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ABSTRACT Conductor size selection (CSS) is critical for the optimal design and operation of distribution
networks. CSS, like other aspects of network planning, has become increasingly sophisticated as the
prevalence of distributed energy resources (DERs) increases. This complexity is linked to DER operational
and planning uncertainties, which often exacerbate network issues. Increased uncertainty and uncontrolled
DER penetration can result in increased conductor loading and extreme voltage performance concerns (rise,
drop, and unbalance) that lower the quality of supply (QoS). Traditional CSS techniques, which were
developed for passive systems, do not take DERs into account. Therefore, continued application of these
methodologies in CSS for modern networks is untenable. As a result, the shift towards active network design
and planning requires new CSS techniques that can enhance the adoption of DERs and facilitate optimal
long-term network planning. This paper presents a review of CSS methodologies, focusing on the advances
made to accommodate DERs, particularly the adaptation of modeling processes to cater to DER planning
and operational uncertainties, and its impacts on other key aspects of CSS. Key CSS processes, including
the choice of the CSS objectives, input (loads, generation, and feeder) modeling, load flow assessment,
optimization, as well as the incorporation of risk in DER analysis are discussed. Informed by the review, the
paper scopes the requirements for a robust CSSmethodology for active networks with high DER penetration.
The findings of the paper are relevant to future research in the field of active distribution network design
with a focus on optimizing the integration and utilization of DERs and the related technical performance of
networks.

INDEX TERMS Conductor size selection, distributed energy resources, network planning.

I. INTRODUCTION
The advancement in renewable energy technologies amidst
efforts to reduce the global carbon footprint has led to an
increased share of distributed energy resources (DERs) on
distribution networks. Despite the improved energy secu-
rity [1], [2] improved system control and observability [3],
[4], and decarbonization [1] associated with DERs, their
rapid growth is transforming passive networks, traditionally
designed for one-directional power flow, into active net-
works characterized by substantial bidirectional power flows.
This transformation introduces various technical challenges,
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which include excessive voltage deviation (rise and drop),
voltage unbalance from single-phase loads, as well as con-
ductor and transformer thermal overloads [5], [6], [7], [8].
These challenges are associated with DER operations and
planning uncertainties [9] and ultimately impact the operation
of the networks. This limits the network’s ability to host
DERs while maintaining acceptable technical performance
with respect to stipulated quality of supply (QoS) and equip-
ment loading standards. The limit at which further DER
capacity violates stipulated technical standards is generally
termed the network hosting capacity (HC) [10].

To accommodate higher penetration of DERs beyond the
standard HC, distribution network operators (DNOs) need
to expand the capacity of the network through various
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approaches, including grid reinforcement, which can be
classified into soft and hard. Soft approaches are primar-
ily focused on optimizing the utilization of existing grid
infrastructure and connected assets rather than upgrading
the physical infrastructure. Most soft approaches rely on
advanced network control to manage the DER impacts on
the distribution network. These approaches include demand
response and DER-derived flexibility [11], [12], as well as
active network management (ANM) [13], [14]. The use of
energy storage [15], electric vehicles [16], and other voltage
control strategies aimed at network strengthening have been
explored in [17] as part of soft reinforcement strategies.
Studies in [18] and [19] found that soft approaches are

likely to become prevalent in active networks, supporting
the need for dynamic operation, flexibility, and resilience.
However, given that most soft reinforcement options are
somewhat temporary (compared to the permanence of hard
reinforcement options), they may not fully optimize network
utilization, given the embedded infrastructural constraints.
As such, soft reinforcement approaches have limited capac-
ity enhancement, beyond which the upgrade of the primary
network infrastructure may be inevitable.

Hard reinforcement approaches typically involve the phys-
ical or structural modification of the network assets or infras-
tructure towards a desired HC. These approaches include
reconductoring [20], [21], [22], transformer thermal capacity
upgrades [23], and the building of new substations [24].
In this regard, proactive planning for future networks will
require comprehensive approaches to selecting or replac-
ing the primary network equipment such as conductors and
transformers.

Conductor size selection (CSS) is a critical aspect of hard
reinforcement approaches as it directly impacts the network’s
technical performance in terms of voltage, thermal loading,
safety, and distribution efficiency. These technical factors
define the network loadability, QoS, and reliability. Accord-
ingly, careful consideration of CSS over a defined planning
horizon is critical to ensure that the network can meet the
current and future system demands while minimizing ther-
mal losses and investment costs [25]. However, integrating
a higher share of DERs increases the planning and opera-
tional uncertainties in key aspects of CSS modeling such as
load magnitude estimation, forecasting, and location, whose
characteristics are rapidly changing with the adoption of new
technologies. As such, the CSS process must evolve to ensure
that the selected conductors are optimal over the planning
horizon [26]. Such a process is also central to the development
of new electrification projects.

This paper provides a comprehensive overview of existing
CSS methodologies in the context of the transformation of
distribution networks under the penetration of DERs. It cov-
ers conductor selection factors, various methodologies and
their limitations, DER modeling and uncertainties, and the
selection criteria for optimization methods. The challenges
related to active CSSmethodologies are also discussed. These
insights are crucial for developing a robust CSS framework

that can guide the design of future active distribution net-
works (ADNs).

A. OVERVIEW OF SIMILAR WORKS
One focused literature review on CSS was found in [27]. The
review summarized papers from 1955 to 2017 based on feeder
type, CSS methodology, objective function, and the inclusion
of load growth. However, this study lacks essential details
such as input modeling (e.g., loads), uncertainty representa-
tion, load flow methods, a detailed discussion of the design
objectives, as well as the assumed constraints. Apart from this
study, a partial review of CSS is found in several technical
articles. However, these articles are less detailed and have the
following limitations.

• The reviews in these studies focus on new CSS opti-
mization methods and as such, they only address one
component of the CSS as in [28] and [29].

• These reviews compare the convergence of the applied
CSS optimization methods [30], and leave out critical
components related to CSS evolution.

• In cases where the limited review discusses ADN
CSS as in [31], the discussion is inadequate and non-
comprehensive.

While there is some value in these partial reviews, the limita-
tions are notable, even on the specific subjects they address-
Due to the inexhaustive nature of the reviews, a focused and
exhaustive review of the CSS literature is needed, encompass-
ing all critical aspects of the CSS problem, and addressing
the evolution of network design amid increasing DER
penetrations.

B. PAPER CONTRIBUTIONS AND STRUCTURE
This paper provides several contributions:

• The study provides a consolidated Input-Process-Output
(IPO) CSS framework outlining the key inputs, the
underlying computational processes, and the required
output analysis for a CSS exercise.

• Based on the IPO framework, the study highlights the
changing scope of CSS as a higher share of DERs are
integrated into the network, detailing the expanded set
of inputs, their representation, and limitations associated
with present modeling.

• The study reviews over 84 CSS papers from 1955 to
2022 and discusses them according to the CSS and
optimization methodologies, uncertainty representation,
and the associated limitations.

• The study highlights future research opportunities
within the ADN CSS context.

The rest of the paper is as follows: section II scopes the
general CSS problem, defining in detail the components of
the CSS IPO framework. It further lays out the structure
of the subsequent sections III, IV, and V. Section III con-
ducts a review of CSS literature in line with the established
framework, detailing the modeling of inputs in passive and
active CSS, and the subsequent modeling of the computation
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FIGURE 1. Outlining the requirements for active distribution network (ADN) CSS formulation.

processes, including load flow analysis, optimization, and the
limitations of the various computational elements. Informed
by the findings from section III, section IV scopes the
requirements for a robust ADN CSS, and the implication
to distribution network planning and operation procedures.
Section V concludes the paper, highlighting the opportunities
for future research.

II. SCOPING THE CSS PROBLEM
Network design processes are informed by several system
performance indicators including thermal loading, voltage
quality, and power supply reliability. The objective of the
CSS component in distribution network design is to size
network conductors that service the total power flows while
meeting the selected design constraints, including cost and
quality of supply (QoS) standards. Under ADN design, the
total power flows comprise the balance of the power drawn
from, and the power injected into the network by the loads and
generators that include DERs. Fig. 1 provides an overview of
the general CSS framework. It outlines the generally accepted
requirements at each stage of the process and compares the
traditional passive approach to the new requirements imposed
by the introduction of DERs.

The CSS framework can be broken into three major com-
ponents using an IPO approach. These components include (i)
input modeling (ii) computational processing, and (iii) output
analysis. Each of these components comprises sub-processes
as illustrated in the figure.

Input modeling is divided into two large subprocesses: load
and feeder modeling. The load, i.e., consumer power con-
sumption, is the primary focus of input modeling in passive
CSS. The placement and magnitude of the load are critical
considerations in load depiction and ultimately influence
the selection of conductors. These factors were considerably
fixed and sufficiently modeled by deterministic means [18].
For modern ADN CSS, modeling loads extend to DERs. This
change significantly alters the modeling requirements due to
two uncertainty elements, namely DER allocation and oper-
ational uncertainties, which affect feeder performance [31].
Operational uncertainties affect the load magnitude, i.e., the
magnitude of power flows (between the DER and the net-
work) and the DER time-of-use (ToU) characteristics. Then,
the allocation uncertainties, which can be classified as plan-
ning uncertainties, highly influence the modeling of the load
location. To avoid increasing technical challenges, and possi-
ble future failures on the network, CSS methodologies must
carefully characterize and model these uncertainties in the
inputs [26].

The next step in the CSS process involves reticulation,
which can be described as the design of the network route
and the specification of cables and other supporting infras-
tructure (e.g., breakers and fuses) necessary to efficiently
deliver power to customers. Additionally, the sizing and
placement of other key equipment such as voltage regulators,
capacitors, and energy storage, is usually carried out at this
stage [32].
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The computation module assesses the technical and eco-
nomic performance of the CSS process. Key technical
considerations in passive CSS design include voltage drop,
conductor loading, and power losses on the network [36].
On the other hand, active networks have a wider range
of challenges, that require additional assessments includ-
ing the analysis of voltage rise conditions, and network
HC [33], [34].

The economic and technical analyses are closely tied as
the validity of the economic assessment may depend on
the results of the technical analysis. In general, economic
analysis for passive CSS computes the investment (typically
capex and opex) needed for the conductors and other support
infrastructure. In ADNs, extended investments in support
infrastructure, e.g., towards the modernization of line protec-
tion equipment for effectively managing the dynamic power
flow within the network, may affect the scope of CSS eco-
nomic assessments. Incorporation of advanced monitoring
and control equipment may be inevitable in most modern
power systems.

CSS output analysis comprises the validation and opti-
mization processes, whose function is to direct the finaliza-
tion of equipment selection guided by the planner’s objectives
and techno-economic performance metrics. In general, pas-
sive CSS validation is relatively simple and is typically
aimed at obtaining a deterministic solution to the CSS
problem. Even though this simplicity reduces the compu-
tational challenges associated with ADN processes, it can
result in a suboptimal solution. The lack of considera-
tion for load and DER uncertainties makes deterministic
approaches unsuitable for representing the changing net-
work operational dynamics and is thus inapplicable in active
CSS design. Given the input uncertainties, some form of
risk assessment is required in the validation process. DER
planning uncertainties, which tend to be epistemic, will
extend the scope and form of this risk assessment. Even
though these considerations increase the complexity of the
ADN-based validation, they improve the accuracy of the
process.

CSS optimization aims to select ideal conductors
for optimal network performance while adhering to the
techno-economic objectives and constraints. The passive CSS
process is relatively simple in dimension and is primarily
focused on achieving the optimal cost or minimizing techni-
cal losses under a set of techno-economic constraints. On the
other hand, CSS objectives in the ADN scenario can include
the capacity optimization of multiple DERs and unique
economic objectives. The resulting optimization process is
thus geared at meeting the requirements associated with both
the load and DERs, which can lead to multi-layered, multi-
objective optimization problems.

From the preceding discussion, there are differences
between the traditional passive CSS methodologies and the
active-based CSS methodologies. Based on these, the next
section explores the formulation and representation of these
key CSS aspects in the published literature. A detailed

FIGURE 2. Number of CSS publications (1955-2022).

comparison between active and passive CSS is provided in
Table 1.

III. A REVIEW OF CSS—TOWARD ACTIVE
NETWORK PLANNING
This section reviews how CSS has been conducted in liter-
ature. It considers papers that are published in the English
language. Even though this work is focused on CSS, for
completeness, papers that examine CSS in the context of
distribution network planning (DNP) are also reviewed and
discussed. In total, 84 papers were reviewed, with 76 falling
into the CSS-focused category. A further classification of
the CSS-focused methodologies is performed, resulting in
two separate classes focused on active and passive CSS.
Passive CSS is discussed in [27], [28], [29], [30], [35], [36],
[37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47],
[48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58],
[59], [60], [61], [62], [63], [64], [65], [66], [67], [68], [69],
[70], [71], [72], [73], [74], [75], [76], [77], [78], [79], [80],
[81], [82], [83], [84], [85], [86], [87], [88], [89], [90], [91],
[93], [94], and [95] while active CSS formulation is outlined
in [20], [21], [26], [31], [32], [96], [97], [98], [99], [100],
[101], and [102]. Additional studies in [24], [99], [100],
[103], [104], [105], [106], and [107] highlight more works
that have a CSS component in DNP formulation. Details
on how each of the papers formulated the CSS problem are
provided in Table 2 and focused discussion is provided in
subsequent subsections.

Fig.2 shows the number of publications between 1955 and
2022, based on whether the formulation was passive or active.
About 15%of the publications have active formulation. These
are covered in the DER modeling section. Further analysis
reveals that more than half of the CSS literature was published
between 2010 and to date, indicating the subject’s importance
as network planning shifts from passive to active.

Given the centrality of CSS in distribution engineering, and
the costs associated with the process, CSS is formulated as an
optimization process under a set of constraints prescribed by
network planners. The following subsections discuss the pro-
gression of CSS formulation as planning and operation shift
from passive to active. The discussion dissects the existing
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TABLE 1. A comparison of passive and active CSS methodologies in Literature: Summary 1.

literature based on the components described in the general
CSS framework in Fig. 1.

A. MODELING CSS INPUTS
Several inputs are critical in CSS modeling. These depend on
the implemented CSS type. In passive CSS, customer loads
are the most critical input. However, in active CSS, DERs
are considered, given their impact on network planning and
operations. This section scopes the extent to which loads and
DERs have been modeled in the CSS literature.

1) MODELLING OF LOADS IN CSS
A comprehensive review of loadmodels is presented in [108].
These are classified into static and dynamic load models.
Static load models depict power at any instant of time as a
function of the bus voltage, and frequency while dynamic
load models express power as a function of both voltage
and time [108]. The other classes include the composite load
models, and the low voltage (LV) load models, also known as
the lumped models.

Static load models are the most widely applied models in
CSS. They are classified into deterministic and probabilistic
load representations. A sample of studies that applied the
static load model is found in [41], [45], [46], and [47]. Static

load models have also been used in active DNP studies as
reported in [32] and [97]. The prevalence of static models
can be attributed to their simplicity, and thus their ease of
implementation.

Several studies used probabilistic load models (PLMs)
in CSS formulation. PLMs allow the consideration of load
uncertainty in CSS problems. These models are applied
in [21], [26], and [31]. In these studies, beta PDFs are used
to model the diversity of the load at a five-minute interval.
While the application of PLMs enhances model accuracy, the
integration of PLF approaches makes them computationally
intensive. However, these models are critical in representing
the changing network load dynamics.

The resolution at which the load is modeled is critical and
this can be done in two dimensions. These include the inter-
interval cadence, depicting the interval between the sample
of data, and a second dimension relating to the horizon of
the data. This can be worst-case [21], annual [24], or multi-
year [28]. Other studies that considered annual resolution
include [40], [93], and [94].
Limitations of the Existing Load Models Used in CSS
In general, static models are prevalent in application.

Static load models are characterized by high computational
requirements given the iterations linked with the modeling of
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TABLE 2. Comprehensive comparison of the reviewed CSS literature: summary 2.
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TABLE 2. (Continued.) Comprehensive comparison of the reviewed CSS literature: summary 2.

uncertainties. In addition, such a modeling approach requires
extensive data to sufficiently characterize the loads. Even
though static and deterministic methods may be simpler in
implementation, they may lead to inaccuracies in the assess-
ment.

2) LOAD GROWTH MODELLING IN CSS
Load growth is an essential component of load modeling in
the CSS problem. Essentially, selected conductors must meet
load scenarios in a defined planning horizon. A predeter-
mined annual growth index, gindex , is applied in most of the
studies as depicted in [27], [64], and [86]. The load in the
planning period N, is thus a factor of the current load and is
based on the equation below.

LoadyearN = Loadyear=1×(1 + gindex)N (1)

The index is generally derived through forecasts that are
based on historical loads.
Limitations of the Current Load Growth Models:
The use of load growth indices can be limited where active

CSS is concerned. This arises from various factors discussed
below.

• The use of historical data to compute load growth indices
is inaccurate given the emerging load patterns. As such,
the projection of future load scenarios must include
forecasts of technology adoption such as EVs, BESS,
and PV systems to adequately represent the changing
load dynamics.

• Current load growth models do not incorporate the
extensive spatial-temporal DER characteristics neces-
sary to address the planning uncertainties that may occur
in future loads.

• The use of deterministic load growth indices may
be inapplicable to modern CSS due to the DER
uncertainties.

3) MODELLING DER UNCERTAINTIES IN CSS
Generally, DERs can be charging/discharging loads or dis-
tributed generation (DGs). Charging/discharging loads have
a dual mode of operation and can draw or inject power into the
network. They consist of electric mobility and energy storage
systems. On the other hand, DGs generally inject power into
the network. Their operation (output and use) depends on
stochastic factors such as uncertain wind speed for wind
DGs [97] to unknown ToU for EVs [21]. These uncertainties
can affect distribution network operations.

The representation ofDERplanning and operational uncer-
tainty in the CSS literature are explored in the following
paragraphs.

a: MODELING DER PLANNING UNCERTAINTIES
IN CSS FORMULATIONS
Aspects of DER planning, including the type, the sitting, and
the capacity of DERs connected to the node and phase of the
distribution network are critical in the CSS process. These
aspects, also referred to as DER allocation properties, often
determine the severity and magnitude of DER impact, par-
ticularly at the LV distribution level, where they are random
and unknown to the utility operator. Therefore, it is important
to formulate appropriate models that can represent the ran-
domness in DER planning [26]. To establish the limitations
that must be addressed, this section examines DER planning
uncertainty and how DER placement has been modeled in
literature.

Most literature points to two kinds of DER placement.
These consist of fixed and random placements. In the fixed
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placement approach, the type, and the capacity of DERs con-
nected to the network are predetermined. For example, in [96]
and [97], the authors model the fixed placement of wind
turbines. In [100] and [105] a fixed battery storage system
is modeled. Even though the selection of the type of DERs
depends on several factors including resource availability and
suitability of the technology, the selection of the capacity
must follow a detailed study that determines the network HC.
Studies reported in [21], [26], and [31] incorporated random
placement of DERs in the CSS process. In these, random
placement is implemented using the Monte Carlo simulation
(MCS) approach.

It is further expected that future networks will have mul-
tiple DER technologies such as EVs, ESS, and DGs that
include solar PV and wind turbines. These technologies have
different operational characteristics and may require differ-
ent modeling approaches. However, from the literature, CSS
studies consider at most, two DERs, and in most cases,
where there are two DER types, fixed DER placement is
used. In [32], both wind turbines and solar PV, with fixed
placement, are considered and a combination of PV and ESS
is studied in [20], [98]. Some active CSS studies consider
multiple DERs in the formulation of the CSS framework.
Compounding the need to model multiple DERs with the lack
of knowledge about DER placement further complicates the
modeling problem.

Allocation modeling has been carried out in various power
system planning studies. Studies reported in [99] and [105]
investigated wind DG allocation in multi-stage and joint DNP
problems respectively. Similarly, energy storage systems’
(ESS) allocation is considered in the expansion planning
problem to offer voltage support [107]. Additionally, ESS
and DG allocation are reported in [109], [110], and [111].
Similarly, the study in [112] explored the allocation of fast
charging stations to enhance EV utilization. In [113], the
authors model random DG placement using MCS. Similar
work is conducted in [114]. In addition to these, optimal
allocation of critical network equipment such as capacitors,
and voltage regulators is reported in [32]. Understanding the
underlying allocation procedures may provide a guideline on
how to model DER placement in CSS-related studies.

b: MODELING OF DER GROWTH IN CSS FORMULATION
Modeling of DER growth is a key aspect of long-term net-
work planning, which usually spans up to about 30 years.
As such, DER growth can significantly impact conductor
sizes. To meet the likely challenges associated with the
increasing penetration of DERs, DER growth must be incor-
porated into CSS models. Growth modeling is also critical
in the effective management of DERs, which depends on the
planning as well as the DER rate of adoption [115]. Growth
models can also identify the spatial-temporal points at which
the network becomes constrained [116].
Several studies related to DER growth planning have been

published. Some focus on DG growth planning [102], [117],

electric vehicle growth modeling [118], [119], [120], growth
of storage [121], and solar PV diffusion modeling [122].
However, the integration of these models into CSS has not
been carried out.

c: MODELING DER OPERATIONAL UNCERTAINTIES
IN CSS FORMULATIONS
DER output modeling is important in understanding the
temporal output characteristics of DERs, and their poten-
tial effects [123]. Further, understanding the ToU patterns is
critical as it can influence key decisions such as the choice
of reinforcement approach. From the literature, several DER
output models have been applied in CSS. This study classifies
them into probabilistic and deterministic models.

Probabilistic output models usually incorporate uncer-
tainty modeling. These models characterize the DER output
using PDFs or through an alternative uncertainty-based
approach. In describing the expected output, such methods
must incorporate risk. In [26] and [31], the output of solar PV
is computed based on a solar irradiance proxy, modeled using
a peaky beta PDF, typical of a summer season’s irradiance for
a small geographic area.

A similar method is used in [21] to characterize the load-
ing characteristics of EVs connected to an LV network.
In addition to the use of PDFs, interval analysis is used in [32]
to model the output of solar PV and wind generation. The
wind output is characterized based on the wind speed inter-
vals, ranging from zero to the cut-off wind speeds. Similarly,
the output of solar PV is defined in a piecewise manner
based on interval segments, as a function of the range of
irradiance. A similar approach is used in [97]. Finally, in [98],
the authors provided a generalized output of PV and ESS ToU
characteristics and used them in CSS for reconductoring.

Deterministic modeling of DER output is explored in [96].
The output of wind generators is modeled based on the max-
imum possible output. A similar modeling approach is used
in [20].

d: LIMITATIONS OF THE CURRENT DER
UNCERTAINTY MODELS
Some of the limitations associated with the current DER
planning uncertainty models are explored below.

• Fixed placement modeling of DERs simplifies the com-
putational problem but does not represent DER adoption
in practice. Even if such modeling is useful in circum-
stances where rigorous laws govern growth plans, it is
still impossible to regulate the capacity, loading, and
output of other types of DERs, particularly ESS and
EVs, whose installation and use are more random
and complex.

• MCS probabilistic modeling allows for extensive plan-
ning of allocation possibilities. While these planning
models can accurately analyze the locational impli-
cations of high DER penetration, they have higher
processing requirements.
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• CSS is a long-term planning endeavor that must take
DER growth into account. However, this is not well
covered in the current CSS formulations.

Appropriate growth models are therefore required.
On the other hand, while there is progression relating to

the modeling of operational uncertainties in CSS, various
limitations exist, and some are highlighted below.

• The application of deterministic approaches can lead to
inaccurate estimation of DER impacts, and the selection
of suboptimal conductors.

• More work is needed to model several types of DERs on
the network to fully capture future operational scenarios.

Accurate modeling of inputs is key in ensuring that the
subsequent CSS computational processes obtain the correct
inputs. The following sections discuss how key aspects of the
CSS computation and analysis have been conducted in the
literature.

B. LOAD FLOW COMPUTATION
Load flow computation is key in determining the magnitude
of the line power flows, the levels of voltage, and the unbal-
ance in the network, among other critical parameters. These
parameters determine the compliance of the network perfor-
mance to the set-out QoS standards under various loading and
DER allocation scenarios. In general, load flow computation
is a standard component of the CSS problem. The selection
of the approach is dictated by the desired accuracy and some-
times the need to reduce the computation burden. There are
two main classifications of load flow approaches reported in
the literature. These consist of deterministic and probabilistic
approaches [124].

Deterministic load flow approaches use average values to
represent the magnitude of the loads [125]. They are imple-
mented using various methods highlighted in [126]. In [42],
[96], and [105], the alternating current optimal power flow
(AC-OPF) method is used. The linear load flow method has
been used in power flow studies related to CSS in radial
networks [39], [40]. Compared to the other methods, the
linear load flow approach is simple to implement. The node
power balance method, which is a direct deterministic load
flow (DLF) method is reported in [48] and [91]. The method
is also applied in [35], [36], and [44]. Most direct methods
are approximate and relatively easy to implement given the
less computational requirement associated with them.

Forward-backward sweep (FBS) propagation is an iterative
DLF method implemented by considering the deviation of
parameters, particularly voltage levels from a reference node.
The use of iterations makes the process time-consuming. The
method has been widely applied in CSS and capacitor alloca-
tion [84], [95], CSS for SWER lines [80], [82], and in solving
themost general CSS problems, highlighted by representative
studies in [41], [50], and [94]. The Gauss-Seidel method
has been used in [46] and [84]. The Gauss-Seidel method
is simple but is usually restricted to small networks since it
is iterative and can be time-consuming when used to solve

power flows on larger networks. The other reported DLF
method is the unbalanced three-phase load flow method [77].
In general, the use of DLF methods does not sufficiently
capture the inherent uncertainties associated with the load
and as such may result in poor load estimation, leading to
suboptimal conductor choice.

Probabilistic load flow (PLF) methods are built to suffi-
ciently represent the uncertainties of the inputs to the power
flow computation exercise [126]. As such, these inputs are
represented as PDFs or use an alternative probabilistic rep-
resentation [127]. Various PLF methods have been used in
CSS in the recent past. Analytical PLF is applied in [21],
[26], and [31]. In these studies, the loads and DER inputs
are defined using beta distribution for each period, and the
worst-case interval used in the computation process.

Power flow input uncertainties can also be represented
using an interval-based approach as detailed in [128]. This
method is applied in [32] and [97]. Given the computational
requirement of this process, the authors in [32] used the
spherical unscented transform (SUT) to represent the interval
parameters.

PLF methods are likely to record higher accuracies due
to the repeated simulations, and the incorporation of all the
temporal loading conditions. As such, they are more suitable
in the context of high uncertainty prevalent in ADN planning.
Caution must be taken in the selection of the specific PLF
method, considering the representativity of numerical sim-
ulation methods, the extent of simplifications in analytical
methods, and the trade-off between computational speed and
accuracy.

C. OPTIMIZATION METHODS IN CSS
Optimization is the process of finding the minimum or max-
imum value of a function [129]. The process comprises three
elements: (a) the objective function – which defines the
goal of the optimization process, (b) the constraints – which
impose limitations on the optimization objective, by defining
the bounds of a feasible design and (c) the decision variables,
which are the variables that the objective function can modify
to come up with the optimal values [130]. It is important to
carefully select the decision variables, the constraints, and
the objective function. A generic optimization equation takes
a form that combines all these elements as in equations (2)
to (4).

minxC(x) (2)

s.t f(x) = ∅ (3)

and

g(x) ≤ θ (4)

The functions C(x), g(x), and f(x) represent the objective
function, the inequality constraints, and the equality con-
straints respectively. The variable x represents the selected
decision variable.
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This section provides a comprehensive analysis of the
optimizationmethods found and used in CSS problems. It dis-
cusses the optimization methods, the objective functions, and
the scope of constraints used in these studies.

1) CLASSIFYING OPTIMIZATION METHODS
There are different classes of optimization algorithms in the
literature. These are classified into mathematical, stochastic,
statistical, and non-traditional optimization techniques [129].
The non-traditional class of optimization algorithms mimics
natural processes such as genetic mutation processes, and
the behavior of insects among others. These are also known
as modern heuristic algorithms. Studies in [130] and [131],
classified these techniques into mathematical (exact) and
heuristic algorithms. In general, exact algorithms perform
better than heuristic approaches in finding optimal solutions.
This review uses the classification in [130] and [131].

a: MATHEMATICAL ALGORITHMS IN CSS
Mathematical or exact optimization algorithms are based on
mathematical relations. They are usually well-defined and
follow the characteristics of the underlying equations (2)
to (4) and as such their formulation and solutions are based on
the relationship between the function variables or constraints.
For instance, where C(x) or g(x) and/or f(x) are nonlinear,
a non-linear solution is applied. Equally, if C(x), g(x), and/or
f(x) are linear, a linear approach is used. Similarly, integer
programming can be applied in problems where all decision
variables are integers. In cases where the variables are mixed,
the problem is referred to as mixed-integer programming
(MIP). Further, the formulation of optimization problems can
take the form of mixed-integer linear or non-linear program-
ming [130].
Different forms of mathematical optimization have been

applied in CSS. Notably, mixed integer linear programming
(MILP) and modified chance-constrained MILP version are
used in optimizing the cost of conductors in [39], and in opti-
mizing the total investment costs for a DNP process in [105]
respectively. The chance-constrained MILP achieves better
results. Mixed Integer Non-linear Programming (MINLP)
is applied to minimize the cost of losses through CSS and
capacitor placement [42] and in optimizing CSS costs for a
SWER line [80].
Dynamic programming (DP) is applied in CSS and other

DNP problems, mainly in multi-stage decision problems
where optimal solutions are required over multiple inter-
vals [130]. Studies in [81] and [132] applied DP in CSS
and reconductoring problems respectively. DP is also applied
in [106]. Other passive CSS studies that used exact optimiza-
tion are outlined in [40] and [55]. Exact methods in active
CSS studies are also explored in [21], [26], and [31].

In [37] and [48], the authors used an integrated
approach combining the economic current density (ECD)
and heuristic-based methods to conduct optimal CSS. ECD
method is also adopted for transmission line CSS [90].

Evidently, by utilizing the mathematical relations between
the function variables, and exploiting the nature of variables,
mathematical optimizations can be formulated. In gen-
eral, mathematical algorithms are complex in implementa-
tion [130].

b: MODERN HEURISTICS ALGORITHMS IN CSS
Modern heuristic algorithms apply problem-independent
frameworks using concepts, and operators that follow prin-
ciples of analogy, and induction to solve a problem [131].
These ideas are generally derived from natural or biologi-
cal processes [130]. Reported heuristic algorithms include
genetic algorithms (GA), evolutionary strategies (ES), and
various forms of particle swarm optimization (PSO) algo-
rithms, among others. The following paragraphs provide a
high-level discussion of their application in CSS.

GA has been extensively applied in CSS. In [54], the
authors used GA to select optimal conductor sizes. Simi-
larly, in [97] the method is used in optimizing conductor
sizes for a system with wind generation. In [32], [46],
and [84], the optimization of conductor and capacitor sizes
was implemented using GA. This method was applied to the
maximum loss reduction problem through CSS and capacitor
placement [43]. Its modified version, adaptive GA is used
in [96] to select conductors for a network with DGs. Other
works in which GA has been applied include the selection
of conductors in a multi-stage DNP problem [24], and in
solving combined CSS and capacitor allocation problems as
reported in representative studies in [46] and [51]. The wide
application of GA in optimization and search problems can
be attributed to its high probability of finding the global
optimum [129].

ES optimization methods have been used in [41] to solve
a CSS problem. Similarly, in [68], [85], and [92], the impe-
rialistic competitive ES is also used in CSS optimization.
ES approaches are relevant in providing approximate solu-
tions, in cases where other approaches cannot be applied. The
studies in [38], [56], and [77] applied differential evolution
(DE) in CSS optimization.

PSO methods have also been used in CSS problems [82].
Further CSS optimization has been done using selective PSO
in [47] and [87], and discrete PSO in [35]. PSO has been sim-
ilarly proposed in [104] for optimization in DNP problems.
The prevalent use of PSO is linked to its relative simplicity
when compared to other heuristic algorithms as well as its
better convergence speed.

Search algorithms have been used in CSS optimization.
Notable ones include the crow-search algorithm in [45] and
the harmony search algorithm in [57]. Other algorithms used
in CSS optimization include fuzzy methods [60], sine cosine
algorithm [133], tree generation [44], and grasshopper opti-
mization [27].
In general, the choice of the optimization algorithm

adopted is guided by several factors including its convergence
speed, and the ability of the approach to attain a global
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optimum [131]. Other additional factors that influence the
choice of the optimization method are discussed below.

• The complexity and type of the optimization problem:
The complexity of an optimization problem is influ-
enced by the type of the problem, the number of decision
variables, objectives, and intervals. For instance, non-
convex CSS formulations (as is in most cases [134],
[135]) with a higher order affine function, are more
complex and require methods with better convergence
compared to single-objective convex problems.

• Computational efficiency: Computational efficiency is
a key aspect of optimization. For instance, while
heuristic-based methods are suitable for searching large
solution spaces, they are iterative, and this limits the
computational time.

• Number and type of decision variables: The formula-
tion of optimization problems depends on the type of
decision variables, and as such, the choice of the opti-
mization method must consider this and subsequently,
the type of variables that determine the selection of the
method.

• Required accuracy: The level of accuracy may deter-
mine the optimizationmethod used.Mathematical meth-
ods may be preferred over heuristic methods when strict
adherence to accuracy is required, even though they are
complex.

A selected comparison of the different optimization methods
is provided in Table 3, based on their prevalence in the
literature.

2) CSS OPTIMIZATION OBJECTIVES
Optimal network performance and the choice of distribu-
tion network components depend on multiple objectives that
influence the selection of conductors in distribution networks.
These objectives can be broadly classified into technical and
economic. Technical objectives relate to the desired technical
performance characteristics and capabilities of the network.
These objectives focus on ensuring the network’s reliability
and efficiency. Economic objectives, on the other hand, focus
on optimizing the system’s cost-effectiveness, considering
both capital investments and operations costs. Fig.3 illustrates
the major types of technical and economic objectives consid-
ered in the CSS literature.

a: TECHNICAL OBJECTIVES
Technical objectives focus on the optimal technical perfor-
mance of the network. The reported objectives in traditional
CSS include the reduction of energy losses and voltage drop.
In addition, the reduction of thermal losses is a key consider-
ation in passive and active technical design [72], [82]. Loss
reduction enhances the overall QoS and minimizes conductor
degradation [59]. Loss reduction with time-varying loads is
explored in [50] while in [28], this is coupled with voltage
regulation. This is also reported in [52] and [57].

FIGURE 3. Number of papers with the technical and economic objectives.

Related studies in [29] and [81] investigated the mini-
mization of energy losses in CSS while in [47], [42], [50],
and [59] this objective is addressed through reconductoring
and capacitor allocation. Similar objectives have been carried
out in the CSS for SWER lines [80], [82]. Other studies
considering power losses are reported in [43], [46], [64],
and [73].

In DER-related studies, loss minimization is linked to
managing reverse-power flow, which when unmitigated can
lead to increased thermal losses in the system. As such,
some active CSS methodologies have focused on reducing
the losses that may arise due to increased DERs on the
network [20]. Studies in [20] and [31], explored CSS as a
way of increasing the network loading capacity, thus directly
reducing the expected network losses. In [32], a stochastic
approach to computing power and energy losses is formulated
and used.

Voltage management is vital for optimal network perfor-
mance. In various CSS studies, voltage deviation is a critical
parameter often treated as an inequality constraint, bounded
by specific limits to uphold system performance. Keeping
operations within acceptable bounds is essential for maintain-
ing QoS.

A few passive CSS studies have considered voltage reg-
ulation as an objective. In [40], optimal CSS addresses
voltage constraint violations, while [43] and [73] focus on
reducing active power losses and improving the voltage pro-
file. Other studies like [42] and [47] implement piecewise
CSS and capacitor allocation to meet thermal and bus volt-
age constraints. These studies emphasize optimal capacitor
placement to enhance the voltage profile. Furthermore, [51]
investigates optimal CSS and capacitor placement to rectify
voltage deviation and manage harmonics.

Similar objectives are pursued in DER studies such as [32]
and [102] where capacitor placement mitigates power and
energy losses while aiding in voltage management. Addition-
ally, [20], [26], and [31] employed CSS to limit voltage devi-
ation within acceptable margins, facilitating increased DER
penetration while applying loading constraints. In [136], the
authors explore different approaches to selecting the neutral
conductor. Proactive planning requires the formulation of
CSS under a varying mix of DER technologies, as a possible
reflection of future networks.
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TABLE 3. A non-exhaustive comparison of the characteristics of optimization methods used in literature: Summary 3.

b: ECONOMIC OBJECTIVES
Extensive distribution changes require significant capital
(Capex) and operational expenditures (Opex) [137]. Capex
covers initial conductor investment, while Opex includes
operation, maintenance, and reconductoring costs, as well
as energy/power losses in CSS. Energy losses impact the
cost of energy, the frequency of reconductoring, and the
overall efficiency of the system. Therefore, CSS’s economic
objectives aim to minimize some of these costs. This review
groups these into Opex minimization, Capex minimization,
and Simultaneous Opex and Capex minimization, focusing
on reducing costs associatedwith these categories [25], [138].

Minimizing Opex is key in managing energy losses as
evidenced in heuristic-based studies reported in [27], [65],
[68], [70], and [95], and in mathematical optimizations such
as [76]. This extends to minimizing conductor deprecia-
tion costs, highlighted in [35], [40], and [63]. Opex also
encompasses interruption costs, emphasized in [106], and
depreciation on capital, as seen in [58]. Additional costs

including installation and maintenance are also included in
the Opex [96]. Effective capacitor placement, which aids in
loss reduction, is highlighted in various papers such as [42],
[46], and [84]. Some studies have also focused on cost
minimization for transmission lines, illustrated in [89], and
enhancing reliability by reducing losses, as seen in [139].
Additional research on minimizing energy loss costs can be
found in [71] and [73]. Opex minimization is extended to
active CSS with wind DGs in [97].

Studies reported in [41], [79], and [82] aim to only mini-
mize the capex in CSS. Additional research includes topology
considerations [140], and the minimization of reconduc-
toring and capacitor allocation costs [141]. In [99], the
authors integrate DG cost in capex minimization for CSS,
while [105] incorporates energy storage and conductor costs
in multi-stage planning for active networks. In [86], the
emphasis is on reducing the cost of losses at a substation.

Several studies attempt to simultaneously minimize the
cost of capex and opex by deploying varied methods.
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Different combinations of search algorithms are used to
achieve this result [30], [45], [57]. Sample works that deploy
exact approaches to optimize for both Capex and Opex are
studied in [29], [39], and [60]. In [44], the minimization
is carried out for a radial network problem while in [67]
and [69], the reticulation costs, and the annualized cost of
feeder losses are minimized.

Similar studies are carried out using different forms of
heuristic methods including evaporating rate water cycle
algorithm (ERWCA) [62], PSO [88], and ICSA [94], [95].
Furthermore in [28] and [56], the capex and opex costs are
minimized considering load growth.

Initial costs for capacitor placement, losses as well as the
cost of conductors are considered in [42], [43], and [93].
Similar work is carried out in [48] to improve the reactive
power planning capacity. On the other hand, in [76], the focus
is on the total life cycle costs, and it incorporates the cost
of energy and the wholesale power cost escalation. Total life
cycle costs have also been computed in [96], considering DGs
and [90] in optimizing the cost of transmission lines.
Capex andOpexminimization have also been carried out in

active CSS [20] to manage the planned DG capacity. Similar
work is carried out in [32] and it includes the simultaneous
placement of capacitors on networks with solar and wind
DGs. In [98], cost minimization for active DC networks is
conducted. Additionally, the study in [104] explored cost
minimization in a DNP problem with DGs. The study in [97]
emphasizes conductor and maintenance cost minimization
to enhance the CSS process while [50] tackles capex and
opex minimization for time-varying loads. In [59], optimiza-
tion methods for capital and energy loss cost reduction are
explored while [61] incorporates weather-sensitive load flow
to minimize the fixed and variable costs. In [64], the cost
minimization aims to enhance network loadability, and [80]
seeks the simultaneous minimization of fixed and variable
costs. Lastly, [81] focuses on minimizing capex and opex in
a multi-stage CSS problem.

The extent to which the objectives affect CSS depends on
factors such as the length of the feeder, the type, capacity,
and location of the loads and DERs on the feeder among
others. Optimizing capex and opex is key in techno-economic
optimization. It is critical to consider all factors and the
associated trade-offs in this process.

3) SCOPE OF OPTIMIZATION CONSTRAINTS
Optimal CSS depends on the outcomes of load flow compu-
tation. Optimality is defined by a set of common technical
and economic constraints. The technical constraints include
line voltage deviation, power equality balance, and ther-
mal loading as shown in Table 2. On the other hand, the
economic constraints are associated with the cost implica-
tions of the technical choices. As such, technical constraints
such as voltage deviation, and thermal loading constraints
usually form a set of binding constraints beyond which
technical optimality is not achievable. Other binding con-
straints that have been applied in CSS studies include power

equality constraints [96], harmonic distortion [51], and tem-
perature [75]. In most CSS problems, the binding constraints
f (x) and g(x) are constants, defined by regulatory limits.With
the shift towards ADNs, other emerging constraints include
the capacity of DERs, the acceptable risk, and the level of
planned curtailment, among others. Other aspects that need
consideration include load and DER growth. Load and DER
growth indices are key in projecting the expected DER and
load capacity [28]. In addition to these, some studies have
applied radiality constraints [142].

4) APPLICATION OF RISK IN CSS
Due to the DER uncertainties, probabilistic multi-scenario
analysis is usually applied in ADNCSS. For this reason, risk-
based interpretation is required in CSS. Therefore, instead
of using central tendencies, such as the mean, or standard
deviation, risk analysis is preferred in evaluating acceptable
performance. By quantifying the level of risk, the planner can
consider alternative means of mitigating the low-likelihood,
high-impact events on the system.

Risk has been incorporated in [21], [26], and [31] for CSS.
Similarly, risk is used in [102] to assess the impact of PV
on the network. Other forms of risk interpretation have been
explored in [97], where a probability index is used to repre-
sent the likelihood of a state related to wind output. This index
is integrated into the calculation of associated power losses.
A similar approach is used in [32] to provide indices for
different wind and solar output states. The risk-based analysis
provides a planner with a wide range of design possibilities
and influences the mitigating options to unexpected system
events. Such interpretation provides an avenue for explor-
ing and quantifying alternative non-infrastructural solutions,
such as curtailment, energy storage, and demand response in
network design problems.

IV. DISCUSSION
A. OVERVIEW
It is crucial to examine how the emerging complexities asso-
ciated with ADN planning can be incorporated into the CSS
process, given its centrality in distribution engineering. This
is important in enhancing the accuracy and cost-effective mit-
igation of DER impacts. This section outlines the limitations
associated with the present CSSmethodologies and discusses
the relevance of integrating these missing aspects into the for-
mulation of CSS. It explores two critical aspects, namely, the
requirements for a robust CSS process, and the implication of
these requirements on ADN planning and operations.

B. REQUIREMENTS OF A ROBUST ADN CSS
1) CSS FORMULATIONS MUST INTEGRATE DER
UNCERTAINTY MODELING
Literature shows that about 15% of the CSS studies incor-
porated DERs. This indicates that planners are aware of the
changing planning and operational requirements linked to
active distribution networks. Transition to grids with a higher
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share of DERs requires accuratemodeling of the planning and
operational uncertainties. New CSS models must extensively
incorporate uncertainty modeling to cater to the complexities
associated with DER operations and planning.

2) CSS FORMULATIONS MUST INCORPORATE HC ANALYSIS
Traditional CSS methodologies adopted different versions of
load flow computation methods. However, given the multi-
plicity of objectives in active CSS that include enhancement
of DER capacity, HC toolsmust be integrated into active CSS.
Accurate formulation of HC analysis tools is thus a necessity
as operations shift from passive to active.

3) RISK MUST BE INCLUDED AS A CSS
OPTIMIZATION VARIABLE
The prevalent application of deterministic tools in passive
CSS often ignores the uncertainty in the load given the pre-
dictability of traditional loads and load profiles. However,
DERs introduce extensive uncertainty that requires proba-
bilistic analysis. Interpretation of the probabilistic analysis
requires an application of risk. While this has been included
in several ADN CSS methodologies, it needs to be integrated
as a variable in CSS optimization. This is central to getting
viable tradeoffs for a cost-effective CSS process.

4) CSS FORMULATION MUST CONSIDER MULTIPLE DERs
Most of the proposed active CSS methodologies focused on
one type of DER, like solar PV or BESS [3], [146], [147],
[148], [149]. This limits the analysis of the possible future
scenarios. It is also necessary to include complementarity
analysis in network HC optimization is a crucial part of the
multi-DER analysis.

5) CSS FORMULATIONS MUST ADOPT THE EXTENSIVE USE
OF UPDATED LOAD DATA AND CONTROL METHODS
Traditional planning and design use a fit-and-forget strategy
with yearly load growth indices approximating worst-case
loads [150]. However, these models are presently unsuit-
able due to the changing dynamics of the load. The use of
indices obtained from historical data is unreliable given the
widespread adoption of dynamic loads and DGs that subse-
quently alter the traditional load profile. Given this, extensive
data collection and management are required to understand
the DER diffusion and impact on the load profile and the
network. Further, the use of real-time data integration is
pivotal in implementing risk-management solutions for active
systems. Presently, CSS methodologies do not encompass
such factors, which often results in system oversizing.

6) ACTIVE CSS OPTIMIZATION METHODS MUST
INCREASINGLY BECOME MULTI-SCENARIO AND
MULTI-OBJECTIVE
The number of decision variables has increased in active
CSS. New variables include the capacity of different types
of DERs, the capacity of complementary DERs, allowable

voltage rise, the level of reverse power flow, and the risk that
needs to be optimized during the CSS process. With such an
increasing set of variables, associated tradeoffs arise, leading
to a broad spectrum of optimization objectives that can extend
beyond network cost implications. These may include the
cost of optimal complementarity—using battery storage to
enhance solar PV capacity— among others. In addition, the
influence of emerging technologies like storage, active man-
agement tactics such as DSM, and the effects of curtailment
on CSS costs should be accounted for.

C. IMPLICATION ON NETWORK PLANNING
The requirements associated with ADN CSS affect multi-
ple aspects of network planning. Firstly, the increased need
for modeling and processing uncertainty-based outputs has
implication on the current design standards. Guidelines such
as the NRS-048 in South Africa [151] and EN 50106 [152]
widely used in Europe may require revision to consider the
changing load dynamics. Planners shall likely be required to
modify the existing compatibility standards to accommodate
the changes in the load profiles. Persistent loading arising
from dynamic loads such as BESS and EV charging may
be inconsistent with the standard loading duration, and the
frequency of voltage rise may increase.

Secondly, the revision of planning procedures cannot rely
on the worst-case scenario without a simultaneous consider-
ation of loading impact severity and duration. To this end,
new guidelines on the acceptable severity levels, linked to
their duration are necessary. This is critical in the economic
optimization of the distribution engineering processes such as
CSS.

The integration of risk in the design process is necessary
in the planning and operation of ADNs. This is because the
formulation and the level of acceptable risk can determine
critical factors such as the acceptable duration of violation
and subsequent level of soft mitigation needed. Studies linked
to the standardization of the ADN risk models, the risk
level, and the associated mitigations in distribution engi-
neering are necessary. Additionally, the development and
subsequent inclusion of new models in the distribution engi-
neering process, including ADN CSS, requires the retraining
of distribution operators to enhance the utilization of the
tools.

From the preceding discussion, the transition toward active
distribution engineering has implications for distribution
planning and operations. Careful integration is thus needed
to provide accurate planning and operation models.

V. CONCLUSION
The study analyzed 84 CSS articles from 1955 to 2022, focus-
ing on CSS modeling to monitor progress as power systems
shift to active operations. It identified limitations and pro-
posed solutions for emerging challenges in ADN CSS. The
study provided an active CSS framework, outlining the key
areas that require modification. The study further discussed
progressive modeling in three key aspects of active CSS:
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TABLE 4. List of abbreviations.

(1) loads and DERs, (2) load flow computation methods,
and (3) optimization methods stressing the need to integrate

uncertainty modeling and HC analysis into CSS formulation.
It further highlighted the complexity of active CSS due to
multiple objectives and scenarios, necessitating consideration
of various variables for accurate analysis, including incorpo-
rating risk in optimization models. The study emphasized the
importance of data collection and utilization to grasp evolving
dynamics in DERs and loads for effective decision-making in
active CSS. Findings from this study offer general guiding
principles for the selection of power system equipment in
active networks.

APPENDIX: LIST OF ABBREVIATIONS
See Table 4.
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