer. Gopal et al. [106] leveraged the unique
spatiotemporal properties of the ECG signal by adopting
a physiologically 3D augmentation technique to generate
the positive pairs for the contrastive learning pretraining
phase. Liu et al. [112] proposed a joint cross-dimensional
contrastive learning method that consists of pretraining the
model to maximize the similarity between positive pairs of
ECG signals as well as between the ECG and its 2-D image
representation. It is important to note that contrastive learning
was not a unilateral choice, and other pretext tasks were
investigated for this type of problem. In particular, Yang et al.
[111] and Gedon et al. [104] adopted masked modeling for
the representation learning part of the model, both achieving
comparable or slightly superior results to fully supervised
training.

Given the large amount of supervision that can be provided
from some of the available free open datasets (e.g., PTB-XL

[22]), results were not always superior to fully supervised
state-of-the-art methods but still comparable. For example,
Liu et al. [112] reported an absolute drop in accuracy and F1-
macro score of respectively 0.012 and 0.033 on the PTB-XL
dataset, with similar results on the CPSC2018 dataset [78].
However, comparable performances were achieved using
only half the available labels, showing the robustness of
SSL strategies against drops in the label ratio. This demon-
strated that self-supervision has the potential to improve
the learning process but requires further advances before
becoming the new golden standard for those challenging
problems.

2) ARRHYTHMIA CLASSIFICATION
Upon the pathologies investigated, arrhythmia seems to
be the most common use case. In contrast to the previ-
ous subsection, the investigated pretraining strategies were
heterogeneous, with at least one work for each category
(predictive, generative, and contrastive) selected during the
survey. Kyasseh et al. [83] proposed CLOCS, a family
of patient-specific contrastive learning methods that they
showed were able to outperform other baseline contrastive
learning techniques, thus becoming the comparison element
for other works. In particular, they presented three different
approaches: the first, Contrastive Multi-Segment Coding
(CMSC), exploits the temporal invariances in the ECG; the
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second, Contrastive Multi-Lead Coding (CMLC), exploits
the spatial invariances in the ECG; and the latter, Contrastive
Multi-Segment Multi-lead Coding (CMSMLC) combines the
two previous methods. Oh et al. [92] combined Kyasseh’s
CMSC with a transformer-based self-supervised method
(based on Wav2Vec 2.0 [115]), achieving performances
superior to CLOCS. Moreover, they added a random lead
masking module, which improves the model’s robustness
in the case of downstream tasks that accept an arbitrary
number of ECG leads. CLOCS was also considered as a
comparison element by Chen et al. [82], which exported
MoCo V2 to the ECG domain and used a combination of
wavelet transform and random crop to generate the positive
and negative pairs for the pretraining. Ultimately, Phan
et al. [90] combined representations coming from both time
and time-frequency modalities managed by two different
backbone encoders pretrained with DINO [72]. In contrast
with previous works, Lan et al. [89] designed an Intra- Inter-
subject Self-supervised Learning (ISL) method for multivari-
ate cardiac signals that tries to learn good representations
of the ECG signal by learning distinct representations both
at the heartbeat level (intra-subject) and at the subject level
(inter-subject). The last selected contrastive learning proposal
for arrhythmia classification is that of Wei et al. [87] with
their ‘‘Contrastive HeartBeat’’, a novel method designed to
learn patient-specific representations at the heartbeat level by
considering as positive pairs all heartbeats of the same subject
and as negative the others.

Again, contrastive learning was not the only approach
investigated. Grabowski et al. [91] tested masked modeling
on both classification and regression downstream problems.
Furthermore, Zhang et al. [94] applied spatial and temporal
signal manipulation to generate pseudo-labels for their pre-
dictive pretext task (transformation prediction). A predictive
pretask was also chosen by Lee et al. [45] and Luo et al.
[80] for arrhythmia detection and classification. The first
constructed a pretraining based on the prediction of specific
critical features extracted from the heartbeat with ECG
delineation algorithms, while the second pretrained themodel
to assess if randomly selected pairs of ECG segments were
adjacent or not.

As in the previous subsection, the large amount of supervi-
sion that can be provided from some of the available free open
datasets resulted in model performances that were not always
superior to their fully supervised counterparts. For example,
Kyasseh et al. [83] reported an absolute drop in AUC ranging
from 0.02 to 0.04 on different fine-tuning datasets, while
Chen et al. [82] achieved an AUC improvement of 0.03 with
a similar experimental setting. However, as reported in [83],
[89], self-supervised learning was able to produce similar
results even when the fraction of labeled data used for
fine-tuning was halved, thus mitigating the performance drop
compared to other strategies. Ultimately, it is worth noting
that it is possible to identify a positive progression in the
achieved results (see the use of CLOCS in many other
works as a baseline comparison), guided by the proposal of

novel methods being able to include both physiological and
subject-related information during pretraining.

3) EMOTION CLASSIFICATION
Stress detection and emotion classification (e.g., prediction
of the affective score) were the other two investigated
downstream tasks. In particular, stress detection was studied
byRabbani et al. [103] and Sarkar et al. [98]. The first adopted
the baseline SimCLR, while the second tried to assess
maternal and fetal stress during pregnancy using a predictive
multitask pretraining (e.g., prediction of different signal
transformations). The same author extended this method to
the emotion recognition problem [95], which was also studied
byRodriguez et al. [101], who chosemaskingmodeling as the
pretraining strategy.

Overall, selected works achieved performances superior to
their fully supervised baseline. For example, Rodriguez et al.
[101] achieved a mean absolute improvement of 0.03 over
both accuracy and F1-score calculated on the AMIGOS
dataset [97]. However, given the differences in the datasets
used for the evaluation, it is impossible to compare results
overall and extract a possible hierarchy for the pretraining
strategies.

B. SELF-SUPERVISED LEARNING ON EEG
EEG is the other major type of biosignal where self-
supervised learning has been applied. Here, SSL was
employed for different downstream tasks such as sleep
staging, seizure analysis, emotion classification, and motor
imagery classification. The high number of downstream
tasks, which were investigated using datasets provided by
medical facilities, large clinical studies, or specific com-
petitions, demonstrate how self-supervised learning could
impact many real-world applications. For example, SSL-
based sleep analysis can promote the development of novel
deep learning-based automatic sleep scoring algorithms,
which can eliminate some drawbacks of manual protocols
[116], while SSL-based seizure analysis can improve the
performance of automated detection systems, which allow
an objective assessment of seizure frequency and a treatment
tailored to the individual patient [117].
Differently from the results presented on ECG data, the

choice of the pretext task depends on the study objective,
with contrastive learning being slightly preferred overall.
However, despite the chosen pretext task, works often
attempt to include domain knowledge information about the
EEG signal during pretraining, for example by considering
the importance of frequency-based EEG analysis [118]
or the similarity between resting state brain hemisphere
activity [119].

1) SLEEP STAGING
Sleep staging, i.e., the problem of determining the patients’
status (wake, light sleep, deep sleep, REM) during their sleep,
was highly investigated, with 6 out of 23 EEG works selected
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during the survey. It is interesting to note that contrastive
learning is predominant, with all works employing it to
pretrain their models. Ren et al. [120] applied a modified
version of contrastive predictive coding, while Jiang et al.
[121] chose SimCLR. Yang et al. [122] proposed ContraWR,
a novel approach that aims at solving the problem of
negative sampling by using the average representation over
the dataset as the only contrastive information. Another novel
approach called SleepDPCwas presented in Xiao et al. [123].
SleepDPC combines two different learning objectives during
the pretraining: one, called predictive contrastive learning,
uses the CPC-based Dense Predictive Coding (DPC) [124]
as a reference; the other, called discriminative contrastive
learning, tries to discern between temporary nearer or farther
portions of the signal. Dense Predictive Coding was also part
of the CoSleep method described in Ye et al. [118], which
exploits multiple views of the EEG signal. In particular, DPC
was first used to train from scratch two encoders, one for
the time view and the other for the frequency view; then,
contrastive multiview [125] was used to refine the weights of
the two encoders. Finally, Lee et al. [126] presented SSLAPP,
a hybrid approach based on the combination of a GAN-based
generative pretext task and contrastive learning, achieving
performances superior to CoSleep, SleepDPC, and other fully
supervised strategies.

Based on the results presented on the SleepEDF dataset
[127] which, as can be seen in 2, was used for the
evaluation of all the proposed methods, most of the works
achieved an accuracy and an F1-score superior to fully
supervised baselines, with only CoSleep and SleepDPC being
left behind. For example, SSLAPP reported an absolute
improvement on the F1-score of 0.03 but, more importantly,
the achievement of similar results using only 10% of the
labeled data. However, despite the overall improvement,
no real superiority can be found among the various selected
strategies.

2) SEIZURE ANALYSIS
Unlike sleep staging, where contrastive learning was the
primary choice, studies dealing with seizure analysis usually
adopted predictive pretext tasks. Xu et al. [128] generated the
pseudo-labels by applying a set of scaling transformations
to only the EEGs of healthy subjects and pretrained the
model to detect them. Tang et al. [129] use forecasting (future
12 seconds on a clip of 12 or 60 seconds) as the predictive
pretext task, combining SSL and graph neural networks for
seizure analysis (detection and classification) for the first
time. Das et al. [52] pretrained the model to reconstruct the
original signal by its own corrupted version using different
modification protocols, including masked modeling, thus
exploiting a generative pretext task. Finally, Yang et al.
[130] combined self-supervision with online learning and
weak-supervision for patient-specific seizure forecasting.

Seizure analysis is highly heterogeneous in the investigated
types of learning problems and performance achieved. When

it comes to seizure detection, for example, all the proposed
methods were able to surpass fully supervised baselines.
On the contrary, seizure classification (identification of
seizure type) and forecasting pose more challenges. Hope-
fully, advancements in the research will reveal the potentiality
of SSL for those problems as well.

3) MOTOR IMAGERY
Thanks to the BCI Competition IV [156], self-supervised
learning was also extended to motor imagery, i.e., the mental
execution of a movement without any overt movement or
peripheral (muscle) activation [157]. Out of the three selected
works, two used predictive pretext tasks. In particular, He
et al. [146] pretrained their model to forecast a slice of
the EEG signal given a set of past ones, while Ou et al.
[148] randomly shuffled portions of the EEG signal and
defined a binary classification task (signal segments in order
or not). In contrast, Lotey et al. [144] assessed the impact
of contrastive learning for cross-session motor imagery using
the baseline SimCLR. However, they achieved a lower overall
accuracy on the BCI Dataset 2a [149] compared to the
forecasting proposal in He’s work.

BCI competition datasets remain an important source of
open datasets in the relative domain. They offer a common
place to share and compare results achieved with different
learning strategies, facilitating the advancement of research
in this prominent field. Although SSL strategies were not
able to achieve state-of-the-art results, which are still based
on fully supervised methods [158], it is likely that their role
will increase in future years, especially when the pretraining
will be performed on multiple datasets to enhance the quality
of the representations.

4) EMOTION RECOGNITION
Works employing self-supervised learning for emotion
recognition varied in the choice of the pretext task. Xie
et al. [139] applied six different transformations to EEG
data and pretrained a multi-branch neural network to predict
them. Zhang et al. [53] proposed GANSER, a generative
self-supervised framework based on adversarial training. In
particular, adversarial training is promoted through amasking
operation and regulated by an augmentation factor designed
to restrict the feature distribution difference between real
EEG samples and the generated ones. Finally, Shen et al.
[142] and Kan et al. [140] proposed two novel contrastive
learning approaches. The first, Contrastive Learning for
Inter-Subject Alignment (CLISA), tries to maximize the
similarity in EEG signal representations across subjects who
received the same emotional stimuli, hence without resorting
to standard data augmentation procedures. The other, Group
Meiosis Contrastive Learning (SGMC), adopted a genetically
inspired data augmentation technique where positive and
negative pairs are generated by grouping EEG samples
sharing the same stimuli and then cross-exchanging (mixing)
parts of their signal.
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TABLE 2. Self-supervised learning works on EEG signal.

Overall, results on the widely used SEED [132] and
DEAP [141] open datasets were superior to their fully
supervised counterparts but comparable with each other.
However, although minimal, it is worth noting that Xie’s
predictive pretext and Zhang’s GANSER achieved state-of-
the-art performances in the SEED and DEAP, respectively.
This aspect highlights how, in emotion recognition, there is no
clear superiority of one pretraining strategy over the others.

5) OTHER OR MULTIPLE CLASSIFICATION TASKS
Six other works adopted self-supervised learning on other
downstream tasks or simply provided results on multiple
applications. Mohsenvald et al. [131] provide an extensive
analysis of the SimCLR contrastive learning framework on
several downstream tasks. In particular, their analysis of
the influence of the EEG sequence length, the applied data
augmentation and the number of latent dimensions, as well
as the role of the aggregation of heterogeneous datasets,
is of great interest and provides a good insight into those
aspects that are crucial for the efficient development of SSL
strategies in the EEG domain. Banville et al. [134] evaluated
three different pretext tasks (CPC and two predictive) on
sleep staging and pathology classification. Wagh et al. [119]
highlighted the importance of exploiting domain knowledge
information from the EEG signal during pretraining and
proposed an SSL method based on the combination of
three different domain-guided pretext tasks (hemispheric
symmetry, behavioral state estimation, and age contrastive).
Zheng et al. [44] investigated the efficacy of SSL for anomaly
detection on EEG data by designing a predictive pretask

(3-class classification) where pseudo-labels were generated
by locally increasing/decreasing the amplitude of the signal
in the time domain or specific components in the frequency
domain. Instead, Kostas et al. [135] designed BENDR,
a novelmethod that combines a transformer-based framework
with contrastive learning. Ultimately, Zygierewicz et al. [150]
applied MoCo to memory-related neurofeedback data with
the goal of identifying brain regions and frequency bands
consistent with current neurophysiological knowledge of the
processes critical to attention and working memory.

C. SELF-SUPERVISED LEARNING ON OTHER TYPES OF
BIOSIGNAL
This section presents self-supervised learning applications on
other types of biosignals such as EMG, eye tracking and other
sensor data. Given the low number of selected works and the
various biosignals included, it is difficult to identify a trend
in the choice of the pretext task (see Table 3).
However, it is worth noting that works presented here are

no less important than others from the previous sections,
as the analysis of the biosignals included in this subsection
is essential for many real-world applications, from the
development of myoelectric prostheses to the support of older
people’s daily lives.

EMG certainly deserves a proper category because of
its wide range of applications. However, only two studies
adopting self-supervised learning on such data were found.
In particular, Liu et al. [159] use contrastive learning
(NeuroPose) to predict finger joint angles for 3D hand
pose estimation from wearable EMG sensor data (8-channel
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TABLE 3. Self-supervised learning works on other types of biosignals.

armband), achieving good performances and demonstrating
robustness to natural variation in sensor mounting positions
or changes in the wrist position. Wu et al. [160] designed a
novel self-supervised learning approach (Neuro2vec) for neu-
rophysiological data based on masking pretext task applied
to both the spatiotemporal and the frequency domains. They
tested their approach on classification and regression tasks
using EEG data and the NinaPro dataset [24], which is one
of the biggest collections of open-source datasets with EMG
data. In the NinaPro dataset 5, they were able to achieve an
absolute improvement of 0.03 both in accuracy and F1-score
on the investigated classification task and a relative drop of
10% in the Mean Square Error on the regression task.

Regarding other modalities, Saeed et al. [161] exported
self-supervised learning on accelerometer data for human
activity recognition [162], a promising assistive field that can
support older people’s daily lives. In their work, they designed
a multitask predictive approach based on the recognition of
eight different signal transformations.

Considering eye tracking data, Mengoudi et al. [163]
presented a predictive pretext task for their study. In
particular, they tried to classify subjects with dementia,
transferring the features learned during the pretraining to a
support vector machine majority voting scheme.

Ultimately, Ballas et al. [164] designed Listen2YourHeart,
a contrastive learning approach for Heart Murmur detec-
tion based on the baseline method SimCLR using
Phonocardiography (PCG) data.
Overall, the investigated works demonstrated that SSL can

be successfully applied to other types of biosignals, even
when the amount of data available is not extremely high.

D. MULTIMODAL SELF-SUPERVISED LEARNING WITH
BIOSIGNALS
Multimodal self-supervised learning with biosignals is the
final category presented in this section. The number of works
in this context is still limited (see Table 4), which highlights
how efficiently combining information from different types
of data is a difficult task. The modalities mainly analyzed
with self-supervised learning include combinations of EEG,
ECG, EMG, and other data coming from wearable devices.
Differently from the trend of single-modality SSL, most of
the works chose predictive pretext tasks instead of contrastive
learning. Furthermore, multimodal data are often treated

simultaneously via multichannel architectures, with each
modality having its specific encoder and representations
combined only on the network head.

SSL applications that employ data from wearable devices
for medical tasks are still limited in number (even though
many studies have been released for more industrial appli-
cations). Spathis et al. [173] investigated health and lifestyle
monitoring with multimodal wearable data, designing a
particular pretext task whose goal was to assess the sub-
ject’s heart rate from other wearable data. Deldari et al.
[174] presented COCOA, a contrastive learning approach
designed to learn quality representations from multisensor
data by computing the cross-correlation between different
data modalities and minimizing the similarity between
irrelevant instances. Their approach was tested on several
downstream tasks (e.g., emotion recognition, sleep staging,
human activity recognition) combining different biosignals
such as EEG, ECG, EMG, EOG, and activity data from
wearable devices, achieving overall results always superior to
fully supervised strategies (absolute accuracy improvements
range from 0.03 to more than 0.1). Saeed et al. [175]
presented ‘‘sense and learn’’, a novel framework designed to
learn general-purpose representations from multisensor data
produced by omnipresent sensing systems. In their work,
they compared several pretext tasks on multiple downstream
tasks such as activity recognition, sleep scoring, and stress
detection.

Three of the identifiedworks applied self-supervised learn-
ing strategies to Intensive Care Unit (ICU) data. In particular,
Chen et al. [176] proposed a novel method for the prediction
of adverse surgical events. To accomplish that, they combined
a set of static (e.g., covariates) and dynamic (e.g., biosignals)
variables, pretraining the backbone module of the latter with
a forecasting predictive pretext task. Weatherhead et al. [190]
improved the baseline contrastive learning method TNC [70],
pretraining the model on high-time resolution ICU data
and evaluating it on several tasks such as the prediction
of 12-hour in-hospital mortality, circulatory failure, and
cardiopulmonary arrest. Ultimately, Tipirneni et al. [192]
pretrained the model with a forecasting pretext task.

Considering works employing other combinations of
biosignals, Lemkhenter et al. [187] investigated self-
supervised learning for sleep scoring with polysomnography
data (collection of EEG, EOG, EMG, and ECG acquired
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TABLE 4. Multimodal self-supervised learning with biosignals.

during sleep), adopting a predictive pretask task built on top
of the model-agnostic meta-learning framework [195]. The
learning problem was to detect if a training sample came or
not from PhaseSwap [43], an operator that takes two signals
as input and then combines the amplitude of the first with the
phase of the second.

Thiam et al. [181]were the only one to propose a generative
pretask on multimodal data. Using a multimodal deep denois-
ing convolutional auto-encoder, they tested the pretrained
model for the pain intensity classification, achieving state-
of-the-art performances on the BioVid Heat Pain Database
[182].

The last two selected multimodal approaches combine
biosignals with video recordings. Leveraging a combination
of EEG and facial activity data extracted from video, Das
et al. [184] trained an explainable AI model to predict
upcoming speech stuttering, whileMartini et al. [177] showed
the potentiality of multimodal self-supervised learning by
combining stereoelectroencephalography (SEEG) and video
data to forecast seizure events in drug-resistant epileptic
subjects.

Overall, the listed works achieved performance compa-
rable or superior to fully supervised baselines. Moreover,
works like [187] (sleep staging) show how some downstream
tasks can be treated both with single and multimodal
approaches. In this regard, multimodality seems to help
extract complementary representations, enhancing the qual-
ity of representations compared to single-modality SSL
strategies.

VII. DISCUSSION AND OPEN CHALLENGES
This section aims to answer important questions that
may arise from the analysis of the selected works: when
self-supervised learningmight be preferred to a standard fully
supervised strategy; how data aggregation can improve the
model’s robustness; what is the role of the fine-tuning phase;
what is the best pretext task to choose; what is the role of data

augmentation during the pretraining; and how multimodality
can benefit from this paradigm. Although some of these
topics can be presented in general terms, particular focus will
be given to the analysis of special aspects to consider when
applying existing SSL techniques (which have succeeded
in other time-series analysis tasks) to a specific biosignal
analysis task. To make the narrative clearer and easier to
follow, each topic will be presented concisely in a separate
subsection, providing examples from the previous listed
works whenever possible.

A. SUPERVISED VS SELF-SUPERVISED LEARNING
Overall, the analysis of the selected works has shown that
self-supervised learning may improve the performance of the
trained model and mitigate overfitting in most of the listed
downstream tasks. Hence, it seems likely that this strategy
can be useful when performing deep learning-based biosignal
analysis. However, one must be cautious and consider some
important aspects that may guide the researcher towards the
choice of the most suitable training strategy.

First, it is important to address the amount of supervision
that can be provided for the downstream task. If the amount
of labeled data is sufficiently high, it is unlikely that SSL
will boost performances in a statistically significant manner,
especially when pretraining and fine-tuning are performed on
the same single repository. However, it is difficult to find
such datasets in the domain of biosignals. Few exceptions
worth mentioning are the Temple University Hospital (TUH)
dataset for EEG or the Computing in Cardiology (CinC)
datasets for ECG. Works employing such datasets (for
example [112], [134]) were not always able to improve
their performances compared to fully supervised baselines.
However, although results can be comparable, SSL has
proven to lead to a better generalization of the problem, as a
drastic decrease in the amount of supervision is translated
into only a slight drop in performance, the opposite of fully
supervised methods.
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The second aspect to consider is the amount of exter-
nal data that can be exploited during pretraining. Self-
supervised learning’s main goal is to provide a way to
learn general-purpose features by exploiting large amounts
of unlabeled data. The more data that can be fed into the
network during pretraining, the more robust the learned
features will be, as they come from a larger and more
heterogeneous parterre of data. This has the potential to boost
the performance on the downstream task, as reported in many
of the selected works. A more in-depth analysis regarding the
role of data aggregation in self-supervision will be done in
the next subsection.

B. THE POWER OF DATA AGGREGATION
Regardless of the specific type of biosignal or the investi-
gated clinical task, self-supervised learning pretraining has
demonstrated that it can reach state-of-the-art performances
when more datasets are simultaneously employed. However,
although SSL approaches facilitate the aggregation of multi-
ple repositories not acquired in the same experimental setting,
this procedure is still not a common practice in biosignal
analysis. There are indeed many studies that combine
more than one dataset during pretraining, but their number
is generally limited to two or three repositories, usually
acquired for the same medical purpose. On the contrary,
works like [131] demonstrated how data aggregation might
improve model performance even when records came from
completely different experimental settings.

Practical limitations like the inability to standardize
multiple datasets automatically and easily certainly play a
key role in the hindrance of such practice. In fact, biosignals
are not only complex to interpret but also suffer from great
variability, which may come from experimental settings,
acquisition protocols, storage modalities, and intra- and
inter-subject variability. For example, EEG preprocessing
includes not only data imputation, resampling, and filtering
as for any other biosignals, but also the re-referencing to
a common (or average) channel, the alignment to a unique
template, and the interpolation ofmissing channels.Manually
performing all these steps is an extremely time-consuming
and discouraging task. However, as of now, no tools are
designed to simultaneously preprocess and align multiple
datasets of the same modality. Therefore, it could be of great
interest for the research community to develop novel tools
that can both perform consistent preprocessing on multiple
datasets and integrate their functionalities with preexisting
ones, such as EEGlab [196] for EEG or ECG-kit [197] for
ECG, allowing to aggregate heterogeneous datasets for SSL
applications.

Moreover, although there is already evidence that the
aggregation of multiple datasets can improve the accuracy
of downstream models [131], [187], it could be useful to
further investigate the effect of massive data aggregation
during pretraining and how the quality of the general-purpose

features learned is affected by that. It could also be of great
interest to understandwhether this strategy could be exploited
in advancing the problem of domain adaptation [198], i.e., the
problem of avoiding significant performance degradation
due to changes in the marginal distribution of the feature
space (domain shift), which remains a critical aspect in the
biomedical domain.

C. THE CHOICE OF THE FINE-TUNING DATASET
When defining a self-supervised experimental pipeline, it is
important to not only select the right pretraining datasets
to aggregate but also the fine-tuning one. Unfortunately,
considering the way self-supervised learning strategies are
usually presented, fine-tuning seems to often take a back seat.
However, this phase is no less important than the pretraining
one, since model evaluation will be based on the performance
metrics estimated from the test set of the fine-tuning dataset.
Moreover, choosing the right fine-tuning dataset is important
not only for model evaluation but also to promote results
replicability and facilitate the comparison between different
approaches.

Regarding results replicability, one should opt as much
as possible for free open repositories, or at least ones
accessible up to a filled-out request form. While the use of
private datasets is certainly not forbidden, especially during
pretraining, it is also true that the community could benefit
more from the introduction of novel strategies tested with
only open datasets. The use of open data can, in fact, make
results not only reproducible but also more reliable since
nothing is hidden from the reader. Moreover, it encourages
the use of the same dataset as well as the production and
release of tools designed to preprocess and split it in a
standardized way, which is a crucial step in the creation of
useful benchmarks.

Regarding the comparison between different approaches,
while in other fields such as computer vision the research
community has adopted well-defined protocols (e.g., use
of datasets with predefined test sets, use of the same
combination of data augmentations, use of standard model
architectures) to promote fair and robust comparison between
the proposed strategies, in the biosignal domain this aspect
remains an open challenge. In fact, given a specific down-
stream task, several factors, such as the choice of different
fine-tuning datasets, the use of a different splitting strategy
(subject-, session- or trial-based), or the way performance
variability was assessed (repeated fine-tuning, leave one
subject out cross-validation, pretrainingwith different subsets
of data), often make it impossible to compare the presented
results. While the splitting strategy and the performance vari-
ability assessment can change according to the experimental
study, the choice of the specific fine-tuning dataset can be
at least aligned based on the investigated downstream task.
To help readers choose the right fine-tuning repository, the
following list of datasets often used for different downstream
tasks is provided:
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• PTB−XL : A large open dataset comprised of
21799 clinical 12-lead ECG records of 10 seconds
length from 18869 patients. Each ECG was assigned
a diagnostic label based on the evaluation of expert
cardiologists. The number of labels can vary depending
on the chosen experimental setting. Data can be directly
downloaded.

• CinC 2017 : another ECG dataset released for the
Computing in Cardiology 2017 challenge. It includes
8528 single-lead ECGs with various types of arrhyth-
mias diagnosed by expert cardiologists. It can be used
in studies focused on the diagnosis of arrhythmias. Data
can be directly downloaded.

• TUH : the largest EEG repository to date. It includes
EEG records from 10874 subjects recorded at a min-
imum of 250 Hz with a 24- to 36-channel system.
The dataset was also divided into several subsets
annotated for specific case studies (e.g., TUAB for
normal/abnormal classification, TUEP for epilepsy).
Data can be accessed only after filling out a request
form.

• DEAP : an EEG dataset for emotion studies. It com-
prises EEG records from 32 subjects, with the possibility
to download already processed samples. Data can be
accessed only after filling out a request form, which
must come from researchers with a permanent position
at an academic or research institute.

• BCI competition : a set of datasets released for the BCI
Competition IV. Widely used datasets include datasets
2a and 2b for motor imagery with EEG data. Data can
be directly downloaded.

• NinaPro : a large multimodal database aimed at foster-
ing machine learning research on human, robotic and
prosthetic hands. It comprises 10 datasets with EMG and
other kinematic or inertial data acquired from subjects
with intact or amputated hands. Data can be directly
downloaded.

• MIMIC : a large multimodal dataset that included
multimodal recordings from ICU patients. The datasets
often employed are the MIMIC-II and MIMIC-III
datasets, which can be accessed only after filling out a
request form.

• WESAD : a multimodal dataset for wearable stress and
affect detection comprised of physiological and motion
data recorded from 15 subjects. Data can be directly
downloaded.

• Sleep−EDF : a widely used dataset comprised of
197 polysomnographic sleep recordings. Despite its
multimodality nature, this dataset is often employed in
single-modality EEG sleep studies (see table 2). Data
can be directly downloaded.

• CinC 2018 : Another large sleep staging dataset com-
posed of various physiological signals (ECG, EEG,
EOG, and EMG) recorded from 1985 subjects. Data can
be directly downloaded.

D. THE CHOICE OF THE PRETEXT TASK
Looking at the pure numbers, contrastive learning was
the most chosen pretext task, outnumbering the sum of
works adopting other methodologies. This aspect certainly
reflects not only the ability of contrastive learning pretext
to learn better general-purpose representations from the data
compared to other approaches but also its easiness of adaption
to the medical domain. In fact, self-supervised contrastive
learning baseline approaches are fairly easy to implement
and have lots of alternatives that, although similar, can
fit specific experimental needs. Moreover, they can also
be easily modified without actually changing their core
parts. Many of the presented works, rather than designing
completely novel approaches, slightly changed baseline
methods to incorporate specific medical domain knowledge.
For example, some works proposed more biologically
inspired data augmentation techniques [140], while others
focused on the way similarity between pairs is evaluated, for
example by modifying the objective learning function or the
structure of the siamese network [107]. Specific examples
of the incorporation of medical domain knowledge during
pretraining can be found in the surveyed works. In particular,
authors in [119] have presented an EEG-based multitask
pretraining strategy that takes into account both similarities
and dissimilarities in the activity of the left and right brain
hemispheres but also considers the known effect on the EEG
dynamic of both the age and behavioral state of the subject.
In addition, although not classified as a contrastive learning
pretext task, the method presented in [45] represents another
example of domain knowledge incorporation since it is based
on the prediction of characteristic features automatically
extracted from the ECG signal (with standard procedures) and
typically used by cardiologists for diagnostic purposes.

Although contrastive learning seems to generally per-
form well, discarding other pretraining strategies can be
counterproductive. For example, predictive pretext tasks can
lead to better results on some downstream tasks if properly
designed, like motor imagery classification [146]. Moreover,
they are still largely employed in multimodal approaches,
where finding effective ways to assess similarities and
dissimilarities in representations of different modalities for
contrastive approaches is still an open challenge. Masked
modeling was also successfully applied for several down-
stream tasks, although its paradigm is less open to novel
implementation. However, when combined with other SSL
strategies, especially when transformer architectures are
involved [92], it could improve the model’s performance and
robustness.

Each pretraining technique has its own peculiarity; hence,
it is reasonable to assume that the quality of the represen-
tations will be affected as well. In this context, it could be
more valuable to investigate ‘‘hybrid’’ approaches, which
incorporate the qualities of different methods, rather than
trying to assess the best strategy among the categories. The
combination of multiple pretext tasks might lead to more
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robust features, as they can instill in the feature extractor
knowledge learned from very different tasks. An example
of such a strategy can be found in [126], where contrastive
(SimSiam) and generative (GAN-based) pretext tasks were
combined to improve the quality of the representations.

In conclusion, it is probably still too early to understand
what the best SSL pretext task category is for the analysis of
biosignals, especially considering that the field is evolving
quickly and some methods (e.g., generative pretext tasks)
have such a limited number of applications. Future works
and advancements in this domain will have the possibility of
revealing which directions will be more effective.

E. THE ROLE OF DATA AUGMENTATION
Data augmentation plays a central role in affecting the
quality of the representations learned during pretraining.
They guide the network during the general-purpose feature
learning process, consequently influencing its performance
on the target task after fine-tuning. This fact is true not
only in contrastive pretext tasks, where data augmentation
is an essential part of the general workflow but also in
generative (e.g., reconstructive) and predictive strategies.
Therefore, particular attention must be given to the design
of augmentation methods, as wrong choices could deeply
degrade the model’s performance. Considering the field of
application, it is extremely important to consider both the
physiological nature of the signal and the prior medical
knowledge about the target clinical task.

As for the signal’s physiological nature, a data augmenta-
tion must generate a new version of the same data that not
only preserves its physiological information but also does
not diverge too much from the original dataset distribution.
For example, a commonly employed data augmentation is
the addition of generated noise or artifacts. In the biosignal
domain, there are many known physiological sources of
artifacts that could be exploited, such as the line noise, the
drift artifact caused by changes in the electrodes’ impedance,
or the ocular and muscle artifacts typical of EEG data.

As for the medical knowledge of the target clinical task,
while it is true that pretext tasks can produce robust features
without any knowledge about the subsequent clinical task,
it is also true that indirectly including such information in
the model could be beneficial, even at the cost of reaching
a worse loss minima during pretraining. For example, if the
medical literature has already identified specific patterns that
can be exploited to distinguish between normal (healthy)
and abnormal (pathological) signals, it is important and
reasonable to design data augmentations that will force the
network to focus on such aspects. This, for example, applies
to variations of the PQRST complex in ECG analysis or
variations of the signal spectrum in specific bands in EEG
applications.

Another key point to assess is how data augmentations
are combined. While a single data augmentation chosen at
random from a wide list could be a good initial strategy,
compositions of multiple transformations can increase the

sample’s heterogeneity and produce more complex patterns,
enhancing the learning process. In fact, as reported in
[58], the composition makes the pretext task harder, but
the quality of the representations improves dramatically.
In the same work, the authors proposed a good pipeline to
systematically study the impact of data augmentation, which
was also used in [121] on EEG data. The results of both
works demonstrated the superiority of data augmentation
composition. However, it is also important not to stack too
many augmentations, as the new transformed sample will
be too noisy; hence, the trade-off between task complexity
and quality or representation will probably be lost. A good
compromise could be to apply a sequence of 2 augmentations,
preceded by another physiologically invariant transforma-
tion, designed to increase the number of training samples
without actually changing the biological information of the
original data. An example of such augmentation could be the
EEG re-referencing to another channel, as suggested in [18],
or the signal polarity inversion.

Despite the central role of data augmentation, the literature
still lacks an extensive analysis of its role in SSL-based
biosignal analysis. Aside from the previously mentioned
work on EEG data, a similar analysis on ECG data is
provided in [110]. However, no extensive study about their
composition was performed.

F. THE CHALLENGE OF MULTIMODALITY
In the biomedical domain, multimodal data are often
complementary with each other, meaning that each type of
data (e.g., signals, images, text reports) can be used to extract
unique latent representations to allow a better understanding
of a pathology, even at the subject level. However, the analysis
of the methods presented in the selected works certainly
reveals how difficult it is to exploit the SSL paradigm in
a multimodal environment. Two main reasons can explain
this difficulty: the limited availability of multimodal datasets
acquired for a specific task, and the challenging problem of
effectively combining different modalities during pretraining.

As for the availability of multimodal datasets, there is
no doubt that their collection within a unique experimental
setting is extremely hard and costly. However, as reported
in section VI-D, a commonly adopted strategy is to train
a specific feature extractor for each data modality. This
allows to overcome the problem of data availability by
performing a two-step pretraining strategy. In the first step,
each encoder can be trained separately by aggregating several
unimodal repositories; then, multimodal data should be used
to simultaneously optimize and align representations of all
the feature extractors.

While this strategy allows for lessening the needs of
multimodal repositories, the second problem, which is how
to effectively combine multiple data types, remains open.
As of now, predictive pretext is the most chosen approach,
given its lower computational requirement and easiness of
implementation. However, predictive pretexts rely on the
concatenation of the different embeddings only at the network
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head level (usually discarded during the model transfer
phase) without actually promoting the alignment of different
modalities at the backbone level. On the contrary, contrastive
learning could be the most suitable type of pretext task in
this context, as it allows improving the agreement between
representations of different modalities by projecting them in
a common latent space used to calculate the contrastive loss
(see COCOA [174]). The alignment of different modalities
in a single space could have great potential in knowledge
discovery scenarios, for example, by connecting the aligned
embeddings to a common ontology. It could also open new
possibilities in deep phenotyping and precision medicine
[199], [200].

One medical area that could benefit most from multimodal
applications is neuroscience. Neuroscience is extremely mul-
timodal, with biosignals like EEG or EMG collected together
with different types of images (e.g., positron emission
tomography, optical coherence tomography, structural and
functional magnetic resonance imaging) and tabular data.
However, limited effort has been made to align images,
signals, and clinical data, a procedure that could greatly
improve the study of different neurological disorders and
the understanding of the mechanisms behind their onset and
progression.

Another application that could benefit from the use of
multimodal self-supervised strategies is the management
of chronic diseases through multimodal wearable data.
As previously stated in section I, the role of wearable
devices is constantly growing, and nowadays, people affected
by chronic diseases like diabetes, coronary heart disease,
or chronic obstructive pulmonary disease can heavily rely on
them [201]. However, while different wearable devices can
facilitate themonitoring of several physiological information,
the introduction of deep learning-based decision support
systems that can exploit them in real-world scenarios is still
hindered by the high sources of variability (e.g., subject
variability, sensor variability) associated with such data.
In this context, the ability of self-supervised learning to
improve model generalizability, as reported in other surveyed
works, could help solve this problem. However, further
investigations need to be performed, as the number of SSL-
based works in this area is still limited.

VIII. CONCLUSION
Self-supervised learning represents a relatively recent and
extremely powerful resource in the context of deep learning
and, more generally, machine learning applications to dif-
ferent data modalities. In particular, the potential impact of
self-supervised learning in biomedical sciences, where it’s
difficult to get large amounts of annotated data, is extremely
high. While previous works reviewed SSL applications on
biomedical images, this is the first review paper targeting
SSL applications for the analysis of biosignals. The survey
highlights how self-supervised learning has been widely
adopted for various types of biosignals, including multimodal
approaches. It also highlights how, despite its relatively young

age, SSL can potentially solve the problem of learning robust
representations from biosignals in situations where there is
a limited amount of labeled data. However, several factors
remain unclear and require further investigations, such as the
choice of the pretext task, the data aggregation procedure,
and the exploitation of biological information from biosignals
during the pretraining phase. Despite these limitations, self-
supervised learning has opened the path to a more robust
and performant deep learning, which could finally bridge
the gap between research and clinical applications. It also
has the potential to make applications of deep learning in
the biomedical domain (where it’s more difficult to get data
and annotations by experts) more substantial and to help
face some open challenges (e.g., accountability, distribution
shifts, robustness), which still hinder the reliability of AI for
healthcare [202], [203].
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