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ABSTRACT In the rapidly evolving digital landscape, the generation of fake visual, audio, and textual
content poses a significant threat to the trust of society, political stability, and integrity of information.
The generation process has been enhanced and simplified using Artificial Intelligence techniques, which
have been termed deepfake. Although significant attention has been paid to visual and audio deepfakes,
there is also a burgeoning need to consider text-based deepfakes. Due to advancements in natural language
processing and large language models, the potential of manipulating textual content to reshape online
discourse and misinformation has increased. This study comprehensively examines the multifaceted nature
and impacts of deep-fake-generated media. This work explains the broad implications of deepfakes in social,
political, economic, and technological domains. State-of-the-art detection methodologies for all types of
deepfake are critically reviewed, highlighting the need for unified, real-time, adaptable, and generalised
solutions. As the challenges posed by deepfakes intensify, this study underscores the importance of a holistic
approach that integrates technical solutions with public awareness and legislative action. By providing a
comprehensive overview and establishing a framework for future exploration, this study seeks to assist
researchers, policymakers, and practitioners navigate the complexities of deepfake phenomena.

INDEX TERMS Deepfakes, visual, audio, text.

I. INTRODUCTION
In recent years, the rise of social media platforms and the
widespread adoption of smart devices have revolutionised
how we communicate, share information, and interact with
the digital world. Social media platforms such as Facebook,
Instagram, Twitter, and Snapchat have become integral parts
of our daily lives, connecting us with friends, family, and
even strangers from around the world. These platforms
share our thoughts, opinions, and personal experiences. The
accessibility of smart devices has also played an important
role in facilitating the seamless sharing of information. With
the proliferation of smartphones, tablets, and other devices
connected to the Internet, people can effectively capture
and upload photos, record videos, and document their lives
in real-time. The convenience of having these devices at
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our fingertips has empowered individuals to become content
creators, broadcasters, and influencers, fostering a culture of
digital self-expression.

Although technology has advanced significantly, the
emergence of deepfakes has introduced new complexities.
Deepfakes are highly realistic synthetic media created using
artificial intelligence techniques, which are widely known
as deep learning. They involve manipulating media, such
as images, videos, audio, and text generated or altered
using complex deep neural networks, such as convolutional
neural networks (CNNs), recurrent neural networks (RNNs),
generative adversarial networks (GANs), variable autoen-
coders (VAEs), and diffusion models (DMs). The availability
and rapid development of deepfake techniques, such as
face-swapping, lip-syncing, puppeteering, voice conversion,
and natural language processing (NLP), have both positive
and negative consequences. On the positive side, fake core
technologies offer novel opportunities in various fields, such
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TABLE 1. Summary of key related surveys.

as entertainment, education, and advertising [1]. They enable
realistic dubbing, animation, virtual experiences [2], content
generation, and innovative branding techniques [3], [4]. The
emergence of user-friendly deepfake tools (e.g., Deepfakes
Web [5], DeepFaceLab [6], FaceApp [7], ChatGPT [8],
DALL-E2 [9], and Midjourney [10]) powered by deep
learning methods has made it easier for non-expert users
to create synthetic content that is indistinguishable and
innovative [11]. However, fake content also poses significant
threats, including identity theft, revenge pornography, fraud,
and threats to national security [1], [12], [13]. The increasing
prevalence and consequences of deepfakes have captured
the attention of researchers, policymakers, and society as
a whole, leading to efforts to understand their nature,
impacts, and methods to detect and mitigate their effects [14],
[15], [16], [17]. Large multinational organisations, such as
Facebook, Microsoft, and Amazon, have organised deepfake
detection challenges to encourage the development of
effective detection methods [1]. Detecting deepfake content
remains complex due to their high-quality output and the
continuous advancement of generation techniques [18], [19].
Therefore, it is necessary to continually study fakes to
understand the evolving landscape of media manipulation,
as their use raises critical questions about the truth, trust
and reliability of digital content [11], [20]. Failure to address
the challenges posed by deepfakes can result in erosion of
public trust, spread of misinformation, and potential damage
to individuals and organisations [21], [22], [23].
The field of deepfakes has seen a surge in research,

as shown in Figure 1, which shows the annual increase in the
number of publications related to deepfakes. Several studies
have extensively explored the detection of deepfakes and have

FIGURE 1. Number of publications related to deepfakes by year.

provided valuable information on this rapidly growing field.
Table 1 provides an overview of recent significant surveys and
their focus. In this table, we provide an overview of the main
focus of key and related surveys. Themotivation for focussing
on these few is that through this survey we have identified
them as having close alignment, yet are unable to provide a
comprehensive survey on the impacts of deepfakes and their
detection mechanisms across the three types (visual, audio,
and text), as presented in this paper. These surveys have
significantly improved our knowledge of deepfake creation,
detection techniques, and general aspects of this technology.
Although surveys have explored various aspects of deepfakes,
primarily focussing on the generation and detection of visual
and audio deepfakes, they have often overlooked text-based
deepfakes; therefore, there is an absence of a holistic survey
focused on the potential impact of deepfakes. It should be
noted that the term ‘‘text-based deepfakes’’ is not as widely
used as ‘‘audio’’ or ‘‘video’’ deepfakes, since the emphasis
has been on manipulating audio or visual content. However,
the concepts of text-based manipulation and generation have
become increasingly relevant to recent advances in natural
language processing and large language model technologies.
This article presents an all-encompassing analysis of audio,
visual, and text-based deepfakes, focused on both detection
methodologies and subsequent impacts. This was achieved
by thoroughly examining their various types and definitions,
along with exploring recent detection techniques. In addition,
it investigates the social, political, and economic impact of
deep-fakes in various sectors. By analysing the motivations
behind the creation and proliferation of deepfakes and delving
into their consequences, this study highlights the urgent need
for further research to address the identified challenges.

The survey presented in this work is of great significance
to governments, industry, and society. The ability to acquire
a comprehensive understanding of how deepfake generation
can be used enables people to understand how they might
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become prominent in their individual lives. Furthermore,
by understanding the potential impact that techniques can
generate, individuals can make informed decisions on
how they might implement defensive measures and their
limitations. For citizens, this can help prevent them from
following fowl to an adversary using fake content to instil
trust. For governments, it can ensure they are aware of
the possibilities of deepfake content generation as well as
its impacts, especially in terms of adversarial influence.
The knowledge generated in this article is also of great
significance to the industry. It is important that industry
knows the capabilities of deepfakes so that they can benefit
from their legitimate and efficiency-improving functionality,
but also so that they are aware of how they could be used
against them by an adversarial. For example, its use in
phishing attempts will be significant as digital media (text,
audio, video) becomes increasingly realistic and believable to
employees, making it very difficult for them to easily identify
that an adversary is trying to convince them to do something
damaging to their organisation, such as transfer of money.

This study presents contributions to the existing body
of research on deepfakes and their detection. These con-
tributions are intended to help researchers, policymakers,
and practitioners understand the complexities of deep-fake
landscapes and navigate potential solutions. Specifically,
includes the following contributions:

• A first-of-a-kind survey focussing on all three types of
deepfake generation. More specifically, audio, visual,
and textual formats. The survey provides a unique focus
on analysing a broad range of social, political, economic,
and technological impacts of deepfakes.

• The survey provides an up-to-date overview of state-
of-the-art detection methodologies before identifying
potential future research directions in the deepfake
detection field, particularly those areas that can benefit
from further development and refinement.

II. METHODOLOGY
To ensure the rigour and completeness of this literature
survey, a systematic approachwas adopted to collect, analyse,
and synthesise publications related to deepfakes. This section
details the methodology used during the research process
to ensure transparency and repeatability. Table 2 provides
a breakdown of the research methodologies used in this
study. This includes details on the identification and analysis
of publications of interest. As evident in the table, the
PRISMA approach is adopted in this work [27]. More
specifically, 590 papers were initially identified using a
pre-defined search query using well-established repositories.
Inclusion and exclusion criteria resulted in 255 articles being
included in this review. The remainder of this paper is as
follows: Section III investigated the multifaceted nature of
deepfakes, providing foundational insights and emphasising
their definitions and the underpinning technology. Section IV
classifies and discusses various types of deepfakes and
provides a comprehensive summary of their range. The

FIGURE 2. Illustration of Generative Adversarial Networks (GANs),
influenced by GAN [36], VAE [37] and DM [38].

manifold impacts of deepfakes on critical domains are criti-
cally examined in SectionV. SectionVI provides an overview
of the state-of-the-art methods used for the detection of
deepfakes. The preceding sections and key insights are
discussed in Section VII as part of a comprehensive analysis.
Finally, we conclude by highlighting the primary insights and
identifying potential avenues for future research in the realm
of deep-fakes.

III. DEEPFAKES
A narrow definition of deepfake media includes the use
of artificial intelligence and deep learning techniques to
manipulate or synthesise multimedia content, specifically
visual (images and videos), audio, and text. These techniques
involve creating highly realistic and often deceptive content
that is difficult to distinguish from authentic or authentic
media [28]. Deepfakes first gained widespread attention in
2017, when a Reddit user named ‘‘deepfakes’’ used this
technology to create pornographic content by swapping the
faces of celebrities using deep learning models (DL) [29],
[30]. The deep learning models are trained to generate decep-
tively realistic counterfeits by combining and overlaying
objects in the media [31]. Deepfakes have gained significant
attention because of their ability to create compelling and
often indistinguishable fake content [32], [33], [34], [35].

The technology underlying deepfakes primarily revolves
around deep learning and generative models. The deep learn-
ing models used for visual and audio deepfakes are shown in
Figure 2, namely, Generative Adversarial Networks (GAN)
and Variational Autoencoders (VAE). GANs, introduced
by Goodfellow et al. [36] in 2014, consist of two neural
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TABLE 2. Focus of other surveys.

networks: a generator and a discriminator. The generator
network produces fake content, whereas the discriminator
network attempts to distinguish between real and fake
content. Through an iterative training process, both networks
improve their performance, resulting in the generation of
more realistic fake content [36], [39]. VAEs, also introduced
in 2014 by Kingma and Welling [37], are based on neural
network autoencoders. These auto-encoders consist of an
encoder and decoder network. The encoder network learns
to represent the input data in a lower-dimensional latent
space, whereas the decoder network reconstructs the original
data from the latent space representation. VAEs extend
this concept by introducing probabilistic modelling, which
allows the generation of new data points in addition to
reconstruction. VAEs are often used for signal analysis tasks
in deepfake generation [40], [41].
In 2015, Sohl-Dickstein et al. introduced probabilistic

diffusion models, known as diffusion models (DM), a class
of generative models that excel in matching the distribution
of data by progressively reversing the multistep process of
introducing noise [38]. These models were designed to
estimate the underlying probability distribution of a dataset
by iteratively transforming a noise distribution to resemble
the target distribution. This gradual noise-reversal process
allows themodel to capture the intricate patterns and structure
of the data. DMs have recently been shown to generate images
of high quality while providing attractive characteristics,
such as distribution coverage, a stationary training objective,
and simple scalability [42]. DMs can outperform or are
comparable to (GANs), and they enable sophisticated text-
to-image synthesis models, such as DALL-E 2 [9] and
Midjourney [10].
On the contrary, text-based deep-learning models are

generated using natural language processing (NLP)-based
deep learning models [44], which are designed to capture
the sequential nature of text data. These models include

FIGURE 3. Simplified transformer model architecture, influenced by
Vaswani et al., 2017 [43].

Conventional Neural Networks (CNN) and Recurrent Neural
Networks (RNN) [45]. However, the recent use of trans-
former models introduced in 2017 by Vaswani et al. has
revolutionised (NLP) tasks [43]. This is because, as shown
in Figure 3, the transformer model uses an encoder-decoder
architecture with self-attention mechanisms to capture con-
textual relationships between words in a text. The model
understands word dependencies by attending to different
parts of the input sequence and generates coherent and
contextually relevant texts. Text deepfakes are created by
fine-tuning a pre-trained transformer model on specific text
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FIGURE 4. Deepfake types.

data, allowing it to mimic the style and characteristics of a
particular author or writing style. Conditional text generation
techniques can also guide the output of fake text. More
advanced models, such as transformer models [46], [47]
and generative pre-training transformers (GPTs) [48], can be
applied in text deepfake generation.

IV. TYPES OF DEEPFAKES
Deepfakes can be divided into three main categories based on
the medium they mainly manipulate. These are the categories
of visual, audio, and text-based deepfakes. Each category
includes different manipulation techniques, as shown in
Figure 4, which illustrates each type and its applications.

A. VISUAL-BASED
Visual deepfakes involve manipulating or synthesising
images and videos using DL-based techniques to alter facial
expressions, gestures, lip movements, and even entire body
movements of individuals. They appear to say or do things
that they never actually do. These deepfakes can also be
used to impersonate individuals by superimposing their faces
on someone else’s body in videos and images. A prominent
example of a video deepfake that went viral in 2018 depicted
Mark Zuckerberg, the founder of Facebook, in a manipulated
video supposedly announcing plans to shut down the social
media platform and pay for all its services. However, the
video was entirely fabricated using deepfake technology, and
Mark Zuckerberg did not make any such announcement [49].
Visual deepfake manipulation techniques were discussed in
depth in [1], [11], and [13]. This section explores the types
and applications of deep-fake visual manipulation.

1) FACE SWAPPING
Face swapping is one of the most widely discussed deepfake
types. It involves replacing a person’s face in an image
or video with someone else’s face, creating a seamless
and realistic blend [50]. Various face-swapping techniques

FIGURE 5. Face swap example where Jim Carry’s face was swapped into
Alison Brie’s video using DeepFaceLab [6].

employ deep neural networks to swap facial attributes while
preserving the original visual context [51]. An example is
shown in Figure 5 for demonstration purposes. The main
goal of this manipulation is to achieve a convincing identity
swap in which the naked eye cannot differentiate between
fake and real. A good application of this type can be
seen in the entertainment industry, where it can be used
to create impressive visual effects and realistic character
transformations [3], [13]. For example, in movies, face-
swapping can be used to seamlessly integrate deceased
individuals [22] or to seamlessly replace actors with digital
doubles for specific scenes or stunts. However, since the
introduction of publicly available face-swapping tools such
as Faceswap [52], RSGAN [53], FakeApp [30], DeepFace-
Lab [6], and Deepfakes Web [5], it has become very easy
for average users to try and use these tools to swap faces for
the good or bad. A bad application is when face-swapping
is used for malicious purposes, such as creating deepfake
videos to spread misinformation and defame individuals. One
prominent example is the use of facial swapping to create
non-consensual pornographic videos [54].

2) FACE GENERATION
The other name for this type is face synthesis, which uses
deep learning and involves generating new photorealistic
facial images that do not exist in reality and do not represent
existing identities [14]. To create realistic images, deep
learning models are trained on vast datasets of human faces
to learn patterns and characteristics [55]. The generator
network then produces new faces by sampling the learnt
latent space. Identity preservation, symmetry, and texture
are a few challenges posed by the face generation process.
For a realistic generation, numerous semantics, including
age, position, expression, and style, must be considered [56].
A positive application of face synthesis is in digital art and
character creation for video games, in which artists can
generate unique and diverse character designs without relying
on real-world references. However, a bad application arises
when face synthesis is used to create fake profile pictures
for fraudulent social media accounts, leading to identity
theft or the spread of disinformation [57]. Notable publicly
available face generation tools include ‘‘This Person Does
Not Exist’’ (TPDNE) [58], using GANs to produce realistic
human faces that do not correspond to real individuals. Addi-
tionally, advanced models, including Midjourney [10] and
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FIGURE 6. Face generation with DALL-E2 [9] and TBDE [58].

FIGURE 7. Lip-syncing illustration.

DALL-E2 [9] are readily accessible online, generating faces
instantly from simple text prompts. For example, In DALL-
E2 [9], writing ‘‘generates a face for a 30-year-old Asianmale
with a moustache’’ in seconds and produces a very realistic
face, as shown in Figure 6.

3) LIP-SYNCING
Manipulating a person’s lip movements in a video to
synchronise themwith different audio clips creates an illusion
of accurate speech alignment. For example, Figure 7 shows
the creation of a smooth lip-syncing video that matches a
different audio source. This is a challenging process because
the appearance and movement of the lower face, specifically
the lip region, are essential for the formation of realistic lip
synthesis [11]. Lip-sync deepfakes have legitimate uses in the
entertainment industry, dubbing, and video games [59]. They
can also be misused to spread misinformation. Manipulated
videos of public figures or celebrities can be used to distort
their speech and propagate false information, undermining
trust in the media and public figures [60]. An infamous
example of a lip-sync deepfake is Jordan Peele’s deepfake
video [49], in which former President Barack Obama’s
speech is manipulated. Created using lip-syncing technology,
the video showcased Peele, mimicking Obama’s speech and
spreading false statements attributed to the former president.
This video was generated using a technique pioneered by
Suwajanakorn et al. [61], based on a 3D lip-sync technique
that used recurrent neural networks to map audio features to
different mouth textures. Although this example was intended
to warn against fake news, it also highlights the potential for
the deceptive use of lip-syncing deepfakes and their effects
and sequences.

4) REENACTMENT
The other name is puppeteering which involves animating
a target face or body in a video by replicating the facial
expressions or body movements of a source driver. This

FIGURE 8. Facial manipulation examples using FaceApp [7].

generates realistic and coordinated movements throughout
the video sequence, ensuring temporal coherence and natural
actions. The goal is to achieve a realistic and seamless
reenactment, in which the target mimics the movements
and expressions of the source driver. However, achieving
this is challenging because of identity-preserving issues
such as identity mismatch or leaking [62]. Examples of
publicly available reenactment tools include Face2Face [63],
FSGANv2 [64], MarioNETte [65] and DeepFaceLab [6].
These tools use facial tracking and reenactment techniques
to demonstrate facial expression and movement transfer.
‘‘Everybody Dance Now’’ [66] is a body reenactment deep-
fake method developed by researchers from UC Berkeley
and Adobe Research. It is designed to reenact a person’s
dance moves onto a target video, essentially allowing
the target person to dance like the source person. This
technique utilises generative adversarial networks (GANs)
and estimation techniques to achieve this. A beneficial
application of reenactment can be seen in animations and
movies, where it can streamline the creation of lifelike and
expressive character animations. For example, they can be
used in films or television shows to facilitate challenging or
risky scenes, allowing actors to perform actions that would
otherwise be physically difficult [29]. However, a harmful
application is when this deepfake is used to create videos
of individuals saying or doing things they never actually
did. They can even be used to create fabricated evidence or
videos that falsely implicate individuals in crimes or unethical
behaviour [67].

5) FACIAL MANIPULATION
This manipulation type involves altering individuals’ facial
expressions or attributes in images and videos, allowing
for modifications, such as changing emotions or mimicking
specific facial gestures. Deep learning techniques are utilised
to analyse and modify facial expressions while preserving the
overall appearance of a person [68]. A real-world example
is FaceApp [7], a popular mobile app primarily used for
entertainment. It uses artificial intelligence (AI) and deep
learning to apply filters and effects to user faces (e.g.,
Figure 8) to generate realistic transformations, such as
making users look younger or changing their gender. It is
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primarily used for entertainment. Although facial expression
manipulation deepfakes have legitimate applications in fields
such as entertainment and advertising, it is crucial to
acknowledge their potential for misuse.

B. AUDIO-BASED
Audio deepfakes are created using artificial intelligence and
machine learning techniques. The process involved training
a deep learning model on a dataset of audio recordings of a
specific person’s voice. This data set helps the model learn
the unique characteristics, tone and speech patterns of the
target person [69]. Once the model is trained, it can generate
new audio content that closely resembles the voice of the
person on which it was trained. The generated audio can
be used to create synthetic speech or manipulate existing
audio recordings, making it appear that the person said or
recorded something that they did not. An example of a
deepfake incident based on audio occurred when the CEO of
a UK-based energy firm was scammed to transfer e220,000
to a Hungary supplier. The scammer used voice conversion
techniques to mimic the voice of the firm’s German boss [70],
[71]. Audio deepfakes can be used alone as audio clips or can
be integrated with video deepfakes to generate audio-visual
content. Within this category, two types of manipulation
were identified: text-to-speech and speech-to-speech or voice
conversion.

1) TEXT-TO-SPEECH
This manipulation technique involves synthesising typed-in
text into speech that mimics a specific person. Text-to-Speech
(TTS) is an old technology used in various applications such
as voice assistants, navigation systems, and speech-to-speech
translation [11], [72]. However, traditional TTS approaches
lack naturalness and fail to resemble human-like speech [73];
speech sounds are artificial and can easily be noticed.
Recent advancements in deep learning-based approaches,
such as WaveNet [73], Deepvoice [74], Tacotron [75], and
NaturalSpeech [76], have significantly enhanced the TTS.
These models analyse extensive audio data to accurately
mimic a person’s and capture subtle nuances, intonations,
and speech patterns for highly natural and expressive
voice imitations. This technology has revolutionised voice
synthesis in applications such as virtual assistants [77]
and personalised voice avatars [78]. However, the ease of
access to DL-based TTS synthesis models raises concerns
regarding potential misuse. They can be used to create
fake audio messages and impersonate voices for threatening
or defamatory purposes. Such abuse could facilitate social
engineering attacks [13], scam calls [79], and dissemination
of false information through manipulated voice recordings.

2) SPEECH-TO-SPEECH / VOICE CONVERSION
Unlike Text-to-speech, this technique modifies a speaker’s
voice characteristics to match another person’s or a pre-
defined target voice. It clones the target voice and speech

FIGURE 9. Typical Speech-to-Speech conversion pipeline influenced
by [77].

characteristics by transforming the speech signal while
preserving linguistic content and other aspects of the target
speaker’s identity [80], [81]. The speech-to-speech conver-
sion model pipeline, as illustrated in Figure 9, enabled by
AI-driven algorithms, finds applications in various domains.
For instance, it allows individuals to create personalised voice
assistants for a more engaging user experience [82]. In the
entertainment industry, voice conversion is used to add subti-
tles to foreign films [13] or TV showswith the original actors’
voices. Additionally, voice conversion can aid individuals
with speech disabilities [83] in effectively communicating
by generating speech that matches their authentic voice.
However, user-friendly online voice synthesis tools such
as Resemble.AI [84] and MURF.AI [85] can be hazardous
because they can be used to create audio content to deceive
individuals by impersonating the target’s voice for fraudulent
purposes. These deepfakes can be employed for malicious
activities, including identity fraud and the spreading of
misinformation.

C. TEXT-BASED
Text deepfakes pertain to generating written content, such as
articles, reviews, forums, or social media posts, using DL
language models [86]. These models can replicate human
beings’ writing style, tone, and vocabulary, creating text
that appears to be authored by a specific person when it
is generated by AI. Some text-based deepfakes are created
and distributed by bots, presenting significant challenges to
online platforms [87]. This section identifies two text-based
deepfakes: synthetic text and bot-AI-generated text.

1) SYNTHETIC TEXT
These deepfakes are artificial texts generated by deep
learning models, specifically large language models (LLM)
trained on large corpora of human-written content. A promi-
nent example is the Generative pretrained transformer (GPT)
model developed by OpenAI [48], [88]. These models can
generate human-like text, completewith contextually relevant
responses, making it challenging to distinguish between
human and AI-generated text [88]. The primary concern with
synthetic text lies in its misuse in creating persuasive and
seemingly genuine fake content. Given the proficiency of
LLM in generating human-like text, these models can be
used to generate misinformation, produce fake news [89],
or create seemingly genuine reproduced content such as
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articles or blogs. For instance, an adversarial actor can use
these models to create a credible fake news article, potentially
spreading misinformation or sowing discord. The same
technology can also be used to generate convincing phishing
attacks, which pose a cybersecurity threat [90]. However,
it is important to remember that synthetic text generation has
positive applications, including content creation, translation,
summarisation, personalised learning, and more [48].

2) BOTS AI-GENERATED TEXT
It primarily involves the use of automated programs, known
as bots, to create and disseminate text on a large scale. Social
bots and chatbots are often used on social media platforms
and websites and can post, comment, and interact with other
users or content. The advancement of DL and LLMs has
enhanced the capabilities of bots as they can now generate
automated text that closely mimics human written text [8].
On the one hand, bots have positive uses, such as automating
customer service responses, providing personal assistance,
or automating routine posts for businesses on social media.
However, the primary misuse of bots in text-based deepfakes
involves the propagation of misinformation, spamming,
or manipulation of public sentiment on social platforms [91],
[92]. For instance, malicious social bots can be utilised
during elections to amplify specific narratives or disseminate
false information about candidates, thereby influencing
public opinion [93]. In another example, during periods of
public comment on official governmental websites, bots can
exploit system vulnerabilities and inundate the platform with
deepfake comments. These comments can be challenging
to differentiate from genuine human submissions, further
exacerbating the issue [94].

V. IMPACTS OF DEEPFAKES
In our digitally connected world, rapid advancements in
artificial intelligence (AI) and the widespread use of social
media platforms have reshaped the creation, sharing, and
consumption of information. Deepfakes have emerged as
potent tools with far-reaching implications. Owing to the
sophistication and accessibility of deepfake technology, it is
now possible to generate highly convincing yet entirely
falsified media content [29]. According to Reuters [95],
‘‘DeepMedia’’, a company specialising in synthetic media
detection tools, has reported a significant increase in the
number of deepfakes online in 2023. Compared to 2022,
there has been a tripling in video deepfakes and an eight-fold
increase in voice deepfakes this year. The company estimates
that approximately half a million video and voice deepfakes
will be disseminated on global social media sites by
2023. This capacity to distort reality has the potential to
significantly impact various aspects of society.

The effects of deepfakes are felt in various areas including
politics, society, economics, and technology. Deepfakes pose
a significant threat [96] with far-reaching consequences, such
as the spread of false information, manipulation of public

opinion, the potential for financial fraud, and the loss of
trust in digital media [97]. These risks are substantial, and
addressing them is complex. Considering the various aspects
involved, this section offers a thorough analysis of the effects
of deepfakes. It explores the dangers and possible risks in
these significant areas. Table 3 illustrates a summary of the
impacts and scale, which is used throughout the following
subsections.

A. POLITICAL IMPACT
Politics represents one of the most critical areas affected
by deepfakes because of its significant influence on public
opinion [20], policy making, and international relations
[101]. One of the primary concerns is the use of deepfakes
to spread misinformation and disinformation by creating
false speeches, actions, or scenarios involving political
figures [122]. An alarming example of this scenario is
the circulated video depicting a deepfake version of the
Ukrainian president [123]. In the video, which lasted
approximately one minute, the fabricated representation
of the president appeared to instruct Ukrainian troops to
cease fighting against Russia and surrender their weapons.
Deepfakes of this type can distort reality, mislead the public,
and manipulate political views. In the context of elections,
the misuse of deepfakes is particularly consequential. For
example, a fake video could falsely portray a politician
making controversial remarks, potentially damaging his
reputation [26] and influencing public opinion or voting
behaviour [3].
According to Dobber et al., the combination of politi-

cal micro-targeting techniques and deepfakes can pose a
significant threat to the sanctity of elections [102]. With
the ability to create and disseminate false narratives about
candidates, deepfakes can undermine political campaigns and
sway public opinion [102]. Another aspect of the ability of
deepfakes to potentially influence the results of an election
is that when the distribution of falsified content is timed
correctly, it could circulate widely before there is an adequate
opportunity for the victim to discredit it effectively [124]
because election periods are usually limited in time and the
impact of deepfakes in such scenarios can be irreversible.
Moreover, the growing sophistication and use of social
bots, especially with the rise of deepfakes, raises significant
concerns due to their potential to create and disseminate
deceptive information [99]. As evidenced during the 2016 US
Presidential Election, social bots comprised 14% active users
and generated approximately 20% of all tweets [125]. These
bots canmimic human behaviour, leverage sentiment analysis
techniques to align their content with public opinion [126],
and strategically target influential users to broaden their
impact [99].

Integrating deepfakes can further enhance their content’s
persuasiveness and perceived authenticity, making it even
more challenging to discern the truth from fabrication.
The significant role of social bots in shaping public
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TABLE 3. Deepfakes impacts in terms of scale.

discourse, particularly when amplified by deepfakes [87],
[99], [100], underscores the urgent need for robust detection
and mitigation strategies to safeguard the integrity of online
discourse and democratic processes. Deepfakes can signifi-
cantly impact uprisings and social movements. In situations
where public sentiment is already charged, the dissemination
of realistic deepfakes could further inflame tensions and
potentially incite violence or unrest [103], [104], [105].
Furthermore, the impact of deepfakes extends to interna-

tional diplomacy [82]. Deepfakes have the potential to create
diplomatic incidents or falsely portray a leader’s statements
or actions, inciting international tension or even conflict.
For example, a strategically released deepfake designed to
stir public sentiment can be disseminated during a crucial
international summit. The controversial content of deepfake
might create such a political stir that it becomes practically
impossible for one party to pursue its planned agenda [98].

B. SOCIAL IMPACT
In today’s digital era, the speed and scale of information
dissemination have been greatly amplified by social media
platforms [89]. However, these advantages also come with
notable challenges, especially with the advent of artificial
intelligence, which has profound implications for social
landscapes. Concerns about maintaining trust in online
information have grown among social media platforms and
government bodies [114]. The European Commission took
proactive measures by creating an expert panel to develop
‘ethics guidelines for trustworthy AI’ [127]. These guidelines
serve as a preliminary structure to oversee AI development
within the European Union. The problem of untrustworthy
AI reaches a critical point with the emergence of deepfakes,
which are frequently depicted as a significant threat to online
trust [114].

Recent research has provided useful information on the
possible effects of deepfakes on journalism within controlled
environments, illustrating that exposure to such manipulated
content can influence the perceptions of news outlets and
political leaders, for example, the following studies present
work on this topic: [20], [102], [111]. Deepfakes, with their
potential to create realistic but falsified audio-visual and
text content, have introduced a new level of uncertainty
into the media ecosystem [110]. Trust in digital media,
which has been the foundation of online interactions,
is eroded as deepfakes increase [20]. People are increasingly
questioning the authenticity of digital content. As deep
fakes become more common, they plant seeds of doubt and
confusion, affecting the open exchange of information and
compromising the integrity of online content [15].

The social dynamics of online interactions were also
significantly affected. Consider a situation in which deep-
fakes are used to fabricate video calls or to put words
into people’s digital mouths. Such manipulations can lead
to misunderstandings, mistrust, and strained interpersonal
relationships, thereby altering the landscape of online
communication and interaction. Recently, there has been
an instance of deepfake misuse involving Martin Lewis,
a well-known consumer finance expert. A fake advertisement
featuring an incredibly realistic deepfake version by Lewis
was circulated on Facebook. The fabricated Lewis can be
seen backing a supposed investment scheme, claiming that
it is supported by Elon Musk and labelling it as a ‘‘great
investment’’. This video is dangerous due to its convincing
nature and its potential to deceive unsuspecting individuals
into fraudulent schemes [106]. Furthermore, deepfakes have
emerged as new tools for cyberbullying, harassment [112],
and the perpetration of revenge porn [107]. Deepfakes can
be used to publicly shame or bully targets by superimposing
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an individual’s face onto inappropriate or explicit content.
A notable example is the disturbing trend of ‘‘deepfake
pornography’’ in which an individual’s face, often a female,
is grafted onto explicit content without consent. Such uses
can inflict significant emotional trauma, invade privacy, and
cause reputational damage [128].

According to a recent report from University College
London (UCL), deepfakes have been identified by experts
as the most concerning application of artificial intelligence,
mainly because of their potential use in criminal activities
or acts of terrorism [67]. Furthermore, deepfakes pose
challenges to mental well-being [108]. Fear of becoming a
fake target can induce anxiety [105], and being a victim of a
fake attack can cause feelings of violation [109]. In a broader
sense, the general mistrust and uncertainty bred by deepfakes
can foster a sense of cynicism and disconnection in society.

In the documentary ‘‘My Blonde GF’’ [129], directed by
Rosie Morris, the adverse effects of deepfake technologies
are brought to light. The film follows the ordeal of writer
Helen Mort, who discovered that her face had been used
without her consent to deepfake pornographic images. The
images, believed to have been sourced from Mort’s old
Facebook account and other public photos, were manipulated
into explicit scenes, causing significant distress. The docu-
mentary also emphasises Mort’s feelings of powerlessness
and violation, as she did not know who was responsible
for creating and distributing the deepfake images. Despite
her ordeal, the police could not prosecute the perpetrator,
as creating deepfake images is not currently classified as a
crime. This incident underscores the legal loopholes and the
urgent need for legislation that addresses the issues raised by
deepfakes [130].

The proliferation of deepfakes within the legal domain
raises serious concerns, particularly regarding the credibility
of evidence in courts, defamation, privacy rights, and
regulatory measures [113], [115]. The ability of deepfakes to
create convincingly authentic media of events or statements
that never occurred calls into question the trustworthiness
of traditionally regarded photographic and video evidence
in court proceedings [26]. Furthermore, this distortion of
reality poses critical issues related to defamation and invasion
of privacy [93]. Moreover, with the rapid advancement of
artificial intelligence and deepfake technology, regulations
often struggle to keep up, leaving many jurisdictions
without clear rules on the creation and dissemination of
deepfakes [107]. This regulatory gap can leave victims of
deepfake-induced harm with limited legal options. There is
an emerging debate regarding the legal responsibilities of
AI developers and social media platforms. These parties
might be held accountable to prevent the misuse of deepfake
technology andmitigate its damaging effects [131]. However,
the legal landscape is beginning to adapt to the threats
posed by deepfakes. For example, amendments to the Online
Safety Bill have criminalised the sharing of explicit deep-fake
images or videos in England and Wales without the depicted
person’s consent [132]. The increasing prevalence of deep

fakes underscores the urgency of developing robust legal
frameworks that can adapt to the evolving digital media
landscape and effectively address the challenges that this
technology presents.

C. ECONOMIC IMPACT
According to the World Economic Forum, there has been
a substantial increase in deepfake content, with an increase
900% between 2019 and 2020. Forecast trends indicate
that this alarming surge is likely to continue, and some
researchers predict that almost ‘‘90% of online content could
be synthetically generated by 2026’’. This rapid proliferation
of deepfakes, frequently employed for deceptive and social
engineering purposes, has become a significant concern for
businesses [118].
In the economic domain, deepfakes present complex

challenges that span the corporate, financial, and marketplace
spheres. Corporate espionage or sabotage facilitated by
deepfakes can lead to significant financial losses and damage
the brand’s reputation. For example, a fake video that falsely
depicts a CEO making controversial statements or revealing
sensitive information can severely affect company stock
prices and stakeholder trust [54]. Furthermore, deepfakes can
be manipulated for financial fraud, creating opportunities
for identity theft and unauthorised transactions [104]. For
example, by synthesising voices or creating counterfeit
identities, deepfakes can deceive individuals and systems
alike. A prominent case occurred when a fake audio clip
that mimicked the voice of a CEO tricked an executive
into transferring e220,000 to a fraudulent account [70].
The banking sector is particularly susceptible, with 92%
of practitioners expressing concerns about the potential
misuse of deepfakes. According to a report by the World
Economic Forum, companies across various sectors have
experienced significant financial losses due to deepfake
fraud, with some large companies losing up to $480,000
in the past year [118]. The impact of deepfakes also
extends to the marketplace, where they manipulate consumer
perceptions and disrupt market dynamics. Deepfake videos
can falsely depict a product malfunction or unethical
business practice, leading to a loss of consumer trust and
reputation damage [29]. Conversely, these technologies could
be used unethically to falsely promote a product or service,
misleading consumers [116]. In addition, deepfakes could be
deployed in disinformation campaigns to spread damaging
false information about competitors, distorting consumer
choices [54]. On a broader economic level, large-scale
misuse of deepfakes can undermine public confidence in
critical financial institutions. For example, spreading false
information about economic indicators or policy decisions
could trigger an undue panic or overconfidence among
investors, leading to economic instability [117].

D. TECHNOLOGICAL IMPACT
Deepfakes pose significant challenges within the techno-
logical domain, particularly concerning cybersecurity. They
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represent a potent evolution in the complexity of cyber threats
and can fuel various cybercrimes, such as phishing, identity
theft, and digital espionage. As the World Economic Forum
highlighted, deepfake attacks have become a significant
concern within organisations, with 66% of cybersecurity
professionals reporting such encounters in 2022 alone [118].
These attacks frequently involve fraudulent audio messages
crafted using voice-altering software to impersonate high-
ranking executives, coercing unauthorised money transfers,
or sensitive information [118]. Phishing attempts, tradition-
ally characterised by deceptive emails or messages aimed at
extracting sensitive information [133], could be exponentially
enhanced using deepfakes [120]. Attackers can exploit
deepfake technology to create convincing audio or video
impersonations of trusted individuals or authority figures,
significantly increasing the persuasiveness of these cyber
traps. The implications of such sophisticated phishing tactics
can range from substantial security breaches to data theft or
financial losses.

According to the Financial Times, in June 2023, Progress
Corp., a software company, fell victim to a security breach
by a hacking group called Cl0p. They exploited system
vulnerability and stole sensitive data from multiple organi-
sations, including British Airways, Shell, and PwC. Experts
believe that stolen data, such as millions of American driving
licenses and health records, could be used in identity theft
scams combined with deepfake software, yielding greater
profits than standard corporate ransom demands [119].
Deepfakes also pose considerable threats to identity theft
and digital espionage. Malicious actors can manipulate
deepfakes to create convincing fake identities or impersonate
existing ones, thus facilitating unauthorised access to secure
systems [117]. In addition, deepfakes significantly undermine
content verification. As they become increasingly realistic
and challenging to detect, they can erode the authenticity
and credibility of digital content [121]. This intensifies
the difficulty of verifying online information, exacerbates
misinformation issues, and undermines trust in digital spaces.

VI. DEEPFAKE DETECTION
The emergence of deep learning technology has revolu-
tionised the field of multimedia forensics [134], [135],
prompting the need for innovative and timely solutions.
Although a multitude of research efforts and forensic tools
have been dedicated to detecting anomalies, such as lighting
variations [136], shadow inconsistencies [137], and colour
illuminations [138], they now face the challenges brought
on by the sophistication of deep learning [134]. This
dynamic landscape has stimulated a surge in research in
multimedia forensics, with a marked focus on exploiting
deep learning techniques. Comprehensive explorations of
these advancements have already been provided in numerous
studies [139], [140], [141]. In tandem with these develop-
ments, protecting the integrity of digital media assets has
become of critical importance, sparking growing interest in
various safeguarding methods, such as image hashing [142],

[143]. Innovative technologies such as blockchain [144],
smart contracts [145], and cryptography [146] are also
utilised for authentication purposes. Furthermore, pioneering
active techniques have emerged to fortify the integrity of
digital media [147], which signifies promising avenues for
future exploration. However, this study primarily provides
an overview of specific deepfake detection approaches that
employ machine learning and deep learning techniques.

A. VISUAL DETECTION
Venturing the domain of deepfake visual detection reveals a
sophisticated intersection between digital security and media
integrity. The methodologies employed primarily gravitate
towards two pivotal categories: Machine Learning (ML)
and Deep Learning (DL) methods. Each tactic demonstrates
unique capabilities to address the intricate challenges of
deepfakes. For instance, traditional algorithms such as
Support Vector Machines or Decision Trees often underpin
ML-based methods. On the other hand, DL-based techniques
harness advanced architectures, such as Convolutional Neural
Networks or Autoencoders, offering a unique perspective
to tackle this problem. Subsequent exploration in this
section specifically emphasises an overview of state-of-
the-art visual deepfake detection techniques. This primarily
includes an analysis of two distinctive categories of detection
methods. First, methods based on handcrafted features,
an approach founded on manual design and extracting
specific, recognisable features from visual content, provide
tangible manipulation indicators. Second, methods based
on deep features are a contrasting approach in which deep
learning models automatically learn intricate, high-level
patterns from extensive data, thereby distinguishing authentic
visuals from manipulated ones. As we dive deeper into these
domains, we will explore their principles, applications, and
collective significance in the ongoing battle against deep-
fakes.

1) METHODS USING HANDCRAFTED FEATURES
The main idea behind face swap detection is to identify and
flag instances in which the original face in an image or video
has been replaced or overlaid with another face, typically
using machine learning or deep learning techniques. At one
end of the spectrum, Zhang et al. [148] and Yang et al. [35]
leveraged the classification process of the Support Vector
Machine (SVM). The former developed a novel approach
based on Speeded Up Robust Features (SURF) to detect
swapped faces in images, albeit with limited success when
dealing with manipulated videos. The latter takes a distinctive
path by extracting features from the 3D head positions
calculated from 2D facial landmarks. While demonstrat-
ing promising results, this technique faces challenges in
estimating the landmark orientation in blurred images.
Matern et al. [149] used a logistic regression classifier to
detect simple visual discrepancies in facial video frames,
achieving commendable accuracy in simple face swaps
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or reenactment scenarios. However, its performance may
diminish with more sophisticated deepfakes.

Güera and Delp [150] and Ciftci et al. [151] proposed
unique solutions in the field of video manipulation. The
technique proposed by Guera et al. is built on multimedia
stream descriptors, extracting features to differentiate real
and manipulated faces within video samples. However,
this method underperforms when confronted with video
re-encoding attacks. The approach of Ciftci et al. revolves
around computing biological signals from facial portions
of videos. Despite its potential, its effectiveness diminishes
when dimensionality reduction techniques are applied to an
extensive feature vector space. By exploring anomaly-based
techniques, Jung et al. [152] introduced an innovative method
that identifies deepfakes by spotting abnormal eye-blinking
durations within videos. Although it shows potential, the
effectiveness of the method diminishes for subjects suffering
from mental illnesses, which are known to exhibit atypical
patterns of eye blinking.

Amerini et al. [153] proposed a deepfake detection
technique that employs the difference in optical flow fields
to distinguish between genuine and manipulated videos. This
method is particularly sensitive to anomalies in the temporal
dimension of video sequences. By estimating the optical flow
fields of frames, they used these representations to train con-
volutional networks, specifically ‘‘VGG16 and ResNet50’’,
to differentiate between real and fake content. This innovative
approach uses both spatial and temporal cues inherent in
videos to detect deepfakes. Agarwal et al. [32] proposed a
deepfake detection method that leverages OpenFace2 [154],
a toolkit for facial behaviour analysis. These techniques
extract and analyse spatial and temporal features related to
facial movements and head positions to identify deepfakes,
particularly those involving world leaders. Its primary
limitation is that it is optimised to detect manipulations
in videos with faces in direct frontal positions. In another
study, Agarwal et al. [155] addressed deepfake detection by
targeting lip-sync discrepancies. Specifically, they identified
mismatches between phonemes (auditory speech units)
and visemes (visual speech units). Despite demonstrating
robust detection accuracy, their method underperforms when
applied to previously unseen videos.

Korshunov et al. [156] developed a method to detect
tampered speakers using phonetically aware audiovisual
features. This approach identifies inconsistencies between
audio and visual speech, proving to be effective for detecting
manipulations, including lip-sync and reenactment. How-
ever, they may struggle with low-quality videos, complex
languages, or sophisticated deepfake generation techniques.
Shahzad et al. [157] presented a multimodal deepfake
detection technique that identifies mismatches between
video-extracted lip sequences and synthetic lip sequences
generated from audio using theWav2lip model [158]. Despite
outperforming many existing methods on the FakeAVCeleb
dataset, its performance can be impacted by lip occlusion,
non-frontal faces, and adversarial attacks.

Face synthesis detection involves identifying synthetic
facial images or alterations made using deep learning algo-
rithms such as Generative Adversarial Networks (GANs).
This is done by analysing specific technical features, such
as inconsistencies in lighting, texture, or positioning of
facial landmarks. Guarnera et al. [159] and McCloskey
and Albright [160] contributed to this field using different
methodologies. Guarnera et al. utilised an Expectation
Maximization (EM) algorithm along with KNN and SVM
classifiers to uncover a unique ‘‘fingerprint’’ in deepfake-
generated images. Despite its ability to differentiate among
various GAN architectures, it struggles when faced with
image compression. McCloskey and Albright introduced
a new method that uses saturation cues to detect GAN-
manufactured images. They exploit distinct patterns of colour
saturation as manipulation markers, demonstrating superior
capabilities to other techniques mentioned in [148] and [161].
Zhang et al. [162] also focused on identifying and simulating
artefacts unique to GAN-generated images using frequency
spectrum features; however, their model was limited to image
detection only. Refer to Table 4 for a comparison summary of
the visual deepfake detection methods based on handcrafted
features.

2) METHODS USING DEEP LEARNING
In contrast to handcrafted feature-based methods, deep
learning feature-based methods utilise algorithms to inde-
pendently learn intricate patterns from extensive datasets.
Instead of employing predetermined attributes, thesemethods
dynamically learn features from data and capture complex
patterns that differentiate between authentic and manipulated
content. This flexibility makes deep-feature-based methods
a powerful asset for combating deepfakes. Afchar et al. [68]
proposed a compact neural network, MesoNet, designed to
detect video deepfakes. MesoNet identifies subtle changes
characteristic of deepfakes by analysing mid-level features
from the video data. Its compact structure offers efficient
deepfake detection even in scenarios with limited compu-
tational resources. However, it might face challenges when
dealing with low-quality videos, where subtle alterations
characteristic of deepfakes could be harder to discern.

Cozzolino et al. [163] contributed to deep-feature-based
detection methods with their approach, which uses convolu-
tional neural networks (CNNs) for weakly supervised domain
adaptation. The DL model learns to recognise intricate
features in the source domain and adapts these insights to
the target domain. By discerning the deep features associated
with data alterations, the model enhances its ability to
detect manipulations or forgeries and requires only a few
training samples. Other notable CNN-based methods include
multitask learning and segmenting [179], co-occurrence
matrices [180], GAN stable fingerprints [181], incremen-
tal learning [19], attention mechanism [182], [183], 3D
attention [184], and CNN in combination with SVM [185],
[186]. Nguyen et al. [164] proposed an approach to detect
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TABLE 4. Visual deepfakes detection methods based on handcrafted features.

fake images and videos using a Capsule Network. Unlike
traditional Convolutional Neural Networks (CNNs), Cap-
sule Networks consider hierarchical relationships between
features, preserving these relationships and making them
an effective tool for tasks such as detecting sophisticated
manipulations in images and videos. Fernandes et al. [165]
presented a unique approach to deepfake detection, using
RNN and neural ordinary differential equations (N-ODE)
to predict heart rate variations in videos, using discrep-
ancies between these predictions and actual heart rates to
discern manipulated faces in videos. Despite its innovative
approach, this method could face limitations due to its
computational complexity, potentially making it less suitable
for real-time or large-scale applications. In their study,
de Lima et al. [166] introduced a novel approach for deepfake
detection. The authors employed Convolutional Networks,
which extract spatial (within a frame) and temporal (across
frames) information from videos. Specifically, they used
a combination of VGG11, a variant of the VGG model,
for spatial feature extraction and Long Short-Term Memory

(LSTM) networks to capture temporal dependencies. In a
similar study, Chintha et al. [167] proposed an approach
for detecting video/audio deepfakes, that combines convo-
lutional latent representations with recurrent structures and
entropy-based cost functions. This method detects spatial and
temporal deepfake signatures using audio and videos. Tested
on the FaceForensics++, Celeb-DF video and ASVSpoof
2019 audio datasets, it sets new benchmarks in all categories,
drawing inspiration from the XceptionNet [187] architecture.
This blend of methods enhances the model’s ability to discern
between genuine and deepfake videos and fight against
deepfake manipulation.

Agarwal et al. [168] proposed a face swap detection
method that combines deep learning features and behavioural
biometrics to identify manipulated videos. Behaviour bio-
metrics have received great interest lately in the areas of
health [188] and key-timing [189], [190], [191], but the
behavioural features extracted from videos are also demon-
strating to be of great potential. Their approach involves
a VGG encoder-decoder network that helps to analyse the
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TABLE 5. Visual deepfakes detection methods based on deep learning features.

appearance and behaviour of individuals in videos. The
effectiveness of their technique is evidenced by an Area
Under the Curve (AUC) of 99%on theWLDR, FF, andCeleb-
DF datasets, and 93% on the DFD dataset. However, despite
the high detection accuracy, one limitation of their approach
is the difficulty in generalising well to unseen deepfakes.
Yang et al. [169] explored two unique methods centred on
texture. First, the MTD-Net model [169] emphasises the
value ofmultiscale texture differences in identifying deepfake
images. By harnessing the fact that synthetic processes such
as deepfake generation often introduce noticeable texture
alterations, this model learns to identify these discrepancies,

which are often subtle and vary across different regions
and scales of an image. Their second contribution, the
MSTA-Net [170] model, complements the detection capa-
bilities of the MTD-Net model by additionally generating
manipulation traces through multiscale self-texture attention.
This innovative strategy aims to unearth the inconsistencies
that manipulated content often presents. This model has
better generalizability than MTD-Net. These two studies
underscore the potential of multiscale texture analysis as a
pivotal tool in the detection of deepfake images, highlighting
the critical role of texture-based features in distinguishing
between genuine and manipulated content. However, both
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models exhibited significantly lower performance with fully
synthetic faces.

Introducing a novel approach to deep-fake detection for
lip sync, Mittal et al. [171] employed a deep-learning
network inspired by a Siamese neural network and a
triplet loss function. Their methodology was unique due
to the simultaneous use of audio and video modalities
and their perceived emotions. Performance evaluations on
two significant datasets, DFDC and DF-TIMIT, revealed
high AUC scores, demonstrating the effectiveness of their
approach. However, they reported some detection failure
cases due to the complexity of human-perceived emotions.

Several compelling approaches that combine Convolu-
tional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) have been presented. Sabir et al. [172] used
recurrent convolutional strategies to discern inconsistencies
in facial movements in video frames and highlighted the
importance of temporal dynamics in video content. However,
this approach has high computational requirements and is
dependent on the quality of the training data and temporal
continuity, potentially posing challenges in real-time detec-
tion scenarios or when analysing videos with disjointed
transitions. Similarly, Guera et al. [173] proposed a method
in which a CNN was used to extract frame-level features,
which were then processed by an LSTM network to identify
potential inconsistencies between frames. Although this
effective use of both spatial and temporal information aids
in deepfake detection, it is mainly applicable to short videos
due to computational limitations.

Building on these techniques, Montserrat et al. [174]
introduced a method that automatically assigns weights to
different regions of the face, further refining the focus of
the CNN-RNN model. This strategy amplifies sensitivity
to subtle signs of manipulation by concentrating on areas
that deep-fake algorithms commonly struggle to accurately
reproduce. These studies underscore the potential of integrat-
ing CNNs and RNNs for effective deepfake detection. They
highlighted the crucial role of spatial and temporal feature
extraction, the ability to discern subtle manipulations, and
the need to address computational demands and adaptability
to different video types and lengths. Wang et al. [175]
demonstrated a unique approach to detecting AI-synthesized
fake faces by monitoring neuron behaviours. The method
uses a Mean Neuron Coverage (MNC) metric to capture
neuron activation behaviours in a layer-by-layer manner,
helping to distinguish between real and fake faces. However,
the performance decreases when dealing with the DFDC
dataset, which includes voice-swapped videos, an area not
covered by their image-focused method.

In an attempt to overcome the generalisation limita-
tions of most models, Haliassos et al. [176] utilised a
multi-input CNN. A two-step approach was adopted to
focus the network on mouth movements rather than other
manipulation-specific cues. Initially, a spatiotemporal CNN,
trained in lipreading, is deployed, creating high-level seman-
tic internal representations sensitive to anomalies in mouth

movements. This model demonstrated superior accuracy and
better generalisation than other CNN approaches. However,
it grapples with challenges associated with memory storage
limitations, potentially impacting scalability and efficiency
when handling large datasets. Trinh et al. [177] contributed
a novel technique to deepfake detection with the Dynamic
Prototype Network (DPNet), prioritising interpretable visual
explanations to support human understanding. In contrast
to many current models that rely on a black-box approach,
DPNet highlights the temporal inconsistencies that deepfakes
often exhibit. The model identifies prototypical real and
deepfake videos based on training video distributions by
mapping videos to a latent space using a pretrained neural
network. Comparing the distance of the test videos to
these prototypes allows for a classifiable understanding of
deepfakes and provides a defence against adversarial attacks.
The effectiveness of this approach is underscored by its robust
performance on various unseen datasets. However, a key
challenge associated with this method is the complexity and
computational complexity of the model architecture.

In their 2023 study, Ma et al. [178] demonstrated that their
3D Attention Network model performs robustly on videos
of varying quality, illustrating its strong generalisability. The
effectiveness of their approach was validated through cross-
dataset testing, where it outperformedmany existing methods
in the field. Although this intricate structure contributes
to its superior detection capabilities, it may constrain
the scalability of the model and the real-time application
potential. This factor emphasises the need for continued
research to balance model performance with computational
efficiency in deepfake detection methods. Refer to Table 5
for a comparison of visual deepfake detection methods based
on deep learning features.

B. AUDIO DETECTION
As the sophistication of Text-to-Speech [74] and Voice Con-
version [73] technologies has escalated, the potential threats
posed by audio deepfakes have become more potent, posing
significant risks to voice biometric systems and broader social
contexts [192]. Various methodologies for audio forensics
have been proposed to identify and counter the spoofed audio
content. However, the complexity and realism of synthetic
speech continue to present substantial challenges that many
existing techniques struggle to address adequately [11].
In this section, we delve into the state-of-the-art strategies
employed for audio deepfake detection, categorising them
into two primary camps: methods based on handcrafted
features and methods leveraging deep learning features.

1) METHODS USING HANDCRAFTED FEATURES
Alzantot et al. [193] developed a method for detecting
deep sound effects using deep residual neural networks
(ResNet) [194]. The method begins by extracting log-Mel-
scale spectrogram features from the input audio, which is
then processed by ResNet. This model exploits the ability of
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the network to learn intricate nonlinear relationships, thereby
discerning subtle audio cues indicative of a deepfake. Despite
its effectiveness and subsequent adoption as a basis for more
recent models, [195], [196], [197] This method grapples
with generalisation limits, thus potentially impacting its
performance on diverse or unseen data sets.

Lai et al. [198] introduced a method using squeeze
excitation and residual networks for audio deepfake detec-
tion. The process begins by extracting low-level acoustic
features, which are then used to create a unified feature
map. This map was segmented for a more detailed analysis
before input into the DNN. Although effective, it struggles
with overfitting, limiting its generalisation across diverse
data. AlBadawy et al. [199] proposed a method to detect
AI-synthesised speech using bispectral analysis. This tech-
nique is based on the premise that synthetic and natural
speech exhibit distinct bispectral properties. Although the
bispectrum of a signal is a higher-order statistic that provides
additional information beyond power spectral analysis, its
application in detecting AI-synthesised speech is relatively
novel. By identifying peculiar patterns in the bispectra of
synthetic speech, this method helps distinguish it from
natural human speech. However, the complexity of bispectral
analysis may limit its real-time applicability.

Wu et al. [200] developed a technique to identify synthetic
speech using a Light Convolutional Neural Network (LCNN)
and a special feature called ‘‘Genuinization’’. This method
aims to increase the contrast between authentic and fake
speeches. The LCNN is designed to handle complex audio
data. At the same time, the ‘genuinization process is a
unique transformer that maintains genuine speech traits but
modifies counterfeit speech, resulting in a more significant
differentiation between the two. Monteiro et al. [201]
developed a method to detect deep audio distortion in
speaker recognition systems using LCNN and spectral feature
representations. However, the effectiveness of this approach
in various real-world scenarios warrants further investigation.
The authors of [202] proposed a detection method that
leverages signal compounding for data augmentation, specif-
ically for detecting logical access attacks such as automatic
speaker verification (ASV) systems. Their study presented
the novel idea of exploiting the non-linear characteristics
of -law and mu-law-based signals companding to generate
diverse training examples, thus improving the robustness of
the detection system.

Borrelli et al. [203] proposed an innovative method for
synthetic speech detection that uses short- and long-term
prediction traces. This method conducts a predictive analysis
of both the immediate and extended characteristics of audio
sequences, demonstrating the potential for synthetic speech
detection. However, its effectiveness is limited when dealing
with compressed audio samples, indicating the need for
further enhancements to maintain performance in diverse
and complex scenarios. Aljasem et al. [204] presented a
secure automatic speaker verification (SASV) system for
audio deepfake detection. Leveraging sm-ALTP features

and asymmetric bagging, this approach enables the precise
detection of voice manipulations, such as voice cloning and
replay attacks. However, its effectiveness in various data sets
and advanced deepfake techniques remains undetermined.
Gao et al. [205] presented a novel method for the detection
of audio deep-fake that used long-range spectrotemporal
modulation features. Using a 2D discrete cosine transform
(DCT) on a log-mel spectrogram, the system outperforms
traditional feature methods such as CQCC [206]. The model
leverages spectrum augmentation and feature normalisation
to reduce overfitting, resulting in a state-of-the-art system for
spoof detection and demonstrating its effectiveness on two
external datasets.

In a recent study byHamza et al. [207], they implemented a
Support Vector Machine (SVM) as part of their deep learning
and machine learning methodologies to identify fake audio.
They extracted critical information from audio samples using
Mel-frequency cepstral coefficients (MFCCs). The model
was trained and tested on the Fake-or-Real dataset, a recent
standard collection produced via a text-to-speech model
and partitioned into four subsets. In particular, integrating
transfer learning into their model bolsters its capability to
effectively detect deepfakes. Recently, Pianese et al. [208]
introduced a novel deepfake audio detection approach that
focusses on the biometric characteristics of a speaker without
referencing specific attacks. This method trains only on real
data, ensuring a level of generalisation. The method has
shown promising performance and robustness against audio
impairment using standard speaker verification tools. This
approach mirrors video deepfake detection methods, which
rely on high-level biometric features, and employs a ResNet-
34 architecture. However, a significant limitation of this
method is its inability to work effectively on unseen and fake
audio samples. Similarly, Blue et al. [209] presented a unique
audio deepfake detection approach that took advantage of
articulatory phonetics and fluid dynamics.

Their method estimates the configuration of the human
vocal tract during speech, revealing that deepfakes often
simulate improbable or impossible anatomical arrangements.
With 99.5% recall and 99.9% precision, the approach can
identify nearly all deepfake samples, using biologically
constrained aspects of human speech that current models
cannot replicate. It is a generator-independent, explainable,
and generalised detection mechanism, showcasing a distinc-
tive lens for deepfake detection. However, this underscores
the ongoing challenge of fully capturing the subtleties of
human speech using artificial models. Lim et al. [210]
applied explainable AI (XAI) methods for deepfake voice
detection, focussing on interpretations accessible to human
perception. Their approach used a simple model that
combined a convolutional neural network and LSTM with
spectrograms used for feature extraction from raw audio
data. This simplification makes the model more accessible
and interpretable for human understanding, aiding deepfake
detection. Doan et al. [211] introduced a novel framework
called BTS-E for audio deepfake detection in their work.

144512 VOLUME 11, 2023



R. Mubarak et al.: Survey on the Detection and Impacts of Deepfakes

It capitalises on the natural correlation between breathing,
talking, and silence sounds within an audio clip, assuming
that human sounds like breathing are complex for text-
to-speech (TTS) systems to replicate. The framework was
extensively tested on ASVspoof datasets, revealing that the
breathing sound feature significantly enhanced the detection
performance. However, the efficiency of this method in
increasingly advanced TTS systems remains to be explored.
Table 6 includes a summary of audio deepfake detection
methods based on handcrafted features discussed in this
section.

2) METHODS USING DEEP LEARNING
Lai et al. [212] proposed a novel strategy, the attentive
filtering networks (AFN), for audio replay attack detection.
The method is built around the idea of emphasising relevant
information in an audio signal while suppressing irrelevant
noise or manipulation. By analysing different aspects of
audio, such as frequency, pitch, and tone, this technique
provides a high detection rate for audio deepfakes, namely
replay attacks. Although the system shows high detection
rates for audio deepfakes, its performance depends on the
type of non-linear activation function used in the AFN.

In 2019, Gomez-Alanis et al. introduced two distinctive,
yet interlinked methods for detecting audio deepfakes. The
first approach [213] presented a novel deep feature extractor
for automatic speaker verification (ASV) spoofing detection,
which merges a lightweight convolutional network with a
Gated Recurrent Unit (GRU) - Recurrent Neural Network
(RNN). This innovative system capitalises on the strengths of
both convolutional networks for extracting local features and
recurrent networks to capture temporal dependencies in audio
signals. On the other hand, the second method [214] proposes
a robust detection mechanism that utilises a Gated Recurrent
Convolutional Neural Network (GRCNN). This model uses
the power of convolutional neural networks to extract local
features and incorporates a gating mechanism to regulate the
flow of information across the network, resulting in better
performance in the detection of spoofing. Although both
models have exhibited impressive results in detecting spoofed
speech on the tested datasets, further research is needed
to evaluate their performance under varying conditions,
such as different audio qualities and against increasingly
sophisticated deepfake generation techniques.

In their research, Wang et al. [192] introduced a novel
approach, DeepSonar, which takes advantage of layerwise
neural behaviour of a speaker recognition system, a deep neu-
ral network (DNN), to distinguish fake voices synthesised.
This system capitalises on layer-wise neuron activation pat-
terns, hypothesising that they can discern subtle differences
between real and fake voices, thereby providing a cleaner
signal to classifiers compared to raw inputs. DeepSonar was
tested on three datasets including commercial products in
English and Chinese. The results highlight high detection

rates and low false alarm rates, suggesting the robustness
of DeepSonar against various manipulation attacks such as
voice conversion and additive real-world noises. However, the
performance of the system degrades in the case of adversarial
noise attacks.

Subramani and Rao [214] proposed a unique solution to
detect synthetic speech by implementing two compact mod-
els, EfficientCNN and RES-EfficientCNN. These models
stand out for their efficiency, demonstrating high accuracy
with minimal resource demand. The research also explores a
novel multitask approach that boosts detection performance
without requiring extra labelling information. Additionally,
this study marks the first application of transfer learning
in adversarial speech contexts, highlighting its potential for
resource-limited situations, such as mobile devices. However,
the robustness of these models under diverse conditions
remains to be extensively explored.

The RW-Resnet is a method presented by Ma et al. [215]
for speech anti-spoofing that works directly on raw wave-
forms. This approach contrasts with traditional techniques,
which often rely on spectrograms or other handcrafted
features. Working directly with raw waveforms allows the
model to exploit more granular and potentially unique audio
signal characteristics thatmay be lost in other representations.
The model is based on ResNet [194], a famous deep
learning architecture known for its ability to model complex
patterns. Despite the potential of this method, it is critical to
test its robustness under varying conditions considering its
complexity.

In a similar approach based on the ResNet technique,
Zhang et al. [216] proposed a novel approach for the
detection of fake speech, incorporating a residual network
with a transformer encoder. This combination leverages the
strengths of the Residual Network in handling complex
patterns using the Transformer Encoder’s ability to process
temporal relationships within audio data. The proposed
architecture provides a more in-depth understanding of the
temporal dynamics inherent to speech, thereby enhancing the
accuracy of synthetic voice detection.

Building on the success of the RawNet2 [217] architecture,
Tak et al. [218] developed a method for the detection of
synthetic voice attacks. This end-to-end approach utilises
CNN and feature map scaling, which act as an attention
mechanism; it operates directly on raw audio signals. The
model seeks to leverage its proven capability to capture
intricate nuanced patterns in raw audio data.While promising
in the AVS spoof dataset, examining themodel’s performance
across diverse synthetic voice attacks and various datasets
remains essential for fully assessing its robustness and
generalisability.

Zhang et al. [219] introduced a different synthetic
voice-spoofing detection approach using a one-class learning
strategy. This method differs from traditional two-class
classification tasks, since it trains the model solely on
bonafide samples, essentially learning the distribution of
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TABLE 6. Audio deepfake detection methods based on handcrafted features.

authentic voices. During the detection phase, the model
identifies any sample that deviates from the learnt distribution
as a potential spoof.

This method was proven to be effective, as shown by
the results, and offered a unique advantage in adaptability
to unseen spoofing attacks. However, it can face challenges
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when dealing with complex and diverse real-world data,
as the assumption of a consistent distribution of authentic
voices may not always hold. Furthermore, the sensitivity
of the model to parameter tuning could affect its practical
application.

Conti et al. [220] recently proposed a new method to
detect fake speech using emotion recognition from a semantic
perspective. The authors suggested that synthetic speech
often lacks the natural emotional variations present in human
speech, which can be used as a possible way to detect
deepfakes. The study applied a 3D-CRNN network to analyse
audio samples in the first step to detect emotional content.
In the second step, a random forest classifier is used to
identify deepfakes by leveraging the differences between
human and synthetic emotional patterns. Although this
innovative approach may be effective in some cases, this
study does not fully explore its effectiveness in different
emotional ranges or languages. It is also unknown whether
this method is robust under various conditions and requires
further examination.

Mo et al. [221] presented a new perspective for detecting
synthetic speech in their study. They framed it as a challenge
to generate out-of-distribution (OOD) data. Their approach
involves multi-task learning, which tackles three subtasks
simultaneously: reconstructing natural speech, converting
fake voices, and classifying speakers. This flexible approach
can be integrated into different network structures and input
features. The experimental results indicate that their method
significantly improves synthetic speech detection and effec-
tively handles both familiar and unfamiliar attacks. This study
highlighted the potential of multi-task learning in the field
of synthetic speech detection. However, further investigation
is necessary to understand its scalability and adaptability to
different situations, including advanced deepfake generation
techniques and application scenarios.

Recently, Papastergiopoulos et al. [222] explored the
ability of two-dimensional convolutional neural networks
(2D-CNN) to detect synthetic speech. The study investigated
the generalizability of 2D-CNNs across different datasets and
used several audio feature representations, such as STFTs
and Mel spectrograms. Despite achieving robust results with
Mel spectrograms and Mel energies, the authors noted a
considerable drop in performance during testing. As revealed
by the data distribution analysis, this discrepancy was mainly
attributed to the differences between the training and testing
datasets. Thus, the study underscores the importance of
addressing the issue of dataset diversity and similarity when
designing deepfake detection models.

In their 2023 study, Salvi et al. [221] introduced a novel
technique called ‘‘Audio Folding’’ for detecting synthetic
speech. This method manipulates audio signals and reveals
unique characteristics that distinguish genuine speech from
synthetic variants. They employed RawNet2 [218] as a
detector that operates directly on raw audio, enabling
the model to capture more intricate and unique features.
By integrating this audio folding technique with RawNet2,

the authors successfully demonstrate an improved synthetic
speech detection. Despite these promising results, further
studies are needed to ascertain its robustness under different
audio conditions and to develop more sophisticated synthetic
speech generation techniques. Table 7 summarises the
comparison summary of audio deepfake detection methods
based on deep learning features based on the discussion in
this section.

C. TEXT DETECTION
The field of Natural Language Processing (NLP) has
witnessed a significant breakthrough with the introduction of
Large Language Models (LLMs), such as GPT-3, GPT-3.5,
GPT-4, and PaLM [8], [225]. These models are extensively
trained on text data and can generate contextually relevant
and highly accurate text. They have exceptional zero-shot
generalisation capabilities, meaning that they can perform
tasks without explicit training [226]. However, the ability
of these models to generate text that mimics human-written
content presents unique challenges, particularly in detecting
AI-generated text.

Although this high-level exploration primarily focusses
on methodologies for detecting AI-generated text, a specific
interest lies in detecting text produced by AI-operated bots,
such as chatbots and social bots. These bots, leveraging
advanced large language models (LLMs), can accurately
mimic human conversations, potentially facilitating manip-
ulative and harmful activities on online platforms, as dis-
cussed in Section III. Bot detection and AI-generated text
detection share some overlap. However, they are distinct
research domains with unique techniques and applications.
For example, bot detection strategies often emphasise
behavioural patterns and meta-data [227], while AI text
detection primarily analyses textual content. Consequently,
understanding bot detection methodologies offers valuable
insight into the broader landscape of AI-generated text
detection. For a more in-depth exploration of bot detection,
including social bot detection, we recommend referring to
comprehensive reviews and literature in the field, such as
the systematic review by Orabi et al. [228]. These resources
provide a detailed examination of bot detection methods,
their strengths, weaknesses, and areas of future development.
This understanding forms a crucial aspect of our exploration,
contributing significantly to the comprehensive view of the
field.

1) DISTINCTION LANGUAGE CHARACTERISTICS
Large Language Models (LLMs) generate text that detection
methods often seek to classify in a binary fashion: authored by
humans or generated by machines [229]. The distinction lies
in the identification of unique language characteristics within
these categories. Statistical characteristics are fundamental
to this classification, using metrics such as the Zipfian
coefficient (a measure of compliance with Zipf’s law) and
perplexity (a prediction uncertainty metric) [230], [231].
Furthermore, models such as GLTR assist in identifying
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TABLE 7. Audio deepfake detection methods based on deep learning features.

generation artefacts using LLM word ranking data [232].
However, these techniques are targeted at document-level
detection, which can compromise their effectiveness in
granular detection scenarios [233].

To identify language patterns in writing created by humans
and AI, it is necessary to examine various contextual
characteristics. Vocabulary features, for example, show that
human-authored texts have greater linguistic diversity but
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are shorter in length [234]. An analysis of parts of speech
and dependency parsing reveals that ChatGPT texts tend to
use more nouns, determiners, conjunctions, and auxiliary
relations, suggesting a focus on making arguments and
being objective [234]. An analysis of sentiment showed
a noticeable contrast in emotional expressions. Language
models, including ChatGPT, generally have a neutral tone
and less negative emotional language than texts written by
humans [235]. Detecting texts created by language models
can involve considering other factors such as repetitiveness,
readability, and conversational patterns [233], [235].

2) METHODS BASED ON SIMPLE CLASSIFIERS
These are straightforward machine learning models trained
to distinguish between two classes: human-generated and
AI-generated text. Examples include logistic regression,
decision trees, and Support Vector Machines (SVMs). These
models often use various features of the text, such as word
frequencies, sentence lengths, or more complex linguistic
features, for classifications. Nguyen-Son et al. [236] devised
an approach that takes advantage of the distinct statistical
features inherent in computer-generated text to distinguish
it from human-authored content. By focusing on specific
language patterns, structure distribution, and frequency, the
model reveals notable disparities in the statistical properties
of human and machine-generated texts. An SVM classifier is
utilised to categorise the text based on these unique features.
The model was tested using a corpus of 100 English and
Finnish books, with the former serving as human-generated
examples and the latter translated to English via Google
Translate as instances of machine-generated text. The model
achieved an accuracy of 89.0% in detecting machine-
generated text. However, this approach has not been evaluated
using the LLM.

Solaiman et al. [237] presented a baseline approach using
logistic regression trained on TF-IDF unigram and bigram
features to detect AI-generated text. Their method achieved
an accuracy between 74% and 88% in detecting outputs from
models ranging from 124 million to 1.5 billion parameters,
respectively. It was evaluated using GPT-2 [48] with an
accuracy ranging from 93% to 97%. However, researchers
found that shorter outputs of text were more challenging to
detect than longer ones, and they anticipated that advanced
generation strategies, such as nucleus sampling, might
pose further difficulties for detection. Gallé et al. [238]
proposed an unsupervised and distributional method to iden-
tify machine-generated text within documents, discovering
a subtle signal in higher-order n-grams, which tends to
surface more in machine-generated text than in human-
written content. This signal underpins a self-training setup
in which documents with pseudo-labels are used to train
an ensemble of classifiers. The method was shown to be
effective in accurately ranking suspect documents in their
experiments, with precision rates exceeding 90% for the
largest GPT-2 model examined. However, this study has its

constraints, such as the assumption of a balanced training
data set and the strictness of exact repetitions. Fröhling and
Zubiaga [235] tested different classifiers, including logistic
regression, SVM, random forest, and neural networks.
They found their feature-based detection method highly
effective. Their model showed a strong ability to distinguish
between human-written text and text generated by advanced
language models such as GPT-2, GPT-3, and Grover. This
approach successfully capitalised on the unique linguistic and
stylometric features of machine-generated text, underlining
the potential of such feature-based strategies for the detection
of machine-generated content. However, they also found
that the sampling methods affect the transferability of the
detectors. Experiments suggest that compensating for these
differences might require separate sub-classifiers for each
dataset and an ensemble approach to merge their outputs.

3) METHODS BASED ON ZERO SHOT MODELS
One way to detect whether a text is generated by a machine
is to use the generative models themselves, such as GPT-2
or Grover, without any additional fine-tuning. These models
can recognise the output of similar generative models [239].
Autoregressive models, such as GPT-2, GPT-3, and Grover,
predict the next word in a sequence based on prior words,
creating a unique statistical pattern in their generated text.

These patterns, which may include specific phrases,
repetitions, or syntax, can be used to differentiate
machine-generated text from human-written text. Thus, even
without specific fine-tuning, detection algorithms can take
advantage of these patterns to identify the content that is
likely to be generated by these models [48], [237], [240].
In their 2019 study, Solaiman et al. [237] proposed a baseline
zero-shot approach that leveraged the total log probability
produced by a transformer-based language generative model
to discern machine-generated text from human-authored
content. Their system operates by determining a threshold
value: if a text’s total log probability, as determined by
the GPT-2 model, is nearer to the average probability
of machine-generated texts than human-authored texts,
it classifies the text as machine-generated. However, their
previously mentioned simple classifier approach proved to
be more accurate [237]. Zellers et al. [240] examined the
challenges posed by artificially generated text, particularly
in the context of fake news. They introduced Grover,
a language model constructed similarly to GPT-2 but
specifically designed for both generating and detecting
fabricated news articles. Grover’s approach is based on the
idea that knowing how a text is generated is the key to
detecting it. To achieve this, Grover leveraged its ability to
produce synthetic text, which helps it spot patterns that are
common in machine-generated content. This allows Grover
to identify materials that are likely to be produced using
similar models. Grover was specifically trained to identify
fake news and distinguish it from other zero-shot models.
It uses statistical patterns learnt from its training data to
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detect anomalies that may indicate machine-generated text.
According to researchers, Grover has consistently performed
well across different model sizes and against various models,
proving its ability to identify artificially generated content.
However, its effectiveness can be weakened by adversarial
actions or generation strategies that differ significantly from
those it has been trained.

Gehrmann et al. [232] developed GLTR, a statistical tool
designed for the detection and visualisation of machine-
generated texts. This tool exploits the unique next-word
prediction distributions found in machine-generated text,
which are different from those found in human-written
content. Using the capabilities of language models such as
BERT [47] and GPT-2 [48], the GLTR assesses the likelihood
of each subsequent word in a text based on the predictions
of these models and visually presents this information. This
technique helps to detect and understand the specific char-
acteristics of the pattern of machine-generated text. Despite
GLTR’s utility, it has some limitations. Its effectiveness can
be compromised when applied to texts generated by different
or more advanced models. It may struggle with very short
or overly complex texts, and its performance may vary
according to the sampling methods used by the generative
models [229]. Furthermore, GLTR may be vulnerable to
adversarial attacks designed to mislead the detection process.

A study conducted by Mitchell et al. [241] in 2023 intro-
duced DetectGPT as an innovative technique to distinguish
between machine-generated text and human-written. This
approach is based on the concept of ‘probability curvature’,
which helps to identify the differences between the two
types of text. DetectGPT has successfully detected outputs
from various generative models, including GPT versions and
transformer-based models, by examining the shape of the
predictive probability distribution for the next word in a
sequence. However, this method has two limitations. First,
DetectGPT’s computational load may pose challenges, par-
ticularly with larger datasets or real-time detection scenarios.
Second, the effectiveness of the method relies heavily on the
availability of raw log probabilities from the large language
models it is trying to detect, which may limit its practicality
when such probabilities are inaccessible or when dealing with
new or proprietary models.

4) METHODS BASED ON FINE-TUNED LANGUAGE MODELS
Fine-tuning refers to the process of providing additional
training to a pretrained LLM for a particular task or dataset.
In the context of detecting AI-generated text, this could
involve training a language model such as GPT [48], BERT
[47], or Roberta [242] on a data set containing human
and AI-generated text to enhance its ability to differentiate
between them [237]. Fine-tuning enables LLM to adapt its
overall language comprehension skills to the specific task of
text detection.

A study by Solaiman et al. [237] in 2019 investigated
detection methods using fine-tuning strategies. They created
a sequence classifier based on two variations of the RoBERTa

model, which is a base model with 125 million parameters
and a model with 356 million parameters. Unlike their
tests on GPT-2, Roberta is a masked and non-generative
language model with a different architecture and tokeniser.
The results of their experiments showed that fine-tuning
Roberta consistently yielded better detection accuracy than
fine-tuning a GPT-2model with similar capacity. Researchers
have noted that discriminative models, such as those used in
their study, have more architectural flexibility than generative
models. This flexibility makes them more effective in
detecting machine-generated text, even though they are not
well-suited for text generation. Interestingly, their findings
partially contradict those of the GROVER [240] study, which
suggested that the same generative language model used to
produce text is the best tool for its detection.

Bakhtin et al. [243] used a variety of techniques and
energy-based models [244] coupled with a distinct clas-
sifier designed to detect machine-generated texts. They
experimented with various strategies, such as a basic
linear classifier, Bidirectional Long-Short-Term Memory
(BiLSTM), and a pair of transformer models, including
one unidirectional GPT-2 [48] and the other bidirectional
Roberta [242]. These transformer models were initialised
using pre-existing checkpoints and then fine-tuned on data
specifically gathered for machine-human text classification.

Consistent with the findings of other studies, they observed
that the bi-directional transformer model, Roberta, provided
the most reliable results. This suggests that pre-trained
models that are further fine-tuned can be highly effective
for identifying machine-generated text. Moreover, it under-
scores the significance of bi-directional understanding in
classifying the nuanced discrepancies between human and
machine-generated content. In the research conducted by
Ippolito et al. [245], They explore three prevalent random
decoding strategies: top-k, nucleus, and temperature sam-
pling, applied specifically to detect text generated by GPT-2.
They compiled an extensive collection of excerpts generated
using each strategy. Subsequently, they trained a suite of
binary classifiers based on the BERT model [47] to label
these excerpts as human-written or machine-generated. Their
study uncovered significant discrepancies in the accuracy
of both human writers and trained classifiers, depending
on the decoding strategy employed and the length of the
generated sequences. This study underscores the influence
of decoding strategies and text length on the effectiveness of
machine-generated text detection.

A study conducted by Fagni et al. [246] in 2021 addressed
the issue of identifying deepfake tweets, which they
dubbed the ‘‘TweepFake’’ problem. Their approach focused
on detecting artificially created tweets through advanced
machine learning models that mimicked human-written
content. To accomplish this task, they tested 13 different
detectors that utilised various methods, such as machine
learning with text representations, deep learning networks,
and transformer-based classifiers. The study confirmed that
generative methods, particularly those using transformer

144518 VOLUME 11, 2023



R. Mubarak et al.: Survey on the Detection and Impacts of Deepfakes

architecture, such as GPT-2, could produce high-quality
short texts difficult for even expert human evaluators to
identify as machine generated. The study also emphasised
the value of transformer-based language models, as they pro-
vided helpful word representations for detection techniques
based on text representations or fine-tuning. The fine-tuned
RoBERTa-based detector outperformed those based on text
representations, with nearly 90% accuracy. However, the
authors suggested that there is still much room for additional
research in this area, particularly with the advancement of
LLM in the generation of indistinguishable short texts.

In a similar approach, Tesfagergish et al. [247] focused
on detecting deepfake text within social media tweets using
a combination of text augmentation, word embeddings, and
deep learning techniques. They used GloVe [248] for word
representation and fine-tuned the RoBERTa [242] model for
the specific task of deep-fake recognition in tweets. Text
augmentation was used to enrich their dataset and enhance
the learning process. The proposed approach demonstrates
the strength of combining pre-trained models with task-
specific fine-tuning and dataset augmentation in deepfake
text detection within a social media context, such as Twitter.
The results underline the potential of machine learning and
natural language processing techniques to tackle the growing
issue of deepfakes in digital communication.

In their 2022 study, Kowalczyk et al. [249] proposed
an innovative approach for detecting and understanding
deepfake reviews. They used machine learning models, such
as Random Forest and XGBoost, accompanied by an explain-
ability technique called Shapley Additive Explanations
(SHAP). This technique provides a deeper understanding
of the model’s decision-making process, revealing which
features are most significant in classifying a review as fake
or real. The integration of SHAP with detection models has
several benefits. Not only does it enhance the interpretability
of the decisions made by the model, identifying why a
specific review is classified as fake, but it also adds a layer
of transparency to the algorithmic decision-making process.
This is especially important in real-world applications such as
moderating social media content and product reviews. This
study shows a promising research direction that combines
accurate detection with interpretable results.

In their 2023 study, Guo et al. [234] deeply analysed
the responses generated by ChatGPT, contrasting them with
responses from human experts. They developed a comparison
corpus, which encompasses responses to identical prompts
from both the ChatGPT and human experts. Evaluating this
corpus provided insight into how ChatGPT compares to
human experts on content relevance, coherence, and empathy.
To distinguish between machine-generated and human-
authored texts, they employed a model based on fine-tuned
RoBERTa. Their findings provide a valuable understanding
of the capabilities and limitations of ChatGPT and suggest
areas for improvement andmore efficient detection strategies.
The application of a fine-tuned Roberta model exemplifies

the potential of transformer-based models to detect machine-
generated texts.

However, this has some limitations. Despite comprehen-
sive data collection efforts, the resulting data set lacks size,
diversity, and balance between sources. To improve the
accuracy of analysis and content detection, more diverse and
extensive data from different sources and languages would
be beneficial. Additionally, because all ChatGPT responses
in the study were generated without specific prompts, their
conclusions were based on ChatGPT’s typical generative
behaviour. They also noted that the use of unique prompts
could lead to the generation of content that might not be
recognised by their detection methods, indicating a need for
further research in this area.

5) METHODS BASED ON WATERMARKING
Watermark-based identification has emerged as an intriguing
paradigm in the field of text detection [250], [251]. Initially
used in image copyright protection [252], it was applied
in language with the advent of syntax tree manipulations,
a concept introduced by Atallah et al. in 2001 [253].
Meral et al. [254] further explored this avenue in 2009,
contributing to the development of watermarking techniques
in language.

This approach was recently revolutionised by
Kirchenbauer et al. [255] In 2023, they introduced a
novel approach by developing a watermarking method
tailored for Large Language Models (LLMs). This technique
involves manipulating the LLM’s logits at each step to
embed watermarks, with tokens categorised into ‘green’ and
‘red’ lists. A watermarked LLM favours tokens from the
‘green’ list during text generation, forming distinguishable
watermark patterns. The authenticity of these watermarks
is verified using a specific hash function. This innovative
approach has the potential to improve copyright protection
and content authentication, enabling secure communi-
cation, and offering new research avenues in language
privacy and digital rights management. However, a study
by Sadasivan et al. in 2023 [256] underscored the complex
challenge involved in reliably detecting AI-generated texts.
The researchers designed a paraphraser based on a neural net-
work to modify the outputs of the AI generative models. This
paraphraser is intended to bypass a variety of detectors, such
as watermarking systems and zero-shot classifiers. Further-
more, this research highlighted the susceptibility of water-
marked Large Language Models (LLMs) to spoofing attacks.
Additionally, in another 2023 study, Krishna et al. [257]
explored the vulnerability of AI-generated text detectors
to paraphrase. They found that although detection methods
such as watermarking techniques, zero-shot, classifiers, and
fine-tuned LLMs had reduced accuracy when tested against
paraphrased texts, retrieval-based methods were an effective
countermeasure. This underscores the need for the continuous
development of detection strategies to keep up with evolving
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evasion techniques and the potential value of retrieval-based
defence. These findings underscore the evolving challenges
of detecting AI-generated texts and the need for continuous
research and development in this field. Table 8 compares
text-based deepfake detection methods.

VII. DISCUSSION
A. THE FAR-REACHING IMPLICATIONS OF DEEPFAKES
The adverse implications of deepfakes in the political realm
are multifaceted and far-reaching, particularly concerning
the spread of misinformation and manipulation of public
opinion. There is an undeniable capacity for deepfakes to
distort reality, an aspect that can be harnessed with sinister
intent. Politicians can be falsely portrayed, leading to skewed
public opinions and potential electoral consequences. The
time-sensitivity of political campaigns amplifies this concern,
as the timely release of deepfakes can circulate and cause
irreversible damage before there is an opportunity to discredit
them.

This discussion emphasises the potential role of social
bots and deepfakes in tandem – a combination that can
significantly amplify the spread of misinformation and create
a facade of authenticity. This is an area where further research
could be conducted, specifically investigating effective
countermeasures to this dual threat. The potential use of
deepfakes to incite violence or unrest during uprisings and
social movements underscores the importance of this issue.
The interplay of deepfakes in international relations has yet
to be fully explored. Research could dive into the potential
scenarios and repercussions of deep-fake-induced diplomatic
incidents or conflicts. From a different perspective, deepfakes
can seriously harm trust in online information. They can
manipulate perceptions and create a sense of doubt within the
media ecosystem. This can hurt relationships between people
and increase the likelihood of cyberbullying and harassment.
It is important to address these issues to maintain online
safety and promote civility.

Deepfakes can introduce a complex matrix of legal
concerns, including issues related to evidence credibility,
defamation, privacy rights, and regulatory measures. As the
legal domain adapts to these challenges, there is a need for
more comprehensive research on the regulatory frameworks
required to effectively manage the increasing prevalence of
deep fakes. For example, the role of AI developers and social
media platforms is a contentious issue that merits rigorous
debate and legislative attention [131]. This discussion also
highlights the extensive economic implications of deepfakes,
highlighting the potential for significant financial losses,
brand reputation damage, and market dynamics disruptions.
Deepfakes can potentially undermine public confidence in
critical economic institutions, leading to economic instability.
Further research could investigate preventive measures and
mitigation strategies to protect the financial sector from
threats induced by deepfakes.

Deepfakes present substantial cybersecurity challenges in
the technological domain. Their increase escalates the com-
plexity of cyber threats, which requires adaptive and robust
cybersecurity measures. With the advent of deepfakes, even
traditional cybercrimes such as phishing can transform into
sophisticated attacks, potentially resulting in serious security
breaches and significant financial loss. This increased threat
landscape underscores the urgent need for focused research
to improve cybersecurity technologies capable of countering
advanced deep-fake-induced attacks. Strengthening detection
capabilities, devising innovative defensive mechanisms, and
developing proactive measures against potential deepfake
threats should be the primary objectives of future research.
In this dynamic and fast-paced environment, continuous
advancements in cybersecurity are critical to protecting
digital integrity in the face of evolving fake threats.

B. VISUAL DEEPFAKE DETECTION
As we investigate the different methods and techniques
used to detect visual deep-fakes, it becomes clear that this
field is rapidly advancing with its high complexity and
sophistication. Researchers are approaching this multidimen-
sional challenge by utilising machine learning with various
techniques, from handcrafted features to deep learning
feature-based methods. This highlights the dynamic manner
in which this issue is addressed.

Methods that rely on handcrafted features use visible
elements of images, such as differences in facial markers,
disparities in lip movements, and irregularities in texture and
lighting. These techniques provide useful perspectives for
identifying [258]. However, these methods have limitations
and may not perform well with blurry images, rapidly
moving objects, sophisticated deepfakes, or unseen data.
The effectiveness of these methods can also be affected by
the complexity of human behaviours, such as eye-blinking
patterns or in the case of mental illnesses where head
movement and facial expressions are not normal. Despite
these challenges, the contributions of these methods are
significant in their ability to identify manipulations in visual
content and provide concrete indicators.

Instead of relying on handcrafted features, deep learning
feature-based techniques use algorithms to identify subtle
patterns in large data sets. This enables them to accurately
distinguish between real and manipulated content, making
them effective weapons against deepfakes. Although they
offer impressive capabilities, such as the ability to recog-
nise complex patterns and adapt to different situations,
they also have some limitations. For example, they may
struggle with low-quality video footage, require significant
computational power, and may not perform well when
faced with unfamiliar deepfakes. Additionally, factors such
as obscured lips, nonfrontal faces, and adversarial attacks
can impact their effectiveness. Furthermore, an interesting
approach is to combine Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs) for effective
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TABLE 8. Text-based deepfake detection methods.

deepfake detection. These approaches make good use of
both spatial and temporal feature extraction, and can discern
subtle manipulations. However, their high computational
requirements and dependency on the quality of the training
data and temporal continuity can pose challenges in real-time
detection scenarios or when analysing videos with disjointed
transitions.

Although current deepfake detection methods represent
the latest technology, they still face difficulties, particularly
when dealing with more advanced deepfakes, varying video

qualities, and large-scale applications. Finding a balance
between detection accuracy, computational efficiency, and
generalisability to previously unseen deepfakes is vital.
Looking ahead, the rapidly advancing field of deepfake detec-
tion emphasises the necessity for persistent innovation and
development. As deepfake technology progresses, methods
for detecting it must evolve correspondingly to preserve the
integrity and security of digital media. This requires models
that not only accurately identify deepfakes, but also elucidate
their findings in an accessible manner, providing insights
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that people can understand. This is exemplified by the
Dynamic Prototype Network (DPNet) [177], which combines
detection accuracy with interpretability. Another essential
aspect for future research on deepfake detection is addressing
the time-sensitive nature of deepfake discretisation in media,
a point emphasised in this study’s impact section. Given
the swift propagation and significant damage potential
of deepfakes before their discretisation, future research
must prioritise the development of detection methodologies
that are both efficient and capable of real-time detection.
Moreover, the complexity of balancing detection accuracy
with computational efficiency continues to pose a challenge,
suggesting that there is still considerable work ahead in this
domain. Complex models often have high computational
demands, potentially limiting their scalability and real-time
application potential, thereby underscoring the need for
solutions that balance model performance and computational
efficiency.

C. AUDIO DEEPFAKE DETECTION
The complexity and increasingly sophisticated nature of
audio deepfakes pose significant challenges to digital
security, prompting the development of several detection
methodologies. Both hand-crafted and feature-based deep
learning methods have unique strengths in combating the
pervasive issue of deep-learning audio.

Handcrafted feature-based methods, as shown in the
work of Alzantot et al. [193], Lai et al. [198], and
AlBadawy et al. [199], often use traditional machine
learning algorithms and manual feature extraction tech-
niques to identify manipulative cues. However, despite
their promising performance, these techniques commonly
encounter limitations regarding overfitting, computational
complexity, and generalisation across diverse or unseen
datasets. Novel approaches such as the ‘Genuinization’
process developed by Wu et al. [200], Bispectral analysis
used by Aljasem et al. [204], and the ‘Breathing, Talking,
and Silence sounds’ (BTS-E) framework presented by
Doan et al. [259] demonstrate the potential of leveraging
unique audio characteristics for deepfake detection. How-
ever, their robustness under varied real-world conditions
and against increasingly sophisticated deepfake techniques
requires further investigation.

On the other hand, deep learning feature-based meth-
ods, such as Attentive Filtering Networks (AFN) by
Lai et al. [212], Deep-Feature Extractor for Auto-
matic Speaker Verification (ASV) spoofing detection by
Gomez-Alanis et al. [213], and raw-waveform processing
strategy by Ma et al. [215], have demonstrated high detection
rates for audio deepfakes. These methods effectively leverage
intricate non-linear relationships and temporal dependencies
in audio signals, therby maximising the capabilities of deep
learning algorithms. However, challenges such as overfitting,
dependability on the type of non-linear activation function,
and performance degradation in the face of adversarial noise
attacks can limit their practical applicability.

Recent developments, such as the one-class learning
strategy by Zhang et al. [219] and the emotion recog-
nition method by Conti et al. [220], offer innovative
angles to deepfake detection. While they show promising
potential, further examinations of their robustness across
different emotional ranges, languages, and real-world sce-
narios are warranted. The growing attention paid to the
problem of dataset diversity and similarity, as highlighted
by Papastergiopoulos et al. [222], underscores the need for
robust models capable of handling diverse and complex
datasets.

The advances in synthetic speech detection presented in
these studies collectively indicate the continued evolution
and improvement of deepfake detection methods. However,
they also emphasised the persistent challenges associated
with overfitting, computational demands, generalisation to
diverse datasets, and robustness under varied conditions.
Future research must continue to innovate and enhance
these detection methodologies to effectively address the
increasingly sophisticated world of audio deepfakes, bal-
ancing model performance with computational efficiency,
adaptability, and robustness across different data types and
deepfake generation techniques. This ongoing battle against
deepfake manipulation requires a multidimensional and
dynamic approach that adapts continuously to the evolving
deepfake landscape.

D. DETECTING SYNTHETIC TEXT AND THEIR OVERLAP
WITH BOT DETECTION
In the context of the rapid advancement of Large Language
Models (LLMs), the ability to produce highly accurate
and contextually relevant text is becoming an increasing
concern in online security. The sophisticated text generation
capabilities of these models can potentially facilitate harmful
activities on online platforms, emphasising the importance of
detecting AI-generated texts as a mitigation strategy. Several
detection methodologies have been developed, each with
varying degrees of effectiveness influenced by factors such
as the architecture of the language model, the decoding
strategy, the length of the text and the availability of raw log
probabilities from the LLMs.

Simple classifiers offer a basic, yet sometimes limited,
approach, particularly with shorter texts and complex
generation strategies. Zero-shot models provide a robust
detection strategy by exploiting unique statistical patterns
in machine-generated text; however, they are susceptible to
adversarial actions or different generation strategies. Fine-
tuned language models represent another approach that
provides a more promising route for enhancing the detection
accuracy. However, their effectiveness can be influenced
by the sampling method and the length of the generated
sequences.

Watermarking, a more recent development, has emerged
as a unique method for detection. This involves embedding
watermarks in the logits of an LLM during text generation,
forming a pattern that can potentially identify synthetic
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text. Despite the promise of watermarking, its vulnerability
to spoofing/paraphrasing attacks and evasion techniques
presents significant challenges that warrant further research.
Interestingly, despite being distinct research domains, bot
detection and AI-generated text detection overlap. Both fields
aim to distinguish between human- and machine-driven
activities in their respective domains. Bot detection primarily
identifies automated accounts or actions on online platforms,
whereas AI-generated text detection seeks to discern between
machine-generated and human-generated content.

The detection methodologies developed for bot detec-
tion, such as identifying unique behavioural patterns,
could provide valuable insights and potential strategies for
AI-generated text detection. Furthermore, techniques such
as frequency analysis, sentiment analysis, and behavioural
pattern detection from bot detection can be adapted for
AI-based text detection. However, recognising that synthetic
text and bot activities represent different aspects of online
manipulation is also crucial. Although the detection strategies
share similarities, the specifics of each domain require
customised methodologies designed to address distinct
challenges and characteristics.

VIII. CONCLUSION
In a digital era marked by a proliferation of deepfakes, this
survey recognises the importance of including text-based
deepfakes alongside visual and audio variants. Often over-
looked, text deepfakes have the potential to significantly
reshape online discourse and misinformation dynamics,
making their inclusion in deepfake research both timely
and crucial. This comprehensive survey sheds light on
the multifaceted nature of deepfakes and the profound
implications they pose across the political, social, economic,
and technological spheres. Specifically, this study highlighted
the Threat Landscape. The work has detailed how deep-
fakes can distort political discourse, erode trust in media,
incite violence, destabilise economic markets, and increase
cybersecurity risks. This underscores the urgent need for
counteractive solutions. To achieve this, the study involved
cataloguing detection methods by performing a comparative
analysis of various detection methods by examining visual,
audio, and text deepfake detection techniques. The strengths
and weaknesses of eachmethod have been outlined, revealing
the complexity and challenges inherent in deepfake detection.
The work has emphasised overlaps with bot detection, and the
unique overlap between synthetic text detection and bot
activities offers a critical perspective. By understanding these
parallels, there is potential for insights and strategies across
the two domains.

This work presents a comprehensive investigation into
deepfakes from the perspective of understanding their
potential impact and limitations. Although the work has
extensively studied recent and closely related literature by
following a systematic process, due to the speed and volume
of new content, it is possible that key articles may have been
missed. However, in an attempt to mitigate this, we followed

a systematic review using inclusion and exclusion criteria
to ensure that the most relevant and recent articles were
studied. It is also worth highlighting that when it comes
to understanding the potential impact, literature involving
theoretical impacts based on case studies is presented. This
means that someone working in defence has the potential
to discover a use case and impact that was not previously
considered. Considering the nature of cyber attacks and that
the adversary often has the upper hand, the findings of this
article are important and timely. It is why it is very important
to educate all on the possibilities of deepfake techniques so
that they are adequately prepared to question content and
minimise any potential impact.

In terms of future work, several important areas need to
be refocused. This included the development of a unified
Detection Framework. A holistic framework that integrates
visual, audio, and text detection methodologies is needed.
Such a framework could be integrated into social media and
online platforms to ensure that the content can be identified
and correctly labelled. It has also been established that
owing to the ease of generating deepfake content and its
potential to spread quickly, there is a need for detection
and mitigation solutions that can operate in real-time. This
will require significant research effort to develop techniques
that can operate at scale. This will require the investigation
and development of real-time embedded electronics that
are capable of processing large volumes of data during
transmission. The adaptability and generalizability of the
detection tools were identified as key areas. To effectively
combat the evolving threats of deepfakes, detection methods
must exhibit two key traits: adaptability to rapidly changing
and sophisticated techniques and generalizability, ensuring
consistent performance across diverse deepfake methods and
scenarios. Finally, and certainly not the least important,
public awareness and legislation should receive increased
focus. Beyond technical solutions, raising public awareness
and enacting appropriate legislation are crucial to effectively
combating deepfakes. This work has laid a foundational
understanding in the face of rapidly advancing deepfake
technology. It is now imperative that the research community
builds upon this foundation, striving for innovations that
ensure that the digital realm remains trustworthy and
secure.
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