
Received 27 November 2023, accepted 14 December 2023, date of publication 18 December 2023,
date of current version 26 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3344651

Probabilistic Enhancement to the LEAP Process
for Identifying Technical Debt in Iterative
System Development
HOWARD KLEINWAKS 1,2, ANN BATCHELOR1, AND THOMAS H. BRADLEY 1, (Member, IEEE)
1Department of Systems Engineering, Colorado State University, Fort Collins, CO 80523, USA
2Modern Technology Solutions Inc., Alexandria, VA 22312, USA

Corresponding author: Howard Kleinwaks (howard.kleinwaks@colostate.edu)

ABSTRACT The List, Evaluate, Achieve, Procure (LEAP) process defines a methodology for
mathematically associating the delivery of system capabilities with the temporal satisfaction of stakeholder
needs while identifying technologies at high risk of imparting technical debt into the system. The original
process is qualitative, relying on binary definitions of timelines for technology development – the technology
either is or is not developed in a specific time period. The binary definitions allow for rapid high-level
assessments of the potential for technical debt. However, they fail to capture more realistic scenarios of
uncertain technology development timelines. This paper resolves these issues by introducing probability into
LEAP process. This paper also provides examples of using the probability in the LEAP process and compares
the probabilistic (quantitative) and binary (qualitative) models. These examples show improvements in the
ability to assess the likelihood of delivering capabilities in time to meet stakeholder needs when using the
probabilistic version of the LEAP process. Since the impact of technical debt is uncertain, the inclusion of
probabilities within the LEAP process provides a higher fidelity decision support system for iterative release
planning and system development.

INDEX TERMS Iterative development planning, technical debt.

I. INTRODUCTION
Kleinwaks et al. [1] developed the List, Evaluate, Achieve,
Procure (LEAP) process to provide a structured approach
to identifying technologies that are critical to meeting the
stakeholders’ needs. This process uses matrix operations
to mathematically combine a system functional breakdown
with stakeholder needs to identify capabilities that will
be delivered late to need and the technologies that drive
the delivery timelines. The LEAP process is designed
for use within increasingly volatile, uncertain, complex,
and ambiguous (VUCA) system development and operat-
ing environments [2]. By applying LEAP in an iterative
manner, the system developer can identify investments
that reduce level of non-recurring engineering (NRE) in
system development to enable rapid and successful iterative
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development cycles [3]. The LEAP process can also be
used as a decision support system to assess the long-
term impacts of decisions made to achieve a short-term
benefit, known as technical debt [4]. Examples of tech-
nical debt include minimizing documentation or system
modeling and analysis to ensure an on-time release, which
can result in increased effort to change the system in
the future.

The LEAP process was developed to assist decisionmakers
in identifying critical technologies within iterative system
development that may be overlooked by traditional analysis
processes. Specifically, the LEAP process includes technical
debt contributes to technology development, allowing a
decisionmaker to estimate the long-term effects of short-term
decisions.

The LEAP process consists of four major steps [1]:
1. List: establish the system definition by decomposing

the stakeholder needs into capabilities and perform a

144030

 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-5478-8927
https://orcid.org/0000-0003-3533-293X
https://orcid.org/0000-0002-8887-4321


H. Kleinwaks et al.: Probabilistic Enhancement to the LEAP Process

functional breakdown of the capabilities into enabling
technologies

2. Evaluate: assess the capabilities and technologies to
determine the need dates and expected development
timelines and compute the ability of the system to meet
the needs

3. Achieve: identify the technologies that have the largest
contribution to late need satisfaction, either in the
current time period or in the future. The system
developer can invest in these technologies to reduce the
development timeline

4. Procure: include mature technologies within a larger-
scale development cycle to develop the system that
meets the stakeholders’ needs

The ability of the system to meet the temporal needs
of the stakeholders is computed using matrix operations.
Kleinwaks et al. define the process in detail, including the
explanation of the supporting mathematics [1]. The baseline
process, referred to in this paper as the qualitative LEAP
process, is shown in Figure 1.
The qualitative LEAP process relies on three primary

inputs: the Functional Matrix (F), the Development Matrix
(V), and the Need Matrix (N). These inputs are uniquely
defined for each system of interest, based on an analysis of the
stakeholder needs and system requirements. The Functional
Matrix defines the functional breakdown of capabilities into
supporting technologies. The Development Matrix defines
the development timelines for each of the technologies. The
Need Matrix defines the times at which the stakeholders
require each capability. In the qualitative LEAP process,
the values in each of these matrices are binary: either zero
(0) or one (1). In these matrices, one (1) indicates that the
rows and columns are connected – the technology supports
the capability, the technology will be developed in the time
period, or the capability is needed by the stakeholders in the
time period.

The binary inputs enable rapid instantiation of the pro-
cess and support standard matrix multiplication methods.
However, the use of binary inputs provides a qualitative
assessment of absolute technology development timelines:
technologies will or will not be developed in a given
time period. Unfortunately, technology development rarely
follows well defined timelines. Technical debt can cause
unplanned extensions of project timelines. Within system
development, the impact of technical debt is probabilistic.
Technical debt interest, the expected amount of work that
must be put back into the system to restore functionality [5],
may or may not have to be repaid. Repaying the interest can
increase the duration of a project, and therefore the impact of
technical debt must be modeled as a probabilistic and non-
binary contribution to the technology development timeline.

Several methods exist to estimate the duration of a
technology development program, such as the critical path
method and the program evaluation and review technique
(PERT) [6]. Schedule risk analysis combines these methods
with Monte Carlo analysis to produce the probability of a

technology being developed in a specific time period [7].
To increase the usability of the LEAP process, it needs to be
able to input these probabilities into the Development Matrix
and to propagate the probabilities through the rest of the
analysis.

Therefore, this paper develops improvements and updates
to the LEAP process and equations to account for probability
and to produce the likelihood of delivering capabilities on
time to the stakeholders. In doing so, this paper addressed
the following research question:

How can the LEAP process be updated to estimate
the probability of delivering capabilities on time to the
stakeholders?

The updated process generated as a result of this research
will be referred to as the quantitative LEAP process. The rest
of this paper is structured in four sections. First, an overview
of related work is presented. Next, the quantitative LEAP
model is described in detail and an example of its usage and
comparison to the qualitative model is provided followed by
a discussion of the limitations of the research. Finally, the
paper is concluded and recommendations for future work are
presented.

II. RELATED WORK
Satisfying stakeholder needs is critical to the success
of a project. Unfortunately, satisfying these needs often
produces schedule and cost pressure on a system developer,
resulting in the introduction of technical debt into the
system [8]. Increasing the awareness of technical debt upon
its introduction to the system can improve overall project
performance [9]. de Almeida, et al. connect technical debt
prioritization with business processes, and show accounting
for business processes affects how technical debt is prioritized
[10]. However, they do not provide a generalizable and
mathematical approach to link the stakeholder needs and
the system development to assist in the prioritization of
development.

The LEAP process provides a novel approach for linking
the delivery timeline of system capabilities to the times
when the stakeholder needs the capability [1]. It can be used
in iterative development scenarios or in project planning.
An example of its usage for identifying technological
investments is provided in [11]. The primary objective of
the process is to identify technologies that may exacerbate
system development schedules, resulting in the failure to
meet stakeholder needs on time. The LEAP process allows
technologies that contribute to the late delivery of multiple
capabilities to be identified early. Therefore, the LEAP
process can provide leading indicators of technical debt
and the impact of technical compromises involving these
technologies can be assessed. However, the LEAP process in
[1] only deals in absolute delivery timelines and needs to be
augmented with probabilistic delivery estimates.

Similar work has been performed by other authors
investigating the impacts of rework on project schedules.
Rework is associated with the repetition of tasks which were
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FIGURE 1. The qualitative LEAP process as defined in [1].

not performed to the required quality levels of the project
[12] while technical debt is associated with the increased
effort required to complete successor tasks [4]. Research on
rework includes the connection between project iterations
[13], [14], causes of rework [12], [15], and task and project
durations [9], [16], [17]. These overlapping conditions are
critical to project success, since a successful project requires
acceptable performance in addition to on-time and on-budget
delivery [17]. Kim incorporates rework probabilities into a
linear programming solution to determine the cost of crashing
schedule and the impact on total project duration [17]. Smith
and Eppinger identify methods to determine which tasks are
contributing the most work in iterative design [14], using
off-diagonal rework probabilities [13]. While these methods
allow for the successive build-up of downstream impacts,
they do not account for increases to a successor task’s
duration based on the technical compromises made during the
execution of the predecessor tasks.

Krishnan, Eppinger, and Whitney analyze the duration of
successor tasks based on the overlap with predecessor tasks
[16]. They assess that starting a successor task too early may
increase the effort and duration of the successor task and may
also result in a quality loss of the predecessor activity due
to a loss of flexibility in the predecessor task. Their model
attempts to determine how many iterations to perform with
overlapping tasks. However, in many situations, iterations
are not included in a project plan and the model does not
provide methods to address the impact on the successor tasks
of quality loss in a predecessor task. Maheswari and Varghese
[18] address task overlaps but do not quantify the rework
duration, identifying the assessment of this duration as a
critical area for future work.

Ma et al. recognize that current schedule analysis tools
offer only passive management capabilities for rework and
that leading indicators of rework potential are required [19].
They identify rework probability, the chance of rework
occurring, and rework impact, the impact of each activity, and
then apply a learning curve to each iteration to measure its
impact. This work is similar in concept to the LEAP method
in that it attempts to predict the future impact of rework
on project schedule. However, it focuses on calculating the
iterations required within a project and not on the association
between delivery timelines and the satisfaction of stakeholder
needs.

The methods and techniques identified in this review
focus on the technology delivery aspects of a project
– estimating when the project will be complete. While
they provide quantitative estimates, they do not directly
connect the technology delivery timelines to the need dates
of the project stakeholders. The original LEAP process
performs this association, but is restricted to qualitative
estimates. Therefore, enhancing the LEAP process by adding
probabilistic methods will provide a quantitative method to
mathematically associate the likelihood of capability delivery
with the temporal satisfaction of stakeholder needs.

III. INCLUDING PROBABILITIES IN THE LEAP MODEL
The updates to the LEAP model presented in this section
focus on including probabilities in the Development Matrix.
The Development Matrix defines the timelines on which
the individual technologies are developed [1]. Switching the
representation of this matrix from binary values (one (1) and
zero (0)) to probabilities enables a more realistic modeling of
technology development.
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A. MATRIX MULTIPLICATION WITH PROBABILITIES
The original LEAP model [1] uses matrix operations to
identify relationships and to compute the availability of
capabilities. The Availability Matrix (A), which defines
whether or not a capability will be available in a specified
time period, is computed by first multiplying the Functional
Matrix (F) and Development Matrix (V ), which gives a
matrix containing the number of developed technologies
that support each capability in each time period. The total
number of technologies that support the capability (S) is
subtracted from the product to determine if the capability
is complete. Finally, the Heaviside function (H) is used to
restrict the output values to be between zero (0) and one (1).
The Availability Matrix calculation is shown in (1) and a
complete explanation of the supporting mathematics can be
found in [1].

A = H
(
(FV )T − S + 0.5J

)
(1)

The critical concept in the Availability Matrix calculation
is the combination of the Functional and Development
Matrices through matrix multiplication. The dot product
of the row of one matrix and the column of the other
is used to determine the count of technologies that are
developed (column of the Development Matrix) that support
the capability (row of the FunctionalMatrix). The dot product
adds the products of each of the corresponding elements of
the row and column vectors.

If the Development Matrix includes probabilities instead
of binary values, then (1) is no longer valid. Assuming that
the development of each technology is independent, then the
probability of developing a capability c in a specific time
period p is the product of the probabilities of developing
each supporting technology t in that same time period p,
as depicted in (2).

P
(
Cp

)
=

∏
i
P(ti,p:ti supports c) (2)

The matrix multiplication FV produces a summation of
independent probabilities and not the product, as shown
in (3). Additionally, (3) includes all the cells of each row
of the Functional Matrix in the computation. This inclusion
creates a problem when F [i, j] = 0. When adding the
products of each cell, a zero (0) value in F simply eliminates
the corresponding value of V from the sum. However,
when multiplying the products of corresponding cells by
applying (2), a zero (0) value inF results in a zero (0) product.
In the definition of the Functional Matrix, a zero (0) equates
to a technology that does not support the capability, and
therefore the V value should be eliminated from the product
instead of the reducing the product to zero.

FV =


∑n

i F [0, i] ∗ V [i, 0] · · ·
∑n

i F [0, i] ∗ V [i, p]
...

. . .
...∑n

i F [m, i] ∗ V [i, 0] · · ·
∑n

i F [m, i] ∗ V [i, p]


(3)

Based on these observations, standardmatrix operations do
not meet the requirements for updating the LEAP process
to include probabilities in the Development Matrix. The
required function must input two vectors of the same size
and compute the product of the products of corresponding
elements, if, and only if, the element of one vector is non-
zero.

Two separate functions are required: one that selects the
elements of a vector and one that produces the multiplication
of the elements in the matrix. These functions are defined in
the following sections.

1) SELECTING ELEMENTS OF A VECTOR: THE K FUNCTION
A new function, called the k function, is defined in (4) to
select and replace non-zero input values. It inputs three values
x, y, and z. If x is not zero (0), then the k function outputs y.
If x is zero (0), then the k function outputs z. The function
provides a simple method to select a value based on another
input. Equation 5 extends the k function to apply to vectors
and (6) extends it to matrices. A capital K is used to denote
the matrix version of the equation. Note that in (5) vectors u⃗
and v⃗ must be the same length and in (6) matrices U and V
must have the same dimensions.

k (x, y, z)

=

{
y, x ̸= 0
z, x = 0

(4)

k⃗ (u⃗, v⃗, z)
=

[
k (u⃗ [0] , v⃗ [0] , z) . . . k(u⃗ [n] , v⃗ [n] , z )

]
(5)

K(U ,V , z)

=

 k(U [0, 0] ,V [0, 0] , z) · · · k(U [0,n] ,V [0,n] , z)
...

. . .
...

k(U [m, 0] ,V [m, 0] , z) · · · k(U [m, n] ,V [m, n] , z)


(6)

2) MULTIPLYING MATRICES: THE K∗ FUNCTION
The k function provides the first step of the required
multiplication process – the elimination of the zero (0) terms
from one of the vectors. A second function is required to
address the multiplication of the elements in two matrices
instead of the summation. The k∗ function is defined in (7).
For two vectors, it computes the product of the application of
the k function to the corresponding elements of the vectors.
Equation 8 shows the matrix version of the k∗ function,
denoted with a capital K.

k∗ (u⃗, v⃗, z)

=

∏n

i
k (u⃗[i],v⃗ [i] , z) (7)

K∗ (U ,V , z)

=

 k∗ (F [0, :] ,V [:, 0] , z) · · · k∗ (F [0, :] ,V [:,p] , z)
...

. . .
...

k∗ (F [m, :] ,V [:, 0] , z) · · · k∗ (F [m, :] ,V [:,p] , z)


(8)
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The K∗ function combines the Functional and Devel-
opment matrices when the Development Matrix contains
probabilities: it eliminates zero values in the Functional
Matrix from the product and also multiplies the elements of
the matrices instead of adding them.

FIGURE 2. Application of the K∗ function and comparison with matrix
multiplication.

3) APPLICATION OF THE K∗ FUNCTION
The application of the K∗ function is shown in Figure 2.
In the figure, the Development Matrix V contains the
probabilities of completing each technology in each time
period. If this matrix is multiplied by the Functional Matrix
F using standard matrix multiplication, the result is the third
matrix, FV, located in the lower left of the figure. The red
cells indicate results where the probability of delivering the
capability in a time period are greater than one. Examining
the probability calculation can show why simply multiplying
these two matrices produces these incorrect results.

The Development Matrix states that C2 is composed of
two technologies, T1 and T2, as indicated by the ones (1)
in the matrix. Therefore, completing C2 requires completing
both T1 and T2. The probability of completing C2 in any
time period is the product of the probability of completing
T1 and the probability of completing T2 in that time
period. In time period P2, the probability of completing
C2 is 0.375, as shown in the probability tree in Figure 3.
Standard matrix multiplication sums the probabilities instead
of multiplying them, giving the incorrect probability of 1.25.
The K∗ function is necessary to introduce the multiplication
of probabilities into the matrix operations.

The application of the K∗ function results in the matrix on
the lower right of Figure 2. The same cells are highlighted
in red, however, they now have the actual probability values
for delivering the capability in the specified time periods.
The first row of the final matrix is unchanged between
the standard matrix multiplication and the use of the K∗

function. This row represents the availability of capability C1,
which, as seen in the Functional Matrix, only depends on one
technology (T1). Therefore, the matrix multiplication and the
application of the K∗ function produce the same results. The

FIGURE 3. Probability tree demonstrating the need for the K∗ function.

yellow cells in the final matrix changed their values to zero
(0). This result is due to the multiplication of probabilities
instead of the summation of probabilities. Both capability C2
and capability C3 depend on technology T2. Technology T2
has a zero probability of being developed in time period P1.
Therefore, when the probabilities are multiplied, there is a
zero probability of completing C2 and C3 in time period P1.

The values for C2 and C3 in time periods P2 and P3
also change between the standard matrix multiplication and
the use of the K∗ function. For the value of C2 in time
period P2, standard matrix math uses the dot product of the
second row of matrix F and the second column of matrix
V, resulting in a summation of the probability of delivering
each technology in each time period. However, in this
implementation, delivering capability C2 requires technology
T1 and technology T2, requiring the probabilities to be
multiplied instead of summed. Therefore, the results in
the FV matrix in Figure 2 are incorrect. However, the
application of the K∗ function results in the multiplication
of the probabilities of delivering the technologies, thereby
producing the correct probability of delivering the capability
in the time period. These cells are highlighted in red in the
figure.

B. INCLUDING PROBABILITIES IN THE LEAP PROCESS
Having demonstrated the usage of the K∗ function to
combine probabilities in matrix multiplication, the LEAP
equations presented in [1] can be updated to account for
the probabilistic Development Matrix. As a result of these
updates the Availability and Delivery Matrices, which are the
outputs of the Evaluation phase of the LEAP process, will
both produce probabilistic values for capability availability
and delivery. The probabilistic Delivery Matrix defines the
likelihood of meeting the stakeholders’ needs on time and
therefore becomes a decision aid for the system developer.

1) AVAILABILITY MATRIX
The Availability Matrix determines if a capability will be
available in a specific time period [1]. The K∗ function
computes this probability when applied to the Functional
and Development Matrices. Therefore, calculating the prob-
abilistic Availability Matrix requires using the K∗ function as
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shown in (9).

A =
(
K∗(F,V , 1)

)T (9)

Within the K∗ function, z is set to one (1) such that a zero
(0) value in the Functional Matrix translates to one (1) in
the multiplication instead of the value in the Development
Matrix. This choice effectively eliminates the zero entry in
the Functional Matrix from the probability computation. This
behavior is desired since that capability is not dependent on
the technology. The transpose of the K∗ function is taken to
produce an Availability Matrix with the same dimensions as
the Need Matrix in [1].

2) DELIVERY MATRIX
While the Availability Matrix specifies when capabilities are
available, the Delivery Matrix (D) defines whether or not the
capabilities are delivered in time to meet the stakeholders’
needs. In the qualitative LEAP process, the Delivery Matrix
is calculated by subtracting the Availability Matrix from the
Need Matrix [1]. Applying the same calculation here would
result in the Delivery Matrix specifying the probability of not
delivering the capability on time. Logically, it makes more
sense to have the Delivery Matrix indicate the probability
of delivering on time instead. Since the Availability Matrix
contains probability values, it is necessary to distinguish
between capabilities that have zero probability of being
delivered on time and those that are not needed in a time
period. Therefore, the Delivery Matrix is calculated using the
K function on the Need and Availability Matrices as shown
in (10). The z value in the K function is set to negative one
(−1) to identify the time periods where a capability is not
needed.

D = K (N ,A, −1) (10)

The values in the Delivery Matrix take on different
meaning than those in the qualitative LEAP process. A value
that is greater than or equal to zero (0) indicates the
probability of delivering a capability in the time period.
A negative value indicates that the capability is not needed
in that time period.

3) INVESTMENT MATRIX
The final matrix produced by the LEAP process is the
Investment Matrix (I). The Investment Matrix identifies those
technologies that have the greatest contributions to the late
satisfaction of stakeholder needs. In the qualitative LEAP
formulation, the values in the InvestmentMatrix represent the
number of late capabilities contributed to by each technology
[1]. Using the probabilistic formulation of the Development
Matrix, the values in the Investment Matrix become a score –
the higher the value, the larger the impact of the technology.
The updated Investment Matrix equation is shown in (11).

I = (NF)T ◦ (J − V ) (11)

The Need and the Functional Matrices both contain binary
values, so standardmatrixmultiplication is used. This product

TABLE 1. Examples of investment matrix scores.

gives the number of needed capabilities affected by a specific
technology. J is the Hadamard identity matrix, which is a
matrix of all ones (1) [20]. Subtracting the Development
Matrix, V, from J, produces a matrix of probabilities of not
delivering technologies. The two resulting matrices are then
combined element-wise using the Hadamard product (◦) [20],
producing an Investment Matrix where each value is the
number of affected capabilities times the probability of late
delivery.

Larger scores in the Investment Matrix represent a greater
contribution of that technology to the late delivery of the
system in the specified time period. The score is the number
of affected late capabilities times the probability of late
delivery of the technology. Table 1 shows examples of
Investment Matrix scores including the number of impacted
capabilities and the probability of late delivery.

From these examples, it can be clearly seen that the
score provides additional insight into the importance of a
technology. Larger scores indicate a larger potential return-
on-investment (ROI) if the likelihood of delivering the
technology on time can be increased. Consider a situation
where a choice is made to invest in either Technology 2 or
Technology 3. The qualitative LEAP model would imply
that Technology 2 provides the bigger ROI as it impacts
more capabilities than Technology 3. The quantitative LEAP
process, on the other hand, indicates that Technology
3 provides the bigger ROI. Although it only affects one
capability, it has a much higher likelihood of delivering late
and therefore a correspondingly larger score.

4) ADJUSTMENTS FOR DEPENDENT TECHNOLOGIES
The above process relies on an assumption of independence
between the technologies. In situations where technologies
depend upon each other, the model defined above will incor-
rectly calculate the probabilities. This restriction is remedied
by redefining the Functional Matrix. The Functional Matrix
maps the capabilities to the supporting technologies. When
the technologies are independent, then all technologies
should be included in each row of the Functional Matrix.
However, if technologies are dependent upon each other, then
only the latest technology should be included in the row in
the Functional Matrix. For example, consider the Functional
Matrix in Figure 2. If Technology 2 is dependent upon
Technology 1, then the Functional Matrix would be rewritten
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as shown in Figure 4, with Capability 2 only showing
Technology 2 as a supporting technology. The highlighted
cell indicates the change in the matrix. With this redefinition
of the FunctionalMatrix, the capabilities are still composed of
independent technologies and the rest of the analysis process
is valid.

FIGURE 4. Functional matrix accounting for technology dependencies.

FIGURE 5. Qualitative (left) and quantitative (right) development
matrices, based on [11].

C. EXAMPLE APPLICATION OF THE QUANTITATIVE
LEAP PROCESS
The updates to the LEAP process are best understood through
an example application. Kleinwaks, et al. [11] applied the
qualitative LEAP process to the development of optical
terminals at the Space Development Agency. As an example
of the quantitative LEAP process, this work is modified to
use notional probabilistic values in the Development Matrix.
The left side of Figure 5 shows the initial qualitative Devel-
opment Matrix from [11] after notional investments were
made to increase the likelihood of meeting the stakeholder
capabilities. The values in this matrix were based on expert
judgement. In order to use the quantitative LEAP process,
probability distributions for the delivery of each technology

are required. These technologies represent new capabilities,
each of which has its own development cycle and critical path.
Since data on the duration of these projects and their critical
paths do not exist, the basic assumption from the Program
Evaluation and Review Technique (PERT) that the project
duration is represented by a normal distribution is used [21].
Using the normal distribution requires determining the mean
and the standard deviation for each technology. These were
set by the same experts who estimated the original technology
development timelines in [11]. For each technology, the mean
was set to the first time period identified in [11], minus
two years, and the standard deviation set to two years. The
same distribution parameters were applied to each technology
based on the expert’s opinions that the uncertainties in the
technology development timelines were similar for all the
identified technologies. The selected distribution results in
an 84% probability of delivering at the times identified
in the qualitative analysis. The probability of delivering
each technology in each time period is computed from the
distribution. The resulting probabilistic Development Matrix
is shown on the right side of Figure 5, where the colors
go from red (low probability of delivering) to green (high
probability of delivering).

FIGURE 6. Qualitative (left) and quantitative (right) delivery matrices,
based on [11].

The probabilistic Development Matrix is used in the
quantitative LEAP process to determine the likelihood of
delivering the capabilities in each time period. Figure 6 shows
the DeliveryMatrix from [11] on the left and the probabilistic
Delivery Matrix on the right. The qualitative LEAP Delivery
Matrix uses zero (0) to indicate that the capability is either
on time or not needed in a specific time period and one (1) to
indicate that the capability is late. In Figure 6, late capabilities
are highlighted in red in the qualitative Delivery Matrix. The
quantitative LEAP Delivery Matrix gives the probability of
the capability being ready in a time period it is needed, or a
negative one (−1) if the capability is not needed. In the
quantitative Delivery Matrix in Figure 6, the color scale goes
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from low likelihood of delivering a needed capability (red) to
a high likelihood of delivering the needed capability (green).
White cells indicate when the capability is not needed.

In the qualitative Delivery Matrix, capability C7 is late
marked as late to need in 2028 (a red 1). However, in the
quantitativematrix, the probability of delivering C7 in 2028 is
0.15. While this probability is small, there is still a chance
of delivering the capability on time. There is a greater than
50% chance that C7 is delivered in 2031, while the qualitative
matrix says that it still will not be ready. Other capabilities,
such as C5, may be late (a 50% chance of delivering in 2022)
at their first needed time period, a factor which is missed
in the qualitative LEAP matrix. The movement away from
the binary nature of the qualitative LEAP model increases
the fidelity and the realism of the Delivery Matrix. The
quantitativemodel clearly distinguishes between time periods
where the capability is delivered on time and when it is not
required. For example, the quantitative model identifies that
capability C1 is required in 2023 and that there is a 72%
probability of it being delivered on time. The qualitative
model shows a zero (0) in the entry for C1 in 2023, which is
interpreted as either delivering on time or not being needed.
The increased fidelity of the model makes the quantitative
LEAP model more effective in predicting outcomes for the
stakeholders.

FIGURE 7. Qualitative (left) and quantitative (right) investment matrices,
based on [11].

The final calculation in the LEAPmodel is to determine the
Investment Matrix, which highlights which technologies are
contributing to the late delivery of capabilities in each time
period. In the qualitative model, shown on the left of Figure 7,
technologies T8 and T7 are identified as each contributing to
a late capability starting in 2028 (shown as red boxes). The

quantitativemodel, shown on the right side of Figure 7, shows
the investment ‘score’ for each of the technologies in each
time period with low values in green and high values in red.

The values in the quantitative Investment Matrix take on
a slightly different meaning from those in the qualitative
model. In the qualitative model, the Investment Matrix values
indicate the count of the late capabilities that depend on the
technology [1]. In the quantitative model, the value is a score
that represents how important the technology is in driving late
capability deliveries in the time period. For example, consider
technologies T8 and T7 in 2028. In the qualitativemodel, they
both have the same value (1) in the Investment Matrix since
they each contribute to the late delivery of a single capability.
In the quantitative model, the value for T8 is 0.5 and the value
for T7 is 0.841 in 2028. The higher score for T7 indicates
a higher potential ROI if the probability of delivering the
technology on time could be increased. The cost to increase
the delivery probability would need to be accounted for in any
ROI calculation, but that is out of the scope of this paper.

D. ACCOUNTING FOR TECHNICAL DEBT IN THE
QUANTITATIVE LEAP PROCESS
Including probabilities in the LEAP process enhances its
ability to identify the technologies that can be potential
sources of technical debt within a system development.
Kleinwaks, Batchelor, and Bradley [4] use the technical
debt metaphor to reflect the long-term system impacts
of short-term decisions. The LEAP framework enables a
system developer to rapidly assess the potential for long-term
impacts of short-term decisions that impact the development
of critical technologies and capabilities. For example, system
developers are often faced with choices on the sequencing
of technology development due to cost, schedule, and
performance limitations. Often, a particular technology is
delayed because it is viewed as less valuable, even though
it may be necessary for later development tasks.

In the LEAP model, technologies with the high potential
for technical debt manifest themselves in the Investment
Matrix. Higher scores in the Investment Matrix indicate
increased dependencies on on-time delivery and therefore
the potential for impacts due to the presence of technical
debt. With the probabilistic nature of the quantitative LEAP
model, these relationships become clearer as the potential
late delivery of a technology can be assessed, including its
cascading impacts on the delivery of capabilities.

IV. LIMITATIONS
The research presented in this paper presents a unique per-
spective on predicting the likelihood of temporal satisfaction
of stakeholder needs based on assessment of technology
development timelines. However, as presented, this work
contains several limitations that can be expanded through
continued research into this topic. First, the research relies on
the accurate decomposition of a system into capabilities and
technologies and the association of stakeholder need dates
with those capabilities. If the system decomposition is not

VOLUME 11, 2023 144037



H. Kleinwaks et al.: Probabilistic Enhancement to the LEAP Process

done properly, then the results of the analysis can be skewed.
Similarly, the calculation of the probabilities containedwithin
the DevelopmentMatrix have a heavy influence on the results
of the computation – if these probabilities do not reflect
realistic assessments, then an inaccurate prediction of the
ability to satisfy the stakeholder needs will be generated.
In the example provided in this paper, a normal distribution
was used to estimate the development timelines of the
technologies. Other distribution choices, or other parameter
assessments by experts, can alter the end results indicating
stakeholder satisfaction. For example, if a series of triangular
distributions were used instead of a normal distribution,
then the values in the Delivery Matrix would also change.
The end results are only as good as the estimates used
to set up the problem. The quantitative LEAP process can
provide the likelihood of delivering capabilities to meet
stakeholder needs, but it is limited by the fidelity of the
input information. Similarly, the ability of the quantitative
LEAP process to predict the impact of technical debt on the
system development requires the development of an outside
method to relate the presence of technical debt to technology
development timelines.

V. CONCLUSION AND FUTURE WORK
Including probabilities within the LEAP framework enables
a more realistic assessment of the ability of the system to
deliver in time to meet the stakeholders’ needs. This research
updates the LEAP process defined in [1] to account for a
probabilistic Development Matrix and to propagate those
probabilities through the system. This update is critical to
better align the LEAP process to real-world systems. Real
systems do not guarantee system delivery in a specific time
period and the ability to estimate the likelihood of delivery
allows for higher fidelity modeling.

The user of the quantitative LEAP process can more
accurately assess the potential for achieving technology
development by determining the increase in the likelihood
of delivering a capability. An achievement initiative may
speed up technology development, but does not guarantee
that the technology will be achieved in a specific time frame.
The quantitative LEAP process enables the modeling of this
change in probability, instead of an assumption of complete
success. This change in probability can also be mapped more
directly to an implementation cost, enabling a calculation
of the ROI for these decisions. The score in the Investment
Matrix provides a more refined estimate of the impact of
a technology’s late delivery, highlighting the potential for
higher ROI.

These updates to the process represent the second step
in defining a full process for accounting for technical debt
within system development planning, as defined in [1].
Similar to the qualitative model, the quantitative LEAP
framework highlights technologies with the potential for
introducing technical debt into the system. Combining the
quantitative LEAP framework with a scheduling model that
accounts for technical debt will highlight the downstream

impacts of the technical debt on the delivery of system
capabilities. By modeling the impact of the technical debt
of one technology on its successor technologies in the
development cycle, the probabilities of delivering each
technology in a defined time period can be estimated. These
estimates, when included in the quantitative LEAP process,
will provide insight to system stakeholders to enable proper
investment decisions to limit the risk of late deliveries.
Further verification and validation of the process includes
implementing the quantitative LEAP process on additional
real-world systems to identify insights provided by the
process to assist users in delivering capabilities on time.

Additional work can be performed to enhance the analysis
process and expand beyond the basic matrix-based system
employed in this research paper. Numerous mathematical
methods exist to handle uncertainty, including fuzzy sets
and fuzzy logic [22] and multi-criteria decision making [23].
These methods need to be reviewed for their application to
this specific problem and for their potential benefit in further
enhancing the LEAP process.
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