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ABSTRACT Bean crop and weed detection is a key component of precision agriculture, which can
distinguish between bean crop and weeds. Accurate identification of weeds is essential for precision weed
management. This study introduces PF-UperNet, a semantic segmentation approach rooted in an encoder-
decoder architecture, designed to autonomously distinguish between bean crop and weeds using advanced
computer vision techniques. Our methodology refines the foundational UperNet in several significant
ways: Firstly, we adopt the PoolFormer-S12 as a substitute for UperNet’s backbone structure, aiming to
reduce the model parameters and boost its performance metrics. Secondly, the Efficient Channel Attention
(ECA) mechanism is integrated into both the PoolFormer-S12 and the Decoder, sharpening the network’s
focus on extracting salient channel features. Then, within the Decoder, the Feature Alignment Pyramid
Network (FaPN) supplants the conventional Feature Pyramid Network (FPN) module, remedying the
misalignment issues observed in UperNet’s FPN feature maps. Lastly, we replace the Cross-Entropy loss
with a combination of Cross-Entropy loss and Dice coefficient loss to increase the model’s attention on
regions to be detected. Empirical evidence underlines the efficacy of our technique, with a Mean Intersection
over Union (MIoU) of 87.45%, a Mean Pixel Accuracy (MPA) of 96.82%, and a total of 46.16M parameters
encapsulated. Relative to the benchmark UperNet, our model demonstrates enhancements of 1.08% and
0.25% in MIoU and MPA, respectively, and accomplishes a parameter reduction of 27.92%. Experimental
results demonstrate that the proposed model achieves remarkable detection performance in terms of MIoU,
MPA, and model parameters. It can provide an effective detection method for weed management.

INDEX TERMS Improved UperNet, green bean, weeds, semantic segmentation, PoolFormer, deep learning.

I. INTRODUCTION
The growth environment of crops is complex, and weeds
often accompany the entire growth process of crops. During
this period, weeds compete with crops for sunlight, water,
nutrients, etc., severely affecting the yield and quality of
crops [1]. Affected by pests, diseases, and weeds, global
crop yields suffer nearly a 30% loss annually. Therefore,
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effective identification and removal of weeds are crucial for
crop yield and quality [2], [3], [4], [5]. Traditional chemical
weeding methods generally lack specificity, using overall
spraying. This type of weeding adversely affects both the
environment and the crops themselves [6], [7]. If chemical
herbicides can be sprayed based on the distribution of weeds,
it would not only reduce the use of chemical herbicides but
also decrease pesticide residues in bean crop. The core issue
of targeted chemical herbicide spraying is how to accurately
identify bean crop and weeds. Therefore, researching the
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segmentation tasks of bean crop and weeds is of paramount
importance.

Until now, there are few studies on the segmentation of
green beans and weeds. Yet, useful references and expe-
riences could be obtained from the segmentation methods
of other crops or other legumes and weeds. Multiple meth-
ods are available for the identification of crops and weeds,
such as spectral and machine learning identification methods.
However, due to the expensive equipment and complexity of
spectral detection, it is not conducive to widespread adop-
tion [8], [9]. Recently, as artificial intelligence technology has
advanced, machine learning has become increasingly preva-
lent in crops and weeds identification tasks [10]. Machine
learning classifies, detects, and segments the objects to be
detected by describing data features and extracting useful
information from them [11]. Common machine learning
methods can be categorized into supervised and unsupervised
learning, such as supervised learning’s k-nearest neighbor
(KNN) and logistic regression, and unsupervised learning’s
clustering and principal component analysis (PCA), etc.
Islam et al. [12] employed aerial imagery from drones over
chili pepper fields to identify weeds and evaluated the effi-
cacy of algorithms like k-nearest neighbors (KNN), support
vector machine (SVM), and random forest (RF). Bakhshipour
and Jafari [13] introduced a technique for detecting weeds
in beet fields. They integrated several morphological fea-
tures, established a model for each plant type, and finally
identified beets and weeds successfully using artificial neural
networks(ANN) and SVM. While machine learning tech-
niques are applicable for weeds identification, the intricate
growth conditions of crops can be influenced by elements
like lighting and climate, resulting in reduced detection preci-
sion. Moreover, machine learning requires extensive domain
knowledge to construct features from data for detection [14].
Due to the reasons mentioned above, it is challenging to apply
machine learning techniques, and the recognition accuracy is
not high.

In recent years, the surge of deep convolutional neural
networks (ConvNets) in computer vision has led to their
widespread use in crop semantic segmentation tasks. Yang et
al. [15] developed amulti-scale convolutional neural attention
network named MSFCA-Net, which has been successfully
applied to weeds identification in soybeans, beets, carrots,
and rice. On their proprietary and public datasets, they
achieved MIoUs of 92.64%, 89.58%, 79.34%, and 78.12%,
respectively. Kamath et al. [16] proposed an improved PSP-
Net [17] and compared it with SegNet [18] and U-Net [19],
successfully segmenting rice and weeds. Promising results
have been achieved with an accuracy exceeding 90%. Tar-
geted weed management was realized, reducing the harmful
impact of herbicides on the environment. Zou et al. [20]
introduced an enhanced U-Net semantic segmentation frame-
work by adapting the backbone and reconfiguring the decoder
architecture. They achieved segmentation of wheat andweeds
with an IoU of 88.98% for the weeds, and the average

detection speed on the edge device reached 52 FPS. Yu et
al. [21] proposed an improved Deeplab V3+ model, suc-
cessfully achieving segmentation of soybeans and weeds,
with an MIoU of 91.53% on their custom dataset. Xu et
al. [22] developed a segmentation network based on the
encoder-decoder structure, integrating color indices with
instance segmentation. It successfully segmented soybeans
and weeds, achieving an MIoU of 93.9% on their cus-
tom dataset. Although ConvNets have achieved outstanding
results in the segmentation tasks of crops and weeds, the
receptive field of ConvNets is relatively small, resulting in
room for improvement in the segmentation accuracy of crops
and weeds. While some methods, such as pyramids [17],
atrous convolutions [23], and attention mechanisms [24],
have been proposed in ConvNets to compensate for the inad-
equacy of their receptive fields, researchers still hope for
ConvNets to have a broader receptive field to achieve more
superior detection performance.

Dosovitskiy et al. [25] introduced the Vision Transformer
(ViT) to address the limited receptive field issue of Con-
vNets. Jiang et al. [26] replaced the traditional ConvNets with
ViT to achieve weeds detection. Zhang et al. [27] utilized
the improved version of ViT called Swin-Transformer [28]
to construct an enhanced Swin-UNet segmentation model,
successfully segmenting maize and weeds. At present, the
ViT has achieved commendable segmentation results in tasks
involving crops and weeds. However, its model parame-
ters are large, consuming significant memory, which hinders
model training and broader application. Furthermore, there is
still room for improvement in model accuracy.

This study focuses on the identification of green bean
and weeds. To ensure the detection speed and accuracy of
green bean and weeds, a segmentation model with smaller
parameters based on the ViT is required. Therefore, this study
proposes an efficient semantic segmentation model for green
bean and weeds, named PoolFormer-UperNet (PF-UperNet).
Major adjustments and contributions of the model are as
follows:

1) The backbone of UperNet [29] is replaced with
PoolFormer-S12 [30], which not only reduces the model
parameters but also expands the model’s receptive field.

2) The ECA [31] attention module is added to the Encoder
and Decoder, re-integrating the importance of channel infor-
mation and enhancing the model’s detection performance.

3) In UperNet, Feature Pyramid Network (FPN) [32] is
replaced by Feature-aligned Pyramid Network (FaPN) [33],
addressing the adverse effects caused by misalignment of
feature maps during feature fusion.

4) Cross-Entropy loss is replaced with Cross-Entropy loss
+Dice coefficient loss, making the segmentationmodelmore
focused on the areas to be detected.

To summarize in all, This model solves the problems that
spectral detection is not conducive to promotion due to the
high cost and complex operation of equipment, and machine
learning requires a lot of professional domain knowledge to
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FIGURE 1. Augmented dataset and its corresponding labels.

build the features to be detected from the data. It also solves
the problems that ConvNets have poor receptive field, ViT
models have a large number of parameters and require a lot
of GPU memory for training.

II. MATERIALS AND METHODS
A. DATASET
The dataset used in this paper is a public dataset, which was
collected by Jehan-Antoine Vayssade using a multispectral
camera in Airel, France (latitude 46◦20’30.3’’N, longitude
3◦26’33.6’’E). The multispectral camera is configured with
bands at 450/570/675/710/730/850 nm, with an FWHM of
10 nm. The images showcase green bean alongside var-
ious native weeds such as yarrows, amaranth, geranium,
plantago, etc. The collection conditions include rainy days,
cloudy days, various lighting conditions, and different time
periods. The aforementioned public dataset can be accessed
at https://doi.org/10.15454/JMKP9S. The dataset contains a
total of 300 folders, each of which contains one original
image and one spectral image collected at 570nm, named
as ‘‘false.png’’ and ‘‘image.tiff’’ respectively. There are two
label files corresponding to the original images, named as
‘‘gt.png’’ and ‘‘gt.xml’’ respectively. In addition, there is
one black-and-white image of green beans and weeds (not
available in some folders) named as ‘‘index.png’’. A total of
1376 files are contained in all the folders. After manually
sorting the required ‘‘false.png’’ and ‘‘gt.png’’ for this study,
we obtained a total of 300 pairs of bean crop and weed images
and their corresponding label images. The above 300 pairs of
images were divided into training set, validation set, and test
set in the ratio of 7:1:2.

B. DATA ENHANCEMENT
To ensure better training performance and superior testing
results with limited data, we adopted data augmentation tech-
niques to expand the original dataset [34]. This paper utilized
nine offline data augmentation methods, including horizontal
flip, vertical flip, rotate, translate, crop and pad, rotate and
crop, Gaussian blur, sharpen, and brightness. The original
data, augmented dataset, and corresponding labels are shown
in Figure 1.

C. OVERRALL STRUCTURE OF THE SEMANTIC
SEGMENTATION MODEL
PoolFormer [30] is a general-purpose backbone for com-
puter vision feature extraction, and its main principle is
similar to that of Transformer. Yu et al. believe that the
success of Transformer mainly stems from its overall struc-
ture. Therefore, they replaced self-attention with pooling,
thereby maintaining excellent detection performance while
reducing computational costs. Based on the outstanding per-
formance of PoolFormer, this paper adopts PoolFormer as
the backbone. The model is primarily divided into encoder
and decoder sections. The specific structure is illustrated in
Figure 2.
The input image is first processed by the PoolFormer struc-

ture. PoolFormer consists of 4 stages, each of which contains
patch embedding, PoolFormer block, and ECA block. The
ECA block is a channel attention module added after Pool-
Former block to enhance the feature extraction ability of the
backbone.

The features extracted by PoolFormer are passed into
the Pyramid Pooling Module (PPM) and FaPN. In order
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FIGURE 2. Overall structure of the semantic segmentation model.

FIGURE 3. PoolFormer structure.

to augment the predictive proficiency of UperNet, we sub-
stituted its Feature Pyramid Network (FPN) with a
Feature-aligned Pyramid Network (FaPN), thereby mitigat-
ing misalignment issues encountered during the amalgama-
tion of backbone-derived features and feature maps. After
processing through PPM and FaPN, the feature maps will be
integrated via the fuse module, then connected to the ECA,
and finally passed through the object head to produce the
ultimate prediction results.

D. ENCODER
1) BACKBONE NETWORK
The backbone network consists of the stages 1-4 shown in
Figure 2. The input image is reduced to half its original

height and width after each stage, and the number of channels
is increased to 64, 128, 320, and 512, respectively. Patch
embedding is composed of a convolutional layer and a flat-
tened layer. Each image patch enters the core module of
PoolFormer. This module consists of the following steps:
1. Normalize the image patch using group normalization.
2. Pool the image patch using a pooling operation. 3. Pool
the image patch again using a pooling operation. The result
after the residual connection is again passed through group
normalization and channel MLP. Then, the result is passed
through the residual connection with the input from the pre-
vious level and output. The overall structure of PoolFormer
is similar to that of Transformer, but it replaces self-attention
with pooling operations. This design greatly reduces the
computational cost. The structure diagram of PoolFormer is
shown in Figure 3.

2) ECA BLOCK
The Efficient Channel Attention (ECA) block autonomously
evaluates and assigns weights to channels within the acquired
feature map, sequentially ranking them based upon their
respective importances. This ensures that the model pays
more attention to useful feature channels and suppresses
unhelpful ones, enhancing segmentation performance. The
operation process is as follows: Firstly, the input undergoes
a Global Average Pooling (GAP) operation, resulting in a
feature map with a height (H) and width (W) of 1. Then,
1×1 convolution is applied to the previously obtained feature
map, effectively integrating information between channels.
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FIGURE 4. ECA block.

FIGURE 5. Pyramid pooling module.

Finally, the results from the 1 × 1 convolution are passed
through a sigmoid function and then multiplied with the
input. As only 1× 1 convolution operation was used without
introducing other complex convolutions, the computational
cost of the ECA block is relatively low, which can enhance
the model’s accuracy while having minimal impact on model
parameters. The principle of the ECA block used in this paper
is shown in Figure 4.

E. DECODER
1) PPM BLOCK
PoolFormer has expanded the model’s receptive field to some
extent, while we hope the model can achieve better seg-
mentation results at different scales. The pyramid pooling
module (PPM) fully integrates contextual information, allow-
ing objects of different scales to achieve better segmentation
performance. The operation process is as follows: Firstly, the
feature map is divided into different image blocks, including
1 × 1, 2 × 2, 3 × 3, and 6 × 6. Then, different pooling
operations are applied to each image block. Next, the number
of channels is adjusted through 1×1 convolution, followed by
upsampling. Lastly, various feature maps are merged with the

primary map, yielding a feature representation rich in contex-
tual details. Figure 5 illustrates the operational mechanism of
PPM.

2) FaPN BLOCK
In the original UperNet, the Feature Pyramid Network (FPN)
is utilized. However, in FPN, directly adding the upsam-
pled features with those from the backbone can result in
misaligned contextual feature maps, leading to segmentation
classification errors, especially evident at the edges. Hence,
this study introduces the Feature Alignment Pyramid Net-
work (FaPN). By aligning the contextual features through
FaPN before summation, we effectively address the misalign-
ment issue. FaPN comprises two modules: Feature Selector
Module (FSM) and Feature Alignment Module (FAM). Their
working principles are shown in Figures 6 and 7, respectively.
Specifically, the FSM process involves the following steps:
First, Ei extracts the significance of each channel through
fm in the FSM module and multiplies it with Ei. Next, the
result from the previous step is added to Ei. Lastly, channel
adjustments are made through fs(1×1 convolution), resulting
in Êi.

The input to the FAM model consists of two parts: one is
derived from the output Êi of the FSM model, and the other
comes from the prior-level feature map shown in Figure 2.
After upsampling, we refer to this part as Di. The operational
process is as follows: First, Di, after being upsampled to Dui ,
is concatenated with Êi, followed by a convolution operation,
resulting in an offset-inclusive image 1i. Then, 1i and Dui
are jointly fed into the deformable convolution for feature
alignment, yielding the output D̂ui . Lastly, pixels of D̂

u
i and

Êi are added together, completing the entire FaPN process.
FaPN, through continuous training, enables convolution to
detect misaligned portions between two images and generate
an offset. This offset is then used for alignment, thereby
compensating for the deficiencies of FPN.

Moreover, the fuse block in Figure 2 integrates the out-
puts of PPM and FaPN into a consistent image size using
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FIGURE 6. Feature selector module.

FIGURE 7. Feature alignment module.

bilinear interpolation, subsequently passing through the ECA
block for feature channel importance adjustment. Ultimately,
by convolutional operations, features from different stages
and modules are integrated, producing the prediction results
of PF-UperNet.

F. TRANSFER LEARNING
Transfer learning is a technique in machine learning where
a model designed for one task (task A) is repurposed as a
foundation for a different task (task B). The main idea is to
use strategies from previously solved problems to address
unsolved ones. Due to the small size of the green bean
and weeds dataset in this study, to improve the training
results, therefore, transfer learning was employed in the train-
ing process of this study. Specifically, we pre-trained the
PoolFormer-S12 on the ADE20K dataset. This pre-training
allowed us to transfer the knowledge gained from ADE20K
to our green bean and weeds dataset, enhancing the feature
extraction process for these plants.

G. LOSS FUNCTION
In this paper, the loss function is denoted as LT , comprising
two components: L1 and L2. L1 represents the c, and L2
represents the Dice coefficient loss. Additionally, w1 and

w2 are used to weight L1 and L2 respectively. In this paper,
w1 = 0.6 and w2 = 0.4. The loss function is computed using
the following equation:

L1 = −
1
N

∑N

i=1

∑M

j=1
yic ln(pic) (1)

L2 = 1 −
2|X ∩ Y | + ε

|X | + |Y | + ε
(2)

LT = w1L1 + w2L2 (3)

In expression (L1), the variables are defined as follows: N
is the batch size, M is the total number of categories, and yic
is a binary sign function, taking a value of 1 when the true
category of sample i matches c, and 0 otherwise. The term pic
refers to the predicted probability that sample i is assigned to
category c.

In expression (L2), X denotes the ground truth while Y
denotes the category predicted by the semantic segmentation
algorithm. To prevent division by zero in the denominator,
a safeguard value ε is employed, with ε set to 1 × 10−6.

H. EVALUATION METRICS
In this study, we use Mean Pixel Accuracy (MPA), Intersec-
tion over Union (IoU), and Mean Intersection over Union
(MIoU) as our evaluation criteria for semantic segmentation,
outlined in equations (4) to (6) [35]. MPA quantifies the
proportion of pixels accurately identified for each category to
the total pixel count. IoU measures the overlap between the
predicted and actual values for a given category, representing
the proportion of shared area to their combined area. MIoU,
on the other hand, is the average overlap across all categories,
determined by summing the IoU values and then computing
their mean. These benchmarks help gauge the efficacy of our
model’s segmentation.

MPA =
1

k + 1

∑k

i=0

pii∑k
j=0 pij

× 100% (4)

IoU =

∑k

i=0

pii∑k
j=0 pij +

∑k
j=0 pji − pii

× 100% (5)

MIoU =
1

k + 1

∑k

i=0

pii∑k
j=0 pij +

∑k
j=0 pji − pii

× 100%

(6)

In the aforementioned formula, pii represents the number
of pixels that are actually of category I and are predicted
as I, pij represents the number of pixels that are actually of
category I but are predicted as J, pji represents the number of
pixels that are actually of category J but are predicted as I, k
represents the number of categories, and in this paper, k = 2.

III. RESULTS AND ANALYSIS
A. EXPERIMENTAL ENVIRONMENT AND TRAINING
PARAMETER SETTINGS
To maintain the consistency and reliability of our experi-
mental findings, every test was carried out under identical
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TABLE 1. Ablation results of the UperNet.

FIGURE 8. MIoU trend curve for different semantic segmentation models during validation.

conditions. Our setup operated on Ubuntu 22.04.2 LTS, pow-
ered by an Intel(R) Xeon(R) Silver 4110 CPU clocked at
2.10GHz, and utilized an NVIDIA GTX3090 GPU with
24GB of video memory. The programming language used
was Python3.8.17, with PyTorch1.10.0 as the deep learning
framework. In the experiments, the CUDA11.1 architecture
was adopted as the unified computing device framework.

The training parameters for this study are as follows:
Maximum training epochs was 400, Batch size was 12, Opti-
mizer was Adaptive Moment Estimation with Weight Decay
(AdamW), Initial learning rate was 0.0002, Learning rate
weight decay coefficient was 0.0001.

B. ABLATION EXPERIMENT
In the original UperNet, ResNet50 [36] was used as the back-
bone with Cross-Entropy loss as the loss function. Notably,
CE+Dice represents the simultaneous use of Cross-Entropy
loss and Dice coefficient loss, with respective weights of
0.6 and 0.4. The performance of different modules was eval-
uated in the experiment, and specific results are shown in
Table 1, where ‘‘

√
’’ in the table indicates the use of that

module and ‘‘×’’ indicates the module was not used.

Model1 in Table 1 represents the classic UperNet, while
model5 represents the final improved model PF-UperNet
proposed in this paper. Observing Table 1, it is evident that
the original UperNet achieved an MIoU of 86.37% and an
MPA of 96.57% in the segmentation tasks of green bean
and weeds. The PF-UperNet(model5) semantic segmentation
model proposed in this paper achieved performances of
87.45% inMIoU and 96.82% inMPA respectively. Compared
to Model1, PF-UperNet improved by 1.08% in MIoU and
0.25% in MPA. This enhancement effectively optimized
the classic UperNet, enhancing its semantic segmentation
performance.

Model2 initially replaces the classic UperNet (Model1)’s
ResNet50 with PoolFormer, expanding the model’s recep-
tive field and reducing the model size. These improvements
resulted in a 0.8% and 0.22% increase in MIoU and MPA
for Model2 compared to Model1, respectively. Building on
Model2, the Cross-Entropy loss is replaced with 0.6 Cross-
Entropy loss+ 0.4 Dice coefficient loss to emphasize the
region of interest. This model is termed Model3. Compared
to Model2, Model3 has achieved a 0.11% increase in MIoU
and a 0.03% increase in MPA. Model4, based on Model3,
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FIGURE 9. Test results of various semantic segmentation models.

introduces the FaPN block to address the feature misalign-
ment issue caused by directly using FPN in UperNet. Relative
to Model3, Model4 shows a 0.08% increase in MIoU and
a 0.01% increase in MPA. Model5, building on Model4,
incorporates the ECA block, re-integrating the importance
information of the feature map channels. Although Model5
shows a slight decrease of 0.01% in MPA compared to
Model4, its impact on segmentation results is negligible,
while MIoU increases by 0.09%. The final optimized Uper-
Net (Model5) achieved 87.45% and 96.82% in MIoU and
MPA, respectively. These results indicate that, after a series
of improvements, PF-UperNet has achieved significant per-
formance enhancements in the semantic segmentation tasks
of green bean and weeds.

C. COMPARISON WITH DIFFERENT NETWORK
ARCHITENTURES
To further assess the effectiveness of our constructed model,
we chose several commonly used semantic segmentation
models for comparison with our PF-UperNet. These com-
mon semantic segmentation models include five in total:
FCN [37], PSPNet [17], TransUNet [38], U-Net [19], and
UperNet [29]. It should be noted that UperNet employed
different backbones for experiments, thus we covered a total
of 7 distinct semantic segmentation models. The MIoU per-
formance of these models on the validation set during the
training process is shown in Figure 8. From Figure 8, we can
observe that theMIoU values of these models tend to stabilize
as the training epochs increase, while the MIoU values of
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TABLE 2. Results of different semantic segmentation models.

PF-UperNet are consistently superior to other models across
different epochs.

We further assessed our proposed model’s performance
using the test set. The evaluation results of different semantic
segmentation models on the test set are shown in Table 2.
As can be seen from Table 2, our proposed PF-UperNet out-
performs other models in terms of MIoU, MPA, background
IoU, green bean IoU, andweeds IoU evaluationmetrics. To be
precise, the MIoU of PF-UperNet is 87.45%, the MPA is
96.82%, the background IoU is 96.91%, the green bean IoU
is 79.79%, and the weeds IoU is 85.65%. When juxtaposed
with the least efficient FCN-8s model, PF-UperNet trims
down model parameters by 0.95M and escalates MIoU and
MPA by 5.53% and 1.57% respectively. When compared
with U-Net, boasting the minimum model parameters, PF-
UperNet, although augmenting parameter count by 17.1M,
boosts MIoU and MPA by 4.38% and 0.93% respectively.
In comparison to PSPNet, PF-UperNet scales down model
parameters by 0.42M and sees a rise in MIoU and MPA by
4.95% and 1.45% respectively. When set against UperNet
(ResNet18), PF-UperNet, albeit escalating model parameters
by 5.38M, uplifts MIoU and MPA by 3.12% and 0.74%
respectively. TransUNet, UperNet (ResNet50), and UperNet
(ResNet101) each possess greater model parameters than
PF-UperNet. Moreover, their metrics like MIoU, MPA, back-
ground IoU, green bean IoU, and weeds IoU also trail behind
PF-UperNet. In conclusion, the PF-UperNet we proposed
achieves satisfactory performance across all metrics.

To more intuitively demonstrate the improvements of our
model, we have created test result images, which include
the original images and true labels, as well as FCN-8s
(ResNet-50), PSPNet, TransUNet, U-Net (VGG16), UperNet
(ResNet-18), UperNet (ResNet-50), UperNet (ResNet-101),
and our proposed model. These test results are shown in
Figure 9.

IV. CONCLUSION AND DISSCUSION
This paper proposed an enhanced UperNet model for the
segmentation of green bean and weeds. Firstly, we employed
PoolFormer as a replacement for UperNet’s backbone to
reduce model parameters and enhance evaluation metrics.
Secondly, we incorporated the ECA attention module in
both PoolFormer and the decoder to amplify the model’s

focus on significant channel information. Subsequently,
we substituted the FPN in UperNet with FaPN to address
the misalignment of features during upsampling and the
fusion of low-level feature maps. Lastly, we exchanged the
Cross-Entropy loss for the combination of Cross-Entropy loss
and Dice coefficient loss to achieve improved segmentation
results for green bean and weeds.

This model addresses the problem that machine learning
requires a lot of domain knowledge to construct the features
to be detected from data. In addition, it also addresses the
problems that ConvNets have small receptive fields, and
ViT models have large parameter sizes and require a lot of
GPU memory for training. According to the experimental
results in this paper, the improved UperNet model’s green
bean and weeds segmentation method achieves an MIoU of
87.45 andMPA of 96.82. Additionally, it records background
IoU, green bean IoU, and weeds IoU of 96.91%, 79.79%, and
85.65% respectively. Themodel has 46.16Mparameters. This
indicates that the improved UperNet model can effectively
segment green bean and weeds, providing technical support
for targeted weeding.

In this study, our model has achieved good performance
on the Green Bean and Weeds dataset. However, the perfor-
mance may degrade when applied to other bean crops and
weeds. Additionally, our study requires a certain distance
between the camera and the objects to ensure image quality.
Therefore, it may not be suitable for applications in the drone
field. In future research, we plan to create a dataset for
green bean and weeds to enrich data resources and to thereby
improve detection performance. To ensure applicability on
edge devices, we also plan to further reducemodel parameters
while continuing to optimize model evaluation metrics, aim-
ing to enhance real-time image segmentation performance.
Furthermore, when combining Cross-Entropy loss and Dice
coefficient loss, further research is needed to determine when
their respective weights are optimal and how to select the
optimal weight parameters.

APPENDIX
CODE
The code is available at https://github.com/MingyangQi1/
PF-UperNet/tree/main
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