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ABSTRACT The probability analysis method of theoretical line loss (TLL) is an emerging TLL assessment
method in recent years, which can consider the impact of random changes in load, power source, and other
factors on the line loss rate, and can accurately evaluate the distribution range of line loss rates in a specific
power grid in the long, medium, and short term. A monthly probability theoretical line loss calculation
method of low-voltage network (LVN) based on simultaneous power and electricity is proposed in this paper.
This method firstly converts hourly calculations of line loss into every 20 minutes calculations, which can
shorten the calculation interval based on the first power, last power, and electricity collected in every hour
by the user’s smart meter. Then, based on improved K-means clustering method (KCM) and non-parametric
Kernel density estimation, the load probability distributionmodel is established, and the acceptance-rejection
sampling method (ARSM) is used to generate the power random samples of each user’s load for every
20 minutes in a month. The three phase power flow of each simulation sample is calculated by using the
injection Newton’s method. Then, the monthly TLL is accumulated. Finally, based on the IEEE-13 buses
and IEEE-33 buses standard distribution system, the simulation results showed that the proposed method
can more accurately and effectively calculate the monthly probability TLL of LVN compared with the line
loss calculation method based on daily and hourly electricity.

INDEX TERMS Smart meter, low voltage network, power flow calculation, TLL.

I. INTRODUCTION
For energy conservation and emission reduction, improv-
ing the level of management and operational efficiency of
enterprises, and responding to the impact and challenges of
the new electricity reform, energy enterprises have clearly
studied the goal of power grid loss reduction and continue to
promote it as an annual key work [1]. The line loss analysis
of power grid in the LVN is an important component of
line loss management in power system, and it is also the
most important way to promote the scientific and reason-

The associate editor coordinating the review of this manuscript and

approving it for publication was Youngjin Kim .

able construction, transformation and operation in the LVN
[2].Therefore, in terms of how to efficiently calculate the line
loss rate in the LVN, it is crucial to study a reasonable TLL
calculation method [3].

Since the beginning of the 1920s to 1930s, researchers have
been engaged in research on TLL calculation in distribution
networks, studying the mechanism of energy loss generated
by various power components, analyzing the reasons for
power loss in network transmission, and constructing mathe-
matical models to calculate the TLL of the network [4], [5].
Among all levels of power grids, the line loss of LVN is the
most severe, which is one of the important reasons for the
overall high line loss rate in the power grid. The potential for
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reducing losses in LVN is enormous, and it is an important
part of online loss management and reduction work for power
grid enterprises [6].

The line loss includes two parts: TLL andmanagement line
loss [7]. The TLLmainly depends on the network parameters,
and is the theoretical electricity consumption value of each
component during real-time operation [8]. The main sources
of management line losses are inconsistent meters (smart
meters do not match with the belonging network), metering
faults, and electricity theft [9]. Therefore, strengthening man-
agement measures can reduce or even avoid the causes of line
lossesmentioned above [10]. Seen from this, the key to reduc-
ing line loss lies in defining the boundary between TLL and
management line loss, clarifying the space for reducing line
loss, and providing theoretical basis and scientific support for
formulating line loss reduction measures [11].

Literature [12] analyzed the composition, distribution and
influencing factors of line loss in the main network of a
provincial power grid by using the measured results of load,
and analyzed the influence of wind power integration on
line loss. In literature [13], a three-phase imbalance factor is
introduced into the calculation of branch line loss, and the
forward-backwardmethod ismodified to calculate theoretical
line loss. Compared with the equivalent resistance method,
the improved algorithm has higher accuracy and applicability,
which is helpful to further develop the theoretical line loss
calculation task in the LVN.

At present, there are some bottlenecks of line loss man-
agement in the LVN: (1) The traditional theoretical line loss
calculation in the LVN needs high-precision power grid struc-
ture and network parameters, due to insufficient data and
poor reliability, comprehensive and in-depth research of line
loss calculation in the LVN has not been carried out. (2) The
line loss target is set in the same way in the different LVN,
without fully considering the actual operating conditions,
such as the load characteristics of different users and the
influence of distributed generation. (3) Topological structure
and network parameters are the basis for accurate calculation
of line loss, however, these data are still obtained manually.
Nowadays, with the continuous promotion and development
of the construction of intelligent distribution networks, smart
meters have been basically promoted and applied in the LVN.
Smart meters have three-phase power flow and electricity
data, which lays a necessary data foundation for the TLL
calculation in the LVN [14], [15], [16].

The probability analysis method of TLL is an emerging
method for evaluating TLL in recent years [17]. This method
can consider the impact of random changes in load, power
source, and other factors on line loss rate, thus can accu-
rately evaluating the distribution range of line loss rate in
a specific power grid in the long, medium, and short term
[18]. Moreover, probability analysis methods do not entirely
rely on measured information and actual network structure
information, simulationmethods can be used to obtain system
state and even network structure parameters, avoiding the

collection of a large amount of data, thereby greatly improv-
ing the efficiency of line loss rate calculation [19], [20], [21].

Therefore, a monthly probability theoretical line loss cal-
culation method of LVN based on simultaneous power and
electricity is proposed in this paper. The main contributions
in this paper are as follow:

(1) By using first power, last power, and electricity col-
lected in every hour, daily and hourly calculation of line loss
is converted into 20 minutes calculation, which can shorten
the calculation interval and improve the accuracy of TLL
calculation.

(2) By using the improved KCM and non-parametric Ker-
nel density estimation, the load probability distributionmodel
is established, and the ARSM is used to generate the power
random samples of each user’s load. Monthly probability
theoretical line loss can help clarifying the space for reduc-
ing line loss, and providing theoretical basis and scientific
support for formulating line loss reduction measures with out
entirely rely on measured information and actual network
structure information.

II. HOURLY LEVEL SIMULTANEOUS POWER AND
QUANTITY MEASUREMENT
In the LVN, the low voltage side of the distribution trans-
former’s main smart meter and user’s sub smart meter can
intelligently collect measurements such as three-phase elec-
tricityWhour , active powerPhour , reactive powerQhour , power
factor cosϕhour etc [20]. The schematic diagram of power and
electricity measurements collected by smart meter in an hour
is shown in Figure 1.

FIGURE 1. The schematic diagram of power and electricity measurements
collected by smart meter in an hour.

Where Phour1,Qhour1 represent the first active and reactive
power of first snapshot in an hour; Phour2, Qhour2 represent
the last active and reactive power of last snapshot in an hour;
Whour represents the electricity consumed in an hour.

During the hour level time period, the average active power
P̄hour can be obtained based on the electricity measurement
Whour :

P̄hour = Whour (1)

The average reactive power Q̄hour can be obtained based on
the power factor cosϕhour and average active power P̄hour :

Q̄hour = P̄hour × tanϕhour (2)

Therefore, the power measurements collected in an hour
include the first power data Phour1,Qhour1, the last power data
Phour2, Qhour2 and the average power data. Seen from this,
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there are three power values in each hour level time period.
In this paper, we assume that each power value accounts for
one third of the duration, that is, 20 minutes.

The measurement data used in this paper is compared with
the previous works, i.e. the line loss calculation method using
daily electricity [17] (called method 1 in this paper) and
the line loss calculation method using hourly electricity [18]
(called method 2 in this paper), as shown in Table 1.

TABLE 1. The comparison of data used in different methods.

By using the power and electricity data in the hour level
time period, the time interval of theory line loss calculation
is shortened compared with the previous line loss calculation
method based on daily electricity and hourly electricity, thus
can improve the accuracy of TLL calculation.

III. LOAD RANDOM SIMULATION METHOD
FOR LVN BASED ON KCM
A. IMPROVED K-MEANS CLUSTERING METHOD
The algorithm of KCM [22] is a classic unsupervised clus-
tering algorithm. Its basic idea is: for a set containing N data,
randomly select k objects as the starting clustering center and
calculate the Euclidean distance (ED) between N data and k
centers. Then, the N data is divided into k clusters with the
smallest distance from the clustering center. After all data is
allocated, the clustering centers of each cluster are calculated
again and repeat the above clustering division until the cluster
center remains constant.

The degree of similarity (or difference) between data
objects is generally calculated using a mathematical function.
KCM usually uses ED to measure the similarity of data
objects, and the ED between array X (x1, x2, · · · , xn) and
array Y (y1, y2, · · · , yn) is:

d(X ,Y ) =

√
(x1 − y1)2 + (x2 − y2)2 + · · · + (xn − yn)2

(3)

where d(X ,Y ) represents the ED between the array
X (x1, x2, · · · , xn) and the array Y (y1, y2, · · · , yn).
At the same time, KCM uses the sum of error’s square

as the standard to judge whether the clustering is over. The
definition of the sum of error’s square e is:

e =

k∑
i=1

∑
xj∈Cj

(xj − cj)2 (4)

where cj represents cluster center in the j-th cluster; Cj rep-
resents the j-th cluster. From the formula (4), it can be seen

that the sum of error’s square e reflects the closeness between
each cluster data and the cluster center. The smaller the value,
the closer the cluster obtained by clustering.

The implementation steps of KCM can be described as
follows:

(1) Input the data set S and the number of clusters k .
(2) Select randomly k data from data set S as the starting

clustering center.
(3) According to the ED calculation formula, calculate the

ED between the data of data set S and each starting cluster
center, and divide the data of S into closest clusters based on
the ED value.

(4) Recalculate the centers of k clusters.
(5) Calculate the value of the sum of error’s square, and if it

converges, the algorithm ends and the result is output. On the
contrary, return to step (3) until e reaches the convergence
condition.

K-means clustering algorithm has simple steps and is easy
to implement, and which also can be directly called in the
MATLAB library functions. However, KCM must set the
value of clustering number in advance, and the appropriate
value k is very important for the final clustering result. There-
fore, the improved KCM is used in this paper [23].

Suppose that the data set S is clustered into k clusters,
C = {C1,C2, · · · ,Ck} represents all the cluster sets, and ni
represents the number of data in the cluster Ci. In this paper,
the following indicators are used to evaluate the clustering
results (called CH index):

CH =
traceB
k − 1

/
traceW
N − k

(5)

traceB =

k∑
i=1

ni(d(zi, z))2 (6)

traceW =

k∑
i=1

ni∑
j=1

(d(xj, zj))2, xj ∈ Cj (7)

where CH represents the indicators of evaluating the cluster-
ing results; z represents the average value of the data set S; zj
represents the average value of the j-th clusterCj. The smaller
the CH, the better the clustering result.

The implementation steps of calculating the optimal cluster
number k in improved KCM are as follows:
(1) Determine the search range of cluster number [kmin,

kmax], and increase the number of clusters k from kmin
to kmax in turn.

(2) Obtain the clustering results based on the steps of
KCM.

(3) Calculate the CH index of the clustering results under
different clustering numbers

(4) Determine the best clustering number and output the
corresponding clustering results.

B. NON-PARAMETRIC KERNEL DENSITY ESTIMATION
The user’s load in the LVN is called the disturbance quan-
tity, which fluctuates randomly and is a random disturbance

145794 VOLUME 11, 2023



Y. Feng et al.: Monthly Probability TLL Calculation Method

variable with strong uncertainty. Therefore, it is necessary to
accurately simulate the random fluctuation characteristics of
load changes.

To describe the random fluctuation characteristics of loads,
the current researches generally are as follows: firstly, assume
that the load follows a certain assumed distribution; then,
estimate the parameters of the assumed distribution based
on historical data; finally, obtain the probability distribution
model of the load. However, the main problem of this mod-
eling approach is that they assume the user’s load follows a
given distribution, which rely on subjective experience and
lack of theoretical basis. The random characteristics of the
actual load itself may have a significant difference from the
assumed distribution.

For this reason, this paper use Kernel density estimation in
load probability modeling, which is a method that does not
need any prior knowledge, make any assumptions, and study
data distribution characteristics from data samples, with high
simulation accuracy and strong adaptability [24].

Suppose p1, p2, . . . , pn are n data samples of load p, and
the probability density function of p is f (p), then the Kernel
density estimation fh(p) corresponding to f (p) is:

fh (p) =
1
nh

n∑
i=1

K
(
p− pi
h

)
(8)

where: p represents variable; h represents the bandwidth;
n represents the number of samples; K () represents kernel
function.

The selection of kernel function K () is often chosen as
a probability density function centered around 0 with the
following characteristics:

∫
K (u)du = 1∫
uK (u)du = 0∫
u2K (u)du = σ > 0

(9)

where: u represents variable; σ represents the variance of u.
Gaussian function, also known as standard Normal dis-

tribution function, meets all requirements of Kernel density
estimation theory for kernel function, and is widely used in
mathematical theoretical analysis and practical application.
Therefore, this paper also uses Gauss kernel function to carry
out probability modeling of load.

C. ACCEPTANCE-REJECTION SAMPLING METHOD
In probability analysis of loads, firstly, generate random sam-
ples through sampling, and then proceed with the next step
of simulation analysis. This paper introduces the ARSM to
obtain random samples of loads. Assuming the bus load is x,
the probability density function is f (x), the maximum value
is M , the value domain of x is [a, b], and the random sample
is e, the specific steps are as follows [25]:

(1) In interval [0, 1], generate random numbers r and ri that
satisfy a uniform distribution;

(2) Calculate e based on the value r and [a, b];
(3) If r ≤ f (e)/M , accept sample e, otherwise return to

step (1) to continue sampling.
The specific operation process of the ARSM is shown in

Figure 2.

FIGURE 2. The specific operation process of the ARSM.

D. RANDOM SIMULATION METHOD FOR
POWER LOAD IN LVN
Based on the user’s smart meter measurement, power data
collected at the first and last snapshot of each hour and the
hourly electricity consumption can be obtained.

The logic diagram of random simulation method for power
load is shown in Figure 3.

FIGURE 3. The logic diagram of random simulation method for power
load.

The specific steps of random simulation method for power
load are as follows:

(1) By organizing annual power load and electricity data of
users in LVN (i.e. 8760 hours), and using the improved KCM,
the users’ load can be divided into N categories;

(2) For each category of power load, themonthly data curve
of the user’s load can be clustered using the improved KCM.
The monthly data curve of the user’s load can be divided into
n categories, and the mean curve of the monthly data of each
category can be used as the typical monthly load data curve.
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The number of samples contained in each category is used
as the frequency of the corresponding typical month, and the
typical monthly load curve is considered random and follows
a uniform distribution;

(3) For the typical monthly load curve of each category, the
statistical model of the monthly load of is established based
on the non-parametric Kernel density estimation theory;

(4) Generate a randomnumber x in the interval [0, 1], deter-
mine the typical monthly curve of each category according to
x, use the ARSM to get the load sample, and obtain power
flow data of each hour for each month.

IV. MONTHLY PROBABILITY TLL CALCULATION
A. INJECTION NEWTON’S METHOD FOR POWER
FLOW CALCULATION
For the power flow data obtained by random sampling, which
is calculated by using the injection Newton’s method. In the
LVN, for any bus, the injection current expression is as fol-
low [26]:

Ii =

N∑
j=1

YijUj (10)

where: Ii represents the injection current at bus i; Yij rep-
resents the mutual admittance between bus i and bus j; Uj
represents the voltage at bus j; N represents the total number
of buses.

Based on the injection Newton’s method, establish the
power flow equations. After Taylor expansion and lineariza-
tion, the correction equation can be obtained as follows:

[1j, · · · , 1v]T = H
[
1xj, · · · , 1xv

]T (11)

where: 1j and 1v represent the unbalance quantities of PQ
and PV bus, respectively;H represents the Jacobi matrix;1xj
and 1xv represent the correction quantities of state variables
for PQ and PV bus, respectively.

At the k-th iteration, the increment of the state variable is:

x(k+1)
= x(k) + 1x(k) (12)

where: x(k) and x(k+1) represent the state variables at the k-
th and (k + 1)-th iteration, respectively; 1x(k) represent the
increment of x(k) at the k-th iteration.
The flow chart of power flow calculation for injection

Newton’s method is shown in Figure 4.

B. MONTHLY PROBABILITY TLL CALCULATION STEPS
Based onMonte Carlo simulationmethod, the probability dis-
tribution of monthly TLL in the LVN is calculated (assuming
30 days per month, 3 power data points per hour, therefore,
there are a total of 2160 power data points in a month).

The specific calculation steps are as follows:
(1) Initialization: input historical measured data and net-

work structure parameters of LVN, set sampling samples
kmax, convergence threshold ε, and set the initial number of
samples k = 0;

FIGURE 4. The flow chart of power flow calculation for injection
Newton’s method.

(2) Power load state simulation: based on the KCM and
non-parametric Kernel density estimation, a statistical model
of each bus load is established, and three random power
samples of each user’s load in each hour for a month are
generated by using the ARSM;

(3) Simulation of power flow state: calculate power flow
based on injection Newton’s method by using random load
samples and network structure parameters at each power data
point, and obtain monthly TLL samples;

(4) Convergence judgment: calculate the variance of all
monthly TLL sample data η. If η ≤ ε or k ≥ kmax, the sam-
pling will be stopped, and the results will be output. Count
the calculated monthly TLL samples, and their histograms or
probability density curves will be plotted. Otherwise, k =

k+1, go back to step (2).
The flowchart of monthly probability TLL calculation

method is shown in Figure 5.

V. NUMERICAL TEST AND ANALYSIS
A. BASIC DATA
Based on the IEEE-13 buses standard distribution system,
an improved IEEE-13 buses system is established. The
improved system topology is shown in Figure 6. In this distri-
bution network, the total load is 3107.43kW + j1831.83kVar.
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FIGURE 5. The flowchart of monthly probability TLL calculation method.

The construction process of the improved system is as
follows: (1) All branch are set as 501, and the phase spacing is
1.1292m; (2) The resistance of phases A and B of lines 7-11
is 0; (3) The load is constant power; (4) Ignore parallel
capacitors, voltage regulators, and distribution transformers.
Bus 5, 7, and 8 are zero injection bus, bus 1 is set as balanced
bus.

B. SIMULATION RESULTS AND ANALYSIS
(1) Monthly deterministic TLL calculation and analysis

Based on the improved IEEE-13 buses system, the line
voltage was modified to 380V to simulate the actual voltage
of the LVN. The monthly deterministic TLL calculation is
carried by using the monthly electricity and power data from
the low-voltage side of the distribution transformer in an
actual standard LVN. In order to prove the effectiveness of
the method proposed in this paper, the previous works, i.e.
the line loss calculation method using daily electricity [17]
(called method 1 in this paper) and the line loss calculation
method using hourly electricity [18] (called method 2 in this
paper) are compared in the simulation.

Method 1 [17]: Monthly TLL calculation based on daily
electricity

This method is a calculation method for actual existing
distribution systems, which uses the total daily electricity data
of the LVN, divides it by 24 hours to obtain the average value

FIGURE 6. IEEE-13 buses distribution system structure connection
diagram.

TABLE 2. Monthly TLL calculated by three cases (kWh).

of the daily power, and uses it in injection Newton’s method
for power flow calculation to obtain the TLL in a day.

The details of the operation are as follows: firstly, the
daily electricity data is divided by 24 hours to obtain the
average value of the daily power, which is used as the total
three-phase active power of the day in the LVN. Based on
the power factor, assuming the given power factor is 0.9, the
total reactive power of the day is obtained. Furthermore, the
total active power and total reactive power are distributed
according to the ratio of each phase of corresponding bus in
the improved IEEE-13 bus system, to obtain the simulated
actual power of each phase of corresponding bus. Based on
the injection Newton’s method, the power flow is obtained,
and the monthly TLL for 30 days can be got.

Method 2 [18]: Monthly TLL calculation based on hourly
electricity

The simulation process is the same as Method 1, with
the difference being that Method 1 uses daily electricity
data, while Method 2 uses hourly electricity data to calculate
24 times in a day, therefore, the monthly TLL for 30 days can
be got.

The proposedmethod:Monthly theory line loss calculation
based on simultaneous power and electricity

The simulation process is the same as Method 1, with
the difference being that Method 1 uses daily electric-
ity data, while the proposed method in this paper uses
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TABLE 3. Statistical results of line loss rate under three sampling scales in IEEE-13 buses distribution system.

TABLE 4. Statistical results of line loss rate under three sampling scales IEEE-33 buses distribution system.

hourly first and last power and electricity data to calculate
72 times in a day. Each hour is divided into three intervals
of 20 minutes, therefore, the monthly TLL for 30 days can
be got.

Based on the above three deterministic TLL calculation
methods, the monthly TLL results are shown in Table 2.

According to the results shown in Table 2, themonthly TLL
calculated by Method 1, Method 2 and the proposed method
in this paper are 139.74kWh, 131.76kWh and 127.46kWh
respectively. The synchronous line loss collected of the actual
standard LVN is 124.72kWh, which is regarded as a standard
reference line loss value, and its error is ignored. The differ-
ence between the three methods and the reference value is
15.02kWh, 7.04kWh and 2.74kWh, respectively, percentage
errors are 12.04%, 5.60% and 2.16%.

Therefore, it can be seen that Method 1 has the largest
calculation error, Method 2 has the second largest calcula-
tion error, and the proposed method in this paper has the
smallest calculation error. The main reason is that the power
load has significant fluctuations within a day. Using daily
electricity data for calculation has a larger error, while using
hourly electricity to convert a day into 24 periods is more
optimal for calculation. However, in this paper, hourly first
and last power and electricity data are used for calculation,
and the calculation time scale is smaller. Therefore, it can
better reflect the actual fluctuation of power load, fully utilize
more abundant data, and its calculation results are more
accurate.

(2) Monthly probability TLL calculation and analysis
Based on the improved IEEE-13 buses system and Monte

Carlo simulation, the ARSM was used to generate 103, 105,
and 107 sample to calculate the monthly probability TLL of
LVN. Figure 6 shows the probability density curve results
of the line loss rate using the proposed method under three
sampling scales.

FIGURE 7. The probability density curve results of the line loss rate under
three sampling scales.

FromFigure 6, it can be seen that under three different sam-
pling scales, frequency fitting was performed on the obtained
results. Among the results, when the sampling scale is 103

times, the frequency distribution curve was the roughest;
when the sampling scale is 105 times, the frequency distri-
bution curve is relatively smooth; When the sampling scale
is 107 times, the frequency distribution curve is smooth and
infinitely approximates the Gaussian distribution curve. From
the curves under the above three sampling scales, it can be
seen that based on Monte Carlo simulation, the larger the
sampling scale, the smoother and closer the results obtained
are to the Gaussian distribution.

The statistical results of the mean and standard deviation
of line loss rates for Method 1, Method 2 and the proposed
method in this paper under three sampling scales are shown
in Table 3.

As we all know, with the increase of sampling scale, the
calculated average line loss rates will gradually approach
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the true values. Seen from Table 3, it can be seen that the
average line loss rates obtained for Method 1, Method 2 and
the proposed method in this paper under 107 sampling scale
are 2.4761%, 2.3965%, and 2.3187%, respectively. Assuming
that the synchronous line loss rate 2.3200% is a standard
reference value in LVN, the difference in line loss percentage
between the results obtained by the three methods and the
reference value is 6.7284%, 3.2974%, and 0.0560%, respec-
tively. From this, it can be seen that under the same sampling
scale, the results obtained by the method proposed in this
paper is closest to the reference value, and the error is smaller.
At the same time, it can be observed that under different
sampling scales, the difference in line loss rate of the method
proposed in this paper is also the smallest, and as the sampling
scale increases, the standard deviation of line loss rate tends
to stabilize.

In order to prove the effectiveness of the proposed method
in the larger IEEE standard distribution networks, further
simulation is carried on IEEE 33 buses standard distribu-
tion system. Simulation conditions are consistent with IEEE
13 buses standard distribution system. The statistical results
of the mean and standard deviation of line loss rates for
Method 1, Method 2 and the proposed method in this paper
under three sampling scales are shown in Table 4.

Seen from Table 4, it can be seen that the average line
loss rates obtained for Method 1, Method 2 and the proposed
method in this paper under 107 sampling scale are 3.5903%,
4.4749%, and 3.3651%, respectively. Obviously, the differ-
ence in line loss percentage of the proposed method in this
paper are still smaller than Method 1 and Method 2. The
results are basically consistent with those of IEEE 13 buses
distribution system, which shows that the proposed method is
still effective in other IEEE standard distribution networks as
well.

VI. CONCLUSION
In this paper, a monthly probability TLL calculation method
of LVN based on simultaneous power and electricity is
proposed. First of all, the time interval of theory line loss
calculation is shortened compared with the previous line
loss calculation method based on daily electricity and hourly
electricity, thus can improve the accuracy of TLL calculation.
Secondly, by using the improved KCM and non-parametric
Kernel density estimation, the load probability distribution
model is established, and the ARSM is used to generate the
power random samples of each user’s load. Finally, based on
the IEEE-13 buses and IEEE 33 buses distribution system, the
simulation results showed that the proposed method can more
accurately and effectively calculate the monthly probability
TLL of LVN, which can help clarifying the space for reduc-
ing line loss, and providing theoretical basis and scientific
support for formulating line loss reduction measures.

In the follow-up research, based on cross-platform multi-
source data, the topology and parameter identification
technology of LVN will be studied and a comprehensive
decision-making platform for online line loss calculation

and power grid management in the LVN will be developed,
so as to automatically identify and display LVN topology,
line losses in real time, and automatically generate line loss
reduction strategies.
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