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ABSTRACT As global pet acceptance increases, the market size for pet ownership grows. Consequently,
registering pets is becoming increasingly crucial, with some nations mandating it by law. Animal biometrics
is a subject of ongoing research, spanning inscriptions, iris recognition, and facial recognition, with a growing
number of companies partaking. However, biometric methods mostly rely on image recognition, which can
result in degraded performance depending on the captured angle and external environment. To address this
issue, we conducted a study to design and evaluate the performance of a deep learning-based dog identity
recognition system that utilizes electrocardiogram (ECG) that is harder to forge than existing methods
and does not require additional image processing. To evaluate performance, we utilized two dog ECG
databases and conducted biometric recognition experiments with data collected from differing measurement
environments from these integrated databases. Input signals for recognition were generated through both
R-peak based and blind signal segmentation methods. For the purpose of dog identification, we developed
and employed a 1D CNN-LSTM model as a classifier. Additionally, three DNN-based classifiers were
developed to compare their performance with that of the proposed model. To evaluate performance, the
confusion matrix was used in conjunction with metrics such as accuracy, equal error rate (EER), receiver
operating characteristic (ROC) curve, and precision recall (PR) curve. The proposed model demonstrated up
to 98.7% accuracy in the biometrics of a separate database of 16 subjects, and as high as 96.3% accuracy in the
biometrics of an integrated dataset of 33 subjects. The suggested approach exhibited a 93.1% accuracy rate
when employing the blind segmentation method, eliminating the need for supplementary signal processing
to derive input signals.

INDEX TERMS Biometrics, canine identification, deep learning, electrocardiogram (ECG) signal.

I. INTRODUCTION
The number of households owning pets is increasing rapidly,
with corresponding growth in the pet market. This trend is
attributed to heightened awareness of animal welfare, as well
as the rise in aging and single populations internationally.
Furthermore, the COVID-19 pandemic has amplified demand
for pets as people have the opportunity to spend more time
at home. A survey by Forbes Advisor revealed that 78%
of pet owners obtained their furry companions amidst the
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pandemic [1]. However, the heightened demand for pets has
coincided with a surge in pet abandonment, as society navi-
gates its way through the aftermath of the pandemic, leading
to a global crisis in abandoned animals. Estimates of the total
number of pets worldwide vary depending on the source and
definition, but Health for Animals, a global animal health
association, estimates that the number of pets in the world
exceeds one billion, with over half of the world’s population
owning a pet at home [2].
In the United States, 86.9 million households have pets

in 2023, of which 65.1 million have dogs [1]. Based on the
data provided by the Best Friends Animal Society, the rise in
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the number of pets admitted to animal shelters in 2022 was
primarily influenced by the increase in abandoned dogs,
which accounted for 54% of all admissions [3]. Amongst all
pets, dogs also have the highest proportion in South Korea.
While official 2022 stray animal statistics have not yet been
released by the government, a study by the Animal Freedom
Alliance revealed that approximately 110,000 animals were
brought to animal care facilities in 2022 due to irresponsi-
ble or intentional abandonment by their owners [4]. Among
these, dogs comprised 71.3% of the total, with around 44.1%
of them unable to be reunited with their original owners and
subsequently passing away in shelters due to euthanasia or
natural causes. Furthermore, approximately KRW 30 billion
is spent each year on sheltering lost and abandoned animals,
which is a huge financial loss. As a result of this global trend,
pet registration systems are being expanded and implemented
at the national level to facilitate disease control and prevent
stray animals. Furthermore, the demand for pet insurance
is increasing globally. However, pet insurance mainly uses
identification tags as a method of pet registration, which can
be easily removed, damaged or lost, raising reliability issues.

Common methods of animal registration include ear tag-
ging, freeze branding, tattooing, ear tipping, and registration
through radio-frequency identification (RFID) devices [5],
[6]. Among these methods, RFID registration, primarily used
for pets, can be divided into external (non-invasive) and
internal (invasive). External RFID devices typically involve
electronic or identification tags that are attached to collars to
identify animals. Internal RFID is a microchip implanted in
an animal’s body for identification purposes [7]. The use of
external identifiers raises concerns of loss and duplication,
and implantation of chips incurs additional costs, side effects
and rejection by the animal [8], [7]. As a result, there is
a growing interest in permanent recognition methods that
minimize adverse effects, and animal biometrics is currently
under exploration as a way to meet these needs.

Biometrics has been widely used in various fields where
human identification is required. It uses the unique character-
istics of an individual organism for recognition, making them
difficult to duplicate and share. Common human biometric
techniques include iris recognition [9], fingerprint recogni-
tion [10], finger vein recognition [10], facial recognition [11]
and ECG based recognition [12], [13]. Among them, the
technologies currently applied to animal biometrics include
muzzle print, iris recognition, retinal vascular recognition and
facial recognition, and other technologies include recognition
using external features and recognition through movement
patterns [5], [7], [14]. Muzzle print is a common biometric
trait used to identify animals by extracting features from
the pattern of relative elevation of the skin around the nose,
similar to a human fingerprint. This method is mainly used
for the identification of livestock such as cows and pigs,
and there are also biometric studies using muzzle prints of
small animals such as dogs [3], [8], and [15]. Biometric
identification using specific patterns extracted from iris and

retinal vein images is feasible in the case of animal iris and
retinal vein recognition, just as it is in humans. To recognize
cattle, it is advantageous to use all facial features including
muzzle print, iris and retinal vasculature for biometrics due to
their grazing behavior [3]. When applying facial recognition
technology designed for humans to animal biometrics, it is
feasible to extract facial images by identifying the positions
of the eyes, nose, ears, and forehead, and derive features from
these images for biometric use. However, further research
is necessary to account for changes in appearance caused
by growth and the environmental conditions present during
image acquisition.

Biometric recognition is accomplished by extracting
unique biometric traits from the subject. For biometric
identification, the biometric traits must fulfil the following
conditions to serve as biometric features [16].
(1) Universality: The biometric characteristic used for

identification must be present within the entire population.
(2) Uniqueness: The characteristics of the biometric trait

must be different from each other within the population.
(3) Collectability: The biometric trait must be easily

acquired and quantifiable.
(4) Circumvention: The characteristics of the biometric

trait should not be easily manipulated.
(5) Acceptability: The subject of recognition should not be

uncomfortable with the biometric system.
(6) Permanence: The biometric trait should have a small

variation over time.
The requirements for traits to be used in biometrics are the

same for humans and animals. Therefore, animal biometrics
must adhere to the aforementioned prerequisites. In this study,
ECG signals were utilized among different biometric traits to
identify dogs. In the case of ECG based biometrics, individual
human features are extracted from the time-varying wave-
forms formed by small electrical signals generated during
the heartbeat and used for identification. The acquisition of
ECG signals in real time is relatively easy, and they have a
high degree of universality and uniqueness [17]. Furthermore,
given the inherent characteristics of biometric information, its
forgery or falsification is challenging, ensuring high levels of
security. In this study, we constructed a deep learning network
for canine biometrics utilizing ECG signals with beneficial
characteristics as delineated above. To date, canine ECG
research has been restricted to identifying diseases. However,
the similarity of the structure and environment of the canine
heart to that of humans has made it a valuable preclinical
tool for evaluating QT prolongation in response to different
drugs. These similarities between human and canine ECG
morphology and conduction time suggest that research on
human ECGs can be extended to canine ECGs [18], [19].

This study is significant in that it was the first attempt
at biometric identification using canine ECG signals. The
aim is to demonstrate the application of human ECG based
biometrics, which are more secure and difficult to falsify than
image-based biometrics, to dogs. Furthermore, given the lack
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of standardized ECG measuring environments, we evaluated
the recognition performance by integrating databases with
different devices. In addition, we aim to develop a time-series
based deep learning dog identification model that maintains
its accuracy when using blind segmented ECG signals as
input, compared to signals that have been pre-processed to
extract single heartbeat waves.

II. RELATED WORKS
A. ANIMAL BIOMETRICS
According to Kühl and Burghardt, animal biometrics is
defined as an emerging field for the quantitative represen-
tation of species, individuals, behavioral and morphological
characteristics [20]. In other words, the field of animal bio-
metrics covers a wider range of studies than the identification
of individual object. Research on dog breed classification is
mainly based on image information of dogs. Valarmathi et al.,
for example, developed a method to identify dog breeds
from images using computer vision and deep learning algo-
rithms [21]. Their hybrid (Inception-v3 + Xception) model
achieved a training accuracy of 98.4% and a validation accu-
racy of 92.4%. They were able to distinguish targets with
high variability both between and within the 120 different
breeds with high accuracy based on images of dogs. However,
compared to a 1D signal (such as an ECG signal), the model
architecture is more complex and the time and hardware
resource constraints are inevitably more severe when training
the deep learning model with images. As a solution, Wimuk-
thi et al. suggest a more comprehensive approach towards
promoting dog well-being. They used various machine learn-
ing algorithms to identify the breed and age of dogs from their
images, and generated personalized meal plans based on this
information, as well as the dog’s health and emotional state.
They also developed techniques for monitoring dog health
and detecting diseases through analysis of barking sounds.
The data were taken from the Stanford Dogs Dataset [22]
with some non-domestic breeds were removed and twenty
mixed-breed dog classes were added. Lai et al. constructed
a two-stage based CNN model for dog identification, where
the first stage is to classify the dog breed [23]. They employed
the Stanford Dogs and Columbia Dogs datasets [22] for dog
breed classification and the Flicker-dog dataset [24] for dog
identification. Consequently, they improved the identifica-
tion rate of dogs of the Pug and Husky breeds to 89.94%.
Wang et al. devised a technique to solve the dog nose print
authentication task of the CVPR 2022 Pet Biometric Chal-
lenge [25]. The objective of the challenge was to explore
the possibilities of implementing vision-based pattern recog-
nition technology, commonly used for human identification,
in the realm of individual dog identification. In other words,
the challenge was to capture 20,000 nose print images of
6,000 dogs with a consumer smartphone, use them as training
data, and use 2,000 individual images as validation and test
data to see the feasibility of nose-print based biometrics
for individual dogs. An offline data augmentation technique
was implemented to compensate for insufficient training data

for each class, resulting in an Area under the ROC curve
(AUC) of 86.67%. Li and colleagues participated in the
same challenge, presenting a dual global descriptor model
that employed a contrastive learning method. They achieved
an AUC of 88.8% and won the second place in this chal-
lenge [23]. They obtained a recognition accuracy of 98.972%
with the Rank-1 approach using a CNN-based deep neural
network consisting of a feature extraction module and self-
attention modules [8].

As demonstrated in the aforementioned example, conven-
tional biometric dog identification methods mainly use the
dog’s face or muzzle images as a general approach, and
the ECG signal-based dog identification method used in the
human authentication method has not yet been announced.

B. ECG AND ECG BASED BIOMETRICS
The ECG is a graph of the electrical changes in the heart that
occur during the contraction and relaxation of the heart mus-
cle during a heartbeat. The electrical changes in the heart are
due to the potential difference caused by the depolarization
and repolarization of cardiac cells [26]. A typical method of
acquiring ECG signals is to use conductive paste or gel to
measure signals by placing electrodes on the body such as the
chest or limbs. However, to facilitate the acquisition of ECG
signals and expand applications, off-the-personmethods have
also been studied, in which sensors are integrated into every-
day objects and measured through contact with some body
surfaces such as fingertips or palms [26], [27], [28].

ECG has been used to analyze heart diseases including
atrial fibrillation and cardiomyopathy for biomedical diagno-
sis purposes [29], [30], but recently, with the advancement
of computing resources and data analysis techniques, bio-
metric recognition using ECG signals has been actively
researched [13], [31], [32]. There are two types of feature
extraction methods for implementing a human ECG bio-
metric authentication system: ‘‘fiducial feature extraction
method’’ and ‘‘non-fiducial feature extraction method’’. The
fiducial method extracts features based on the morphological
features of the ECG signal. Put simply, the system detects the
ECG fiducial points (P, Q, R, S, T, U) or waveforms such as
QRS complexes, and uses the amplitudes, angles and slopes
of the signals as individual features [29], [33], [34], [35].

For ECG-based biometrics, the detection of start and end
points of a single heartbeat in a continuous ECG signal
are required to extract features to be used as inputs to the
classifier. In particular, the fiducial feature extraction method
extracts features based on the morphological features of the
fiducial point, so the decision of the segmentation method
and input signal length are important [33]. Petmezas et al.
used the R-peak of ECG signals to diagnose atrial fibrillation
(AFib) and performed 4-level DWT to detect the R-peak.
Then, the segmentation was performed by setting a win-
dow of 250 ms ahead and 500 ms behind the R-peak [29].
Luz et al. implemented a window of 800 ms around the
R-peak for biometric analysis [36]. AlDuwaile et al. showed
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FIGURE 1. Block diagram of proposed canine biometric system.

that shorter signals with a length of 0.5 s around the R-peak
for ECG-based biometrics are more efficient for less complex
CNN models [13]. Zhang et al. applied blind segmentation
of ECG signals with a duration of 2 seconds to biometrics
without the use of heartbeat location information [37]. This
method requires a wavelet transform to remove the phase
difference between randomly selected signals. But it has the
advantage of not requiring the effort of extracting fiducial
points and improving the generalization performance of the
recognition model.

Although no research results on animal biometrics using
ECG signals were found, there have been studies on
ECG-based biometrics in humans since the mid-2000s, with
the latest research mostly based on deep learning neu-
ral networks (DNNs) [38]. Furthermore, the early human
ECG-based biometric methods mainly used fiducial feature
extraction methods, but the trend is changing towards using
non-fiducial feature extraction methods or handling the fea-
ture extraction process within DNNs themselves [12], [17].
Paiva et al. identified the relative positions of Q, R, S and
T fiducial points in ECG signals and extracted the time
distance between them as features, which were then applied
to authentication using an SVM classifier [39]. The authors
showcased the potential of their approach in the domain
of compact wearable devices by implementing simple and
inexpensive hardware with very competitive false acceptance
and false rejection rates (FAR and FRR), similar to fingerprint
recognition, with only 1.02 heartbeats. Singh extracted a
number of features including heartbeat intervals, inter-beat
intervals and signal morphology based on fiducial points and
then used Fisher’s linear discriminant (FLD) analysis to select
features for classification [40]. These selected features were
compared to the registered ECG waveforms using the nearest
neighbor criterion. In this case, it is a useful way to maximize
the ratio of inter-subject scatter over intra-subject scatter, but
the performance of rejection ratio for someone who was not
registered in the database needs further investigation.

Uwaechia et al. presented a comprehensive review of bio-
metric modalities based on ECG signals as a novel approach
for human authentication [26]. They compared and analyzed
the feature extraction methods (fiducial and non-fiducial fea-
ture extraction methods) and found that fiducial methods
performedwell on small databases and the non-fiducial meth-
ods are useful for a high performance ECG based biometric
recognition system. They also observed that DNN approaches

have better performance than conventional methods based
ECG based biometrics.

Alduwaile et al. investigated the performance of various
segmentation methods for ECG signals used in biomet-
rics [41]. It was found that single-heartbeat segmentation
based on R-peak provided the most accurate results among
the fixed length, variable length, blind, and feature-dependent
segmentation techniques. The blind method had lower accu-
racy and required a longer segmentation method to improve
its results. Based on this, they used continuous wavelet
transformation (CWT) to improve accuracy through entropy
enhancement of short segmented signals [10]. In other words,
in this case, fiducial point information such as R-peak is
still required for segmentation, but for feature extraction,
a non-fiducial feature extraction method is used to extract
new features through domain transformation without using
information such as fiducial points. The images converted to
2D time-frequency domain through CWT showed excellent
performance with only short signals segmented for 0.5 sec-
onds around the R-peak using CNNmodel. However, in terms
of reliability, further research is needed to consider the fluc-
tuation of signals under various cardiac conditions.

III. METHODOLOGY
Fig. 1 illustrates a schematic block diagram of the canine
biometric system proposed in this paper. The system is com-
posed of a dog ECG database and an integrated database,
preprocessing for noise removal, segmentation to form input
data for the biometric model, identification using DNNs, and
finally performance verification and comparative analysis.

A. DATA SETS
In this work, two databases of canine ECG signals were
used to distinguish the identity of dogs. One of these
databases consisted of Holter monitoring data obtained dur-
ing animal clinical research. However, since this database
is not publicly accessible, we recognized that there may
be constraints in verifying the objectivity of the results of
this study, so we additionally conducted experiments using
the PhysioZoo database [41], which is publicly accessible.
Finally, we evaluated the biometric performance using an
integrated dataset that combines two databases with different
measurement equipment and environments. However, since
the two datasets have different sampling rates, lead types,
measurement resolutions, and measurement time lengths,
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FIGURE 2. The example of ECG signals. (a) ECG signal from PhysioZoo.
(b) ECG signals from Holter monitored data.

an additional unification process is required to integrate
the two datasets into one dataset. The three databases were
segmented through the R-peak-based window segmentation
method and the blind segmentation method, respectively, for
a total of six datasets. Fig. 2 shows an example of an ECG
signal extracted from the two databases used in this study.

1) MAMMALIAN NSR (NORMAL SINUS RHYTHM) DATABASE
FROM PHYSIOZOO
PhysioZoo is a collaborative and open platform for research-
ing heart rate variability (HRV) in humans andmammals [42].
As part of their data release, PysioZoo has provided ECG
measurement data for three types of mammals (dogs, rabbits,
and mice) [43]. In this paper, the ECG data of the dog
were used for biometric purposes. The database consists of
one-channel ECG records from 17 subjects with a sampling
frequency of 500 Hz. The surface electrodes for measurement
were attached to both sides of the dog’s chest with surgical
tape, and all signals were measured while the dogs were
awake and unmedicated prior to measurement.

The dog’s ECG signals were recorded as normal sinus
rhythm (NSR) in units of mV, but the dog’s sex, breed,
or age is not known. The length of the signal varied between
subjects, ranging from aminimum of 4minutes and 9 seconds
to a maximum of 6 minutes and 48 seconds, with an average
measurement time of 5 minutes and 31 seconds. The number
of heartbeats per subject that can be identified by the number
of R-peaks varies from a minimum of 330 to a maximum
of 798. The ECG signals used in this experiment consist of
a total of 5,610 heartbeats.

The data used in the experiment was based on the sub-
ject with the least number of heartbeats to maintain the
same number of heartbeat waves per subject. Specifically,
330 ECG signals were randomly selected for R-peak based
window segmentation. The resulting data was divided into
an 8:2 ratio for training and testing and was followed by
a 3-fold cross-validation. For the purpose of blind segmen-
tation, 220 seconds of ECG signals were randomly selected
per subject. The data was then divided into a ratio of 8:2

for training and testing, and was followed by a 3-fold
cross-validation.

2) ECG DATABASE FROM HOLTER MONITORING
This database contains ECG signals from 16 subjects mea-
sured by Holter. Each signal was measured in microvolt
units, and the subjects’ gender and health status are unspec-
ified. The dataset was solely obtained for clinical research
purposes, not for animal biometric purposes by a private
company, and is not publicly available. The signals were
obtained using a 3-channel Holter monitor featuring 5 elec-
trodes while the subjects were mobile, with a sampling rate
of 512 Hz. The duration of the measured signal and the
quantity ofmeasurements differ among subjects. Specifically,
the measurement time per file varies from a minimum of
40 seconds to a maximum of 21 hours and 25 minutes, but
a minimum of 47 minutes was measured for each subject.

Each subject has a maximum of 167,837 heartbeat waves
and a minimum of 3,300 heartbeat waves, and the dataset
used in the experiment was based on the subject with the
least number of heartbeats to maintain the same number of
heartbeat waves per subject as in the case of the PhysioZoo
database. For R-peak based window segmentation, 3,300
heartbeat waves were randomly chosen from channel 1 of
the ECG signal for each subject. A total of 52,800 heartbeats
utilized in the experiment were split 8:2 to create the data
for training and testing, and a 3-fold cross-validation was
conducted. With regards to blind segmentation, 1940 seconds
of ECG signals were randomly chosen per subject, and the
data was divided 8:2 for training and testing, and a 3-fold
cross-validation was performed.

FIGURE 3. The example of segmented ECG signal. (a) R-peak based
segmented signal. (b) Blind segmented signal.

3) INTEGRATED DATABASE
As previously mentioned, the above two databases were
integrated to form a dataset for performance verification in
order to evaluate biometric performance in a state where data
from different measurement equipment and environments are
mixed. The two datasets have different sampling rates, lead
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types, resolutions, and lengths, so it is not possible to use
the original data as it is, but the sampling frequency and
amplitude units can be unified by the same standard. In other
words, the units of millivolts and microvolts are unified, and
the sampling frequency of Holter monitoring data is down
sampled to 500 Hz to match the PhysioZoo data.

The integrated database consists of ECG records from a
total of 33 subjects, and the size of the dataset used in the
experiment was based on the subject with the lowest number
of heartbeat waves to maintain the same amount of data per
subject as in the case of the PhysioZoo database. For R-peak
based window segmentation, 330 heartbeat ECG signals per
subject were randomly selected and the data were split 8:2
for training and test, followed by 3-fold cross validation. For
blind segmentation, 220 seconds of ECG signals per subject
were randomly selected and the data were divided by 8:2 for
training and test, then 3-fold cross validation was performed.
Fig. 3 shows an example of a segmented ECG signal.

B. PREPROCESSING AND SEGMENTATION
Preprocessing and segmentation are required for each of the
three sets of ECG raw signals to be utilized as input for the
dog biometrics model. The initial step involves noise removal
through preprocessing, followed byR peak detection to locate
single heartbeats. Finally, the signals were segmented accord-
ing to the window size based on the acquired R peak point and
used as input for the model. In addition, a blind segmentation
method was also experimented to compare the performance
of the identification system.

TABLE 1. Normal ECG signals for dogs [20].

1) DENOISING AND NORMALIZATION
As shown in Table 1, the normal heart rate for dogs generally
ranges from 70 to 160 beats/min, depending on the size of the
dog. In puppies, a normal range is also considered to include
rates up to 200 bpm [44]. The size of the R wave can range
from 2.5 mV to 3 mV, depending on the size of the dog [45].
Dog ECGmeasurements have similar types of noise to human
ECGmeasurements. However, animals often havemore noise
in their measurements than humans because it is difficult to
ensure measurement uniformity in their environment.

Noise that can occur during ECG measurement includes
muscle noise, electrical interface noise, baseline drift, and
white noise. Muscle noise, also known as Electromyographic
(EMG) noise, takes the form of irregular spikes with ampli-
tudes typically ranging from 50 µV to 30 mV. It is caused
by muscle movement and is relatively large in comparison to
the ECG signal, often extending up to 10 kHz [38]. Muscle
movements can occur not only during animal movements, but
also during breathing or static conditions. Electrical interface
noise can include 60 Hz noise from power lines and channel
noise. Baseline drift or baseline wander noise is slow and low
frequency noise that can be caused by poor skin-electrode
contact, respiration, or body movement.

The ECG signals used in this paper are signals from which
noise has been primarily removed in the hardware filter
unit included in the measurement equipment. Consequently,
baseline drift was generally insignificant and did not con-
tain 60 Hz power line noise. Nonetheless, to eliminate any
residual unconventional noise, a fourth-order Butterworth
bandpass filter with a cutoff frequency of 0.5 Hz and 50 Hz
was employed, taking into account the normal ECG fre-
quency range. After removing abnormal amplitude noises,
the signal’s magnitude was normalized using the min-max
normalization method.

2) R PEAK DETECTION AND WINDOW SEGMENTATION
For typical clinical analysis of ECG signals, fiducial points
such as onset, offset and peak points of P wave, QRS complex
and T wave are detected and used to obtain values including
magnitude and interval of each wave. The measured ECG
signals were segmented into a single heartbeat ECG signal
and used as input. For this, the waveforms including P wave,
QRS complex, T wave and U wave were segmented to be
included in one window based on R peak location.

In this work, the stationary wavelet transform (SWT)
algorithm was used to detect the R-peak. The wavelet
transform (WT) has the advantage of bio-signal process-
ing because it allows time-frequency representation and is
widely used in ECG signal processing [29], [46]. Discrete
wavelet transform (DWT) means to bisect the wavelet used
in the continuous wavelet transform and scale it by discrete
steps. The DWT can be generally described by the following
equation [47].

ϕj,k (t) =
1

√
2
j ϕ

(
t − k2j

2j

)
(1)

In (1), ϕ, j, and k represent the mother wavelet, the scale
parameter, and the shift parameter, respectively. Based on
this, the continuous wavelet transform (CWT) wavelet coef-
ficient γ for the input signal x(t) is defined as follows.

γjk =

∫
∞

−∞

x(t)
1

√
2
j ϕ

(
t − k2j

2j

)
dt (2)

DWTs suffer from resolution loss due to down-sampling dur-
ing the continuous wavelet transform. SWT can compensate
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FIGURE 4. The architecture of the proposed DNN model for dog identification.

for this problem of DWT and is known to be more effective
in denoising than DWT [48]. SWTs can be used to remove
unwanted noise in the signals, followed by QRS complex
detection and additional algorithms to find the R peak. The
SWT is typically represented by the coefficients cj,k as fol-
lows.

cj,k =

∑
t∈z

x(t)
1

√
2
j ϕ

(
t − k2j

2j

)
(3)

The R-peaks were detected using the Daubechies 3 (db3)
wavelet function followed by applying a 3-level SWT [49].
Although the measured ECG signals were denoised using a
bandpass filter, some spike-shaped noise remained, and these
were sometimes mistakenly detected as R-peaks. To address
this, we calculated the average amplitude of detected R-peak
candidates and removed any peak points with values below
80% of the average value, which were considered noise and
not R-peaks. The 80% threshold was determined heuristically
through prior experience. Subsequently, 200 discrete data
samples, each lasting approximately 400 ms, were divided
into a window centered on the determined R-peak. Given
that the PR interval varies inversely with heart rate within the
range of 60-130 ms, a 400 ms length is deemed optimal for
encompassing a singular heartbeat ECG signal [44].

3) BLIND SEGMENTATION
To compare the performance of different segmentation meth-
ods, in this study, in addition to segmenting the ECG signal
into individual heartbeats based on R-peak, we also per-
formed a blind segmentation method. In this case, blind
segmentation entails dividing the ECG data into specific time
intervals without any prior knowledge of the signals’ fiducial
points.

Research has been conducted on canine diseases and health
conditions, specifically the relationship between atrial rate

and QT interval [50], [51]. Nonetheless, applying research on
fiducial points in human ECG signals directly to dogs is not
feasible. This is owed to the significant variation in the range
of QT and TT values in canine ECGs, and the challenge in
generalizing the algorithm for finding fiducial points due to
sinus arrhythmia leading to variation in heart rate compared to
humans [18]. Therefore, in this study, we employed the blind
segmentation method as well as the R-peak based window
segmentation method. Blind segmentation does not require
an algorithm to find the fiducial point, so it is relatively less
computationally expensive than the R-peak based window
segmentation method and is useful for fast processing. Never-
theless, there is no assurance that each segmented waveform
includes a single R peak point or an entire single heartbeat
ECG waveform. In this paper, the denoised ECG data was
segmented at a rate of approximately 1 second (512 data
samples). The data was segmented in such a way that it
does not overlap with each other, so that no data is used
redundantly. Table 2 indicates that adult dogs have a heart rate
of 70-160 bpmwhile puppies have a heart rate of 70-200 bpm.
This finding suggests that the most data blindly segmented at
1 second will have at least one complete heartbeat wave.

C. IDENTIFICATION MODEL
After preprocessing for noise reduction and segmentation of
the canine ECG signal, the 1D_CNN-LSTM neural network
shown in Fig. 4 was used to create the canine biometric
model. The network consists of a deep learning architecture
composed of one input layer, seven hidden layers, and one
output layer. The network input dimensions are 200 × 1,
512 × 1, and 500 × 1, corresponding to R-peak based win-
dow segmentation, blind segmentation for Holter monitoring
data, and blind segmentation for the integrated database,
respectively. CNN is a deep learning method that effectively
processes images and time-series data. It extracts features
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FIGURE 5. Example of 1D_CNN-LSTM intermediate output.

from input data using convolutional operations. The calcula-
tion of convolutional layers involves multiplying and adding
input data with a moving kernel filter, as shown in (4).

Y (t) = X (t) ∗W (t)

=

∫
∞

−∞

X (τ )W (t − τ )dτ (4)

In this equation, X (t),W (t), and Y (t) represent the inputs, the
kernel filter, and the feature map generated from the convolu-
tion operation. For optimal performance, we selected a kernel
filter size of 33 after conducting numerous experiments.
Additionally, to reduce the input data size by 1/4, a stride
of 4 and zero padding were implemented before passing it to
the next layer. In many related CNN-based studies for ECG
signal processing, 2D CNNs have been trained with ECG
image data as input. There have been other studies that utilize
1D CNNs to make use of ECG time-series features. In this
study, we proposed a 1D CNN structure linked to an LSTM
that does not require additional image transformations and
can retain time-series features.

The detailed structure of the network is as follows. First,
a 1D CNN was constructed to extract features and gen-
erate a feature map while maintaining the format of the
ECG time-series data. Then, max-pooling was performed to
reduce the dimensionality of the generated feature map by
half. Fig. 5 is a part of the three-dimensional schematic of
the 1D_CNN and feature map using 200 inputs constructed
through R-peak based segmentation. That is the process of
convolving 33 values equal to the kernel filter size in 4 strides
among 200 single heartbeat input data samples composed
of R-peak based segmented. Subsequently, the intermediate
output passed through the 1D_CNN layer is expressed in the
form of 128 line graphs in the form of 25 data flows. Based
on the reduced dimensionality of the feature map, two layers
of LSTM were added to extract sequential information of
ECG signals. This allows the LSTM layers to learn sequential

FIGURE 6. Example output from a 1D CNN.

features from the time-series feature maps extracted and
reduced by 1D CNN and max pooling.

Fig. 6 shows the intermediate output of the LSTMwith the
features obtained by 1D_CNN in Fig. 5 as input, represented
by 256 line graphs consisting of 25 data streams. The out-
puts of the LSTM were flattened to convert the data into a
one-dimensional vector and passed to the inputs of a subse-
quent dense layer. After passing through two additional dense
layers, the final biometric results were obtained from the
output layer, which consisted of 33 neurons. To produce the
probability of each input value’s predicted dog identification
result, the softmax functionwas used in the output layer. After
completion of the 1D convolution, a batch normalization was
performed, and a dropout was applied to all layers except the
input and output layers at the rate of 0.3. For LSTM layers,
the cost was calculated in the last step, and the intermediate
output of each step is fed to the next layer. The weights of all
layers were initialized by the he initialization method.

IV. EXPERIMENT RESULTS
In this work, we conducted experiments in six scenarios
depending on the dataset and segmentation method used
to validate the dog identification performance. Specifically,
Table 2 shows the details of the six datasets consisted
of the following six datasets: the physioZoo dataset with
R- peak based window segmentation, the physioZoo
dataset with blind segmentation, the Holter dataset with

TABLE 2. Datasets scheme.
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R peak-based window segmentation, the Holter dataset with
blind segmentation, the integrated dataset with R-peak based
segmentation, and the integrated dataset with blind segmenta-
tion. The learning process was conducted for 150 epochs with
a batch size of 32 and a learning rate of 0.0001. The Adam
optimizer was used to adjust the parameters to minimize the
loss function. For the performance evaluation, we compared
the accuracy, equal error rate (EER) and the receiver operat-
ing characteristic curve (ROC) based on the confusion matrix
of performance evaluation shown in Table 3.

TABLE 3. Confusion matrix scheme.

A. RESULTS OF THE CANINE BIOMETRICS WITH THE
SINGLE DATABASE
In order to compare and analyze the recognition performance
of the DNN classifier with the 1DCNN_LSTM structure pro-
posed in this study, three types of DNN classifiers (2D_CNN,
1D_CNN, and LSTM), which are commonly used as classi-
fiers, were additionally constructed. The 2D_CNN classifier,
which receives the ECG waveform as an image, consists
of a 5-layer convolution layer with a kernel size of 3 × 3
and a 2-layer dense layer. The 1D_CNN classifier consists
of 1 convolution layer and 2 dense layers with a kernel size
of 33 and stride 4. LSTM classifier consists of two LSTM
layers and two dense layers.

TABLE 4. Results of the identification accuracy.

Table 4 shows the identification accuracy of the proposed
recognition model and three additional DNN models for
performance comparison in six experimental scenarios. The
accuracy was calculated using (5) based on Table 3.

Accuarcy =
TP+ TN

TP+ FN + FP+ TN
(5)

As shown in Table 4, the R-peak based segmentation method
showed high accuracy in both datasets, PhysioZoo database
and Holter monitoring database, regardless of the type of
classifier. When the PhysioZoo database was tested using
R-peak based segmentation, the 2D_CNN method showed
the highest accuracy, and the accuracy difference with the

proposed method was 0.7%. When the Holter monitoring
database was tested using R-peak based segmentation, the
proposed method showed the highest accuracy of 98.7%,
but in this case, the accuracy difference with the rest of the
classifiers is not significant, ranging from aminimumof 0.2%
to a maximum of 1.5%.

However, when blind segmentation was used, the perfor-
mance difference between the classifier models was bigger,
and the accuracy value was generally lower than that of the
model with R-peak based segmentation. In particular, the
accuracy of each model was significantly different in the test
using the PhysioZoo database. This may be due to the fact
that the amount of data in the PhysioZoo database is about
one tenth less than that in the Holter monitoring database,
so there was not enough training data. In the case of blind
segmentation, a larger amount of training data is generally
required because it does not have a process to extract only
the required waveforms from the signals. In other words,
the waveforms that are not extracted in a consistent form
would increase the variability, and it is believed that learning
is not performed properly with limited data. When the blind
segmentation method was used, the proposed model showed
the highest identification accuracy of 94.9% and 96.9% for
the PhysioZoo database and the Holter monitoring database,
respectively. The comparison models showed a minimum of
12.3% and a maximum of 43.8% difference in accuracy com-
pared to the proposed method. When 1D_CNN was used for
the PhysioZoo database, the accuracy was only 51.1%, which
is very low compared to other classifiers. This is probably
due to the fact that 1D_CNN could not properly learn the
features of ECG signals, which have the characteristics of
time series signals. In the case of 2D_CNN, there is a similar
limitation in learning the features of the time-series signal, but
it contains more information in one more dimension than 1D,
so it may have been relatively useful to extract features in the
convolution operation. In the test on the Holter monitoring
database, the 1D_CNN model showed the lowest accuracy,
but in this case the difference in accuracy was up to 9.8%.
Also, when evaluated based on the average value of accuracy,
the proposed model showed the highest identification rate
with an average identification rate of 96.9%.

Fig. 7 visualizes the identification performance of the pro-
posed method in the form of a confusion matrix. As shown
in (a) of Fig. 7, the R-peak based segmentation on the Phys-
ioZoo database showed no more than three recognition errors
for each subject, except for 10 cases where subject 14 was
misidentified as subject 7. Furthermore, the model never
misidentified subject 7 as subject 14. In (c) of Fig. 7, the same
database was tested with the blind segmentation method.
In this case, there was no particular trend error in the recog-
nition results of the remaining subjects, but the recognition
error between subject 7 and subject 14 was relatively high.
However, unlike (a) in Fig. 7, this time the highest recogni-
tion error was 7 times when subject 7 was misidentified as
subject 14. In other words, while there were some cases where
subject 14 was misidentified as subject 7 using R-peak based

145740 VOLUME 11, 2023



M. K. Cho, T. S. Kim: Canine Biometric Identification Using ECG Signals and CNN-LSTM Neural Networks

FIGURE 7. Confusion matrix of proposed model for single database. (a) result of R-peak based segmentation on the PhysioZoo
database. (b) result of R-peak based segmentation on the Holter monitoring database. (c) result of blind segmentation on the
PhysioZoo database. (d) result of blind segmentation on the Holter monitoring database.

segmentation, the recognition model could not clearly distin-
guish the difference between subject 7 and subject 14 using
the blind segmentation method. When the Holter monitoring
database was tested with the R-peak based segmentation
method, the overall recognition rate increased, but the trend
of the overall recognition rate was similar to the recognition
results using the PhysioZoo database. In this case, the error
of recognizing the subject 1 as the subject 11 was rela-
tively larger in the identification using the Holter monitoring
database. In the case of Fig. 7(b) and Fig. 7(d), the number of
times subject 11 was misidentified as subject 1 was 4 and 8,
respectively. In the case of Fig. 7(b), the error value of a
particular subject was not significant. However, in Fig. 7(d),
which is the recognition result using the blind segmenta-
tion method, there seems to be a problem in distinguishing
between the two subjects (subject 1 and subject 11) as shown
in Fig. 7(c). In the case of the proposed model, there is

a variation in accuracy of about 2% depending on the segmen-
tation method, and the difference seems to be due to the fact
that the blind segmentation has a relatively large recognition
error in distinguishing these two subjects.

B. RESULTS OF THE CANINE BIOMETRICS WITH
INTEGRATED DATABASE
We evaluated the performance of the proposed model using
an integrated database consisting of 33 subjects created by
resampling data from the PhysioZoo database and the Holter
monitoring database, and compared it with other models.
As shown in Table 4, the accuracy of each identification
model was as high as 94.9% when the R-peak based segmen-
tation method was used. Also, the variation of accuracy by
model was not significant as in the recognition performance
results of individual databases. The best recognition rate was
obtained by the 1D_CNNmethod with an accuracy of 96.9%,
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FIGURE 8. Confusion matrix of proposed model on the integrated databases. (a) result of R-peak based segmentation. (b) result of
blind segmentation.

and the proposed model showed a close accuracy to 1D_CNN
with 96.3%.

On the other hand, when the blind segmentation method
was used for the identification test for the integrated database,
the accuracy of each model was significantly different from
before. In this case, the overall accuracy tended to be lower
than when the R-peak based segmentation method was used,
but the proposed model showed the highest accuracy of
93.1%, which was not significantly different from the identi-
fication performance for individual databases. The 1D_CNN
showed the lowest accuracy for biometric recognition in
the integrated database, and the LSTM model also showed
only 63.3% accuracy. It is estimated that the reason for the
decrease in recognition accuracy is due to the reduction in
the number of data per subject while configuring the inte-
grated database. In other words, when the 1D ECG signal
is clearly segmented into the separate heartbeats and used
as input, the 1D structure classifier can achieve sufficiently
high accuracy recognition results, but in the blind segmenta-
tion method, the simple structure classifier has performance
limitations.

Fig. 8 shows a visualization of the biometric results based
on the proposed method in the form of a confusion matrix
for integrated database. There is no particular trend in the
misidentification results in Fig. 8(a) using the R-peak based
segmentation method. In Fig. 8(b), the recognition rate of the
subject 1 is relatively low. In this case, it is not a result of
incorrectly identifying the subject 1 as a specific subject since
the prediction results are not centered on a specific subject.
In other words, there is no particular trend in the confusion
matrix in both Fig. 8(a) and Fig. 8(b).
Table 5 shows the performance of the models in terms of

equal error rate (EER). EER is a popular measure of biometric
performance and can be obtained by (6), which is the error
rate at the moment when the false acceptance rate (FAR) and

TABLE 5. Results of the model EER.

the false rejection rate (FRR) match.

EER =
(FAR+ FRR)

2
(6)

FAR =
FP

FP+ TN
(7)

FRR =
FN

TP+ FN
(8)

The overall trend of the EER values of each model was
similar to the trend of the accuracy values of each model.
In other words, the EER of the blind segmentation method
was larger than that of the R-peak segmentation method, and
the 1D_CNNmodel in particular showed a large performance
variation depending on the segmentation method. When the
R-peak based segmented PhysioZoo dataset was tested using
the proposed identificationmodel in this paper, the EER value
was 0.14% higher than the 2D_CNN model, which showed
the best EER value, but the proposed model showed the best
EER value in the remaining biometric tests.

The receiver operating characteristic (ROC) curve shown
in Fig. 9 illustrates the true positive rate (TPR) versus the
false positive rate (FPR). In Fig. 9(a), the use of the R-peak
based segmentation technique shows minimal deviation in
the curve, which reflects the accuracy result. When using the
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FIGURE 9. Comparison of ROC curves by classifiers. (a) ROC curves of integrated database with R-peak based segmentation. (b) ROC curves of
integrated database with blind segmentation.

FIGURE 10. Comparison of PR curves by classifiers. (a) PR curves of integrated database with R-peak based segmentation. (b) PR curves of
integrated database with blind segmentation.

blind segmentation method in Fig. 9(b), a variation in the
curve by classifier was observed. As with the identification
accuracy, the proposed model showed the highest perfor-
mance with a ROC AUC (ROC area under the curve) value
of 0.997. Note that for multiclass classification such as this
problem, a distinct ROC curve should be displayed for each
subject. However, here we plot the average of these results,
which may make the models appear to perform better.

Fig. 10 shows the Precision-Recall (PR) curve of the
model. The PR curve illustrates the performance of the model
in a one versus rest (OvR) problem for multiclass classifica-
tion. It can be compared to a data imbalance situation, and it
has been reported that the PR curve is more useful than the
ROC curve in this case to indicate the overall performance of
the model. The results in Fig. 10 are similar to those in Fig. 9.
For Fig. 10(a), there is no significant difference between the
curves when using the R-peak based segmentation method,
which is similar to Fig. 9(a). As for Fig. 10(b) using the
blind segmentation method, the trend is similar to Fig. 9(b),
but the difference between the values for each classifier is

more obvious. The PR curve illustrates the performance of the
proposed model, which means that the proposed model has
excellent overall classification performance, not only specific
values of TPR, FPR, precision and recall.

V. DISCUSSION
In this work, the preprocessed signals were used to construct
a biometric data set using two methods, the R-peak based
segmentation method and the blind segmentation method.
In fact, two segmentation methods were applied to three
databases, including the integrated database, and a total
of six experimental datasets were constructed. The config-
ured dataset was used for the biometric identification of
dogs using the 1D_CNN-LSTM model proposed in this
work. For the purpose of performance comparison with the
proposed model, we constructed recognition models using
1D_CNN, 2D_CNN, and LSTM and performed biometric
experiments on the same six datasets. First, we performed
recognition experiments on two individual databases (Physio-
Zoo database, Holter monitoring database). By implementing
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the R-peak based segmentation method, we demonstrated an
accuracy of at least 96.4% in both databases. The variance in
accuracy between the classifiers was only 1.5%. It was found
that by using an appropriately segmented input signal of a
single heartbeat wave through proper preprocessing, a high
recognition rate can be achieved without much difference in
accuracy among the types of DNNs used as classifiers. On the
contrary, when blind segmentation was used, the recognition
performance was generally worse than that of R-peak-based
segmentation, and there was a significant difference in the
recognition performance of each DNN model. Although the
proposed model showed the best accuracy performance of
94.9% and 96.9% for the two databases, the recognition
accuracy of the 1D_CNN model was 51.1%, which showed
a significant decrease in the recognition rate compared to
the R-peak based segmentation method. This problem can be
attributed to the inability to recognize the temporal patterns
in the ECG signal, as the input signal is segmented based
on fixed time intervals, regardless of the position of the
heartbeat waveform. The biometric test results of the inte-
grated database, which merges two databases with different
measurement environments and equipment, showed a similar
trend to the biometric test results of the individual databases,
in other words, when the R-peak based segmentation method
was used, the recognition rates of the classifiers were all
excellent without significant differences. However, when the
blind segmentation method was used, the average recognition
rate dropped to 72.7%. The decrease in recognition rate can
be attributed to the lower accuracy of the blind segmentation
method compared to the method that uses well-organized
waveforms and additional signal processing as input. Insuf-
ficient input data may also have contributed to the problem.
The blind segmentation method usually requires more train-
ing data. However, to evaluate the recognition performance
including all subjects in the database, we set the criterion
for the amount of data per subject based on the subject with
the least number of single heartbeat waves, which may have
caused the lack of training data. However, the proposedmodel
in this research achieved a recognition accuracy of 93.1%
even when the blind segmentation method was used, showing
the least recognition degradation compared to the comparison
model.

VI. CONCLUSION
In this paper, we proposed a method for dog identifica-
tion based on canine ECG signals. The experiments used
the Holter monitored ECG database of 16 dogs and the
PhysioZoo database of 17 dogs. To investigate the biomet-
ric performance when signals from different measurement
environments are included, we also performed biometric
experiments on the biometrics of 33 dogs from the integrated
database of these two databases. The raw ECG signals from
the database were denoised using a bandpass filter and nor-
malized. The proposed 1D_CNN-LSTM model in this study
demonstrates at least 97.0% accuracy in recognizing dog
biometrics based on individual databases utilizing R-peak

segmentation, and at least 94.9% accuracy with the blind seg-
mentation method. Results from integrating databases with
varying measurement environments reveal recognition accu-
racy of 96.3% and 93.1%with R-peak and blind segmentation
methods, respectively. In particular, the 1D_CNN-LSTM
model proposed exhibits more than 10% increase in recogni-
tion accuracy compared to other models regarding biometrics
with blind segmentation method under limited training data
scenarios with discrepancy in the settings of data collection.

This study is significant because it represents the first
attempt at canine ECG biometric recognition. The proposed
model demonstrated superior recognition performance even
when data from different measurement environments were
combined. In addition, we developed a model structure with
high biometric performance for simple input signals by using
blind segmentation of 1D ECG signals instead of 2D image
data. In situations where sufficient training data is available
but complex recognition algorithms cannot be used, it may
be more useful to use the recognition model proposed in this
paper for a blind segmentation method that does not require
additional processes such as distinguishing the individual
heartbeat waves.

There is potential for further research related to this study.
Additional data and follow-up experiments are needed to
evaluate the performance of the proposed identification sys-
tem. The database used in this paper contains data from
multiple measurements of the same subject at different times,
but does not contain information on the aging of the animal
or changes in health status, so it is not possible to evaluate
whether the proposed method can be used throughout the
dog’s lifetime. In addition, the appropriate input length of the
model requires further validation. In our study, we analyzed
2-second datasets containing at least one individual heartbeat
wave for blind segmentation. Further research is needed to
evaluate and optimize the performance for different input
lengths. Successful completion of such work could make the
dog ECG biometric identification method applicable in many
fields, including veterinary clinics and stray animal care
services. In addition, the method using blind segmentation
will be more easily applicable to biometric identification of
animals other than dogs.
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