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ABSTRACT Autonomous exploration in unknown environment has remained challenging due to unexpected
collisions, stuckness and slowdowns around obstacles. This paper reports a novel approach based on
Signed Distance Field (SDF), to optimize path planning algorithms and autonomous exploration strategy
for safe and adaptive navigation in search and rescue missions. A quantitative criterion is established for
evaluating the safety of planned trajectories. Simulation results show that the proposed SDF-A∗ path planner
outperforms traditional methods with a 30.10% increase in path safety (i.e. average distance from robot
to obstacles) and a 64.11% reduction in time consumption; The proposed SDF-based Safe Autonomous
Exploration Strategy, combined with SDF-A∗ path planner, outperform traditional methods, leading to
significant increases (47.06%) in path safety and reductions (44.75% and 15.32%) in exploration time and
path length, respectively. The viability, efficiency, and safety of the proposed methods are further validated
through real-world experiments on a three-wheeled differential steering robot equipped with Jetson Nano
and RPLIDAR-A3 lidar. Results show that the proposed approach adapts to different indoor environments
and map configurations without prior parameter settings.

INDEX TERMS Path planning, autonomous exploration, path safety, signed distance field.

I. INTRODUCTION
Robots and autonomous moving vehicles have been increas-
ingly used in search and rescue missions in post-disaster
environments. These scenarios are often complex and with
no priori map available. In order to facilitate efficient
rescue operations in such challenging scenarios, it is essen-
tial for mobile robots to venture into unknown areas and
autonomously explore them in a safe and efficient manner.
By doing so, they can generate accurate indoor maps that can
significantly assist rescue.

The autonomous exploration task can be divided into
4 subtasks: (a) mapping, (b) localization, (c) next goal
assigning, and (d) path planning. The first two subtasks
can be achieved using SLAM (Simultaneous Localization
and Mapping) algorithm, while the latter two subtasks are
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usually realized by frontier detection [1] and classical path
planning model like A∗ [2], respectively. Classical strategies
employed in goal assignment and path planning typically
prioritize exploration efficiency, with less consideration on
robot safety. However, it is crucial to ensure safety of the
robot while exploring unknown environments, especially in
the context of search and rescue missions, which in turn also
benefit exploration efficiency.

Traditionally, autonomous exploration methods can
be broadly categorized into frontier-based methods and
sampling-based methods. Frontier-based exploration strate-
gies, frequently utilized in robotic exploration, automatically
assign the next goal towards frontier edges [1], [3].
On the other hand, sampling-based methods have also been
employed, aiming to sample the ‘‘next-best-view’’ for explo-
ration. Frontier edges are defined as lines that distinguish
known from unknown spaces in an occupancy grid map.
Upon detection of a frontier edge, a point on the edge is
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assigned as the next goal for autonomous exploration. Many
previous research on optimizing the next goal assignment
strategy focus on maximizing information gain or decreasing
the exploration time [4], However, as the information gain
does not account for the spatial distribution of obstacles,
exploration goals near obstacles are often selected, result-
ing in collisions, low speed of movement, and even being
stuck, all of which reduce the efficiency of exploration [5],
[6]. Therefore, ensuring safety of next goal assignment and
avoiding being trapped should have been the priority in an
autonomous exploration task.

As a classical global path planner, A∗ generates the shortest
path without considering the distance from the robot to the
obstacle, therefore, in practical application, the robot can be
too close to the obstacle [7]. To address the limitation of the
A∗ algorithm, a common approach is to employ inflation lay-
ers in Costmap [8], which consists of a static layer, an obstacle
layer, an inflation layer and a master layer. Inflation layers are
commonly employed by the occupancy grid map in the Robot
Operating System (ROS) navigation framework [9] to create
a safety buffer around obstacles. As pointed out in [10], the
computational load associated with the Costmap are primar-
ily caused by the inflation layer. When updating the global
Costmap, the updated area of the master layer in Costmap
encompasses the entire two-dimensional grid map. Conse-
quently, each update of the master layer inherently leads to
the inflation of the entire two-dimensional grid map, signif-
icantly reducing computational efficiency, although inflation
layers in Costmap can improve safety in robot path plan-
ning [11]. For example, when the robot approaches or enters
the inflation layer, it starts to decelerate [8], reverse or even
spin around, which is considered as inefficient behaviors,
as is shown in Fig. 1. These inefficient behaviors, including
unnecessary reversing, can increase the trajectory overlaps
and time consumption, which not only diminish the efficiency
of autonomous exploration but also increase the probability
of the robot being trapped. This is because the inflation layer
decelerates and restricts robot movement, even causing it
to come to a halt. Consequently, avoiding reverse around
obstacles becomes instrumental in reducing the probability
of entrapment. As such, quantitative measures is also of great
significance to evaluate the performance of the strategies on
the above-mentioned aspects, in addition to some qualitative
analyses that have been reported for autonomous exploration
processes [12].
In recent years, Signed Distance Field (SDF) has been

widely utilized in 3D reconstruction and path planning of
Unmanned Aerial Vehicles (UAVs) [13], [14], [15], and has
been shown to be a robust map representation for dense
reconstruction of the environment and for trajectory planning.
SDF is a mathematical representation of the surrounding
environment that presents the distance to the closest obstacle
at each point in space, with the sign indicating whether the
point is inside or outside the obstacle. In 2D environment,
Fossel et al. [16] have demonstrated that SDF provides higher

accuracy in comparison to occupancy grid maps. However,
limited research has reported on combining SDF information
with 2D path planning and autonomous exploration.

In light of these backgrounds, the challenges and lim-
itations in autonomous exploration and path planning can
be summarized as follows: 1) inefficient behaviors during
robotmovement especially around inflation layer, 2) unreach-
able next goal assigned by autonomous exploration module,
3) lack of a quantitative criterion to evaluate safety of planned
paths. These three factors are the focus of this study.

This work therefore aims to propose a safe and efficient
next goal assignment and path planning strategy that incor-
porates SDF to replace the Costmap inflation layer. The
performance of the proposed approach is evaluated in safety,
efficiency (time consumption), coverage ratio (the ratio of
explored area and the total area) and failure rates etc.

FIGURE 1. Demonstration of the limitations of classical A∗ planner.
(a) Path planned by classical A∗ (green line). (b) Trajectory (blue line) with
inefficient reverse (in yellow circle).

II. RELATED WORK
This section reviews the previous work in autonomous
goal assignment strategy, path planning and path safety in
autonomous exploration.

A. GOAL ASSIGNMENT STRATEGY
The frontier-based method [1] is widely applied in
autonomous exploration due to its simplicity and ease
of implementation. Keidar and Kaminka [17] present a
Wavefront Frontier Detector (WFD), which employs two
breadth-first search (BFS) approaches to identify fron-
tier boundaries. However, as was discussed above, the
frontier-based method can easily end up with unreachable
target or leaving the robot trapped. To overcome this limita-
tion, researchers have proposed algorithms to assign the next
goal with higher level of reachability and safety. For instance,
Senarathne et al. [18] propose an incremental approach called
Safe and Reachable Frontier Detection (SRFD) to generate
a valid frontier by inflating the obstacle which avoids a
separate filter to remove invalid frontiers. Sun et al. [19]
also aim to improve the reachability by detecting frontiers
of the submaps and inflating them. However, similar to
Costmap’s inflation layer, this method removes the candi-
date goals that fall within the inflated areas, which may
lead to information loss of map and low coverage ratio.
At the same time, many research focuses on increasing
the information gain or utility of goal assignment [5], [6]
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or decreasing the exploration time [4], however, relatively
little attention is given to ensuring the safety of assigned
goals. Furthermore, Zhao et al. [20] propose an approach
that combines frontier-based and sampling-based exploration
for Unmanned Aerial Vehicles (UAVs). In their method, the
candidate next view is sampled from the map frontier. Based
on the principles of frontier theory, exploration strategies
based on rapidly-exploring randomized trees (RRT) unitizes
the randomized tree expansion to detect and prioritize the
frontiers [5], [21]. However, when it comes to search and res-
cue missions, the region to be explored is typically unknown,
making it challenging to define beforehand the specific area
of focus for RRT exploration.

While previous studies have proposed next goal assign-
ment strategies based on selecting points on the frontier, this
study takes a novel approach by modifying the points on
the frontier based on SDF information. Saulnier et al. [22]
present an active exploration method in TSDF (Truncated
Signed Distance Field) using Shannon mutual information.
The method is specifically designed for robots equipped with
RGB-D cameras. The goal assignment strategy of the robot
focuses on reducing the entropy, which corresponds to mini-
mizing uncertainty in the environment.

B. PATH PLANNING
Path planning can be classified as global and local path
planning, with global path planning algorithms accounting
for the entire environment, while local path planning only
considers the immediate vicinity of the robot. The resulting
global path provides the high-level guidance for navigation
and is typically comprised of a sequence of local plans
for execution. Dijkstra’s and A∗ algorithms are two widely
used graph search based methods for global path planning.
The classical A∗ algorithm [2] is a variation of Dijkstra’s
algorithm that uses a combination of cost and heuristic func-
tion to evaluate and prioritize nodes to be expanded, allowing
for faster convergence to an optimal solution than Dijkstra.
In addition to these algorithms, the RRT (Rapidly-exploring
Random Trees) [23] algorithm offers an alternative approach
to global path planning. The RRT planner employs random
sampling as its core strategy. It incrementally builds a tree
structure by randomly sampled points in the configuration
space and connecting them to the existing tree. This strat-
egy allows the RRT algorithm to quickly explore the search
space and find feasible paths. However, limitations of RRT
are its inability to guarantee optimal paths, its sensitivity to
the sampling distribution and the initial solution, as well as
slow convergence to the optimal solution [24], often resulting
in suboptimal solutions. To address these limitations, the
RRT∗ (Rapidly-exploring Random Trees Star) algorithm was
introduced [25]. RRT∗ enhances the original RRT algorithm
by optimizing the paths found by the tree. After each new
sample is added, the RRT∗ algorithm reconfigures the tree by
rewiring its connections, considering the cost of alternative
paths andminimizing the overall path cost. This enhancement
allows RRT∗ to converge towards near-optimal solutions

with increased iterations. Mashayekhih et al. [26] proposed
informed planner based on RRT∗, which shows lower compu-
tation cost with fewer iterations compared to RRT∗. However,
it’s important to note that while RRT∗ improves the optimality
of the paths, it does not guarantee the globally optimal path
due to its reliance on random sampling. Additionally, RRT∗

primarily focuses on exploration and path optimization, with
limited considerations for safety during the planning process.
Wang et al. [24] proposed a planner combine RRT∗ with
Convolutional Neural Network (CNN), which is trained using
large amounts of successful paths planned by A∗ algorithm.

Furthermore, path planning can also be accomplished
through optimization-based approaches, i.e., by treating the
path planning problem as an Optimal Control Problem
(OCP). OCP-based planning has exhibited notable perfor-
mance in various applications, including unmanned surface
vehicle navigation [27], autonomous flight deck path plan-
ning [28], and solutions for autonomous parking [29].
However, the efficiency and efficacy of OCP-based planners
are contingent on the formulation of the optimization problem
and the precision of the initial assumptions.

To discover an optimal path, numerical optimization tech-
niques can be coupled with other methodologies such as
the Artificial Potential Field (APF) [30]. APF is another
global path planning method that relies on the creation of a
virtual artificial potential field. However, APF has a known
limitation related to local minima, which can render the
target unreachable. To address this issue, several approaches
have been proposed that combine APF with other algorithms.
Keyu et al. [31] introduced a Fuzzy algorithm into APF to
mitigate the problem of local minima. Additionally, the RRT
algorithm has been used to assist APF in escaping local
minima by selecting temporary goals [32]. Zhang et al. [33]
enhanced the repulsive field of APF by introducing an addi-
tional force component to resolve the local minima challenge
in the APF path planning for autonomous ships.

For local path planning, dynamicwindow approach (DWA)
[34] and timed elastic band (TEB) [35] are commonly
employed. The purpose of the local planning algorithm is to
concurrently execute the tasks of tracking a moving target
and avoiding obstacles. The DWA algorithm, which works
as a velocity-based local planning algorithm, computes the
optimal velocity necessary to reach the target while avoiding
collisions. Due to its fast and effective control and obstacle
avoidance capabilities, the DWA algorithm is used in our
proposed method.

The Graph search-basedmethods such as A∗ [2] are widely
applied as they look for the shortest path. However, the path
planned by A∗ often approaches the edge of obstacles, which
is unsafe in the autonomous exploration task facing unknown
environment. To ensure a safe distance from obstacles, the
inflation layer is widely used to generate a Costmap [6] [36],
[37], [38], [39], [40], [41], [42], in which a buffer zone was
reserved around obstacles to ensure a fixed safe distance from
the robot, and the distance depends on the inflation radius
of the inflation layer. While inflation layer aims to consider
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safety, it can also result in information loss, mission failure,
and robot immobility in autonomous exploration tasks. For
example, Yu et al. [7] mentioned that inflating the obstacles
will prevent vehicles from planning feasible paths in narrow
aisles. In addition, inflation radius in the Costmap needs to be
determined based on the priori map, while during rescue or
exploration, a priori map is not available. Zarrabi et al. [11]
proposed a method to dynamically set the inflation radius
parameter through the use of a Fuzzy controller, albeit at the
cost of introducing a heavier computational load [10]. Some
planning methods do not rely on Costmap, but maximize
likelihood of reaching the goal [43] instead, in order to reduce
the computational complexity at the cost of a path that is not
the shortest. While this method enhances the safety of path
planning to some degree, by avoiding narrow paths and favor-
ing wider ones, it falls short in guaranteeing the robot’s safety
in cases where the destination is only accessible via narrow
passages. Therefore, it is crucial that the robot’s path planning
module is equipped with safety design while being adaptable
to different maps, to achieve safe autonomous exploration of
unknown environments.

Distance maps have been used in path planning for
collision checking, e.g., Sprunk et al. [44] employ a dynam-
ically updated distance map of the environment, along with
the robot’s circumcircle and incircle, for efficient colli-
sion checks. Garimort et al. [45] apply similar method for
humanoid robots. Oleynikova et al. [46] combine TSDF with
Euclidean Signed Distance Field (ESDF) as a novel map
representation for both 3D mapping and planning with image
based sensing.

C. PATH SAFETY
Despite the importance of safety in path planning, the lack of
a clear metric to quantify this factor has been noted [7], [40],
[47], [48], [49], [50]. Some studies have reported a qualitative
evaluation on safety, such as the absence of collisions [51].
However, considering localization error, information delay
and other factors, the passing through the edge of obstacles
(though not collided) is also extremely dangerous. Therefore,
avoiding collisions alone does not guarantee the safety of
robot. Several authors have proposed different metrics and
definitions of safety. For example, Zhang et al. [43] define
safety as the number of pathways the robot can take, as more
pathways leaves more choices for obstacle avoidance. How-
ever, this definition is limited to scenarios with a wider path,
and with no quantitative metrics on how wide it should be.
Dang et al. [52] define a safety score specifically for RRT∗

planner used in aerial robots. Such a safety score quantified
the distance between obstacles, and the local planner takes
the safety score into account when planning flying route.
Li et al. [49] employed the APF method to optimize the
path segment near the vicinity of obstacles while simulta-
neously smoothing the path. Nevertheless, the APF method
necessitates a priori knowledge of the map to ascertain the
repulsive force exerted by obstacles, a requirement that is not

usually met in autonomous exploration scenarios. Moreover,
it also lacks a specific definition of the safety for the path
generated by the 2D planners. While the existing literature
provides valuable insights into safety in path planning for
robots, current approaches often lack a standardized, quan-
titative measure of safety. To address this gap, the present
study established safety metrics, which can easily quantify
and compare the safety of different path planning modules
under the same map.

D. MOTIVATION AND CONTRIBUTATION
The current challenges can be summarized as follows:

• Many researchers primarily focus on enhancing the effi-
ciency of autonomous exploration, often at the expense of
robot safety. Additionally, intelligent algorithms demand sub-
stantial computational resources, highlighting the urgent need
for the development of a lightweight autonomous exploration
solution that can ensure the safety of robots.

• Present research lacks a qualitative measure for assess-
ing the safety of path planners. Engineering scenarios often
involve factors like inaccurate localization and sensor errors,
leaving less safety margins for path planning. Therefore,
there is a pressing need for the definition of a universally
applicable metric that can quantitatively evaluate the safety
of the planned trajectories.

• Furthermore, the current direction of research on global
path planning algorithm predominantly emphasizes reducing
path length or incorporating intelligent method like CNN
tailored for specific scenarios. However, few research focus
on balancing robot safety and efficiency with adaptiveness
across different scales of scenes. Hence, there is a demand
for an adaptive path planning approach that prioritizes safety.

Accordingly, the key contributions of this work are as
follows:

• to develop a safety-prioritized next goal assignment
strategy in autonomous exploration that not only effectively
increases the reachability of goals but also reduces the overlap
of trajectory.

• to develop an SDF-based global path planner that
enhances robot safety with high robustness and adaptability
across different environmental scales without compromising
path planning efficiency.

III. PROPOSED METHOD
Let M ∈ R2 represent a bounded 2D grid map generated by
Cartographer on which the autonomous exploration is per-
formed. Each point m = [xm, ym]T ∈ M0 has an occupancy
probability p (m), where p (m) = −1 represents unknown
area, p (m) = 0 means free, p (m) = 100 means occupied.
The robot pose is represented by x = [x, y, θ]T . In SDF map,
the distance of every point to the nearest obstacle is known
as d. The path σ , which describes the robot’s trajectory,
is defined relative to the SDF map. It’s important to note
that the origin of this SDF map coincides with the origin of
occupancy grid map.
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The SDF map is shown in Fig. 2, where the black region
represents the obstacle and the signed distance value for
each point in the obstacle is negative (d≤ 0), while the
non-black region represents the free space, with brighter
region representing larger distance from obstacles, and the
signed distance value for each point in the free space is
positive (d> 0).

FIGURE 2. Demonstration of a signed distance field (SDF) Map, with the
dark region representing obstacle area and bright region representing
free space.

FIGURE 3. Overview of the proposed Safe Autonomous Exploration
Strategies. The proposed method is comprised of SDF-A∗ planner and
safety-prioritized next goal assignment strategy based on SDF map.

FIGURE 4. Visualization of continuous gap (green line) in Algorithm 1.

A. OVERVIEW
The proposed method, as depicted in Fig. 3, is comprised
of SDF-A∗ planner and Safety-prioritized next goal assign-
ment strategy based on an SDF map. The goal assignment
publishes a safe goal to the path planning model using infor-
mation from SDF map. Once the goal is reached through
the path generated by SDF-A∗ (global path planner), DWA

(local path planner) and robot control unit, a next goal will
be assigned until there is no frontier in the map. If the robot
fails to reach a goal, the recovery action is activated, which
involves updating the robot pose and reassigning a new goal.

B. SDF-BASED SAFE AUTONOMOUS EXPLORATION
STRATEGY
The proposed next goal assignment strategy aims to balance
the safety and exploration efficiency by incorporating the
distance from obstacles into the goal assignment process,
ensuring that the assigned goal maintains a safe distance
from obstacles in all environments without the need to adjust
parameters of algorithm.

As the first step of next goal assignment, frontier detection
and rough goal assignment is employed, as is described in
Algorithm 1.

Algorithm 1, line 1: The functionfindFrontiers detects the
frontiers from the 2D occupancy grid map from Cartographer
based on Yamauchi’s Frontier based approach [1];

Algorithm 1, line 2: Fm is the largest frontier, and a rough
goal will be assigned on it through afterwards iteration.

Algorithm 1, line 6-18: To identify the occupancy condi-
tion of the frontiers according to the occupancy grid value, the
continuous gap that is not an obstacle is searched for on gap.

To clarify, Algorithm 1 identifies continuous gaps in the
environment based on occupancy grid values, not relying
on the SDF map. In Fig. 4, the continuous gap is depicted
as the green line, where the vertical portion corresponds to
obstacles. Please note that the occupancy grid values are not
100 for now due to the sensor’s delay in recognizing occupied
grid cells as obstacles. The inclined section of the green line

Algorithm 1 Frontier Detection and Rough Goal Assignment
Input: M0 : Occupency Grid Map

Pose of robot
Output: Rough goal
1 Ft = findFroniers(M0);
2 Fm = max(Ft );

//Find Rough goal on the maximum Frontier
3 if is the first rough goal to find
4 Rough goal = Point on Fm which is nearest to robot
5 else
6 for ∗ it = Fm.start()to ∗ it = Fm.end()

//Find Gap on the maximum Frontier
7 if current ∗it is not obstacle and last∗it is obstacle
8 gapStart=∗ it;
9 else if current ∗ it is obstacle and last ∗it is not obstacle
10 gapEnd=∗it;
11 end if
12 if gapDistance >κ then
13 Rough goal= middle of gap on Fm
14 break;
15 else
16 go to line 7 to find new Gap;
17 end if
18 end for
19 end if
20 return Rough goal
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Algorithm 2 Assign the Safe Goal
Input: M0 : Occupency Grid Map

Pose of robot
Rough Goal: result from Algorithm 1

Output: Safe goal
1 Mt = Zhang− Suen thinning Map(M0);
2 safe mask = {M0.size(), 0};

//Find Safe goal using Depth First Search
3 fori = 0,1,. . . . . .Mt .size()
4 if Mt (i) is free
5 safe mask(i) =1;
6 neighbour = DFS(Mt (i));

//using DFS to findMt (i)′ sneighbour
7 for j in neighbour
8 if Mt (j) is free && connected to space where safe

mask =1
9 safe mask(j) =1;
10 delete j from neighbour;
11 else
12 safe mask(j) =1;
13 delete j from neighbour;
14 end if
15 end for
16 else
17 safe mask(i) = 0;
18 end if
19 end for

//Find path from Rough goal to Pose of robot and refine the
Rough goal to Safe goal when path touching the safe mask=1

20 p =Dijkstra findPath(Robot pose, Rough goal);
21 for Point x on p
22 if safe mask(x) == 1
23 Safe goal = x;
24 break;
25 else
26 x++;
27 end if
28 end for
29 return Safe goal

is frontiers. We initially assign the rough goal to the center of
the gap and then refine this rough goal into a safe goal through
Algorithm 2. The primary motivation for this refinement is to
avoid potential issues where, during autonomous exploration,
the occupancy values of some frontiers often fall between
0 and 100, and time is required to confirmwhether a frontier is
free or an obstacle. This precaution ensures that the assigned
goals do not stuck the robot around obstacles, ultimately
preventing failure in the autonomous exploration task.

Algorithm 2, line 1: Zhang-Suen method [53] is used to
thin the occupancy grid map. Extracting the skeleton of the
occupied map using the Zhang-Suen method can effectively
reduce the occurrence of unreachable goals caused by the
non-100 values of obstacles, and the performance depends
on how often the map updates;

Algorithm 2, line 3-19: Depth-first search (DFS) method
is used to find the connecting points that are furthest from
the obstacle in the SDF map and store them in the safe
mask. On the safe mask map, the path from the rough goal to
robot is generated by Dijkstra algorithm to find the shortest
path. During path production, the process starts from the
rough goal, and the path is continuously expanded in all

directions according to Dijkstra’s algorithm to find the short-
est path;

Algorithm 2, line 20-29: When the obtained shortest path
intersects with the safe mask, the rough goal is optimized
to the safe goal. Because the safe mask lines consist of the
furthest points from the obstacle found by the SDF map, the
safe goal on the safe mask can guarantee the safety of the
autonomous exploration.

C. SDF-BASED A∗ GLOBAL PATH PLANNER
This algorithm fully considers the distance factor between
the robot and the obstacle and establishes a distance function
model. The function is designed to reach a balance among
safety issue (distance from robot to obstacles), the ‘Potential’
(distance cost from the starting point to the robot’s current
position) and the ‘Distance’ (distance from the robot’s current
position to the goal). This balance is vital for optimizing the
efficiency and safety of robotic navigation.

The SDF factor for a robot pose x that lies along a path σ

can be expressed as follows:

s[m|x, α] =

{
ḋ if d > 0
Inf if d ≤ 0

(1)

Here ḋ represents the normalized result of derivative of d on
the distance field. When d > 0, s ∈ [0,1]. We set s to Inf
when d ≤ 0, to ensure robot does not consider points inside
obstacles when planning the path.

The heuristic function of A∗ [23] is improved to account
for the SDF factor as follows:

F (m) = P× (κ1 + s[m|x, α]) + D(m)× (κ2 + s[m|x, α])

(2)

In the heuristic function F (m) of the SDF-A∗ algorithm,
P stands for Potential; D refers to Distance; κ1 and κ2 are
coefficients that balance the weight of safety factor, Potential
and Distance.
In our experiments, we set κ1 and κ2 to 1, indicating equal

weight for Potential and Distance. However, it’s essential to
note that κ1 and κ2 can be set to different values, reflecting
varying weightings for Potential and Distance. While κ1 and
κ2 were both set to 1 in our simulations and real-world experi-
ments, resulting in excellent performance, this idea originates
from traditional A∗ planner, where the weightings assigned to
Potential and Distance are typically equal.
SDF factor is added to balance the trade-off between safety

and path cost. Instead of directly using distance values in
SDF, this study employs spatial derivative of distances to
make the algorithm more adaptive to different scenarios.
For example, the distance of different areas on the map from
the obstacle may vary greatly, from the centimeter level in the
narrow passages to the meter level in big warehouse, if the
distance values of SDF map are used directly, the heuristic
function F (m) will vary too much and the comparison of
F (m) will be meaningless. Therefore, the distance derivative
values ḋ is used in the current path planning model to account
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for the relative distance, thus avoiding the need to adjust
parameters like radius of inflation layer in the traditional
method.

IV. EXPERIMENTS
The performance of the proposed SDF-A∗ path planning
method and SDF-based Safe Autonomous Exploration Strat-
egy were first evaluated through simulations in ROS, and
then tested in real-world environments using a robot equipped
with RPLIDAR-A3 single-line lidar. Furthermore, quantita-
tive comparisons were also made in the following section.

A. EXPERIMENTS IN SIMULATION ENVIRONMENT
The performance of the proposed SDF-A∗ path planning
method and SDF-based Safe Autonomous Exploration Strat-
egywere evaluated through simulations in ROS. A cylindrical
robot with a diameter of 0.3m and a height of 0.65m, equipped
with lidar is used as the mobile robot platform. To make the
simulation process more realistic, the lidar parameter were
set the same as RPLIDAR-A3 lidar, which is used in real-
world experiments. The computer operating system is Ubuntu
18.04, and two-dimensional grid map is displayed on Rviz.

For path planning simulation, a 6 m × 4 m environment
was constructed in the Gazebo environment, and 4 goals are
assigned from the map generated by Cartographer as shown
in Fig. 5. Both wide and narrow channels were included in
the map, to allow for a fair comparison of the performance of
different path planning algorithms. The start and endpoints,
as well as the robot’s pose, are fixed for each segment.
Additionally, in order to evaluate the impact of factors such
as environment size and the number of obstacles on the
path planning module, we have also simulated a 391 m2

environment with simple obstacles and complex obstacles,
as shown in Fig. 6(a) and 6(b), respectively. The environment
with simple obstacles has 12 fixed goal points, while the
environment with complex obstacles has 18 fixed goal points,
as shown in red points in Fig. 6.

Three types of global path planners were evaluated in this
study, including 1). the baseline approach, which combines
ROS’s move_base navigation package using an A∗ algorithm
for global planning; 2). RRT∗; 3). SDF-A∗ for global

FIGURE 5. Simulation environment for the comparison of different path
planning algorithms, with the starting point fixed at the center of the map
(green triangle) and four fixed goals shown as orange stars.

FIGURE 6. Simulation environment in a 391 m2 environment with
(a) fewer obstacles and 12 goals; (b) with more obstacles and 18 goals.
This simulation is established to assess the impact of environment size,
obstacle quantity, and complexity on the performance of path planning
module. Fixed goals are shown in red points.

FIGURE 7. Simulation environment for autonomous exploration based on
Gazebo (a) and Rviz (b).

planning proposed in this paper. All approaches apply DWA
for local path plan.

For autonomous exploration, we compared three explo-
ration strategies: the classic frontier detector, the WFD, and
the SDF-based Safe Autonomous Exploration Strategy in a
simulation platform (around 247 m2) as shown in Fig. 7.

B. EXPERIMENTS IN REAL-WORLD ENVIRONMENT
The proposed strategy is implemented on the three-wheeled
robot (two wheeled differentially placed in rear, one single
free wheel additional placed in front to ensure the robot
equilibrium) equipped with Jetson Nano and RPLIDAR-A3
lidar. The lidar has a maximum detecting range of 25m, and
6rad angle, with 1◦ resolution. An i7 embedded computer
carries out all onboard processing. The robot is equipped with
two active wheels, each having a diameter of 0.65 meters,
and one passive wheel. The mobile robot had a physical size
of 0.25 m × 0.18 m × 0.11 m, a maximum linear velocity of
0.2m/s, a maximum angular velocity of 0.3 rad/s, a maximum
linear acceleration of 0.15 m/s, and a maximum angular
acceleration of 0.25 rad/s.

The experimental evaluation of the proposed SDF-based
Safe Autonomous Exploration Strategy was tested on a robot
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equipped with the SDF-A∗ planner and RPLIDAR-A3 sensor
for perception and navigation. The chosen actual scene rep-
resents typical indoor environments with obstacles, narrow
passages, and varying complexities to mimic real-world sce-
narios. The proposedmethod is implemented as ROS package
on Jetson Nano and tested in two indoor environments (scene
1 around 30m2, scene 2 around 120 m2), as is shown in
Fig. 14(a) and Fig. 15 (a).

C. EVALUATION METRICS
The path planning algorithms are evaluated using the follow-
ing metrics:

• Path Length: the length of the path is calculated using the
robot’s pose data published by Cartographer;

• Time Consumption: the time consumed from starting
point to endpoint;

• Path Safety: as discussed above, since there is no quan-
titative metric for path security, we design a statistical metric
to measure path security based on SDF.

The trajectory is extracted from mapping result in Rviz
using OpenCV, as shown in Fig. 8 (a). The path is then
discretized into hundreds of points evenly spaced along the
curve, denoted as pi = (x i, yi). The safety of the path is
evaluated based on the SDF values of the points on the path,
as shown in Fig. 8 (b). Specifically, we calculate the SDF
value di for each point pi on the path using the following
equation:

di = SDF(x i, yi) (3)

where SDF(x i, yi) is the SDF value of the corresponding
location (x i, yi) on the map. The safety of the path is then
calculated as the average of all SDF values of the points,
which is computed as follows:

Path safety =
1
N

×

∑
i
(di) (4)

where N is the total number of points on the path.
Larger average SDF value indicates greater distance from

the obstacle, thus represents a safer path. So this metric can
effectively reflect the safety of paths with the same start-end
point for different path planning strategies.

V. RESULTS AND DISCUSSION
A. PERFORMANCE OF SDF-A∗ PATH PLANNER
1) RESULTS OF PATH PLANNERS’ EXPERIMENTS
This study runs 10 repetitive experiments on simulation using
A∗ planner, RRT∗ planner and the proposed SDF-A∗ planner
on three maps with the fixed start and end points, as is shown
in Fig. 5 and Fig. 6. The average total time consumption, total
path length and path safety is recorded, as is shown in Fig. 9.
It can be seen that, under these three conditions, the uti-

lization of the SDF-A∗ path planner has resulted in a 30.10%
improvement in path safety, a 64.11% reduction in time,
and a 31.67% decrease in path length compared to the A∗

planner in small environment, and 12.63%, 10.29%, 6.15%

respectively in large simple environment, 7.86%, 13.26%,
9.52% respectively in large complex environment.

In comparison to the RRT∗ planner, the SDF-A∗ out-
performs in terms of path safety, achieving a 10.59%
improvement in small environment, 2.59% in large simple
environment and 10.62% in large complex environment. The
reduction in time consumption with SDF-A∗ is 34.65%,
7.33%, and 22.06% in the three scenarios, and the reduction
in path length is 18.07%, 13.80%, and 9.90%, respectively.

These results indicate that the SDF-A∗ planner outper-
forms the classical A∗ planner and RRT∗ planner in terms
of path length, time consumption and efficiency under
both small and large environment, with various settings of
obstacles.

2) DISCUSSIONS ON PATH PLANNERS
Fig. 10 shows the partial SDFmap along with the correspond-
ing robot trajectories using A∗ planner and SDF-A∗ planner.
It can be seen that, incorporating information from the SDF
results in shorter path with less time, although the path length
planned by SDF-A∗ is not the shortest. Fig. 10(b) illustrates
the actual trajectory of the robot under SDF-A∗, which aligns
with the white space shown in Fig. 10(a), representing the
furthest point from the obstacle in the SDF map. This align-
ment demonstrates that the SDF information has a significant
impact on the actual robot trajectory.

Although the A∗ path planning algorithm is widely rec-
ognized for generating the shortest path between a robot’s
initial and goal locations, a drawback of A∗ arises when its
shortest path intersects with the edge of the inflation radius,
which can compel the robot to decelerate as it approaches the
edge or even reverse, as illustrated by the yellow circles in
Fig. 10(c). This unnecessary reversing and deceleration can
significantly impact the actual performance of the A∗ path
planner, particularly in narrow paths, leading to trajectories
that are not as short as expected.

It is indeed possible that the SDF-A∗ planned path, as indi-
cated by the green line in Fig. 11(b), can be longer than
the shortest path, as computed by the traditional A∗ planner
in Fig. 11(a). However, as is shown in Fig. 11(c), a longer
trajectory was found due to the deceleration within the infla-
tion radius, i.e., the robot continuously reverses and stops
within the inflation radius when following A∗ planned path.

FIGURE 8. Extract path trajectory (purple line) in an occupancy grid map
(a)), then evenly discretized the trajectory into 150 points and put the
points (white points) in the SDF map (b).
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FIGURE 9. Comparison of three path planning algorithms under different environments, with the results averaged from 10 repetitive experiments in three
environments.

FIGURE 10. (a) A partial representation of the SDF map, where the white
region is the furthest points from obstacle. (b)Robot trajectory generated
by SDF-A∗ planner. (c) Robot trajectory generated by A∗ planner with
obvious reversing and turning.

On the other hand, while the trajectory obtained with the
SDF-A∗ planner in Fig. 11(d) has a longer planned path,
a shorter actual trajectory was resulted due to the avoidance
of inefficient behaviors like reversing and getting stuck.

It can also be seen from Fig. 9 that, the benefits of SDF-A∗

is more noticeable under environment with more obstacles.
This is because the increased obstacle density reduces the
average distance between the robot and obstacles, posing
more challenges to A∗ and RRT∗ algorithms. However,
in larger environments with fewer obstacles, the improvement
in path safety of SDF-A∗ was relatively small. This is because
environments with sparse obstacles posed less challenge to all
path planners.

Furthermore, the RRT∗ planner occasionally generates
paths that deviate significantly from the optimal route, due

FIGURE 11. Path planned by (a) A∗, and (b) SDF-A∗ in green lines, and
actual trajectory by (c) A∗ with reverse and by (d) SDF-A∗ without
inefficient behaviors.

FIGURE 12. Representative trajectories planned by RRT∗ and unnecessary
turns caused by randomness indicated by red dashed circles.

to its randomly sampling nature, as shown in Fig. 12. The
randomness occasionally leads to larger directional changes
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TABLE 1. Comparison of three different exploration strategies, with data averaged from 10 repetitive experiments.

FIGURE 13. Simulation results of autonomous exploration strategy using (a) and (b) frontier-based exploration strategy, (c) WFD strategy and
(d) SDF-based Safe Autonomous Exploration Strategy. The robot applied frontier-based exploration and WFD ends up with stuckness near obstacle,
or fails to cover certain area, as shown in red dashed rectangle, and the unnecessary overlap of trajectories is shown in red dashed circles in (b) and (c).
In contrast, the proposed strategy demonstrates enhanced exploration efficiency, with no unnecessary trajectory overlaps (depicted by green dashed
circles and rectangles in (d)).

and unnecessary turns, as indicated by the red circles in
Fig. 12, which highlight that the RRT∗ algorithm, with an
improvement over RRT, still exhibits a considerable degree
of randomness in the paths it generates.

B. PERFORMANCE OF SDF-BASED SAFE AUTONOMOUS
EXPLORATION STRATEGY
1) RESULTS OF SIMULATION EXPERIMENTS
To evaluate the performance of the autonomous exploration
strategies, the SDF-based Safe Autonomous Exploration
Strategy was combined with the SDF-A∗ planner, and its
performance was compared with the classical frontier-based
strategy and WFD-exploration strategy. The experiments
were repeated 10 times in a simulated environment of
247.06 m2, as is shown in Fig. 7.
The experimental results are shown in Fig. 9. The classic

frontier-based exploration strategy exhibited some limita-
tions, resulting in exploration failures in 5 out of 10 exper-
iments. The robot’s trajectory length was relatively long
(103.78m) due to its tendency to select goals close to obsta-
cles, leading to safety risk (45.00 pixels). The strategy
employed 46 goals, achieving a coverage of 90.6%, but the
high failure rate (50%) indicated its susceptibility to get-
ting stuck in narrow passages and incomplete map coverage,
as shown in red dashed rectangles in Fig. 13 (a) and (b).
The WFD frontier-based exploration strategy showed a

moderate performance, experiencing exploration failures in
3 out of 10 experiments. The strategy selected fewer aver-
age goals (22) as the strategy sometimes ignored smaller
frontiers, resulting in a shorter trajectory length (101.08 m)
compared to the classic approach. However, the safety score

was compromised (61.82 pixels) and the coverage achieved
was 86.78%, indicating reasonable but not complete explo-
ration. A representative exploration path using this method is
shown in Fig. 13(c).

The proposed SDF-based Safe Autonomous Exploration
Strategy outperformed the other two strategies, successfully
completing the exploration task in all 10 experiments without
any failures. The strategy achieved a high level of safety
(66.18 pixels) by efficiently avoiding unnecessary path over-
laps, as shown in Fig. 13(d). It selected 25 goals on average,
resulting in a relatively shorter trajectory length (87.88 m)
and a higher coverage ratio of 92.56%. The application of
this approach resulted in a substantial 47.06% improvement
in path safety, a significant 44.75% reduction in time, and a
notable 15.32% decrease in path length when compared to the
traditional frontier-based exploration strategy.

2) DISCUSSIONS ON SIMULATION RESULTS
Through ten repetitive experiments, our method consistently
achieved high coverage rates and shorter trajectory lengths
for several reasons. The traditional frontier-based exploration
andWFD strategies often fall short in covering specific areas,
due to their lack of consideration of the safety of the next
goal, leading the robot towards an unreachable destination
and being stuck, resulting in unexplored regions on the map.
Our method, on the other hand, employs the SDF map and
safe mask in Algorithm 2 to optimize the selection of the
next goal, ensuring that the robot does not get stuck due to
an unsafe goal.

Additionally, the trajectories generated by traditional
frontier-based exploration and WFD frequently exhibit
unnecessary overlaps, increasing the overall trajectory length.
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FIGURE 14. Indoor experiments in scene 1 (around 30m2). (a) the actual
environment. (b) Occupancy grid map with the blue line showing
autonomous exploration trajectory and black line showing the
contour of the resulted map.

FIGURE 15. Indoor experiments in scene 2 (around 120 m2). (a) the
actual environment. (b) Occupancy grid map with the blue line showing
autonomous exploration trajectory and black line showing the contour of
the resulted map.

Our approach resolves this issue by optimizing the next goal
selection strategy. By recording the robot’s previous path and
assessing the likelihood of overlap with already traversed
trajectories, we enhance the efficiency of the path planning
process, ultimately achieving a combination of high coverage
rates and shorter trajectory lengths.

3) RESULTS OF REAL-WORLD EXPERIMENTS
The proposed SDF-A∗ combined with SDF-based Safe
Autonomous Exploration Strategy was also implemented on
a robot and tested in real-world indoor environment. It can be
seen from Fig. 14 that, in an environment with long corridor,
the autonomous exploration process took around 767 s in
scene 1 with 21 goals assigned, which results in a path length
of 13.98m. Similarly, in Scene 2 (Fig. 15), characterized
by narrow passages, office sofas, and chairs, the proposed
method effectively explored the unknown indoor area. In this
scenario, the exploration process took about 964 seconds,
covering a trajectory length of 24.8 meters, with 59 goals
assigned. The implementation of the proposed method has
shown successful and safe attempts in exploring the indoor
unknown area.

VI. CONCLUSION
This paper presents a novel approach based on signed dis-
tance field to optimize autonomous exploration strategies and
path planning algorithms for safe, effective, and adaptive
navigation for indoor rescue and search missions. A quan-
titative criterion is established to evaluate the safety and the
probability of being trapped for path planning.

The proposed SDF-based Safe Autonomous Exploration
Strategy and SDF-A∗ path planner outperform traditional
methods, as demonstrated through experiments on simulated
robots. Specifically, the SDF-A∗ path planner has led to a
30.10% increase in path safety and a 64.11% reduction in
time, as well as a 31.67% reduction in path length, compared
with A∗ planner. Furthermore, the SDF-A∗ path planner
can effectively prevent robots from unnecessarily reversing,
slowing down, or getting trapped within the inflation radius.
The SDF-A∗ path planner also has the advantage of being
self-adaptive to environment, without prior parameter setting.
This is important because it allows the proposed method to
adapt to different types of environments and map configura-
tions without the need for human intervention.

The SDF-based Safe Autonomous Exploration Strategy
combined with SDF-A∗ path planner has led to a 47.06%
increase in path safety and a 44.75% reduction in time, as well
as a 15.32% decrease in path length comparedwith traditional
frontier-based exploration strategy. Additionally, the cover-
age ratio is 5.78% higher than the traditional frontier-based
method. Most importantly, the proposed approach results in
a 0% failure rate, while that of frontier-based method and
WFD method is 50% and 30%, respectively. Although the
SDF-based approach requires more goals to complete the
exploration task, it exhibits higher success rate, higher degree
of safety, and lower time consumption than the traditional
frontier-based approach.

Real-world experiments further validate the feasibility,
efficiency, and safety of the proposed methods for indoor
rescue and search missions. The performance improvements
attained by the SDF-based Safe Autonomous Exploration
Strategy and SDF-A∗ path planner highlight their potential
for practical implementation in real-world scenarios, con-
tributing to more effective and reliable robotic missions
aimed at saving lives and property during emergencies.

However, there are some limitations that arise when the
algorithm incorporates the SDF map.

1. The SDF-A∗ planner requires the generation of SDF
map, which introduces additional computational cost. How-
ever, it’s worth noting that in our experiments, which include
simulated environments ranging from 24 m2 to 247 m2 and
real-world settings spanning from 30 m2 to 120 m2, we did
not observe any significant computational overload on robot
navigation.

2. The SDF-based Safe Autonomous Exploration Strategy
may not offer substantial efficiency improvements in environ-
ments with vast, nearly obstacle-free spaces. This is because
SDF maps under such environment lacks obstacles, tend to
exhibit nearly uniform characteristics, rendering them less
effective in the current algorithm.
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