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ABSTRACT Pulsed frequency diverse arrays (FDAs) have recently garnered significant research
attention in radar and sensing applications due to their range-dependent radiation properties. However,
the time-dependent nature of radiation can limit the benefits of FDAs. While recent methods have been
proposed to mitigate this limitation and enhance the functionality of FDAs, there is an urgent need to better
characterize their radiated power profile and specifically to address the substantial power losses in the
sideband harmonics. In this paper, we bridge this gap in the literature by presenting a new closed-form
expression for the sideband radiated power (SRP). Additionally, we explore practical limitations outlined
in the existing literature that pertain to achieving time-independent radiation concerning SRP consumption.
Finally, our theoretical analysis is supported by numerical examples. A noteworthy insight from our work
is that treating pulsed FDA systems as time-independent may lead to unreliable conclusions, underscoring
the importance of addressing the SRP issue in future research.

INDEX TERMS Frequency diverse arrays, harmonic analysis, radiated power, range dependent electric field.

I. INTRODUCTION
In point-to-point communication systems, spatial filtering is
an inherently important process in increasing the quality of
the channel. In this context, there is a common view that
filtering must start from the antenna unit to achieve the
desired signal-to-noise ratio (SNR) level. Spatial filtering in
traditional array antenna systems is only accomplished in
the angular domain, but with frequency diverse array (FDA)
systems, it is also possible to filter in the range domain in
addition to the angular domain [1], [2]. Interestingly, FDAs
have recently found applications in radar [3], sensing [4] and
eavesdroppers/clutter suppression [5], [6] scenarios.

In its most basic form, an FDA seeks to transmit an
information signal modulated at different periods through its
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array elements [7]. This linear system achieves maximum
radiation in the common period of all elements. Hence, for
an electromagnetic wave traveling at the speed of light,
a range-dependent radiation characteristic is obtained in
a fixed time [8]. It is thought that this range-dependent
radiation could be an innovative solution to the difficulties
already being studied, such as clutter suppression, anti-
jamming, and beam focusing [9], [10], [11]. Against this
background, many types of FDAs that can be integrated
with different application scenarios, have been introduced
in the literature [12], [13], [14], [15]. Early studies have
concentrated on beam focusing to transfer more power to
the receiver in a desired area but neglected the influence
of time dependency [16]. Thus, unlike classical phased
antenna arrays (PAAs), FDAs are intimately designed to
eliminate the range and angle coupling for beam steering.
For this purpose, studies using nonlinear, multi-carrier, and

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 144435

https://orcid.org/0000-0002-0333-7464
https://orcid.org/0000-0003-0367-8805
https://orcid.org/0000-0002-6184-7112
https://orcid.org/0000-0001-9235-7741
https://orcid.org/0000-0002-6568-738X


I. Kanbaz et al.: On the Sideband Harmonics in Pulsed Frequency Diverse Arrays

optimized frequency increments among the elements have
been conducted over the past years [17], [18], [19]. However,
when electromagnetic wave propagation phenomena are
examined, it is understood that these studies can focus the
radiation only on the targeted position in a certain period of
time and divert the radiation to a different position at other
times [20]. As a result, these studies cannot decouple the
angle and range dependency, which inevitably complicates
beam-steering, particularly for communication and radar
applications, due to the illumination of the target for a
short time [21]. To overcome these fundamental limitations,
time-independent as well as range-dependent radiation has
gained attention [22], [23], [24]. First, it has been proposed
that a time-independent radiation pattern can be obtained
using time-dependent frequency offsets [25]. However, this
approach faces some critical challenges. The first is that
maximum radiation occurs only at the targeted location
while remaining time-dependent at other angles and range
values. Therefore, it would not be an appropriate approach
to call these methods time-independent [26]. Another issue
is that the phase and frequency relationship is not taken
into account. The phase of a signal is calculated by
integrating the frequency over a period of time. In other
words, if the frequency increment is time-dependent, the
signal phase cannot be written directly as a function of
the frequency [27]. Surprisingly, these issues have been
overlooked in papers focusing on time-invariant radiation.
Although some studies have focused on the frequency and
phase relationship to rectify the existing misconceptions,
the results are time-dependent and far from beam-focused
requirements [28].

Another approach aimed towards time-independent radia-
tion is the concept of pulsed FDAs [29]. In this configuration,
the input signals of varying frequencies are multiplied by
a rectangular wave of predetermined duration before being
transferred to the antenna elements. Under the criterion
of choosing the pulse duration small enough, it has been
suggested that the total radiation is quasi-static. Although this
method does not completely remove the effect of time on
the pattern, it does have a mitigating effect [28]. We point
out that most studies on pulsed FDAs in the literature
have investigated the time-domain behavior of radiation.
Nevertheless, due to periodic switching, the frequency
spectrum inherently contains infinite harmonic compo-
nents, and, hence, a frequency domain analysis is indis-
pensable to characterize rigorously the system’s radiation
profile [30].

To the best of the authors’ knowledge, however, very
limited studies have looked into the harmonic analysis of
pulsed FDAs [30], [31]; there are no studies deriving a
closed-form expression of the harmonic radiated power of
pulsed FDAs. The main contributions of this paper are the
following:

• We pursue a frequency-based analysis that facilitates a
comprehensive understanding of the radiation properties
specific to pulsed FDA systems.

FIGURE 1. The geometry and waveform of an FDA: The red line represents
a conventional FDA, while the black line represents a pulsed FDA.

• Recognizing the harmonic-based and range-dependent
radiation properties experienced by each harmonic,
we deduce an analytical expression of the power
consumed at the harmonics of pulsed FDA systems.

• Using this expression, which we verify numerically,
we conclude that the constraints previously proposed
in the literature to achieve time-independent radiation
impractically increase the power consumed at harmonics
and, thus, are unsuitable for range-dependent and time-
independent applications.

The rest of the paper is organized as follows: In
Section II, the background of FDAs with special emphasis
on conventional and pulsed FDAs is given. In Section III,
the frequency analysis of pulsed FDAs is performed by
using a Fourier series representation. Section IV analyzes
the power loss caused by periodic switching and derives
a closed-form expression for the SRP. Section V provides
numerically validated examples, findings, and discussions.
Finally, Section VI concludes the paper.

II. BACKGROUND OF FDAS
The physical construction and mathematical foundations of
FDA-based systems are described in detail in this section.
We first focus our attention on basic FDA systems, followed
by a brief report on the time domain analysis of pulsed
FDA systems, which is one of the strategies to achieve
time-independent radiation that has already been adopted in
some recent works [29], [30], [32].

A. CONVENTIONAL FDAS
Although an FDA has the same physical layout as standard
array antennas, it is distinguished from others by the fre-
quency shifting front-end devices used in antenna terminals.
In other words, and as shown by the red lines in Fig. 1,
each antenna element transmits the same information signal
at different frequencies. The signal transmitted by the n-th
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isotropic antenna element is written as follows:

Sn(t) = αnej2π fnt , n = 0, 1, . . . ,N − 1, (1)

where αn and fn represent the input signal’s amplitude
weighting and frequency, respectively. Due to the array’s
linearity, the total electric field at the far-field emitted by the
N element array is calculated by the sum of the electric fields
emitted by each element and expressed as follows:

s(t) =

N−1∑
n=0

αne
j2π fn

(
t− Rn

c

)
, (2)

where c and Rn denote the speed of light and the distance
of the array element from the observation point, respectively.
If the excitation frequencies are chosen to be in the 1fn
vicinity of a specific frequency (i.e., fn = f0 + 1fn , n =

0, 1 . . .N − 1) and Rn ≈ R − nd cos θ under the
far-field approximation (i.e. Rn is much greater than Rayleigh
distance), the total electric field for a N element linear array
located at z axis can be written as follows [10]:

s(t,R, θ) = ej2π f0(t−
R
c )
N−1∑
n=0

αnej2π f0nd cos θ/c

× e
j2π

(
1fn

(
t− R

c

)
+
1fn nd cos θ

c

)
, (3)

where d represents the Euclidean distance between the array
elements, and θ represents the observation angle at the far-
field. The total electric field, as shown in (3), is affected by t ,
1fn , and R in addition to the phased array system parameter
θ . Hereby, it has been proposed that with appropriate 1fn ’s,
a range-dependent pattern can be generated. Note that (3)
is a general electric field expression for an FDA. When the
frequency difference between the elements is given by a linear
equation (i.e 1fn = n1f ), the array factor of the system can
be written as follows [33]:

AF(t,R, θ)=
N−1∑
n=0

e
j2πn

(
f0d cos θ/c+1f

(
t− R

c

)
+
1f n

2d cos θ
c

)
. (4)

Here, the quadratic term 1f n2d cos θ
c can be ignored whenever

1f ≪ f0. Hence, (4) can be rewritten as follows [34]:

AF(t,R, θ) =

N−1∑
n=0

e
jn2π

(
f0d cos θ/c+1f

(
t− R

c

))
. (5)

In its final form, (5) incorporates time, range, and
angle-dependent radiation characteristics. The radiation’s
angle dependency is well known from the field of phased
array systems. However, the dependence of radiation on
the range is a relatively new phenomenon. Nevertheless,
it is thought that it may be a viable solution to existing
problems in applications such as radar, jammer blocking,
secure communication, and wireless power transfer (WPT)
[31], [35], [36].

As seen in Fig. 1, periodic signals are applied to the input
of the antenna elements. The sum of these periodic signals,

with extremely small frequency differences, is also periodic,
and the range dependency is caused by the periodicity of the
sum of these signals. As a result, in the common period of all
elements, the total radiation becomes maximum/minimum.
Since the electromagnetic wave travels in time at the speed of
light, If time is periodic, there is also periodicity in the range
domain. By observing that the time and range periodicity
stems from (5), which includes exponential terms, thus, the
system is predicted to be periodic around 2π , so the time
periodicity can be defined as follows [37]:

γt+tp = γt + 2π, tp =
1
1f
, (6)

while the range periodicity is defined as follows:

γR+Rp = γR + 2π,Rp =
c
1f
. (7)

B. PULSED FDAS
Although it brings a brand-new research area to the antenna
and propagation community, it is thought that the time
periodicity in classical FDAs overshadows the benefits of
the range-dependent radiation pattern. As a result, studies
have been conducted to address the disadvantages of
the time parameter while aiming at pure range-dependent
characteristics. One of the most promising architectures is
a pulsed FDA system [29]. As shown by the black lines in
Fig. 1, unlike the classical FDA, the input signal applied to the
antennas is multiplied by a square wave with a certain period
and duration. In other words, (1) is written by converting it as
follows:

SPn (t) = ⌈τn⌉αnej2π fnt , n = 0, 1, . . . ,N − 1, (8)

where τn = tnfp and ⌈.⌉ represents the normalized pulse
duration of the square wave with fp =

1
Tp

frequency
and rectangular function for certain duty cycle, respectively.
Henceforth, the superscript ‘P’ represents the pulsed opera-
tion. Hence, (3) should be modified for uniform frequency
spacing (i.e., fn = f0 + n1f ) to obtain the pulsed FDA’s field
for the same pulse duration of array elements. In other words,
the total electric field can be expressed in the following form

sP(t,R, θ) = e
j2π f0

(
t− R

c

)
⌈τn⌉

N−1∑
n=0

αnejnγ . (9)

Here, we define γ ≜ 2π
(
f0dn cos θ

c +1f
(
t −

R
c

))
. Most

importantly, the radiation of the pulsed FDA system is time,
angle, and range dependent. However, some studies claim
that by reconfiguring the structural parameters of pulsed
FDAs, time-independent but range-dependent radiation can
be obtained [29]. In these studies, it has been reported that
the pulse length should be chosen rather small to neglect
the time-induced phase delays. In other words, the maximum
phase difference that may occur in the antenna array during
the time the element is turned on, is intended to be negligible.
Hence, the maximum phase difference is expressed as [29]:

ψ = (N − 1)
(
γ |t=tn − γ |t=0

)
= (N − 1)2π1f tn. (10)
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When (N − 1)1f tn ≪ 1 is selected, the radiation becomes
almost quasi-static. That is, the time expression in (9) is
negligible. To achieve this, the condition tn ≪

1
1f

must

be satisfied. With this approach, it is suggested that the
radiation occurs entirely in range-angle couplings. However,
customizing such radiation characteristics by ignoring the
time parameter, is far from plausible [20].

III. FREQUENCY DOMAIN ANALYSIS
The existing pulsed FDA operation stems from modulating
the classical FDA with a periodic sequence. To date, most
studies in this space have not addressed a fundamental issue,
that is that the periodic modulation causes the harmonics of
the applied signal to spread in the frequency spectrum at the
linear multiples of fp. As an illustration, the distribution of
harmonics for a 3-element pulsed FDA is shown in Fig. 2 for
a better understanding of this phenomenon.More specifically,
harmonics of the same order of the array elements are
decomposed by1f and are located in the frequency spectrum.
The frequency at which harmonics of the same order begin to
diverge is determined by the pulse repetition frequency (fp),
and this is repeated at each linear multiples of fp. Therefore,
a time-domain analysis is not sufficient to understand and
characterize the radiation profile. Moreover, it is also crucial
to consider the harmonic behavior due to periodicity like in
time modulated arrays (TMAs) [38].

FIGURE 2. Representation of the pulsed FDA’s harmonic coefficients’
distribution.

In this regard, it is necessary to start with the Fourier series
expansion of the rectangular function in (8). This is expressed
as follows:

⌈τn⌉ =

q=∞∑
q=−∞

Cq
n e

jqwpt , (11)

where wp = 2π fp, C
q
n , q ∈ Z, represent the pulse

angular frequency, Fourier series coefficient and harmonic
order, respectively. When (11) is plugged into (9), the field

expression becomes [30]:

sP(t,R, θ)

=

∞∑
q=−∞

e
j2π(f0+qfp)

(
t− R

c

)

×

N−1∑
n=0

αnCq
n e

j2π (f0+qfp)nd cos θ/ce
j2πn

(
1f

(
t− R

c

))
. (12)

The total radiation, as shown in (12), contains an infinite
number of harmonic components. These are divided into
two categories, namely the q = 0 component formed at
the carrier’s center frequency and the q = ±1,±2,±3, . . .
components formed in the remaining sidebands. If the on-
time duration of the nth element is represented by tn as
0 ≤ t ≤ tn, the C

q
n terms are obtained as follows [39]:

Cq
n =

 τn, q = 0
sin(qπτn)

qπ
e−jqπτn , q ̸= 0.

(13)

Hence, the array factor for q = 0 is obtained as

AFP0 (t,R, θ)=
N−1∑
n=0

αnτnej2π (f0)nd cos θ/ce
j2πn

(
1f

(
t− R

c

))
, (14)

while the array factors for sideband radiations are obtained as
follows:

AFPq (t,R, θ) =

N−1∑
n=0

αn
sin(qπτn)

qπ
e−jqπτn

× ej2π f0nd cos θ/ce
j2πn

(
1f

(
t− R

c

))
. (15)

In these expressions, the effect of the quadratic term is
neglected by assuming that 1f ≪ f0. It should be noted
that if the (N − 1)1f < fp constraint is satisfied, frequency
differences between harmonics of the same order allow the
entire system to be classified as harmonic order FDA (i.e. q0
FDA, q1 FDA, . . . ). Therefore, it can be conjectured that a
range and time-dependent radiation occurs in each harmonic
component.

IV. POWER LOSS CALCULATION
In this section, a power loss calculation over harmonics
for pulsed FDAs is presented and a closed-form expres-
sion is derived by using known identities. To reduce the
processing burden while not deviating from generality, a one-
dimensional array of N isotropic antennas positioned on
the z-axis is considered. Since the change of the geometric
structure affects only the spatial integration, the solution
presented for linear arrays can be easily extended to different
geometries. In other words, the main processing burden
comes from the calculation of the correlation between
harmonics. Furthermore, to calculate the total radiated power,
the average power density should be used as a starting
point. By definition, the average power density is computed
by integrating the square of the signal’s amplitude across
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a period. Furthermore, for electromagnetic waves it can
be expressed as proportionate to the square of the real
component [38], such that

P̈(θ )avd ∝
1
tp

∫ t0+tp

t0
[Re⟨sP⟩]2 dt. (16)

Here, Re⟨⟩ represents the real part of the electric field, while
tp =

1
1f

represents the periodicity of the pulsed FDA in the
time domain. Moreover, the real part of (12) can be expressed
as follows:

Re⟨sP⟩=
∞∑

q=−∞

N−1∑
n=0

|Cq
n | cos(2π (f0 + qfp + n1f )t ′ + ϕnq).

(17)

In the above equation. t ′ = (t −
R
c ) and

ϕnq ≜
2π (f0 + qfp)dncos(θ)

c
+ φnq, (18)

where φnq represents the phase of the q-th harmonic of the
n-th element. Due to the summation, [Re⟨s⟩]2 should be
analyzed in two parts: for q = p and q ̸= p where q and p
represent the integer harmonic orders. Hence, (17) for q = p
part is written as (19), shown at the bottom of the next page.
Thus, the other part q ̸= p can be written as in (20), shown at
the bottom of the next page. If (19) and (20) are substituted
into (16), the average power density for q = p turns out to be
given by (21) below:

P̈(θ )avd
q=p

=

∞∑
q=−∞

1
tp

∫ tp

t ′=0

N−1∑
n=0

|Cq
n |

2

× cos(2π (f0 + qfp + n1f )t ′ + ϕnq)2dt ′. (21)

Under Tp ≫ T0, (21) can be simplified (a detailed proof is
provided in the Appendix) according to

P̈(θ)avd
q=p

=
1
2

∞∑
q=−∞

N−1∑
n=0

|Cq
n |

2. (22)

Since the integral of the product of two cosine signals with
different frequencies over a certain period equals zero, the
case of m ̸= n is ignored (see Appendix). Therefore, we can
consider only them = n and q = p cases. After an integration
using the spatial coordinates is applied (i.e. 0 ≤ θ ≤ π and
0 ≤ φ ≤ 2π ) [40], we obtain

Ph =

∫ 2π

0

∫ π

0
[P̈(θ)avd ]

q=p
q̸=0

sin θdθdφ. (23)

Thus, the total radiated power at the harmonics is derived as
follows [41]:

Ph = 2π
N−1∑
n=0

τn(1 − τn). (24)

Note that the power of the harmonics and main components
are summed to determine the total radiated power including
that of the q = 0 components, as follows:

PT = P0 + Ph. (25)

When the same procedure is used to find P0, (16) is evaluated
for q = 0 as follows:

P̈(θ )avd
q=0

=
1
tp

∫ tp

0

N−1∑
n=0

(τn)2 cos
(
2π (f0 + n1f

)
)2dt. (26)

Finally, when spatial integration is applied, the power of the
q = 0 component is calculated as follows:

P0 = 2π
N−1∑
n=0

(τn)2. (27)

V. HARMONICS CHARACTERISTICS AND
NUMERICAL VALIDATION
This section presents the comprehensive analysis of the
effects of (24) and (15) on pattern synthesis and power con-
sumption through comparative examples. Firstly, we discuss
the extra design parameter introduced in (15) and its potential
contribution to pattern synthesis. Secondly, we exemplify
the impact of harmonic power consumption on the overall
system performance through comparative examples using
(24). Moreover, we compare the proposed expression with a
numerical integration method to showcase its hardware/time
consumption advantages. Finally, we briefly discuss the
difficulties in obtaining the experimental verification of the
results and state-of-the-art differences between the existing
literature studies to better understand the pulsed FDA’s
benefits.

A. DISCUSSION ON PATTERN SYNTHESIS
It is inferred from the previous analysis that the pulsed FDA
contains an infinite number of classic FDAs decomposed
at linear multiples of the fp frequency. In this case, as can
be seen in (15) as well, the harmonic coefficients appear in
the beampattern as an additional degree of freedom. Thus,
by optimizing the switching function parameters (especially
the normalized pulse durations τn), low sidelobe levels (SLL)
can be achieved without using complex hardware in a cost-
effective way. On the other hand, while switching is an
effective technique for SLL reduction, it inherently suffers
from sideband radiations. As a result, in several papers, SRP
is evaluated as a power loss, while various optimization
algorithms have been developed to suppress the undesired
sideband radiations (see for instance [30], [39], [42]).

To demonstrate the aforementioned abilities of this tech-
nique in terms of pattern synthesis, we consider an example
with N = 20, f0 = 10 GHz, 1f = 350 Hz, and d =

0.5λ, where λ represents the wavelength at the f0 frequency
(hereinafter referred to as Example-1). In this example,
the pulse repetition frequency and on-time durations of all
elements have been chosen equally to comply with the
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form in which pulsed FDA was first introduced. Due to
the same on-time durations, the harmonic coefficients of all
elements in the same harmonic order are the same. Therefore,
radiations in different harmonics differ from each other only
in amplitude. As a result, the range characteristic of FDAs
formed at each harmonic order is the same, differing only
in amplitude (i.e., the q0,1,2... FDAs have the same range-
angle pattern). It should be noted that the fp ≪ f0 constraint
must be preserved. Hence, the difference in this amplitude
level is defined by the ratio of the harmonic coefficients
of the elements in any harmonic order (i.e. Cqd1

n /Cqd2
n ,

where qd1 and qd2 denotes desired harmonic orders). If the
pulse repetition frequency is selected as 1 MHz and the
normalized on-time duration is chosen 0.4 for all elements,
the range-angle radiation pattern is shown in Fig. 3a, while
the amplitude ratio between the q = 0 and q = 1 radiations
is −2.42 dB.

As an another example, the change of harmonic radiation
patterns and power consumption values of pulsed FDAs,
which consist of elements with different on-time durations,
different from the general structure, will be examined (here-
inafter referred to as Example-2). In particular, Figs. 4b–4d
depict the angle-range patterns of the radiation that will occur
at the q = 0, 1, 2 harmonics for t =

1
1f

. When the open times
are adjusted to the Chebyshev coefficients of −20 dB (more
specifically, τn = [0.58, 0.66, 0.88, 1, 1, 0.88, 0.66, 0.58]),
a notable distinction arises from the durations of previously
demonstrated Example-1. As a consequence, the radia-
tion levels will exhibit a continuous alteration within the
angle-range couplings for every harmonic. The maximum
radiation amplitude ratio of q = 0 and q = 1 harmonics
is calculated to be approximately −14.79 dB. As can be
seen from Example-1 and Example-2, choosing the same
durations causes the sideband level to be quite high:−2.42 dB
for the same duration case (Example-1), and −14.79 dB for
the element-specific duration (Example-2) at specific range
200 km (see Fig. 3). Hence, this choice makes the signal be

transmitted at high power levels over multiple frequencies.
Additionally, this will compromise the frequency spectrum
allocation and quality of secure communication.

The above considered examples are now evaluated in terms
of SLL; in Example-1, the level of the SLL is approximately
−13.2 dB, while it is calculated as −20 dB in Example-
2. This allows the suppression of transmitter/receiver and
signal/scattering sources located at undesirable angles. As a
result, the system’s radiation performance improves, and
the first step toward establishing a secure communication
environment is taken. In addition, it can be inferred from these
two examples that the SLL and SRP levels can be reduced by
carefully selecting the time durations.

Another crucial point concerning pattern synthesis is
that most works on pulsed FDAs to date have focused on
monochromatic signals. Although this simplifies the calcu-
lations, the input signal’s bandwidth (Bw) is an important
parameter to consider during system design. In this case,
the bandwidth must be constrained to allow the system
to function properly. If Fig. 2 is reviewed again in this
context, it can be stated that there are two basic criteria for
a bandlimited signal not to be distorted in the frequency
spectrum. These are as follows:

1) Bw < 1f ; Thus, there will be no aliasing between the
array’s elements in the overall frequency response.

2) (N−1)1f < fp: In order to avoid the distortion between
consecutive harmonic orders. Otherwise, interference
in the harmonics will kick in making it harder to
reconstruct the signal.

B. DISCUSSION ON POWER CONSUMPTION
In this part, the consumption of the radiated power in
pulsed FDAs is presented via comparative examples and
validated with a numerical integration method. In these
examples, the SRP value calculated by the derived equation
presented in (24) and the numerical integration method has
been examined to test the effectiveness of the closed-form

[Re⟨sP⟩]2
q=p

=

∞∑
q=−∞

N−1∑
n=0

|Cq
n |

2 cos
(
2π (f0 + qfp + n1f

)
t ′ + ϕnq)2︸ ︷︷ ︸

m=n

+

∞∑
q=−∞

N−1∑
n,m=0

|Cq
n ||C

q
m| cos

(
2π (f0 + qfp + n1f )t ′ + ϕnq

)
cos

(
2π (f0 + qfp + m1f )t ′ + ϕmq

)
︸ ︷︷ ︸

m̸=n

(19)

[Re⟨sP⟩]2
q̸=p

=

∞∑
q=−∞

N−1∑
n=0

|Cq
n ||C

p
n | cos

(
2π (f0 + qfp + n1f )t ′ + ϕnq

)
cos

(
2π (f0 + pfp + n1f )t ′ + ϕnp

)︸ ︷︷ ︸
m=n

+

∞∑
q=−∞

N−1∑
n,m=0

|Cp
n ||C

q
m| cos

(
2π (f0 + qfp + n1f

)
t ′ + ϕnq)cos

(
2π (f0 + pfp + m1f )t ′ + ϕmp

)︸ ︷︷ ︸
m̸=n

(20)

144440 VOLUME 11, 2023



I. Kanbaz et al.: On the Sideband Harmonics in Pulsed Frequency Diverse Arrays

FIGURE 3. (a) The normalized radiation pattern for identical pulse
duration case (Example-1) in a fixed time (t = 0.002857 sec) and range
(200 km) (see black dashed line in Fig. 4a); (b) The normalized radiation
pattern for element-specific pulse duration (Example-2) for a fixed time
and range (see black dashed line in Figs. 4b–4d).

expression. For this purpose, the term P%loss, which is the ratio
of the SRP to the total power, is used as a benchmark tool
to analyze the overall performance of the array. According to
this definition, the termP%loss of the considered array is written
as follows [41]:

P%loss =
Ph
PT

× 100. (28)

When Example-1 in Section V-A is investigated in terms
of power consumption, the power loss is calculated as
60% using (24) and (28). This corroborates the fact that
harmonics consume most of the radiated power. Apart
from the observation that low on-time durations lead to a
time-independent pattern (which has often been overlooked
in the literature), there are associated disadvantages, like the
increased power consumption in harmonics. For example,

if the on-time duration is set to 0.01 as in [29], the belief
that time-independent radiation can be obtained results in
the consumption of 99% of the total power in harmonics.
In other words, in addition to the studies in the literature
on the disadvantages of this approach, impractical results
are obtained in terms of power consumption as well. If
we consider Example-2 in Section V-A (i.e. different on-
time durations), the power consumption value is found to be
16.94%, which is quite low when compared to the previous
example. This is a clear illustration of how P%loss can be
reduced by changing the open time durations.

To test the effectiveness of the proposed closed-form
expression, some array configurations [41], [42] and a
4-element pulsed FDA array (represented as [∗] in the
comparison table), whose parameters are given as 1f =

300 KHz, fp = 20MHz, τn = [0.57, 1, 1, 0.57] are examined
and discussed.

TABLE 1. Comparison table between the proposed closed-form
expression and trapezoidal numerical integration method.

The trapezoidal numerical integration method is used as
the verification method. In this method, a truncated version
of the pulsed FDA with infinite harmonics is used (qs =

100). To put it more clearly, as can be understood from
equation (13), the amplitudes of the harmonics are inversely
proportional to the order. Therefore, the contribution of
higher-order harmonics is too small and can be neglected
(only the contribution of the |qs| < 100 order harmonics
to the power consumption is taken into account). Our
numerical evaluations are implemented on a PC equipped
with an i7 6700HQ processor, 16 GB RAM, and a 256 GB
SSD hard disk. The analytical results are fairly accurate
in all configurations. Most importantly, in the example [∗],
the numerical integration approach requires approximately
3 hours, 14minutes, and 36 seconds, whereas the closed-form
expression requires only 0.014 seconds. In the 8-element
example in [41], the numerical integration requires 8 hours,
51minutes, and 22 seconds, while the closed-form expression
just 0.0154 seconds. In the example with 16 elements in [42],
the numerical integration requires 11 hours, 56 minutes,
and 23 seconds, while the closed-form expression only
0.0179 seconds. Hence, it is concluded that using the
numerical integration method will not be time effective as
the number of elements increases. The absolute accuracy
error between the two approaches is less than 0.5% for all
configurations, as shown in Table 1. It should be noted that
incorporating higher-order harmonics (|qs| > 1000) into the
numerical technique further reduces the error rate. However,
the calculation time will be significantly longer. As a result,
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FIGURE 4. The normalized range-angle field distribution for two different pulse duration strategies (a) identical
pulse duration τn = 0.4 (Example-1), (b) pulse durations are chosen from a Chebshyev distribution for -20 dB
SLL (Example-2) at q = 0 (c) q = 1, (d) q = 2.

the proposed closed-form expression is extremely accurate
and helpful.

Another interesting finding is that (24) is only dependent
on the normalized pulse durations. When compared to the
radiated power expressions of conventional array antenna
systems [38], [41], this may appear unexpected. In particular,
the radiated power is independent of the distance between
the elements. However, when the (N − 1)1f < fp criterion
is valid, it is apparent that the array element harmonics
will not overlap in the frequency spectrum. Therefore,
it can be deduced that the correlation between the harmonic
radiations of the array elements at different frequencies will
be insignificant.

C. DISCUSSION ON EXPERIMENTAL VERIFICATION
As described in the preceding sections, the range periodicities
of pulsed FDA’s radiation are typically in the km order and
time-dependent. Thus, an area with a radius of at least one
range period must be considered in order to conduct an
experimental verification. Within such an area, it would take
a huge number of receivers to achieve a significant resolution
(e.g., about 100m). Furthermore, this architecture should be
implemented at a certain height from the ground to minimize
the effects of multipath, reflections, and interference from
other sources. As a result, the FDA’s radiation fields are
unlikely to be experimentally validated in such formidable
conditions. For this reason, in recent studies on FDA
radar applications (e.g., [43], [44]), where range-dependent

radiation is thought to provide significant benefits, only
numerical results have been demonstrated (rather than
experimental ones).Moreover, since the discussions about the
FDA’s theoretical background (mostly on time dependency)
will continue, it is more reasonable to wait until the literature
reaches a certain level of knowledge, or until a more practical
experimental setup is presented, before proceeding into an
experimental verification.

In addition to the case introduced above, measurements
must be performed at all instants throughout a period
at an infinite number of frequencies resulting from peri-
odic excitations to calculate the SRP, which is extremely
challenging experimentally with the existing technological
tools. Even in a truncated harmonic model (discussed in
Section V-B), multiple harmonics must be observed at the
same time instant, necessitating high-frequency equipment,
such as wideband antennas, integrated filters, and so on.
However, the truncated approach does not produce exact
results; to obtainmore accurate results, muchmore harmonics
must be taken into consideration experimentally, which is
impractical and increases the hardware complexity. For all
these reasons, it is concluded that the SRP is still not
an experimentally demonstrable quantity, and, hence, all
studies on the SRP in the literature have used the numerical
verification technique [48].

In addition to the above discussion, a state-of-the-art
comparison table is presented to highlight the differences
between this study and the TMA, FDA, and pulsed FDA
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TABLE 2. A comparative overview: State-of-the-art features in TMAs, FDAs, and pulsed-FDAs.

studies already found in the literature. As shown in Table 2,
the SRP plays a crucial role in TMA and pulsed-FDA
studies, where only switching strategies can be adapted.
This issue is not a concern in classical FDAs, where
no switching circuit is applied. Additionally, in FDA and
pulsed-FDA systems, where modulated versions of the same
signal at different frequencies are used, unlike TMAs,
range dependency becomes a critical concern. While TMAs
have been demonstrated on experimental prototypes that
incorporate switches capable of operating at high frequencies
and allow 2Dpatternmeasurements, FDAs have experimental
prototypes that permit measurements from a single point
on the broadside only, making 2D pattern measurements
unfeasible. Finally, in TMA and pulsed-FDA systems, where
SRP is a common term, only numerical methods are used
for verification; as stated earlier, experimental verification is
impossible to date.

VI. CONCLUSION
In this paper, a harmonic-based analysis and power cal-
culations of the pulsed FDA structure were carried out.
First, a summary of the structure was provided, followed
by a focus on harmonic analysis, and it was articulated that
radiation occurred as a harmonic-range-angle-dependent pro-
cess. Furthermore, it was articulated that periodicity-induced
radiation in harmonics consumes power and that it would
be critical to take this into account during the design phase.
Then, the analytical calculation of the power consumed in
the harmonics of pulsed FDAs with their already known
configuration was carried out and numerically validated.
Moreover, the effect of duration on pattern shaping and
power consumption was investigated through comparative
examples with various configurations. Finally, the limitations
of the configurations proposed in the literature to obtain
time-independent radiation were discussed in terms of power
consumption.

APPENDIX
To derive (22), the integral in (21) should be calculated first
as follows [38]:

4
q=p
m=n

=
1
tp

∫ tp

t ′=0

N−1∑
n=0

cos
(
2π (f0 + qfp + n1f

)
t ′ + ϕnq)2dt ′

=
1
2

+
cos (2π (b+ qh+ n)+ 2φnq) sin (2π (b+ qh+ n))

4π (b+ qh+ n)
,

(29)

where b =
f0
1f

, h =
fp
1f

. It should be noted that the numerator
of the second part of (29) is in [−1, 1]. Additionally, the
maximum value of the second part is equal to 1

4π (b+qh+n) .
When 1f ≪ f0 is chosen, the denominator of this quantity
grows large. Under these circumstances, the second part is
very close to zero, so it can be neglected.

Similarly, the integration for m ̸= n can be expressed as
follows:

4
q=p
m̸=n

=
1
tp

∫ tp

t ′=0
cos

(
2π (f0 + qfp + n1f

)
t ′ + ϕnq)

× cos
(
2π (f0 + qfp + m1f

)
t ′ + ϕmq)dt ′. (30)

Here, 4 represents the integral operators of states. Further-
more, with the help of trigonometric identities (30), can be
written in two parts as follows:

4
q=p
m̸=n

=
1
2tp

∫ tp

t ′=0
cos

(
2π (2(f0 + qfp

)
+(n+ m)1f )t ′+ϕnq+ϕmq)dt ′

+
1
2tp

∫ tp

t ′=0
cos(2π(n− m)1f ) − ϕnq − ϕmq)dt ′. (31)

The first part of (31) can be taken as zero if 1f ≪ f0 holds.
Then, the second part is also calculated as zero for tp =

1
1f

.
A similar method can be applied for p ̸= q state. There is
also m = n and m ̸= n situation. For m = n, the integral is
calculated as follows:

4
q̸=p
m̸=n

=
1
tp

∫ tp

t ′=0
cos

(
2π (f0 + qfp + n1f

)
t ′ + ϕnq)

× cos
(
2π (f0 + pfp + n1f

)
t ′ + ϕnp)dt ′. (32)

With the help of trigonometric identities, (32) can be written
as follows:

4
q̸=p
m=n

=
1
2tp

∫ tp

t ′=0
cos

(
2π (2f0 + (q+ p)fp + 2n1f

)
t ′+ϕnq+ϕnp)dt ′

+
1
2tp

∫ tp

t ′=0
cos

(
2π (p− q)fp

)
t ′ − ϕnq − ϕmq)dt ′. (33)
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If f0 ≫ fp, this part can be taken as zero. By following the
same methodology for q ̸= p and m ̸= n, under the same
conditions such as f0 ≫ fp, 1f ≪ fp, this part can be also
negligible. As a result, the power is just radiated at the p = q
and m = n states.
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