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ABSTRACT In contrast to the widespread implementation of computer-aided diagnosis of human diseases,
the limited availability of veterinary image datasets has hindered its application in animals. Additionally,
while most medical imaging data are captured in clinical settings, such as optical coherence tomography and
fundus photography, diagnosis based on digital camera or smartphone images can be more beneficial for pet
owners. This study specifically focuses on achieving generalization between screening environments, aiming
to accurately diagnose diseases using casual images obtained by pet owners, despite the majority of training
images being captured with specialized equipment in hospitals. Given these challenges and the significant
role of computer-aided diagnosis in veterinary science, this study aims to develop a practical deep-learning
framework for classifying ocular surface disease images in companion animals. The dataset used in this
study consists of diverse ocular disease images of canines and felines obtained through slit lamps and digital
cameras. The proposed approach includes two layers of labels for multitask learning and a gradient reversal
layer based on normalized feature maps. We achieved 84.7% and 65.4% accuracy for the total dataset of
canine and feline, respectively. For the camera domain in particular, canines and felines reached 86.2% and
73.2% accuracy, respectively.

INDEX TERMS Computer-aided diagnosis, animal ocular disease, multitask learning, domain adversarial
learning.

I. INTRODUCTION
In recent years, the rise of computer-aided diagnosis (CAD)

has improved the field of ophthalmology medicine to assist
healthcare professionals. By analyzing various ocular imag-
ing modalities such as optical coherence tomography (OCT),
fundus photography, and visual field tests, CAD systems
assist ophthalmologists in detecting subtle abnormalities that
might be difficult to identify with the naked eye.

However, in contrast to the wide implementation of CAD
in diagnosing human diseases, the limited accessibility of
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veterinary image datasets has hindered its application for
animals [1]. Obtaining consent from patients is challenging,
and veterinarians avoid taking images during visits because
of the busy environment in hospitals. Despite the shortage
of available data, deep-learning (DL) applications can be
in high demand for both veterinarians and pet guardians in
various aspects [2]. According to a survey on low-income
pet guardians from the Vancouver Humane Society, all
12 participants stated that their financial situation was
negatively affected by COVID-19 and that the limited vet
services, with high examination cost, exacerbated their
condition [3]. Many veterinary clinics also suffer from a
shortage of working veterinarians. Failing to monitor health
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conditions consistently can be detrimental to animals, and
some diseases can be transmissible to humans [4], [5], [6].
Especially, diseases affecting the cornea and lens are common
in small animals such as dogs and cats, often leading to
irreversible vision loss [7], [8].

In light of these challenges and the critical role of CAD
in veterinary science, DL applications have the potential to
enhance the accuracy and efficiency of diagnosis, ultimately
leading to timely interventions and improved outcomes for
animal patients. This study specifically focuses on achieving
generalization between screening environments, aiming to
accurately diagnose diseases using casual images obtained
by pet owners, despite the majority of training images being
captured with specialized equipment in hospitals. To address
this, our proposed method involves learning disease-focused,
domain-invariant features.

The remainder of this article is structured as follows:
Section II discusses related works on computer-aided diag-
nosis in ophthalmology and veterinary science. Next, in
Section III, we present our proposed method in detail.
Section IV presents the experimental settings and results of
our study. Finally, in Section V, we discuss the remaining
limitations.

Il. RELATED WORK
A. TRANSFORMER-BASED IMAGE ANALYSIS

For an extended duration, convolutional neural networks
(CNNs) have been robust in CAD using medical images
not only because of their remarkable ability to analyze
data but also because of their computational efficiency [9],
[10]. However, a CNN is prone to overfitting due to its
image-specific inductive bias and has a low capability
for capturing spatial information over a long distance.
Afterward, with the robustness of Transformer for natural
language processing(NLP), transformer-based models have
been applied in various tasks for computer vision and have
produced state-of-the-art performance [11], [12], [13], [14].
Vision Transformer (ViT), proposed in 2020, can capture
the global context in an image; it may require a large
dataset that is generally impractical to obtain in the medical
field [15]. Moreover, executing global self-attention increases
the computational complexity to be quadratic to the input
image size.

Recently, the Swin-Transformer was proposed to address
the issues of ViT by conducting self-attention in local
windows containing small patches [16]. The patch size varies
with the depth of the transformer layers, as they start with
the smallest size and gradually merge with neighboring
patches in deeper layers. The Swin-Transformer combines
the advantages of the ViT and convolutional networks; its
self-attention mechanism based on shifting windows reduces
the computational complexity to be linear to the input image
size, and it can capture both local and global information in
an image [17].

In medical imaging tasks, their applications have
been acknowledged, particularly for segmentation and
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classification [18], [19]. Lei, Z et al. performed lung
segmentation and classification [18], [19], [20]. Lei
executed lung segmentation using UNet, followed by
identifying COVID-19 from the segmented image using a
Swin-Transformer as the backbone architecture, which out-
performed CNN models. Ali et al. proposed Swin UNETR,
which uses a Swin-Transformer as the encoder and CNN as
the decoder for the semantic segmentation of brain tumors,
outperforming nnU-Net and TransBTS [18], [21], [22].

We established the first Swin-Transformer-based frame-
work to identify eye diseases in companion animals, which
outperforms multiple powerful convolutional networks.

B. DEEP-LEARNING FOR OPTHALMOLOGY

There has been increasing attention given to studies on
the application of DL algorithms for the classification of
eye-related diseases based on image analysis. Junayed et al.
introduced CataractNet, a deep neural network for automatic
cataract detection in fundus images [23]. The proposed
network achieves superior performance compared to existing
methods, with an average accuracy of 99.13% while reducing
computational cost and running time. Li et al. proposed a
DL system for classifying keratitis, other corneal abnormal-
ities, and normal corneas based on slit-lamp images [22].
Christopher identified glaucomatous damage in optic nerve
head (ONH) fundus images [24]. The study of Aranha cov-
ered cataracts, diabetic retinopathy, excavation and blood ves-
sels, but individual binary classification networks were used
to distinguish between normal and abnormal images [25].
Most of the research in the field of ophthalmological image
analysis was confined to some selected set of diseases, e.g.
cataracts, corneal diseases, and glaucoma [23]. In contrast,
we use a single model to identify multiple diseases that arise
in distinct locations.

Hao et al. presented a novel hierarchical framework for
classifying fine-grained corneal diseases from ocular surface
slit-lamp images [26]. This study approaches the fine-grained
classification by hierarchical labels, which was employed
in our work. Chea et al. used ResNet-50 to simultaneously
classify diabetic retinopathy, glaucoma, and age-related
macular degeneration in fundus photographs with peak and
average accuracies of 91.16% and 85.79%, respectively [27].
There are also existing work regarding artificial intelligence
technology using digital camera or smartphone images [5],
[28]. The latter approaches simplify the complicated opera-
tion of screening processes to potentially suggest a practical
solution.

C. DEEP-LEARNING FOR ANIMALS

For the application of DL in veterinary sciences, notably,
most medical imaging data are captured in clinical settings
such as X-rays, magnetic resonance imaging (MRI) scans,
or computed tomography (CT) scans. Ergiin et al. utilized
deep neural networks and support vector machines to
determine dog maturity, date fractures, and detect fractures
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in X-Ray images of long bones [29]. By integrating data
augmentation techniques, the ResNet-50 model achieved
0.80, 0.83, and 0.89 accuracy for each task. Banzato et al.
proposed a framework of DenseNetl21 and ResNet50
pre-trained on a large-scale dataset of everyday images,
ImageNet, and fine-tuned on canine images to classify
canine thoracic radiographs [30], [31]. Dumortier et al.
used ResNet50V2 pre-trained on ImageNet, fine-tuned on
human chest X-rays, and fine-tuned again on feline thoracic
radiograph images [32].

Some existing work utilized external surface images.
Kim et al. assessed the condition of dogs’ ocular surfaces
to detect dry eye disease using an object detection model,
YOLOVS [33]. By analyzing ocular surface video images,
the method achieved 0.995 mean average precision, show-
ing promise for object detection in veterinary medicine.
Kim et al. detected the severity of corneal ulcers in canine
eye images with an accuracy in the range of 90%—-100% for
all experimented CNN models, Inception, ResNet, and VGG,
pre-trained on ImageNet and fine-tuned weights of the fully
connected layer [34]. However, the aforementioned studies
primarily rely on slit-lamp images, which are not readily
accessible for pet guardians. Additionally, the classification
models in these studies are trained to assess the severity of a
specific disease, rather than to differentiate between various
diseases. In contrast, to the best of our knowledge, this is the
first study that employs external ocular surface images using
digital camera images of both canines and felines.

D. DOMAIN ADVERSARIAL LEARNING

Transfer learning is a well-known technique to improve
performance on a small dataset by using a pre-trained
model on a large-scale dataset [35], [36]. However, simply
fine-tuning a pre-trained network has limited effect when
the large and small dataset hold dissimilar characteristics
and distributions [37], [38], [39]. On the other hand, domain
adversarial learning is more useful when the source and target
domains exhibit significant differences [40].

The main idea behind domain adversarial learning involves
training a feature extractor, domain classifier, and task
classifier simultaneously [41]. The feature extractor learns
domain-invariant features from input images, while the
domain classifier tries to differentiate between source and
target domain images based on those features. The gradient
reversal layer or domain confusion loss helps the feature
extractor generate features that confuse the domain classifier,
enhancing domain adaptation [42].

In recent studies, transfer learning and domain adaptation
techniques have been shown to assist in heterogeneous
data analysis, including applications in medical image
analysis [43], [44], [45], [46]. This approach addresses
domain shifts caused by clinics, filming instruments, and
physical characteristics. Aranha et al. propose an ensemble of
convolutional neural networks trained on high-quality fundus
images to diagnose eye conditions [25] which was validated
using low-quality images acquired by low-cost equipment.
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FIGURE 1. Difference of slit-lamp (a) and camera (b) images.

TABLE 1. Companion animal eye disease dataset distribution.

Coarse Cornea Lens
Fine Cornea ulcer | Keratitis | Cataract Nuclear
sclerosis
Total 1,727 2,038 2,575 10,798
camera 0 117 271 712
slit-lamp 1,727 1,921 2,304 10,086
(a) Canine dataset
Coarse Cornea Eyelids
Fine Corneal sequestrum | Cornea ulcer | Blephalitis
Total 3,511 3,531 1,076
camera 128 143 169
slit-lamp 3,383 3,388 907

(b) Feline dataset

This study obtained comparable results to the state-of-the-
art to reach accuracies of 87.4%, 90.8%, 87.5%, 79.1%
to classify cataract, diabetic retinopathy, excavation and
blood vessels, respectively. Bevan et al. used two techniques,
namely ‘“Learning Not to Learn” and “Turning a Blind
Eye”, to remove the bias of artifacts on skin lesion images,
for example, surgical markings or rulers [47], [48], [49].
Another issue was the inconsistency between clinical and
dermoscopic images for the same lesion; therefore, they
aimed to generalize various imaging methods.

Our work uses a gradient reversal layer to alleviate the
domain shift between distinct filming instruments, inspired
by unsupervised domain adversarial learning [42]. A gradient
reversal layer is a component of a DL model to learn
domain-invariant representations by reversing the gradients
during the backpropagation process. We additionally inte-
grated a method to address the issue of unbalanced domains
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FIGURE 2. (a) The overview summarizes our work. Once a feature tensor is extracted from the input image, it passes
three classifiers: a coarse classifier, a fine classifier, and a domain classifier. The coarse and fine classifier induces
the loss Lpsease Which is optimized according to the original parameters, 6¢. Domain classifier induces the loss
Lpomain- and the gradient passes through a gradient reversal layer (GRL). Lpoya/n is optimized according to the
balanced feature weights, 6. (b) The detailed blocks of feature extraction.

by altering classification weights. This was implemented
using a t-normalized classifier, which is a strategy of
re-balancing decision boundaries, used for long-tailed recog-
nition [50]. The norms of the weights are associated with the
class cardinalities, while following class-balanced sampling,
the classifier weight norms tend to be more uniform.

ill. METHOD

A. DATASET

This study used a public dataset named Pet Eye Disease Data
(AI-Hub, South Korea). All data can be accessed through
“Al-Hub [51].” The dataset comprises images depicting
diseased eyes from over 5,000 pets, including both canine
and feline subjects. Each image is standardized to a size of
400x400 pixels, with corresponding metadata presented in
the JSON format. The samples contained twelve commonly
raised canine breeds and six feline breeds of companion
animals. From the dataset of 12 diseases, we selected a
subset of four based on their significance in small animal
health. Among the metadata, we used device labels, which
indicate the type of filming instrument used for each image.
Table 1 shows the distribution of the domains (i.e., devices),
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where the majority are slit-lamp (SL) images. Canine corneal
ulcer images, in particular, are entirely SL images. Distinct
devices induce differences in the final image, such as lighting
conditions or hues, as shown in Fig. 1. The most explicit
distinction is that SL images have light exerted on the central
area, whereas camera images are captured without special
lighting. The canine and feline datasets were seperated for
all experiments, and the train, validation, and test sets were
randomly divided with a ratio of 7.5:1.5:1.5.

B. MULTITASK LEARNING

In our work, the main objective is to achieve a fine-grained
classification of the disease classes. To enhance the gen-
eralization of the main task, we incorporated additional
information with a hierarchical layer of labels. Disease
classes were grouped into coarse categories under the
guidance of veterinarians, as shown in Table 1. Coarse
classes are labeled according to the location where the
corresponding diseases occur in the eyes, e.g., cornea, lens,
and eyelids. Utilizing two layers of labels, multitask learning
(MTL) [52] was implemented in which the input image
tensor and backbone model architecture for feature extraction
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are shared. In this work, the Swin-Transformer [16] was
implemented as the architecture for feature extraction,
while the predictions of both the class levels were made
independently from the coarse classifier and fine classifier.
Each classifier induced L¢c and Lp, respectively, and the
model parameters were optimized according to minimize
Lpisease < (1 —a) x Le +a x Ly.

This work weighted fine classification heavier; the value
of o was set to 0.7. Given that several ocular diseases can
simultaneously occur in an eye, using hard targets may cause
errors that are inconsistent with actual probabilities. Hence,
this issue was mitigated via label smoothing [53] of the coarse
and fine predictions. Suppose for true labels y; and predicted
labels py for the kth class, the hard target values are 1 for the
true class and O for the rest. Subsequently, we modify yj into
a smoothed yés using the formula below.

8
LS
=y -908)+ — 1
g = il )+« ey

where K is the number of classes, § is the weight of the
smoothing labels, which was fixed at 0.1 throughout the
experiments.

C. BALANCED DOMAIN ADVERSARIAL TRAINING
We propose balanced domain adversarial training (BDAT)
for computational solutions that encourage the learning in
the minor domain, as demonstrated in Figure 2(a). The input
image utilized for disease classification is simultaneously
inputted into the domain classifier, engaging in a binary
classification task that distinguishes between camera and
slit-lamp images. During the training phase, the gradient
of the domain classifier is multiplied by a negative scalar
—Ap through the gradient reversed layer (GRL). Accord-
ingly, the parameters of the feature mapping ultimately
maximize the Lpopain, thus avoiding latent features that
determine the domains.

Considering the noise of the domain classifier during
earlier training stages, the scalar value ), is adjusted every
epoch as below:

P T e (0xm
_ batch_idx + epoch x max_batches

p= 3)

max_epoch x max_batches

@

Using the formula, A initiates from 0 and gradually increases
to converge to 1. This indicates that the influence of GRL is
minimized during the initial training stage, and as the model
starts to learn domain features, GRL reverses it accordingly.

Since approximately 95% of the dataset consists of SL
images, relying solely on GRL would lead to a strong
bias of the domain classifier towards SL images. Therefore,
the decision boundary of the domain classifier was altered
by normalizing the last feature map before passing GRL.
We additionally integrated a method to address the issue
of unbalanced domains by altering classification weights.
Methodically, consider the feature map of the last layer of the
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domain classifier W = {w;}, where w; are classifier weights
associated with domain j. The normalized weights W = {w;}
are generated by:

wi

il “)

wj =

llwi
v € [0.8,1.2] is a hyperparameter empirically optimized,
where II-ll denotes the L2 norm. This process diminishes the
latent features of domain spaces, accordingly the disease

features are strengthened.

IV. RESULTS

A. EXPERIMENTAL SETUP AND EVALUATION METRICS
Each image was resized to 384 x384 pixels, and the pixel
values were normalized to the 0-1 range. Empirical results
showed that traditional augmentation techniques (e.g. flip-
ping, rotating, color manipulation, etc.) can compromise the
preservation of semantic information in the original image.
Consequently, we excluded augmentation. The models were
trained with the AdamW optimizer and cosine annealing
learning rate scheduler, where the learning rate values were
cycled from O to the specified learning rate every 50 epochs.
The batch size was set to 4, and the learning rate to 1x 10-5.
Canine and feline images were trained for 100 epochs and
50 epochs, respectively, according to the magnitude of image
datasets. All the experiments were trained via PyTorch and
implemented with an Intel(R) Core(TM) i7-10700KF CPU
3.80 GHz and NVIDIA GeForce RTX 3090 Ti graphics
processing unit (GPU).

To evaluate the performance of each proposed method,
various metrics were utilized. Firstly, the accuracy of each
domain was measured to assess the impact of BDAT.
To account for the performance of the network for the
entire dataset, accuracy, recall, precision, and Fl-score

were used. These metrics were formulated as accuracy =
(TP+TN) (TP) o (TP)

TPFTVAFPEFR)” o (FNLTP)’ F;rzc)ls@‘ ” TPy
AL — _ k(L recisionxieca.

specificity = Vi F1-Score = PrecisionsRecall) - 1P

TFP)
TN, FP, and FN stand)for true-positive, true-negative, false-
positive, and false-negative instances, respectively. Accuracy
and F1-Score serve as effective metrics derived from the
outcome of performance evaluation. Accuracy assesses the
degree of expected correctness in the results. Precision mea-
sures the how the measurement is correctly predicted. Recall
evaluates the correctness of the outcomes. F1-Score utilizes

precision to compute the overall average of all these values.

recall =

B. PERFORMANCE RESULTS

We compared the performance of Swin-Tiny with three dif-
ferent classifying model architectures to validate the ability
for feature extraction: Densenet-121 [54], Resnet50 [55], and
ConvNeXT-Base [56]. Table 2 shows that Swin-Transformer
holds the highest metric values. ConvNeXT was introduced in
2022 as a modernized version of ConvNet, that competes with
Swin-Transformer while reserving the simple and efficient
traits of ConvNets. In this research, Swin-Transformer not
only resulted in higher accuracy than ConvNeXT for both
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TABLE 2. GRL results for convolutional networks.

Architecture Method Domain accuracy Total dataset #FLOPS
camera  slit-lamp | accuracy recall precision Fl-score
Swin-T 0.822 0.843 0.841 0.788 0.767 0.775 4.5B
Canine ConvNeXT-B MTL 0.713 0.804 0.798 0.699 0.707 0.703 15.4B
Resnet50 +GRL 0.776 0.813 0.810 0.748 0.722 0.734 4.1B
Densenet121 0.753 0.833 0.828 0.768 0.745 0.756 2.9B
Swin-T 0.718 0.650 0.654 0.584 0.689 0.606 4.5B
Feline ConvNeXT-B MTL 0.704 0.573 0.581 0.528 0.576 0.542 15.4B
Resnet50 +GRL 0.662 0.602 0.605 0.536 0.604 0.551 4.1B
Densenet121 0.704 0.603 0.609 0.590 0.602 0.584 2.9B
TABLE 3. Canine results for balanced domain adversarial training.
Domain accuracy Total dataset
camera slit-lamp | accuracy recall precision Fl-score

Base 0.821 0.821 0.819 0.743 0.749 0.737

MTL 0.799 0.837 0.837 0.791 0.751 0.767

GRL 0.822 0.843 0.841 0.788 0.767 0.775

712 0.839 0.836 0.837 0.755 0.780 0.765

T1.1 0.851 0.818 0.820 0.770 0.757 0.763

71.0 0.862 0.829 0.841 0.763 0.779 0.770

709 0.845 0.847 0.847 0.767 0.779 0.772

70.8 0.851 0.847 0.847 0.773 0.772 0.772

TABLE 4. Feline results for balanced domain adversarial training.
Domain accuracy Total dataset
camera  slit-lamp | accuracy recall precision  Fl-score

Base 0.634 0.624 0.624 0.575 0.599 0.583

MTL 0.662 0.640 0.641 0.575 0.632 0.588

GRL 0.718 0.650 0.654 0.584 0.689 0.606

T12 0.676 0.624 0.627 0.568 0.661 0.591

T1.1 0.690 0.631 0.635 0.552 0.720 0.578

71.0 0.704 0.609 0.614 0.531 0.677 0.548

709 0.732 0.612 0.619 0.539 0.698 0.559

70.8 0.662 0.620 0.622 0.554 0.640 0.573

canine and feline, but was also more efficient by owning 71%
fewer floating point operations (FLOPs) than ConvNeXT.

Table 3 and Table 4 present the results of BDAT compared
to the use of MTL or BDAT. The baseline refers to the
scenario where only feature extraction and fine classification
are performed. When using MTL exclusively, there was an
improvement in performance for the full dataset, but the
accuracy in the camera domain decreased for canines. In the
case of felines, all metrics improved except for recall, which
remained equivalent to the baseline.

In addition to MTL, incorporating GRL without feature
normalization further improved the performance for both the
canine and feline datasets. We observed improvements in the
camera domain, with a larger scale increase compared to SL
for both canines and felines. This indicates that reversing the
features of the domain classifier was beneficial for disease
classification. However, the increment in camera accuracy for
canines was minor and not yet significant.
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Accordingly, we investigated the effect of BDAT with
various T values in Equation (4). For canines, t 1.0 achieved
the highest camera accuracy, while T 0.9 and 7 0.8 had
the highest accuracy for the total dataset. All experiments
with varying 7 values not only exceeded the camera
accuracy of the baseline, MTL, and GRL, but also out-
performed SL accuracy for all values of t excluding 0.9.
Most of the other metrics were also highest when using
BDAT.

The overall results for the feline exhibited differently, but
the objective of improving the camera domain was confirmed.
BDAT with t 0.9, achieved the highest camera accuracy,
surpassing the baseline, MTL, and GRL. However, the SL
domain experienced a decline in competence, specifically
a 3.8% decrease compared to GRL and a 2.8% decrease
compared to MTL. This led to a decrease in other metrics due
to the dominant influence of the large volume of SL images
in determining the overall performance.
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V. CONCLUSION AND LIMITATION

Through this study, we verified the feasibility of a DL
framework for classifying companion animals’ ocular surface
disease images. Our proposed network labels the initial
input image into two groups: coarse and fine classes.
By adopting MTL and BDAT, the classification network
obtained the ability to capture fine disease-related features
and disregard the discrepancy between equipment-related
ones simultaneously. Using two layers of hierarchical layers
of labels enhanced the accuracy of disease classification,
whereas it showed limited development in the minor domain.
We overcame the discrepancy between clinical and practical
screening environments through GRL and further addressed
data imbalance through feature normalization. As mentioned
in Section III, the proportion of the camera domain is between
3% and 5%. Despite the scarcity, the developments made by
BDAT were 6.3% for canines, 7% for felines. Through this
practice, we believe a wide range of collected data derived
from various environments can be utilized for a constrained
task, which suggests an efficient and realistic solution for
medical imaging application studies.

Furthermore, most of the research in the field of
ophthalmological image analysis were confined to some
selected set of diseases, e.g. cataracts, corneal diseases,
and glaucoma [23]. Christopher identified glaucomatous
damage in optic nerve head (ONH) fundus images [24].
Kim detected severity in corneal ulcers, and Hao classified
corneal diseases [26], [34]. The study of Aranha covered
cataracts, diabetic retinopathy, excavation and blood vessels,
but individual binary classification networks were used
to distinguish between normal and abnormal images [25].
In contrast, we use a single model to identify multiple
diseases, being the first study to detect a wide range of
ophthalmological diseases in both canines and felines.

Canine disease predictions resulted in a high-level accu-
racy above 80%. Note that it is difficult to objectively
compare the metric values with related works because the
dataset was not previously used. Moreover, although the
outcome of SL accuracy for BDAT felines did not align with
that of canines, the benefit of BDAT was significantly shown
in camera accuracy. We are willing to extend this case with
more collected data.

However, this study carries some limitations. First, domain
adaptation was fully supervised for our study. While we
succeeded in adapting within our dataset’s domains, our
network is not generalized in unseen domains other than
SL or cameras. Unsupervised domain adaptation or domain
generalization methods could be adopted to target unexpected
domains. Also, our work does not include tests on human
veterinarians. Comparing the performance of Al and human
diagnosis can enlighten the appropriate area for the appli-
cation of DL in veterinary studies. Lastly, in this study,
a selected subset of the AIHub dataset was utilized, focusing
on disease classes that are frequent ailments observed in
small animals. This subset provided a representative sample
for the research objectives while optimizing computational
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resources and ensuring the timely completion of the training
process. In future studies, it would be beneficial to expand
the dataset to include a wider range of disease classes and
incorporate additional data from different sources.
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